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Magnetic Hofstadter butterfly and its topologically quantized Hall conductance
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The energy spectrum of massless Dirac fermions in graphene under two-dimensional periodic magnetic
modulation with square-lattice symmetry is calculated. We show that the translation symmetry of the problem is
similar to that of the Hofstadter or Thouless–Kohmoto–Nightingale–den Nijs problem, and in the weak-field limit
the tight-binding energy eigenvalue equation is indeed given by the Harper-Hofstadter Hamiltonian. We show
that due to its magnetic translational symmetry the Hall conductivity can be identified as a topological invariant
and hence quantized. We thus extend the idea of topologically quantized Hall conductance to a two-dimensional
electron system under periodic magnetic modulation. Finally, we indicate possible experimental systems where
this may be verified.
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I. INTRODUCTION

The integer quantum Hall effect, one of the most fasci-
nating phenomena in condensed-matter physics and beyond,
shows extremely precise quantization of magnetotransport
(Hall conductivity) in a two-dimensional electron gas (2DEG)
placed in a transverse magnetic field. It was first discovered
in a system with nonrelativistic dispersion [1–4] (silicon
metal-oxide-semiconductor field-effect transistor and semi-
conductor heterostructure) and subsequently in a 2DEG with
relativistic dispersion [5,6] realized in graphene.

In a seminal paper Thouless, Kohmoto, Nightingale, and
den Nijs (TKNN) [7] identified this quantized Hall con-
ductance of a 2DEG in a transverse magnetic field with a
strong periodic potential [8] with a topological invariant [9]
called the first Chern number defined in the space of Bloch
vectors. This remarkable idea not only explained the robust
quantization of a transport quantity but fundamentally mod-
ified the conventional understanding of the band structure of
transport. This idea was further significantly generalized when
Haldane [10] showed that such topological quantization of
Hall conductivity can be achieved for a fully filled band even
in the absence of a net magnetic field, leading to anomalous
quantum Hall effect (AQHE). Haldane’s seminal work was
further generalized in systems without any external magnetic
field, which respect time-reversal symmetry [11,12] and led to
the discovery of present-day topological insulators [13].

This paper considers a two-dimensional gas of massless
Dirac fermions with relativistic dispersion, the charge carriers
in monolayer graphene, in the presence of a periodically
modulated transverse magnetic field. We show that such mag-
netic field is composed of two parts. One part corresponds
to a uniform field, like that in a prototype quantum Hall
system. The other part gives a periodic modulation which
has zero net flux through each unit cell. Thus, the second
part gives a flux condition qualitatively similar to that in the
Haldane’s problem [10], leading to the AQHE, but realized
in a different lattice geometry than Haldane’s construction.
Subsequently, we write the resulting vector potential as a
combination of the usual symmetric gauge vector potential for

a uniform transverse field and a periodic vector potential for
the modulated part, whose form we also explicitly construct.
This decomposition enables us to identify that the magnetic
translation operator [14–16] for this problem is same as that
in the TKNN [7] problem.

This has interesting consequences. The corresponding
Hamiltonian is a perturbed form of the Hamiltonian used
in the classic Hofstadter problem [8]. However, here the
periodicity comes entirely from magnetic modulation. We
therefore address this as a magnetic Hofstadter problem. In
the tight-binding approximation and in the weak-field limit
we show that the problem is indeed the Hofstadter-Harper
equation. We analyze its spectrum. Finally, the properties of
the magnetic Bloch functions are used to show that the Hall
conductivity stays quantized as in the TKNN problem and can
be identified with the Chern number of a filled band. Thus, our
decomposition of the magnetic field profile allows us to show
the topological quantization of Hall conductivity for a generic
magnetically modulated 2DEG.

The effect of periodic magnetic modulation in one [17–19]
and two dimensions [20–22] on a 2DEG was considered
previously in a number of papers. They mostly explored
the resulting band structure [17,18] and the perturbation of
Landau levels (LLs) formed in a uniform magnetic field. Our
decomposition of a general periodic magnetic modulation and
the identification of the unique magnetic translation symmetry
for a large class of Hamiltonians not only provide a unifying
theoretical framework for these previous studies but also
establish a connection between the conventional quantum
Hall effect and the AQHE espoused in Haldane-like models.
We conclude the paper by indicating some physical systems
where this prediction can be put to experimental test.

II. THE MODEL

We consider the charge carriers in monolayer graphene in
a transverse periodic magnetic field modulation (Fig. 1) given
by

B ẑ =
[
B2 + (B1 − B2)

∑
m,n

�(Rs − rmn)

]
ẑ (1)
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FIG. 1. Monolayer graphene under a two-dimensional magnetic
field array with inside circular regions with radius Rs having B1 ẑ and
that of outside regions having B2 ẑ.

in the k · p representation, described by the massless Dirac
Hamiltonian

Ĥ = vF (σ · �), (2)

where � = p + eA
c

is the canonical momentum operator, with
A being the vector potential for field (1). Rs is the radius of
the circular region within each unit cell, rmn = r − Rmn, with
r = x x̂ + y ŷ. The lattice vector Rmn = ma x̂ + na ŷ, and

�(Rs − rmn) =
{

1 if rmn � Rs,

0 if rmn > Rs,
(3)

with m, n ∈ I (−Nmax,+Nmax) and a being the lattice con-
stant. It is assumed that the lattice constant a is much larger
than the carbon-carbon bond length in a graphene honey-
comb lattice so that a continuum model is justified. Apart
from this, the step function modeling can be justified by
assuming that the magnetic field gradient at the step is much
sharper than the typical Fermi wavelength of the electron
[17,23–25]. Such two-dimensional periodic modulation cor-
responds to that of a square lattice and can be made using
nanolithographic techniques [26,27].

