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Motivated by recent demands of the nanoplasmonic community, quasi-one-dimensional nanoribbons have
attracted significant attention as promising materials in logic applications. By using the linear response theory
and the Green’s function formulation, we demonstrate how external local perturbations affect both intra- and
interband plasmons in semiconductor armchair nanoribbons (aNRs). To do so practically, we focus on the silicon
carbide aNRs subjected to a test photon beam. Particularly, the interplay between intra- and interband charge-
density excitations is compared by taking into account the impact of ribbon width, the electronic dopant, the
Zeeman magnetic field, temperature, and the incident photon wave vector on the dielectric function qualitatively.
Furthermore, the combined effect of both weak and strong perturbations is studied. We show that both the
intraband and interband plasmon excitations have a high susceptibility to perturbations, leading to the different
optical features of the system. Moreover, we found various perturbation-dependent threshold frequencies in
which the undamped plasmon modes and plasmon resonances take place. Finally, the invalidity of the linear
response theory at strong perturbations is discussed concisely. Generically, the propagation and confinement
of plasmon modes in the presence of weak and strong perturbations are reported. Our findings are useful for
experimentalists to tune the optical properties of low-dimensional materials by perturbations.
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I. INTRODUCTION

Plasmons, the ubiquitous collective density oscillations
of electrons, have recently attracted considerable attention
both theoretically [1–8] and experimentally [9–16]. These
oscillations can occur in metals, semimetals, and doped semi-
conductors [17,18] for many applications such as nanopho-
tonics/photovoltaics [19–21] and sensing [22,23]. Plasmons
in metals are mostly in the visible part of the electromagnetic
spectrum [24], which limits the applications of the metal plas-
mons due to the lack of tunability of plasmon frequency and
large plasmon loss proportional to small plasmon propagation
length in the visible region [25].

Very recently, in the realm of low-dimensional materials,
plasmons exhibit remarkable behaviors in contrast to the con-
ventional crystalline solids [12,14,26–28]. For instance, it has
been shown that the graphene [a two-dimensional (2D) layer
of carbon atoms] plasmons are in the terahertz-to-midinfrared
part [4,5,12,28–32], which make it tunable by a back gate
[33–35]. On the other hand, the case of small propagation
length can be solved by lowering the system dimensionality
from 2D to quasi-one-dimensional (1D). From this point,
graphene nanoribbons and related graphene-like nanoribbons
are the proper candidates in the low-dimensional plasmonics.
This is particularly true because of low plasmon propagation
length found in nanoparticle plasmonic chains [36,37].

Obviously, the environment has a crucial role in
2D and quasi-1D plasmons due to the high sensitiv-
ity of wave-function propagation to the external per-
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turbations which are able to change the wave-vector
of host carriers. For example, the behaviors of plas-
mons in pristine graphene in the presence of impurity
and phonons have been studied in Refs. [3,4,38–46].
They have reported that an incident photon with an ascertained
wave-vector can excite a plasmon by scattering from charged
impurities. Since the plasmon frequency is usually propor-
tional to the electronic density of states in the long wavelength
limit [47], the plasmon frequencies alter by changing the car-
rier concentration of the system. Electron induction using the
external electronic dopant is also an electronic perturbation,
which behaves like a defect.

In addition to the electronic perturbations, the magnetic
perturbations can also affect the plasmon frequencies of the
low-dimensional materials. Wu et al. [48] have calculated the
dielectric function of graphene in a uniform perpendicular
magnetic field. They have found that there is a critical wave-
vector depending on the magnetic-field strength in which
plasmon damping takes place. Furthermore, the effect of
the external magnetic field on cobalt ferrite nanoparticles
manifest itself in the refractive index [49]. In addition, the
magneto-plasmons in graphene have been studied in nu-
merous studies [48,50–52], which tell us that the energies
of the unstable magneto-plasmons could be in the terahertz
part of the electromagnetic spectrum. Also, in Ref. [53],
the tunable plasmonic cloaks have been studied using the
external magnetic field, leading to modification of the wave-
length limit. Besides the numerous works on low-dimensional
plasmonics in the presence of electronic perturbations, the
study of plasmon frequencies in the presence of magnetic
ones has remained elusive. Due to the low dimension of 2D
and quasi-1D systems, the Zeeman magnetic field can couple
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only to the spin degrees of freedom of electrons, leading to
different distributions of carries. Actually, in the presence of
Zeeman magnetic field, there is a phase mismatch between the
incident wave vector of the electromagnetic field in free space
and plasmons of the system, resulting in different plasmon
frequencies.

Despite the intensive studies of the graphene plasmons,
to the best of our knowledge, the semiconductor armchair
nanoribbons (aNR) plasmons have not been studied well
theoretically. Here, practically, we focus on the silicon car-
bide (SiC) aNRs. Like carbon (C), silicon (Si) also possesses a
2D honeycomb structure, so-called silicene, the silicon analog
of graphene [54,55]. Despite the zero-band-gap characteris-
tics of both graphene and silicene, the graphenelike SiC is
a semiconductor with a finite band gap [56–60]. Further-
more, it has been reported that other SiC nanostructures can
be made such as nanoribbons, nanotubes, and nanoflakes
[61–66]. Although these efforts increase the motivation to
realize 2D SiC, no truly 2D form of SiC has yet been realized
to date. Actually, 2D-SiC monolayers can be viewed as com-
position tunable nanomaterials between the clean graphene
and silicene.