A. Decomposition

Using Fourier’s theorem, the periodic magnetic field profile
given by Eq. (1) can be written as

B =
∑

G

BGeiG·r = B0 +
∑
G �=0

BGeiG·r . (4)

Here G is the reciprocal lattice vector of the periodic lattice,
and B0 = Bu is the uniform magnetic field and is given by
the spatial average of the field given in Eq. (1). The residual
periodic field is defined as Bp = ∑

G �=0 BGeiG·r , which satis-
fies ∇ · Bp = 0 with net flux through the unit cell due to Bp

being zero (for details see Appendix A). This decomposition
remains valid even for an arbitrary periodic modulation and
is a consequence of the Fourier series decomposition. Con-
sequently, if we apply uniform magnetic field −Bu to this
system, under suitable conditions, it can realize a Haldane-like
model [28,29] which shows AQHE. This may be contrasted
with lattice models that explicitly contain terms responsible
for the quantum Hall effect (QHE) and the quantum spin Hall

effect [30] to demonstrate the connection between these two
effects.

Now, following [31], it can be shown that there is a cor-
responding periodic vector potential for the residual periodic
field Bp. Accordingly, we can decompose the magnetic field
and corresponding vector potential in uniform and periodic
parts as

B ẑ = Bu ẑ + Bp ẑ, A(r ) = Au(r ) + Ap(r ),

with

Bu =
[
B2 + (B1 − B2)π (Rs )2

a2

]

Bp =
{ ∑

m,n

[(B1 − B2)θ (Rs − rmn)]

− (B1 − B2)π (Rs )2

a2

}
, (5)

Au(r ) = 1

2
Bu × r,

Ap(r ) = 1

2

∑
m,n

[(
Bmn

p ẑ
) × (rmn r̂mn)

]
, (6)

where

Bmn
p =

⎧⎨
⎩

[
(B1 − B2)− (B1−B2 )π (Rs )2

a2

]
�(Rs−rmn) if rmn�Rs,

(B2 − B1)π (Rs )2

Na2 �(rmn − Rs ) otherwise.
(7)

Au(r ) is in the Symmetric Gauge form. To construct Ap(r ),
we considered the single-unit magnetic field profile [B2

N
+

(B1 − B2)�(Rs − rm,n)] ẑ for a specific (m, n). The vector
potential for such a field can be found in the azimuthal gauge
using Stoke’s law. Superposing such units for all possible
(m, n) and doing suitable gauge transformation, one gets
Ap(r ) (for details see Appendix A).

B. Modified Hofstadter-Harper equation

With the canonical momentum operator now defined
as � = p + e

c
( Au + Ap ), the eigenvalue equation for the

Hamiltonian in (2), is rewritten as

vF

[
0 �x − i�y

�x + i�y 0

][
ψa

kx,ky

ψb
kx,ky

]
= E

[
ψa

kx,ky

ψb
kx,ky

]
. (8)

Here the periodic vector potential Ap has the periodic-
ity of the square-lattice magnetic modulation. Thus, the
magnetic translation operator MR corresponding to � is the
same as the magnetic translation operator [14–16] of an
electron in the periodic scalar potential of a square lattice and
uniform transverse magnetic field. Explicitly,

MR = exp

[
i

h̄
R ·

(
p − eAu

c

)]
. (9)

We note that by construction [ p + e
c

Au,MR] = 0. Since the
periodic part of the vector potential Ap(r + R) = Ap(r ), we
have [Ap,MR] = 0. Thus, the Hamiltonian in (2) or in (8)
commutes with MR, and they have simultaneous eigenstates
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which are magnetic Bloch functions [32]. This result depends
on only the periodicity of Ap and not on the explicit form (6).
Since the existence of a periodic vector potential is guaranteed
for a periodic magnetic field that gives zero flux through
each unit cell [31] and any periodic magnetic field can be
decomposed in a uniform and periodic part satisfying the
zero-flux condition, the above result implies the existence
of the magnetic translational symmetry for a large class of
Hamiltonians. This is one of the major findings of this work
(see Appendix A). The significance of this result is that
it is now possible to obtain the spectral properties as well
as, using TKNN approach, the transport properties for the
quasiparticles described by the Hamiltonian (2).

To obtain the spectrum we use the standard procedure of
decoupling Eq. (8) and get the eigenvalue equations for each
sublattice. This becomes

ĤG(x, y)ψa,b
k (x, y) = E2ψ

a,b
k (x, y), (10)

with

ĤG = v2
F

[(
p + e

c
Au

)2

+ Vp(r ) + Vnp(r )

]
, (11)

where Vp(r ) = e2

c2 A
2
p + 2e

c
Ap · p + h̄ e

c
(Bu + Bp ) and

Vnp(r ) = 2 e2

c2 Au · Ap, such that Vnp(r + R) = Vnp(r ) +
2 e2

c2 Au(R) · Ap(r ) defines the nonperiodic part of
the potential. The Hamiltonian HG is equivalent to
the Harper-Hofstadter Hamiltonian [8,33], but with the
nonperiodic potential Vnp(r ).

Since the eigenfunctions are the magnetic Bloch functions,
namely, the eigenstates of MR in Eq. (9), to write the eigen-
value equation (10) in a tight-binding form we expand them
in terms of localized Wannier functions in the presence of
uniform transverse magnetic field Bu [34,35]:

ψa
k =

∑
i

g(Ri ) exp

(
−i

eAu · Ri

h̄c

)
w0(r − Ri ). (12)

To simplify the problem further we set the condition
| ea2

h̄c
(Bu + Bp )| � 1. For Bp = 0, this condition translates

into a � lBu
, (lBu

=
√

h̄c
eBu

), implying weak and slowly vary-
ing magnetic field [34,36]. This type of condition is used in
lattice gauge theory calculation [37]. Here using this, we can
write the eigenvalue equation (10) in the form of a discrete
Schrödinger equation which takes the form of the Hofstadter-
Harper equation (see details in Appendix B):

εg(m, n) = e
iea
h̄c

(Aux+Apx )g(m + 1, n)

+ e− iea
h̄c

(Aux+Apx )g(m − 1, n)

+ e
iea
h̄c

(Auy+Apy )g(m, n + 1)

+ e− iea
h̄c

(Auy+Apy )g(m, n − 1)

−
[
ea2

h̄c
(Bu + Bp ) + 4

]
g(m, n), (13)

with ε = −E2a2

v2
F h̄2 .

It may be pointed out that in absolute value the magnetic
field may still be substantially high and can provide a sub-
stantial gap in the energy spectrum if the lattice separation

is of the order of ∼100 nm, which is possible within current
technology [27].

C. Energy spectrum

The magnetic translation operator in Eq. (9) forms a mag-
netic translation group satisfying the algebra [38]

MR1MR2 = exp

(
2πi

φ0
φ

)
MR2MR1 ,

MR1MR2 = exp

(
πi

φ0
φ

)
MR1+R2 , (14)

where φ = Bu · (R1 × R2) = p

q
φ0 is chosen as a rational

number of flux quanta that pass through a unit cell. This
defines the magnetic unit cell R′ = m(q )a x̂ + na ŷ such that
Buqa2 = p, an integer. This gives

B2 = [(p/q )φ0 − B1πRs2]/(a2 − πRs2). (15)

The corresponding magnetic Brillouin zone (MBZ) is defined
as 0 � kx � 2π

qa
and 0 � ky � 2π

a
. If the redefined magnetic

lattice has Nq points along the x axis and Ny points along the
y axis, then by construction Nqq = 2Nmax + 1 = Ny .

The two ends of the lattice along the x axis and y axis
are connected by Rx = qNqa x̂ and Ry = Nya ŷ, respectively.
To solve the eigenvalue problem one can use the condition
along the x and y axes as MRx

ψa
k (x, y) = ψa

k (x, y) and
MRy

ψa
k (x, y) = ψa

k (x, y), where ψa
k (x, y) are the eigenfunc-

tions of HG. It can be checked [38,39] that if the number of
fluxes through each unit cell is a rational number p

q
, such a

boundary condition can be satisfied.
With the relation (15) and the mentioned boundary condi-

tions we numerically solve Eq. (13). The results are plotted
in Figs. 2 and 3. In Fig. 2, keeping B1 = Bu + Bp fixed, we
plot the dimensionless energy ±√−ε for the particle-hole
spectrum [40] as a function of p

q
for two different values of

B1. The increase in the gap between the particle and hole
spectrum with increasing B1 is clearly visible. Figure 3, on
the other hand, plots the same energy spectrum, but keeping
B2 fixed, for two representative values of B2. For each value
of B2, in accordance with Eq. (15), B1 varies with p

q
as we

move along the horizontal axis. This causes a variable gap
between the particle and hole spectrum as p

q
changes. After

discussing the spectrum of the Hamiltonian in Eq. (8), we
shall now evaluate the Hall conductance of the system and
connect it to the spectrum.

III. TOPOLOGICAL QUANTIZATION OF HALL
CONDUCTANCE AND THE DIOPHANTINE EQUATION

The eigenfunctions of the Hamiltonian (8) can also be
written in the Bloch form as[

ψa
kx,ky

ψb
kx,ky

]
= eik·r

[
ua

kx,ky

ub
kx,ky

]
. (16)

We define

u′
kx ,ky

=
[
ua

kx,ky

ub
kx,ky

]
.
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FIG. 2. Dimensionless energy Ea

h̄vF
versus p

q
[Eq. (13)] with B1 =

0 (top) and B1 = 1 (bottom). The values of p satisfy 1 � p � q − 1,
a = 0.25, and Rs = 0.0825.

Since Bu �= 0, the commutation relation (14) implies that
u

a,b
kx ,ky

must have zeros inside a magnetic unit cell and must

have the structure u
a,b
kx ,ky

= |ua,b
kx ,ky

(x, y)| exp[iθa,b
kx ,ky

(x, y)]
[41]. These functions can be found by solving the Schrödinger
equation Ĥ (kx, ky )u′nb

kx ,ky
= Enbu

′nb

kx ,ky
, where nb is the band

index. Following TKNN [7], the Hall conductance calculated
through the Kubo formula in the linear-response regime for
a completely filled band (the band index is omitted due to a
single band) can therefore be obtained as

σxy = e2

h

1

2πi

∫
d2k[∇k × Â(kx, ky )]3, (17)

where the integration is over the MBZ and

Â(kx, ky ) =
∫

d2ru′∗
kx ,ky

∇ku
′
kx ,ky

(18)

is the Berry connection defined over such a MBZ. Since the
two points kx = 0 and kx = 2π

qa
(or ky = 0 and ky = 2π

a
) are

FIG. 3. Dimensionless energy Ea

h̄vF
versus p/q [Eq. (13)] with

B2 = 0 (top) and B2 = 1 (bottom). Other parameters are the same
as in Fig. 2.

equivalent, the MBZ has the topology of a torus. The phase of
the wave function cannot be uniquely determined in the MBZ
because of the existence of zeros of such a wave function. This
leads to a finite value of the above integral, and quantization
of the Hall conductivity in this case gives

σxy = 2e2

h
σH , (19)

where σH is an integer. Here the factor of 2 comes from the
sublattice degrees of freedom in single-layer graphene. Thus,
if the Fermi energy lies in one of the gaps of the spectrum,
the Hall conductivity is quantized in terms of an integer [7]
relevant to the filled band lying below the Fermi energy.
Perturbations like disorder, interactions, and the effect of the
higher-order terms neglected in (13) can negate the above
result only if the gap closes. Details of the calculation closely
follow [41] and are summarized in Appendix C. We would
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like to mention that QHE with modified LLs can also occur
in graphene under a one-dimensional periodic scalar potential
due to the generation of additional Dirac points [42,43].