We report a theoretical investigation of SiC aNR plasmons
in the limit of low- and high-energy excitations in the presence
of external local electronic and magnetic perturbations. The
electronic perturbation in our model is characterized by the
chemical potential induced by an electric field (for example),
while the magnetic perturbation is a perpendicular Zeeman
magnetic field, which couples to the electron spin only. Both
perturbations locally induce an extra potential to the dynamics
of carriers. In order to address the plasmon modes, in the
present work, we use the linear response theory and the
Green’s function technique. We study SiC aNR plasmon exci-
tations at different widths and temperatures in the presence
of local perturbations mentioned above. We report that the
plasmon modes can either propagate or be confined in the
presence of weak and strong local perturbations.

This paper is organized as follows. In Sec. II, we use
a 2D Dirac Hamiltonian model to analytically calculate
the Green’s functions. Consequently, the density-density re-
sponse function is achieved in Sec. III. In Sec. IV, we explain
the impact of width, chemical potential, the Zeeman magnetic
field, temperature, and the incident wave vector of the elec-
tromagnetic field on SiC aNR plasmon modes. The combined
effects of all these factors are studied in this section as well.
Finally, we summarize our findings in Sec. V.

II. EFFECTIVE HAMILTONIAN MODE
L AND GREEN’S FUNCTION

In order to describe our model, an infinite quasi-1D SiC
aNR with the translational symmetry along the x direction is
considered, as presented in Fig. 1. Since the zigzag nanorib-
bons present similar plasmonic features for our proof-of-
principle study, we focus only on the armchair one [67]. In
fact, since zigzag NRs are mostly in the semimetallic phase,
tuning of the electronic phase in this family of NRs in order
to study the electro-optical properties is less interesting for
us. However, the optical properties of zigzag NRs have been
investigated well in Ref. [68]. As for the chiral NRs, it has
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FIG. 1. The geometry of a SiC n-aNR. a0 � 3.298 Å denotes
the interatomic distance between nearest-neighbor atoms [58]. The
green box delimits the unit cells of the system and a = 3a0 is
the respective unit cell width. �R{1,2,3} are vectors corresponding to the
nearest neighbors. Periodic boundary conditions are applied in the
y direction. Additionally, the Zeeman magnetic field �B = Bzêz is
applied to the system perpendicularly, shown by the symbol �.

been reported that the properties of this family are quite
different than two other cases [69]. Our model is based on
the tight-binding Hamiltonian including two interacting terms
between the host electrons and the (i) electronic perturbation
and (ii) magnetic perturbation. The former term refers to
the on-site energies and external electronic dopant, whereas
the latter is the external Zeeman magnetic field. It should
be pointed out that the higher order hopping parameters can
also be considered, leading to the electron-hole symmetry
breaking in the electronic band structure and eventually dif-
ferent plasmonic properties. However, this is out of the scope
of the present paper. For details, one can see Refs. [33,70].
The Hamiltonian models corresponding to these terms are
given by

Ĥ0 =
∑
i,σ

[
εSi

0 â
†
i,σ âi,σ + εC

0 b̂
†
i,σ b̂i,σ

] − t
∑

〈i,j〉,σ
â
†
i,σ b̂j,σ

−μ
∑
i,σ

[â†
i,σ âi,σ + b̂

†
i,σ b̂i,σ ] + H.c., (1a)

ĤZ = −gμBBz/2
∑

i

[â†
i,↑âi,↓ + b̂

†
i,↑b̂i,↓ + H.c.], (1b)

where the operator ĉi,σ (ĉ†i,σ ) for ĉ = â is used to annihilate
(create) an electron at the ith site of the lattice in the sublattice
Si with spin σ and sublattice C for ĉ = b̂. The coefficient t =
1.42 eV is the hopping parameter between nearest-neighbor
atoms belonging to two sublattices Si and C and εSi

0 = 0 eV
and εC

0 = −2.85 eV are the on-site energies of two different
sublattice atoms, taken from Ref. [57]. Hereafter, we call
sublattice Si and C as A and B, respectively. Furthermore, the
quantity μ refers to the electronic dopant potential which is
inducing an extra on-site potential to both sublattices isotrop-
ically. In the Zeeman term, the parameters g, μB, and Bz are

155424-2



PERTURBATION TUNING OF PLASMON MODES IN … PHYSICAL REVIEW B 98, 155424 (2018)

the degeneracy number, the Bohr magneton, and the strength
of external magnetic field �B = Bzêz, respectively. The term
H.c. in both terms stands for the Hermitian conjugate. The
Peierls phase factors stemming from the applied magnetic
field which affects the band structure and the wave functions
as quantum interferences manifest themselves in the hopping
term tn,m = te2πi��n,m . The details of derivation of ��n,m can
be found in Appendix.