To relate the integers in Eq. (19) with the spectrum plotted
in Fig. 2, we note that integration of the Berry connection
Â(kx, ky ) gives the geometric phase change of the functions
u′

kx ,ky
over the MBZ. Following [44,45], it is possible to show

that the corresponding magnetic Bloch functions satisfy the
boundary condition (see Appendix D)

ψ
kx+ b1

q
,ky

= ψkx,ky
, ψkx,ky+b2 = eiσH kxqaψkx,ky

, (20)

where b1 = 2π
a

x̂ and b2 = 2π
a

ŷ are the reciprocal lattice
vectors. This condition must be consistent with the group
properties defined in Eqs. (14) of the magnetic translation
operator, given in Eq. (9), leading to

Ma ŷMa x̂ψk = e
i(k+ p

q
b2 ).a ŷ

Ma x̂ψk, (21)

where M (a x̂)ψk depicts the eigenfunction of M (a ŷ)
with the eigenvalue e

i(k+ p

q
b2 )·a ŷ. In the same way

Ma x̂ψk, . . . ,M(q−1)a x̂ψk all have different eigenvalues
for Ma ŷ but the same eigenvalue for the Hamiltonian. This
leads to a q-fold degeneracy for each energy eigenvalue. The
algebraic relation that connects the boundary condition in
Eq. (20) to relation (21) connects p

q
to the integer σH through

the famous Diophantine equation

μq + σHp = 1. (22)

This equation is equivalent to the equation given by TKNN
[7] for square-lattice systems to calculate the Chern numbers
associated with σH for the rth gap in a Landau level as r =
srq + trp. Under the constraint |tr | � q/2 this yields a unique
solution (sr , tr ). Here σH = tr − tr−1, and μ = sr − sr−1 [46].
In our system with square-lattice magnetic modulation using
the same method we calculate tr for a few such swaths in
Fig. 2.

IV. SUMMARY

We predicted the topological quantization of Hall conduc-
tivity for massless Dirac fermions in monolayer graphene un-
der a generic two-dimensional periodic magnetic modulation.
The results can be extended to a nonrelativistic 2DEG. Sim-
ilar topological quantization in non-Bravais-type magnetic
modulation in the hexagonal lattice [47], the effect of addi-
tional periodic electrostatic potential and (in)commensuration
between two types of periodicities [8,48,49], and the bulk
and edge correspondence in such a system [4,50] are some
possible directions for further investigations. Periodic two-
dimensional magnetic modulation was already created for a
2DEG in GaAs-AlGaAs heterojunctions using ferromagnetic
dysprosium dots [26]. The van der Waals heterostructure of
monolayer graphene [51] with layered magnetic materials
such as the transition-metal phosphorus trisulfide [52] may
also realize similar modulations.
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APPENDIX A: PROOFS RELATED TO Bpẑ AND Ap

The flux due to Bp ẑ in Eq. (5) through a unit cell is∫
unit cell

Bp ẑ · ds = 1

a2

[
(B1 − B2)

(
1 − πRs2

a2

)
πRs2

− (B1 − B2)
πRs2

a2
(a2 − πRs2)

]
= 0. (A1)

To show that the condition (A1) is, in general, valid for a pe-
riodic magnetic field, we proceed as follows: For any general
periodic magnetic field profile, using Fourier’s theorem, we
can write

B =
∑

G

BGeiG·r = B0 +
∑
G �=0

BGeiG·r . (A2)

Here G is the reciprocal lattice vector, and B0 = Bu is
uniform and is the spatial average of the field B. The residual
part,

∑
G �=0 BGeiG·r , is the periodic part (say, Bp) that has the

same periodicity as the original modulation. Hence, we can
rewrite Eq. (A2) as

B = Bu + Bp.

Now, ∫
B · dS =

∫
Bu · d S +

∫
Bp · d S,

which leads to (A is the area of the two-dimensional plane)

BuA = BuA +
∫

Bp · d S

⇒
∫

Bp · d S = 0.

Now, as

Bp(r + R) = Bp(r ),

this implies that the flux due to Bp is zero in each unit cell
since it is identical in each unit cell. This fact along with
∇ · Bp = 0 confirms that a gauge can always be chosen such
that a periodic vector potential (say, Ap) for the field profile
Bp is found [31]. Now whenever we pick any 2D periodic
field profile, we need to calculate the explicit form of its Ap

corresponding to Bp.
The explicit construction of the profile of the vector po-

tential Ap(r ) for the present problem is given as follows:
Consider the magnetic field profile

Bsẑ =
[
B2

N
+ (B1 − B2)�(Rs − rm,n)

]
ẑ (A3)

depicted in Fig. 1. A superposition of such a magnetic field
profile through summation over all allowed values of m, n will
generate the magnetic field profile B given by Eq. (1).To eval-
uate the vector potential corresponding to B, we first calculate
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FIG. 4. Monolayer graphene under a single-unit magnetic field
profile with the inside circular region having field [B1 − B2(1 −
1
N

)] ẑ and the outside region having B2
N

ẑ. The radius of the circular
region is Rs .

the vector potential corresponding to Bsẑ given in Eq. (A3).
Then we superpose all such vector potentials corresponding
to different sets of (m, n). Now, the magnetic field profile in
Fig. 4 suggests that it is possible to write the vector potential
purely with an azimuthal component. Accordingly, we write∫

Bs · d S
�0

=
∫

As · dl
�0

,

where As is the vector potential having only an azimuthal
component. Here �o = hc

e
. From the above equation we

straightforwardly get

Asθ = cφ(r )

er
, (A4)

where φ(r ) is given as

φ(r ) =
{

e
c

[
B2
N

r2

2 + (B1−B2 )r2

2

]
if r � Rs,

e
c

[
B2
N

r2

2 + (B1−B2 )(Rs )2

2

]
otherwise.

It may be pointed out in cases like this [Eq. (A3)] where the
magnetic field profile contains a step function, we adopted
this technique based on Stoke’s theorem to calculate the
corresponding vector potential. For example, see Ref. [23].

Hence, from Eq. (A4), we can write

Asθ (r ) =

⎧⎪⎪⎨
⎪⎪⎩

[
B2
N

r
2 + (B1−B2 )r2

2r

]
if r � Rs,

[
B2
N

r
2 + (B1−B2 )(Rs )2

2r

]
otherwise.

From this, we find that for a given (m, n) the azimuthal
component of the vector potential is given as

Amn =

⎧⎪⎨
⎪⎩

[
B2
N

rmn

2 + (B1−B2 )r2
mn

2rmn

]
if rmn � Rs,

[
B2
N

rmn

2 + (B1−B2 )(Rs )2

2rmn

]
otherwise,

where rmn and Rs are defined in the main text. Thus, the total
vector potential for the field profile B can be written as

A(r ) =
∑
m,n

[( Amn · x̂)x̂ + ( Amn · ŷ) ŷ].

Since Bẑ = Bu ẑ + Bp ẑ, then up to a gauge choice the vector
potential [say, Arem(r )] corresponding to Bp can be obtained
as

Arem(r ) = A(r ) − Au(r ),

where Au = 1
2 (Bu × r ) is given in the symmetric gauge. A

straightforward but lengthy algebra involving various terms
in the expression of Arem(r ) = Aremx x̂ + Aremy ŷ shows that
Arem can be written as a superposition of a periodic term and
another part Arest

rem, whose curl is zero. The second part can
therefore be removed through a gauge transformation, and this
leaves us with the expression for the periodic vector potential
Ap(r ) corresponding to Bp, shown in Eq. (5).

More explicitly, we can write

Ap(r ) = 1

2

∑
m,n

[(
Bmn

p ẑ
) × (r − Rmn)

]

= 1

2

∑
m,n

[(
Bmn

p ẑ
) × (rmn r̂mn)

]

= 1

2

∑
m,n

(
Bmn

p rmn

)
θ̂mn, (A5)

where Bmn
p is defined, in the main text, in Eq. (7), and we

can show that ∇ × ( Arem − Ap ) = 0. Now, the periodicity of
Ap(r ) can be proved as follows: Rewrite Ap(r ) from Eq. (6)
as

Ap(r ) = 1

2

∑
m,n

[(
Bmn

p ẑ
) × (r − Rmn)

]
.

Now performing a lattice translation with vector R = la x̂ +
ka ŷ, we obtain

Ap(r + R) = 1

2

∑
m′′,n′′

[
(Bm′′n′′

p ẑ) × (r − Rm′′n′′ )
]
,

where m′′ = (m − l) and n′′ = (n − k) and the limits
are m′′ = (−Nmax − l) : (Nmax − l) and n′′ = (−Nmax − k) :
(Nmax − k). Thus,

Ap(r + R) = Ap(r ).

APPENDIX B: DERIVATION OF EQUATION (13)
FROM EQUATION (10)

Discretization and implementation of the weak-magnetic-field
condition are shown as follows: Consider the Taylor expan-
sion

ψ (x + a) = ψ (x) + a
∂ψ (x)

∂x
+ a2

2!

∂2ψ (x)

∂x2
+ · · · .

For a slowly varying function, therefore,

a
∂ψ (x)

∂x
+ a2

2!

∂2ψ (x)

∂x2
∼ ψ (x + a) − ψ (x). (B1)

Define the dimensionless variables and the functions in terms
of them as

x̄ = x

lBu

, φ(x̄) = ψ (x), (B2)

where 	Bu
is the magnetic length corresponding to the uniform

magnetic field Buẑ. Now

∂ψ (x)

∂x
= 1

lBu

∂φ(x̄)

∂x̄
,

∂2ψ (x)

∂x2
= 1

l2
Bu

∂2φ(x̄)

∂2x̄
. (B3)

155425-6



MAGNETIC HOFSTADTER BUTTERFLY AND ITS … PHYSICAL REVIEW B 98, 155425 (2018)

Now using Eqs. (B2) and (B3) in Eq. (B1), we get

a

lBu

∂φ(x̄)

∂x̄
+ 1

2!

(
a

lBu

)2
∂2φ(x̄)

∂2x̄
= [φ(x + a) − φ(x̄)].

For a
lBu

� 1 (for the uniform magnetic field case) [37], we can
even neglect terms containing ( a

lBu
)2 and higher orders. Thus,

∂ψ (x)

∂x
= ψ (x + a) − ψ (x)

a
.

Rewriting the condition in terms of magnetic field, it reads
| ea2Bu

h̄c
| � 1, which is satisfied for a weak and slowly varying

field. This condition can be extended for the case of∣∣∣∣ea2B(r )

h̄c

∣∣∣∣ � 1, (B4)

where B(r ) = Bu + Bp(r ). Assuming the condition in Eq.
(B4) is satisfied, Eq. (10) in the main text

ĤG(x, y)ψa
k (x, y) = E2ψa

k (x, y) (B5)

can be discretized as follows:(
p + e

c
Au

)2

ψa
k (r )

= −h̄2

(
ψa

k (r + a x̂) + ψa
k (r − a x̂) − 2ψa

k (r )

a2

)

− h̄2

(
ψa

k (r + a ŷ) + ψa
k (r − a ŷ) − 2ψa

k (r )

a2

)

+ e2

c2
A2

uψ
a
k (r )

− ih̄e

c
Aux

(
ψa

k (r + a x̂) − ψa
k (r − a x̂)

a

)

− ih̄e

c
Auy

(
ψa

k (r + a ŷ) − ψa
k (r − a ŷ)

a

)

and (e2

c2
A2

p + 2e

c
Ap · p

)
ψa

k (r )

= e2

c2
A2

pψa
k (r )

− ih̄e

c
Apx

(
ψa

k (r + a x̂) − ψa
k (r − a x̂)

a

)

− ih̄e

c
Apy

(
ψa

k (r + a ŷ) − ψa
k (r − a ŷ)

a

)
.