According to Fig. 1, each index site i contains the unit cell
that can be labeled with index m and sublattices Al and Bl for
l ∈ [1, n]. After the Fourier transformation of annihilation and
creation operators in Eqs. (1a) and (1b) into the momentum
space, we expand them in terms of the basis sets |A, kx, ky〉 =
ψA(kx, ky ) and |B, kx, ky〉 = ψB (kx, ky ) for sublattice A and
B, respectively, in order to more easily handle the Hamilto-
nian and obtain the electronic spectrum of the system [71].
Thus, we use

ĉ
†
kx ,ky

= 1√
Nc

Nc∑
m=1

n∑
l=1

eikxxmψc(l, ky )ĉ†l,m, (2)

where xm denotes the position of the mth unit cell along
the x axis and c = A and/or B. Also, ĉ

†
l,m creates an elec-

tron in the pz orbit in the sublattice A/B with position
l along the width of the ribbon (y axis) on the mth unit
cell. In addition, in the prefactor, Nc is the number of unit
cells. Following the work of Zheng et al. [71], the hard-
wall boundary conditions lead to the wave functions for the
y direction ψc(l, ky ) = sin (

√
3a0kyl/2) with the discretized

vertical wave vector ky = 2zπ/(
√

3a0[n + 1]), where z =
{1, 2, 3, . . . , n}. Rewriting the Hamiltonian in terms of op-
erator ĉ

†
kx ,ky

defined in Eq. (2) results in the following band
dispersion energy:

Eσ
ν (kx, z) = εA

0 + εB
0

2
+ ν

√
|φ(kx, z)|2 +

(
εA

0 − εB
0

2

)2

− μ − σh,

(3)

and the wave function made by operator ĉ
†
kx ,z,ν,σ ,

ĉ
†
kx ,z,ν,σ =

√
2

2

(
â
†
kx ,z,σ

+ ν

√
φ∗(kx, z)

φ(kx, z)
b̂
†
kx ,z,σ

)
. (4)

In the equations above, the structure factor is defined by

φ(kx, z) := −
∑
n,m

∑
�k∈FBZ

tn,me−i�k· �Rn,m , (5)

where the momenta �k = (kx, ky ) belong to the first Brillouin
zone (FBZ) of the SiC aNR structure.

Since a unit cell of aNRs includes 2n atoms, the Green’s
function in order to describe the particle-particle correlation
can be written as a 2n × 2n matrix. To this end, using the Mat-
subara formalism [72], each element of the Green’s function
matrix and the corresponding Fourier transformation can be
described by

Gσ
αβ (t ′, kx ) = −〈

Tt ′
[
ĉσ
kx ,α

(t ′)ĉ†,σkx ,β
(0)

]〉
,

Gσ
αβ (iωF , kx ) =

∫ 1/kBT

0
eiωF t ′Gσ

αβ (t ′, kx )dt ′, (6)
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FIG. 2. The electronic band structure (left panel) and density of
states (right panel) of SiC 8-aNR. The band gap is about 2.63 eV. In
the electronic DOS panel, the van Hove singularities corresponding
to the flat and almost flat bands, i.e., degenerate states, are evident.
The dashed line is the Fermi level, which sets to the zero as the
reference energy.

where α and β refer to each sublattice A and B, t ′ is the
imaginary time, and T is the time-ordering operator. Also,
the term ωF = (2F + 1)πkBT is the fermionic Matsubara
frequency (kB is the Boltzman constant and T is the tem-
perature). Therefore, elements Gσ

αβ (iωF , kx ) in the reciprocal
space are calculated easily. Finally, by means of the Green’s
functions calculated above and tracing over the imaginary part
of the Green’s function, the electronic density of states (DOS)
using the replacement iωF → E + i0+ is given by

D(E ) = − 1

πNc

∑
σ,α,kx

Im
[
Gσ

αα (E + i0+, kx )
]
. (7)

Having the Green’s function, the dynamical response function
in order to study the plasmon modes in SiC aNR can be
expressed. We will focus on this in the next section.

The distribution of electrons in SiC 8-aNR the electronic
band structure (left panel) and DOS (right panel) in the
absence of electronic and magnetic perturbations is shown in
Fig. 2. The ribbon width n = 8 is chosen arbitrarily and there
is no physical reason for this choice. This is only an example.
This figure shows a 16-band structure with an electron-hole
symmetry. The valance and conduction bands are macroscopi-
cally degenerate at several energy points, corresponding to the
van Hove singularities (peaks) in the electronic DOS. As can
be seen, SiC 8-aNR is a semiconductor system with the band
gap about 2.63 eV for the width n = 8 in good agreement with
Ref. [57] quantitatively. It should be noted that, generically,
the band gap oscillates with n [57], leading to the ribbon
width–dependent plasmon modes. In the next section, we use
the Green’s functions derived in Eq. (6) in order to study the
dynamical response function of the system.