Now using these two expressions in the eigenvalue equation
(10) and multiplying both sides with −a2

h̄2 , we get

εψa
k (r ) =

[
1 + iea

h̄c
(Aux + Apx )

]
ψa

k (r + a x̂)

+
[

1 − iea

h̄c
(Aux + Apx )

]
ψa

k (r − a x̂)

+
[

1 + iea

h̄c
(Auy + Apy )

]
ψa

k (r + a ŷ)

+
[

1 − iea

h̄c
(Auy + Apy )

]
ψa

k (r − a ŷ)

−
[

e2

h̄2c2
a2

(
A2

u + A2
p

)

+ 2e2a2

h̄2c2
(AuxApx + AuyApy )

+ ea2

h̄c
(Bu + Bp ) + 4

]
ψa

k (r ), (B6)

where ε = −E2a2

v2
F h̄2 is the dimensionless energy. Now, as shown

in Eq. (12), we have

ψa
k (r ) =

∑
i

g(Ri )w(r − Ri ),

where w(r − Ri ) = exp(−i eAu·Ri

h̄c
)w0(r − Ri ) are the phase-

transformed Wannier functions. Defining Ri − a x̂ = Rl ,
from Eq. (B6) we get

ε
∑

l

g(Rl )w(r − Rl )

=
[

1 + iea

h̄c
(Aux + Apx )

] ∑
l

g(Rl + a x̂)w(r − Rl )

+
[

1 − iea

h̄c
(Aux + Apx )

] ∑
l

g(Rl − a x̂)w(r − Rl )

+
[

1 + iea

h̄c
(Auy + Apy )

] ∑
l

g(Rl + a ŷ)w(r − Rl )

+
[

1 − iea

h̄c
(Auy + Apy )

] ∑
l

g(Rl − a ŷ)w(r − Rl )

−
[

e2

h̄2c2
a2

(
A2

u + A2
p

) + 2e2a2

h̄2c2
(AuxApx + AuyApy )

+ ea2

h̄c
(Bu + Bp ) + 4

] ∑
l

g(Rl )w(r − Rl ).

Now multiplying both sides of the above equation with
w∗(r − Rj ) and using the orthogonality property of the
phase-transformed Wannier functions (given later in this ap-
pendix), we finally get

εg(Rj ) =
[

1 + iea

h̄c
(Aux + Apx )

]
g(Rj + a x̂)

+
[

1 − iea

h̄c
(Aux + Apx )

]
g(Rj − a x̂)

+
[

1 + iea

h̄c
(Auy + Apy )

]
g(Rj + a ŷ)

+
[

1 − iea

h̄c
(Auy + Apy )

]
g(Rj − a ŷ)

−
[ e2

h̄2c2
a2

(
A2

u + A2
p

)
+ 2e2a2

h̄2c2
(AuxApx + AuyApy )

+ ea2

h̄c
(Bu + Bp ) + 4

]
g(Rj ). (B7)
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All the terms that are quadratic in vector potential can be
ignored under the condition (B4) in the above equation. This
finally gives us Eq. (13), which is the famous Hofstadter-
Harper equation. Now, for the proof of orthogonality of phase-
transformed Wannier functions, we proceed as follows:

I =
∫

w∗(r − Rj )w(r − Rl )dr

=
∫

e
ie
h̄c

Au(r )·(Rj −Rl )[w0(r − Rj )]∗

×w0(r − Rl )dr

=
∫

e
ie

2h̄c
(−Buy x̂+Bux ŷ)·[(m−m′ )a x̂+(n−n′ )a ŷ]

× [w0(r − Rj )]∗w0(r − Rl )dr

=
∫

e− ie
2h̄c

Buy(m−m′ )ae− ie
2h̄c

Bux(n−n′ )a

× [w0(x − ma, y − na)]∗

×w0(x − m′a, y − n′a)dr,

which can further be simplified as

I =
∫

e− ie
2h̄c

Buy(m−m′ )ae− ie
2h̄c

Bux(n−n′ )a

× [w0(x − ma)]∗[w0(y − na)]∗

×w0(x − m′a)w0(y − n′a)dxdy

=
∫

e− ie
2h̄c

Bux(n−n′ )a[w0(x − ma)]∗w0(x − m′a)dx

×
∫

e− ie
2h̄c

Buy(m−m′ )a[w0(y − na)]∗w0(y − n′a)dy.

Now, for x integration, the y coordinate does not change;
hence, n − n′ = 0. Similarly, for y integration m − m′ = 0,
which leads to

I =
∫

[w0(x − ma)]∗w0(x − m′a)dx

×
∫

[w0(y − na)]∗w0(y − n′a)dy.

Now we are left with Wannier functions in the absence of any
magnetic field, which are orthonormal. Hence, we write

I =
∫

[w0(x − ma)]∗w0(x − m′a)dx

×
∫

[w0(y − na)]∗w0(y − n′a)dy

= δmm′δnn′

APPENDIX C: QUANTIZATION OF HALL
CONDUCTIVITY IN TERMS OF THE TOPOLOGICAL

INVARIANT

The following discussion is mostly available in Ref. [41].
We provide an abridged version. In the main text, using
Eq. (16) in Eq. (8) gives

Ĥ (kx, ky )u′
kx ,ky

= Eu′
kx ,ky

,

where

Ĥ (kx, ky ) =
[

0 H12

H21 0

]
,

with

H12 =
[(

−ih̄
∂

∂x
+ h̄kx + eAx

c

)

− i

(
−ih̄

∂

∂y
+ h̄ky + eAy

c

)]

and

H21 =
[(

−ih̄
∂

∂x
+ h̄kx + eAx

c

)

+ i

(
−ih̄

∂

∂y
+ h̄ky + eAy

c

)]
.