III. DYNAMICAL RESPONSE FUNCTION

In this section, we intend to calculate the response function
of the system subjected to an applied photon beam. The polar-
ization effects are activated by the photon with incident energy
h̄ω and the in-plane momenta q = (qx, qy ). We start with the
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density-density response function of noninteracting valence
electrons in aNRs. Based on the linear response theory, the
response function susceptibility χ (0) is given by

χ (0)(iωp, qx ) = −
∫ 1/kBT

0
dt ′eiωpt ′

×
∑

σ

〈Tt ′ [ρ̂
σ (qx, t

′)ρ̂σ (−qx, 0)]〉, (8)

wherein the charge density operator ρ̂σ (qx ) is described by

ρ̂σ (qx ) = 1

Nc

∑
kx ,l

[
ĉ
†,σ
Al,kx+qx

ĉσ
Al,kx

+ ĉ
†,σ
Bl ,kx+qx

ĉσ
Bl ,kx

]
. (9)

Here, ωp = 2pπkBT is the bosonic Matsubara frequency. To
determine the density-density autocorrelation function inside
the symbol 〈· · ·〉 in Eq. (8), we consider all correlation con-
figurations using the Wick’s theorem [72], which expresses
the responses in terms of elements of noninteracting Green’s
functions obtained in Eq. (6) as

χ
(0)
αβ (iωp, qx ) = kBT

Nc

∑
kx ,σ,F

Gσ
αβ (iωp + iωF , kx + qx )

×Gσ
βα (iωF , kx ), (10)

Finally, after pretty simple calculations, the expression for
dynamical susceptibility can be obtained. In numerical cal-
culations, as usual, the terms dealing with the fermionic and
bosonic Matsubara frequencies are approximated with

iωF := E + i0+, (11a)

iωp := ω + i0+, (11b)

where −4 eV � E � +4 eV, 0 eV � h̄ω � 8 eV, and 0+ =
10 meV is the broadening factor. This value of 0+ is chosen
because the curves have sharper peaks, otherwise, a range
of values larger than 10 meV gives the same results but
with more broadened peaks, which is not convenient for the
analysis. It is clear that the response function χ (0)(ω, qx )
has two real and imaginary parts, namely, χ

(0)
1 (ω, qx ) and

χ
(0)
2 (ω, qx ), respectively. It implies that one can write

χ (0)(ω, qx ) = χ
(0)
1 (ω, qx ) + iχ (0)

2 (ω, qx ). (12)

Given the complex dynamical susceptibility or dielectric
function χ (0)(ω, qx ), all optical properties of the system such
as reflectivity, refractive index, and the absorption spectrum
can be obtained. It is necessary to give a brief physical
meaning of these real and imaginary parts. Generically, while
the real part χ

(0)
1 (ω, qx ) refers to the refractive index, the

imaginary part χ
(0)
2 (ω, qx ) describes the transition between

the occupied valence bands and the unoccupied conduction
bands. From these parts, we get various spectra information,
which stems from the microcosmic physical process between
the intra- and interband transition and solid electronic struc-
ture. For instance, the zeros of the real part correspond to the
plasmon excitation frequencies. The nonzeros of the imagi-
nary part give the well-known Landau damping and if both
happen simultaneously, the plasmon resonances emerge. The
Landau damping is of high importance in modern plasmonics
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FIG. 3. Response function as a function of photon energy h̄ω

for undoped semiconductor SiC 3-aNR in the absence of Zeeman
magnetic field. The thermal energy is set to kBT = 0.35 eV. The
intraband transition is shown in top left inset panel. The peaks of the
imaginary part and the zeros of the real part are labeled by arrows.
Also, the electronic band structure of SiC 3-aNR is presented in
bottom right inset panel, which tells us where the peaks come from.
The incident wave vector is set to |qxa0| = π/6.

originating from the aim of miniaturization [73,74]. Further-
more, an undamped plasmon mode occurs at a frequency
when both parts are zero. In the following, we will focus on
these features.

The imaginary and real parts of the response function
χ (0)(ω, qx ) in the case SiC 3-aNR at temperature kBT =
0.35 eV, the chemical potential μ = 0 eV, and in the absence
of Zeeman magnetic field are presented in Fig. 3. The wave
vector of the incident photon is set to |qxa0| = π/6. The
ribbon width n = 3 and also incident photon wave vector
|qxa0| = π/6 are chosen for simplicity first in order to have
nonmessy curves and there is no physical reason behind
these choices. In Fig. 3, curves of both parts can be divided
into three regions: (i) from 0 to 1 eV corresponding to
the infrared rays, (ii) from 1 to 3 eV corresponding to the
combined infrared rays and visible light, and (iii) from 3 to
8 eV corresponding to the combined visible–ultraviolet light
regions of the electromagnetic spectrum. As mentioned, the
constant peaks of both parts are described by the electronic
band structure and DOS. Below the photon energy of about
2.63 eV corresponding to the band gap of the system, the
imaginary part is zero except at the point h̄ω � 0.8 eV, which
is interestingly nonzero and shows an intraband transition in
the valence bands (see the top left inset panel). Indeed, this
intraband transition originates from the role of temperature
from which the induced collision to electrons will result in the
excitation of electrons in the valence bands. In turn, the photon
excites electron/hole between valence bands because of this
collision. All the higher peaks corresponding to interband
transitions take place at the photon energies above the photon
energy h̄ω � 2.63 eV.