Here Ax and Ay depict the x and y components of the total
vector potential A(r ) given in the main text. We write the Hall
conductance for a completely filled band (here we perform the
calculation for a single band; hence, the band index does not
appear) as

σxy = e2

h

1

2πi

∫
d2k

∫
d2r

(
∂u′∗

kx ,ky

∂ky

∂u′
kx ,ky

∂kx

−
∂u′∗

kx ,ky

∂kx

∂u′
kx ,ky

∂ky

)
,

where the integrations are taken over the unit cells in r and
k space. The above equation is the same as the Eq. (17) but
written explicitly in terms of the components. In Eq. (17),
the Hall conductivity is written as a curl of a function that
is a function of Bloch vectors, and the integration is over the
magnetic Brillouin zone, which has the topology of a torus.
Thus, Eq. (17) can be written equivalently (using Stoke’s law)
as

σxy = e2

h

1

2πi

∫
∂MBZ

dk · Â(kx, ky ), (C1)

where the integration is over the boundary of the MBZ.
Since the torus has no boundary, if Â(kx, ky ) is uniquely
defined on the entire torus, it yields σxy = 0. Thus, a finite
Hall conductivity implies that the function Â(kx, ky ) cannot
be uniquely defined in this space. Now, to understand the
nontrivial topology of Â(kx, ky ), we consider the gauge trans-
formation [

uaa
kx,ky

ubb
kx ,ky

]
= eif (kx ,ky )

[
ua

kx,ky

ub
kx,ky

]
, (C2)

where f (kx, ky ) is some arbitrary smooth function of only kx

and ky . We can see that this transformation changes the phase
of the wave function but leaves the physical quantity like the
Hall conductivity invariant. Now, as u′

kx ,ky
vanishes for some

(kx, ky ) in the torus (magnetic Bloch functions have zeros),
the transformation given by Eq. (C2) cannot be defined over
the entire MBZ uniquely. Let us consider the simplest case
of a single zero of u′

kx ,ky
in the MBZ. We divide the MBZ

into two regions using a circular boundary such that the inside
region (say, region I) has a zero of the function u′

kx ,ky
(x, y),
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say, k = k0, and the outside region (say, region II) does not
have a zero. Thus, for region I, we define some other function
u

′′
kx ,ky

which is nonzero everywhere in this region. Hence, for
region I, say, HI , we can write[

ua1
kx ,ky

ub1
kx ,ky

]
= eig(kx ,ky )

[
ua

kx,ky

ub
kx,ky

]
,

and for region II, say, HII , we can have[
ua2

kx ,ky

ub2
kx ,ky

]
= eih(kx ,ky )

[
ua

kx,ky

ub
kx,ky

]
.

Equation (17) in the main text now becomes

σxy = e2

h

1

2πi

{ ∫
H1

d2k[∇ × Â
1
(kx, ky )]3

+
∫

H2

d2k[∇ × Â
2
(kx, ky )]3

}
, (C3)

where the vectors Â
1
(kx, ky ) and Â

2
(kx, ky ) are defined for

regions I and II, respectively, and can be explicitly written as

Â
1
(kx, ky ) =

∫
d2r

[
k̂x

(
i

∂g

∂kx

ua∗
kx ,ky

ua
kx,ky

+ i
∂g

∂kx

ub∗
kx ,ky

ub
kx,ky

+ ua∗
kx ,ky

∂

∂kx

ua
kx,ky

+ ub∗
kx ,ky

∂

∂kx

ub
kx,ky

)

+ k̂ y

(
i

∂g

∂ky

ua∗
kx ,ky

ua
kx,ky

+ i
∂g

∂ky

ub∗
kx ,ky

ub
kx,ky

+ ua∗
kx ,ky

∂

∂ky

ua
kx,ky

+ ub∗
kx ,ky

∂

∂ky

ub
kx,ky

)]
(C4)

and

Â
2
(kx, ky ) =

∫
d2r

[
k̂x

(
i
∂h

∂kx

ua∗
kx ,ky

ua
kx,ky

+ i
∂h

∂kx

ub∗
kx ,ky

ub
kx,ky

+ ua∗
kx ,ky

∂

∂kx

ua
kx,ky

+ ub∗
kx ,ky

∂

∂kx

ub
kx,ky

)

+ k̂ y

(
i
∂h

∂ky

ua∗
kx ,ky

ua
kx,ky

+ i
∂h

∂ky

ub∗
kx ,ky

ub
kx,ky

+ ua∗
kx ,ky

∂

∂ky

ua
kx,ky

+ ub∗
kx ,ky

∂

∂ky

ub
kx,ky

)]
. (C5)

Here we have used ua
kx,ky

and ub
kx,ky

for the normalized eigen-
functions. From (C4) and (C5), we get

Â
1
(kx, ky ) − Â

2
(kx, ky ) = 2i∇kt (k), (C6)

where t (k) = g(k) − h(k). We now write, using Stokes’s the-
orem and the fact that the two regions have opposite directions
for circulation, Eq. (C3) as

σxy = e2

h

1

2πi

∫
C

dk · [ Â
1
(kx, ky ) − Â

2
(kx, ky )],

which on using Eq. (C6) leads to

σxy = 2e2

h

1

2π

∫
C

dk · ∇kt (k),

where C denotes a closed boundary between the two regions.
At each point on the closed loop C, the wave function has to
be single valued; therefore, after traversing the complete loop
C the two wave functions should still have the same phase
relationship. This is possible only if[

ua2
kx ,ky

ub2
kx ,ky

]
= ei[t (kx ,ky )+2πσH ]

[
ua1

kx ,ky

ub1
kx ,ky

]
,

where σH is an integer. This expression finally comes out to
be

σxy = 2e2

h
σH ,

where σH is an integer. Here the factor of 2 comes from the
sublattice degrees of freedom.