It is worthwhile to mention that all features de-
scribed, i.e., the plasmon modes (when Re[χ (0)(ω, qx )] = 0),
the plasmon resonances (when Re[χ (0)(ω, qx )] = 0 and
Im[χ (0)(ω, qx )] �= 0 simultaneously), and the Landau damp-
ing (when Im[χ (0)(ω, qx )] �= 0) manifest themselves in the
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interband regime. At higher incident energies, i.e., h̄ω � 6 eV,
the electronic transition between the bands does not occur
and the system is optically transparent. As for the refractive
index, it should be noted that the maximum refraction occurs
at lower frequencies and the propagation orientation of the
electrons in the system is reversed at 3.25 eV < h̄ω < 4 eV
and h̄ω > 4 eV due to the negative values of the real part.

In what follows, we show the numerical results for dynam-
ical susceptibility in order to treat the impact of perturbations
on the features mentioned above in SiC aNRs. In other words,
we investigate the dielectric function of the system in the
presence of external local perturbation whether electronic or
magnetic in a more widespread scheme.

IV. RESULTS AND DISCUSSIONS

This section is divided into six parts. First, the response
function of the different widths of SiC aNR is obtained.
Second, the effect of an electronic dopant on both the imag-
inary and real parts of χ (0)(ω, qx ) is investigated. Third, we
calculate the Zeeman magnetic-field effects on the transitions
between bands and the refractive index. Fourth, the tempera-
ture evolution of the plasmon modes is studied. Fifth, we study
the effect of the incident photon wave vector on χ (0)(ω, qx )
and finally, the combined effects of weak and strong factors
above are explored simultaneously. In fact, we evaluate sev-
eral extrinsic perturbations associated with the host electrons
in order to see the charge excitations in aNRs. It should
be noted that the results are valid for other semiconductor
aNRs such as graphene aNRs, boron-nitride aNRs, beryllium
monoxide aNRs, etc. Also, since the dispersion energy rela-
tion frequency ω versus the wave vector q has been studied
in many works, we ignore the information of this feature in
the present work. In addition to this property, the correspond-
ing energy-loss function L(ω, qx ) = Im[χ (0)(ω, qx )]−1 can
be calculated, too. However, in the present paper, the main
features of the optical properties are given by the imaginary
and real parts of χ (0)(ω, qx ) only and we will not confuse the
reader with many plots. For this reason, we neglect L(ω, qx )
plots. We stress that unless otherwise stated explicitly, the
constants h̄ = kB = g = μB = e = me = 1 are used through-
out the paper in numerical calculations for simplicity. Further,
the interatomic distance is also set to 1, i.e., a0 = 1 m. By
this, one can determine the values of quantities qx, ω, and T

in their main units such as Å−1, Hz, and Kelvin.
In our numerical calculations, we have picked ultranarrow

widths only to make sure the band gap of the system is
high enough in order to separate the behaviors of the intra-
and interband transitions more precisely [75]. On the other
hand, it has been shown that the ultranarrow aNRs have more
remarkable optical properties than their 2D forms [76]. These
are the reasons for our choices.

A. Ribbon width effects

In Fig. 4, we demonstrate how the ribbon width affects the
dielectric function of undoped SiC n-aNR when the magnetic
field is absent. The temperature and the photon wave vector
are set to kBT = 0.35 eV and |qxa0| = π/6, respectively.
Figure 4(a) shows that at low frequencies around h̄ω = 1 eV,
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FIG. 4. The imaginary (a) and real (b) parts of the response func-
tion χ (0)(ω, qx ) for different ribbon widths when the temperature,
the chemical potential, and the Zeeman magnetic field are fixed at
kBT = 0.35 eV, μ = 0 eV, and gμBBz = 0 eV, respectively. The
incident photon wave vector is set to |qxa0| = π/6. The inset panels
correspond to the low-frequency transitions and propagations in (a)
and (b), respectively. The changes of both intraband and interband
modes are clear when the ribbon width is altered.

there is no plasmon resonance for intraband transitions (cor-
responding to the visible light region of the electromagnetic
spectrum) because there is no zero crossing in the real part
in this range [see panel (b)]. Further, the number of intraband
transitions increases when the ribbon width is increased. This
can be understood from the fact that the number of bands in
the electronic band structure depends strongly on the ribbon
width [77,78]. Also, one can see that there is no Landau
damping plasmon mode in the range 1 eV < h̄ω < 3 eV due
to the zero value of the imaginary part in this range. On the
other hand, for interband transitions (h̄ω > 3 eV), plasmon
resonances show that the frequency of plasmons depends on
the ribbon width and does not have a trend in good order.
For instance, the first resonance for n = 4 appears at h̄ω =
3.25 eV, while for n = 8, it takes place at h̄ω = 3.5 eV.
And finally for n = 12, it emerges at h̄ω = 3 eV. Therefore,
interband plasmon modes oscillate with ribbon width, which
refers to the oscillatory dependence of the band gap to the
ribbon width [78]. However, the Landau undamping region
does not depend on the ribbon width and it is from 1 to 3 eV
(between intraband and interband transitions) always. In fact,
we conclude that the interplay of the intraband and interband
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plasmons can be controlled by the ribbon width. At higher
frequencies, there is no transition and the system is optically
transparent; the intensity of this transparency depends on the
ribbon width.

As for the real part, one finds corresponding modifications
when the ribbon width is increased. At energies below the
threshold h̄ω = 3 eV, the real part increases with n, which
reflects the increase in the number of charge carriers. Fur-
thermore, the modes below this threshold are well resolved
in energy, leading to nonzero values of the real part and
no reversion in the propagation of the electrons. Above this
point, interband plasmon excitations proportional to the rib-
bon width make the real part of χ (0)(ω, qx ) cross the zero axis
several times depending on n. Finally, after h̄ω = 4.25 eV, the
propagation of the electrons is completely reversed indepen-
dent of the ribbon width.

B. Electronic dopant effects

For the case of extrinsic doping from an electronic dopant,
characterized by the chemical potential μ, the numerical data
of the dielectric function of SiC 10-aNR for nonzero doping
μ, namely, μ = 0, 0.3, 1.2, 2.2, and 4.25 eV at kBT =
0.35 eV, |qxa0| = π/6, and gμBBz = 0 eV are reported in
Fig. 5. Figure 5(a) indicates the behavior of the imaginary
part of χ (0)(ω, qx ) as a function of frequency h̄ω when the
doping level is increased from zero to 4.25 eV. We have
expanded the energy range of doping here in addition to other
reported works [79,80]. From the panel (a), one finds an exotic
behavior for χ (0)(ω, qx ) (both parts) at strong μ = 4.25 eV
because the number of intraband modes decreases suddenly to
one and there is no interband mode at h̄ω � 1 eV. This refers
to the invalidity of the linear response theory at this strong
perturbation. It is clear that the appeared intraband mode
will take place at zero as the chemical potential is increased
further, i.e., more than 4.25 eV. Interestingly, at small doping
levels, i.e., μ < 2 eV, the dielectric function is not enhanced
significantly because the number of charge carriers is still not
high enough to affect the dispersion frequencies. Furthermore,
in addition to the explanation provided on the lack of the
Landau damping in the range of 1 eV < ω/t < 3 eV, one
can observe that the plasmon intraband modes have a high
susceptibility to μ, whereas the interband ones are not affected
much. Given the invalidity of the linear response theory at
μ = 4.25 eV, transparency property for h̄ω � 3 eV cannot be
concluded for this high μ.

Our findings also demonstrate an unusual treatment men-
tioned above for the refractive index at μ > 2.2 eV. In contrast
to the effect of ribbon width, the real part of the dielectric
function shows a reversed propagation orientation of electrons
even at low frequencies when the doping level is increased.
These results are not found in the case of 2D systems. For
instance, in Ref. [80], the authors have reported that both real
and imaginary parts of the dielectric function alter with doping
level even at lower values than the hopping energy t , while this
is not the case in quasi-1D aNRs, as presented above. While
the plasmon resonance modes appear at very high frequencies
several times, unlike the ribbon width effect, it occurs even
at the frequency h̄ω � 1 eV. Finally, it should be pointed out
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FIG. 5. The imaginary (a) and real (b) parts of the frequency-
dependent dielectric function when the electronic dopant is doped.
Emergence of the quasi-1D plasmon upon increasing the doping
level is evident. Further, one finds different behaviors of intraband
and interband modes in the curves. The quantities kBT = 0.35 eV,
|qxa0| = π/6, gμBBz = 0 eV, and n = 10 are considered in these
plots. The inset panels in (a) and (b) refer to the low-energy excita-
tions and refractivity of the system, respectively.

that the system is not optically transparent in the presence of
an electronic dopant for the photon energy range of 0–8 eV.

C. Zeeman magnetic-field effects

The frequency-dependent dielectric function χ (0)(ω, qx )
of SiC 10-aNR as a function of the Zeeman magnetic field
is displayed in Fig. 6. The magnetic field varies from 0 to
4.25 eV at thermal voltage kBT = 0.35 eV, the zero dop-
ing level μ = 0 eV, and |qxa0| = π/6. In strong contrast to
the case of doping, in which at low frequencies, intraband
plasmons are not changed with low doping levels, the intra-
band plasmons in this case (various magnetic fields) change
with even weak strengths of the magnetic field, as shown
in Fig. 6(a). In other words, the imaginary part increases
slightly with the magnetic field up to gμBBz = 2.2 eV and
after that, it starts to decrease, leading to one intraband
charge excitation only and no interband transition, stemming
from the invalidity of the linear response theory at strong
magnetic-field strengths. Upon increasing the magnetic field,
the scattering rate of carriers in the system is also increased
because, for an ascertained energy of carriers, the carriers
get an extra potential by the magnetic field. This implies
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FIG. 6. Calculated frequency-dependent (a) imaginary and
(b) real parts of the dielectric function of SiC 10-aNR when various
magnetic-field strengths are applied at kBT = 0.35 eV, |qxa0| = π/6,
and μ = 0 eV. Further, the changes of low-frequency limits of both
imaginary and real parts are magnified in the inset panels.

that the scattering processes of the carriers change due to the
Zeeman magnetic-field-induced potential. As seen, contrary
to the intraband transitions, the interband ones decrease with
the magnetic field. Also, the Landau undamping occurs again
in the range of 1 eV < h̄ω < 3 eV and h̄ω > 6 eV for the
weak magnetic fields, i.e., gμBBz < 4.25 eV. Similar to the
case of the electronic dopant, plasmon resonances emerge for
both intra- and interband modes.