APPENDIX D: DIOPHANTINE EQUATION

The integral in Eq. (C1) is actually the Berry phase/gauge-
invariant geometric phase accumulated by the wave function
in the reciprocal space [7]

γ =
∮

C

dk · Â(kx, ky ).

Written explicitly over the contour defined in Fig. 5

γ =
∫

C1

dkx

∫ [
ua∗

kx ,ky

∂ua
kx,ky

∂kx

+ ub∗
kx ,ky

∂ub
kx,ky

∂kx

]
dxdy

+
∫

C2

dky

∫ [
ua∗

kx ,ky

∂ua
kx,ky

∂ky

+ ub∗
kx ,ky

∂ub
kx,ky

∂ky

]
dxdy

FIG. 5. Magnetic Brillouin zone.
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+
∫

C3

dkx

∫ [
ua∗

kx ,ky

∂ua
kx,ky

∂kx

+ ub∗
kx ,ky

∂ub
kx,ky

∂kx

]
dxdy

+
∫

C4

dky

∫ [
ua∗

kx ,ky

∂ua
kx,ky

∂ky

+ ub∗
kx ,ky

∂ub
kx,ky

∂ky

]
dxdy,

(D1)

where we take one of the MBZs out of the following. Even
though the integral defined in Eq. (C1) is a gauge-invariant
quantity, the Berry connection A is not unique. To fix it
the following construction for parallel transportation [53] is
made: ∫

u∗
kx ,ky

∂ukx
, ky

∂ky

dxdy = 0 (D2)

and ∫
u∗

kx ,0
∂ukx,0

∂kx

dxdy = 0. (D3)

Equation (D2) renders the second and fourth terms in expres-
sion (D1) to zero, and Eq. (D3) makes the contribution from
the first term zero [54]. This contribution makes the phases of
the wave function satisfy

u
kx+ b1

q
,ky

= ukx,ky
, (D4)

ukx,ky+b2 = eiδ(kx )ukx,ky
, (D5)

where δ(kx ) is the kx-dependent phase factor. The total phase
change around the MBZ therefore needs to satisfy

iδ

(
kx + b1

q

)
− iδ(kx ) = 2πi × integer. (D6)

Considering the contribution from both sublattices, we can
therefore write∫

∂MBZ

dk · Â(kx, ky ) = 4πi × integer.

However, from the Kubo formula it was also shown that∫
∂MBZ

dk · Â(kx, ky ) = 4πiσH .

Thus, we can identify this integer as σH , which enables us to
write Eq. (D6) as

δ

(
kx + b1

q

)
= δ(kx ) + 2πσH . (D7)

The boundary conditions (D4) and (D5) along with Eq. (D7)
can now be used to set the following conditions on magnetic

Bloch functions ψkx,ky
(or ψk) [44,45] given in the main text,

namely,

ψ
kx+ b1

q
,ky

= ψkx,ky
, (D8)

ψkx,ky+b2 = eiσH kxqaψkx,ky
. (D9)

But the magnetic Bloch functions, being eigenstates of the
magnetic translational operator [defined in Eq. (9)], also obey
the group properties of the magnetic translational group [given
in Eqs. (14)]. Using them, we get

M (qa x̂)ψk = eik·qa x̂ψk, (D10)

M (a ŷ)ψk = eik·a ŷψk, (D11)

and

MR1MR2ψk = MR2MR1e
2πi

p

q ψk

= MR2e
2πi

p

q MR1ψk

= MR2e
2πi

p

q eik.a ŷψk

= e
i(k+ p

q
b2 ).a ŷ

MR2ψk, (D12)

where R1 = a ŷ and Eq. (D11) is being used. Also for R2 =
a x̂, we can write Eq. (D12) as

Ma ŷMa x̂ψk = e
i(k+ p

q
b2 )·a ŷ

Ma x̂ψk,

where M (a x̂)ψk depicts the eigenfunction of M (a ŷ) with the
eigenvalue e

i(k+ p

q
b2 )·a ŷ. Similarly, M (2a x̂)ψk, M (3a x̂)ψk,

M (4a x̂)ψk, . . . depict eigenfunctions of M (a ŷ) with eigen-

values e
i(k+ 2p

q
b2 )·a ŷ, e

i(k+ 3p

q
b2 )·a ŷ, e

i(k+ 4p

q
b2 )·a ŷ, . . . , respec-

tively. These functions, being degenerate with ψk, have the
same energy eigenvalues for the Hamiltonian in Eq. (8).
Hence, corresponding to each energy eigenvalue, we have
q degenerate states depicting the q-fold degeneracy of the
system. Therefore, we can write [44]

M (a x̂)ψk = eiμk·qa x̂ψk+ p

q
b2

.

Here μ is an integer (for the significance of μ see [55]). Now
applying M (a x̂) q times to the above equation, we get

M (qa x̂)ψkx,ky
= eiμqk·qa x̂ψkx,ky+pb2 ,

which on using Eqs. (D9) and (D10) becomes

eik·qa x̂ψkx,ky
= eiμqk·qa x̂eipσH k·qa x̂ψkx,ky

.

This gives

μq + σH p = 1,

which is the Diophantine equation to calculate quantum Hall
integers [33] for bands in the energy spectrum.
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