In Fig. 6(b) we present the real part of the dielectric
function at finite temperature kBT = 0.35 eV and various
magnetic fields. The real part crosses the zero axis for weak
magnetic fields to showcase the reversion of the propagation
direction of the carriers corresponding to the plasmon exci-
tations frequencies. Nevertheless, contrary to the case of μ

for which there is no transparency for the system optically,
the system in the presence of the magnetic fields gμBBz <

4.25 eV is optically transparent for h̄ω � 6.5 eV.

D. Temperature effects

In order to study the effect of temperature on the di-
electric function of SiC aNRs, we present in Fig. 7 the
imaginary and real parts of frequency-dependent χ (0)(ω, qx )
at gμBBz = 0 eV, |qxa0| = π/6, n = 10, and μ = 0 eV for
various temperatures when dealing with the intra- and inter-
band transitions and the corresponding refractions. At fairly

FIG. 7. The frequency dependence of the (a) imaginary and
(b) real parts of χ (0)(ω, qx ) of SiC 10-aNR as a function of tem-
perature at gμBBz = 0 eV, |qxa0| = π/6, and μ = 0 eV. The inset
panels show the kBT = 0.15 eV case for imaginary and real parts
in (a) and (b), respectively. It can be seen that there is no intraband
transition and optical feature at fairly low temperatures.

low temperatures, i.e., kBT = 0.15 eV, the imaginary part of
χ (0)(ω, qx ) is zero at frequencies below the threshold h̄ω =
3 eV. In this region, there is no intraband plasmon mode
because there is no peak [see the inset panel in (a)]. One
only observes the interband transitions at energies above this
threshold. Upon the increase in temperature, the intraband
plasmon modes (low-energy side) show up and the height of
modes increases when the temperature is increased further up
to kBT = 1.45 eV. This refers to the increase in the collision
process of charge carriers when the temperature is raised.
Interestingly enough, one can see that the interband transitions
decrease gradually with no threshold for the thermal energy.
This is related to the temperature-dependent susceptibility,
which tells us there is a critical temperature in which the static
response function increases (decreases) with T before (after)
that [77,81]. These results are in agreement with Ref. [80]
qualitatively.

A similar interplay in comparison with the case of doping
and the magnetic field at low and high intensities is observed
for the real part in Fig. 7(b) when the temperature is increased.
We see that the zeros of the real part of χ (0)(ω, qx ) correspond
precisely to the frequencies when the imaginary part possesses
peaks, resulting in plasmon resonances. In this case, the
direction of the wave vector of electrons reverses again at
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FIG. 8. The effect of the incident photon wave vector on the
(a) imaginary and (b) real parts of the dielectric function χ (0)(ω, qx )
of SiC 10-aNR in the absence of both electronic and magnetic pertur-
bations at kBT = 0.35 eV. The inset panels clarify the behaviors of
the low-energy regime, which give rise to fascinating changes when
|qxa0| is changed.

h̄ω > 4 eV, while the sign of the wave vector becomes
positive and negative several times in the low-energy side
h̄ω < 4 eV. Contrary to the previous cases, the undamped
plasmon modes appear only at h̄ω > 5.5 eV for high temper-
atures and for low temperatures (kBT < 1 eV), it happens at
very high frequencies out of the considered range 0–8 eV.

E. Incident wave vector of test photon effects

Up to now, we used a fixed incident wave vector of the
test photon. However, it can be changed, affecting the optical
properties of the system. Let us compare the imaginary and
real parts of χ (0)(ω, qx ) for the case of |qxa0| ∈ [π/6 − π/2]
when there is no perturbation, either electronic or magnetic at
temperature kBT = 0.35 eV. For the case of closely parallel
to the SiC sheet, i.e., |qxa0| = π/6, the Landau undamping
occurs at 1 eV < h̄ω < 3 eV and h̄ω > 5 eV, as presented
in Fig. 8(a). However, for larger angles of the incident wave
vector, i.e., π/6 < |qxa0| � π/2, these regions for the Landau
undamping shift toward the higher frequencies and one can
find the relation ω ∝ √|qx | in agreement with Ref. [80] qual-
itatively. This means that both intraband and interband charge
excitations depend strongly on the incident wave vector of
the test photon applied to the system. On the other hand,
the height of the peaks corresponding to plasmon excita-

FIG. 9. Combined effects of electronic and magnetic perturba-
tions on the dielectric function χ (0)(ω, qx ) at (a) kBT = 0.7 eV,
μ = 0.7 eV, gμBBz = 0.7 eV, and |qxa0| = π/3, and (b) kBT =
1.45 eV, μ = 2.2 eV, gμBBz = 2.2 eV, and |qxa0| = π/2. No plas-
mon resonance at the low-energy side is presented in the inset panels
of (b).

tion frequencies increases when the wave vector |qxa0| is
increased further. Actually, it refers to the scattering process
of carriers when they interact with photons with different
incident angles. This affects the refraction property as well,
as illustrated in Fig. 8(b). The refractive index gets zero value
at higher frequencies as soon as |qxa0| becomes closer to
the perpendicular angle. Furthermore, there is no plasmon
intraband resonance because, in the real part, there is no zero
crossing. As for the undamped plasmon modes, as a result,
the corresponding frequencies increase with the wave vector
and for the perpendicular case, i.e., |qxa0| = π/2, there is no
damping mode in the frequency energy range 0–8 eV.

F. Combined effects of electronic and magnetic perturbations

In the last paragraph of this section, we elaborate on the
combined effects of both weak and strong perturbations on the
dielectric function. To this end, we first consider a SiC 8-aNR
at the temperature kBT = 0.7 eV, the chemical potential μ =
0.7 eV, and the magnetic field gμBBz = 0.7 eV when the
photon wave vector is |qxa0| = π/3, as illustrated in Fig. 9(a).
Then, strong perturbations are considered in Fig. 9(b) with
values kBT = 1.45 eV, μ = 2.2 eV, and gμBBz = 2.2 eV
at |qxa0| = π/2. At first glance, one observes an intraband
plasmon resonance mode around the energy h̄ω � 0.8 eV in
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which the imaginary part gets the peak while the real part
crosses the zero axis at the same time. On the other hand, more
than one resonance appears for the interband plasmon modes
at h̄ω > 3 eV. The number of intra- and interband transitions
are not much in the case of n = 8 [Fig. 9(a)]. Furthermore, the
Landau undamping emerges in the range of h̄ω = [1 − 3] eV
and h̄ω > 6.25 eV. The curves for h̄ω � 7.5 eV tell us that
both real and imaginary parts get zero values, which means
that the system is optically transparent.

From panel (b), one finds more transitions in both low-
energy and high-energy regimes in the case of n = 16. It can
be seen that there is no plasmon resonance for the intraband
transitions because the real part does not cross any point and
only the system deals with the interband plasmon resonances.
Also, compared to n = 8, the Landau undamping takes place
within a narrower region (h̄ω = [2.5–3.25] eV). In addition,
transparency cannot occur within the range of photon energy
0–8 eV when strong perturbations and a wider width of aNR
are considered.

V. CONCLUSIONS

We have investigated theoretically the charge response of
quasi-1D aNRs (SiC in our case) to external local electronic
and magnetic perturbations based on the Green’s function
approach, followed by the linear response theory. All the
studied responses are characterized by two energy regions,
one below the band gap energy of about 2.63 eV and an-
other one above the band gap corresponding to intraband and
interband plasmon modes, respectively. We found that both
the intraband and interband modes are strongly sensitive to
geometrical parameters and also the extrinsic perturbations. In
addition, we have explained the plasmonic properties of aNRs
when a temperature gradient is applied. Furthermore, the plas-
monic properties are studied in the presence of the combined
effects of weak and strong perturbations for different rib-
bon widths. The important outcome is significant deviations
for dielectric function when the perturbations are combined
and/or not, leading to the different optical transparency of
aNRs. Also, we have studied the refractive index to explore
the propagation direction of host charges when applying the
external perturbations. Our findings showed that depending on
different threshold frequencies, electrons change their propa-

gation direction. Besides, the zeros of frequency-dependent
imaginary and real parts of the dielectric function corre-
sponding to the Landau undamping and plasmon excitation
modes, respectively, have been addressed in the present work.
Moreover, we have analyzed the undamped plasmon modes
for both intraband and interband transitions. The presence
of local perturbations gives the idea to experimentalists that
quasi-1D aNRs are proper candidates for the nanoplasmonic
applications in infrared rays, visible light, and ultraviolet light
regimes of the electromagnetic spectrum with the careful
choice of the perturbation.
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APPENDIX: PEIERLS PHASE FACTORS

The phase factor ��n,m appearing in tn,m is determined by
a line integral of the vector potential �A through

��n,m = e

h

∫ �Rm

�Rn

d�l · �A, (A1)

where e, h, �R1 = (1, 0)a0, �R2 = −(1,
√

3)a0/2, and �R3 =
(−1,

√
3)a0/2 with a0 = | �Rn,m| = 3.298 Å are the electron

charge, Planck constant, and vectors corresponding to the
nearest neighbors, respectively (see Fig. 1). The phase factors
for armchair configuration in the Landau gauge �A = (0,Bzx)
are calculated as

��n,m( �Rn,m = �R1) = −aBzyn, (A2a)

��n,m( �Rn,m = �R2) = −a0Bz

2

[
yn +

√
3a0

4

]
, (A2b)

��n,m( �Rn,m = �R3) = +a0Bz

2

[
yn +

√
3a0

4

]
, (A2c)

where yn is the Si or C atom position in the transverse
direction of the ribbon.
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