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Confining massless Dirac particles in two-dimensional curved space
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Dirac particles have been notoriously difficult to confine. Implementing a curved-space Dirac equation solver
based on the quantum lattice Boltzmann method, we show that curvature in a two-dimensional space can confine
a portion of a charged, massless Dirac fermion wave packet. This is equivalent to a finite probability of confining
the Dirac fermion within a curved-space region. We propose a general power-law expression for the probability
of confinement with respect to average spatial curvature for the studied geometry.
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I. INTRODUCTION

The equations of motion of quasirelativistic electrons in
materials such as carbon nanotubes [1], graphene [2–7], three-
dimensional (3D) Weyl semimetals [8,9], and topological
insulators [10–12] can be mapped to the equations of motion
of relativistic Dirac fermions when considering specific local
regions of the Brillouin zone in a periodic lattice [13]. These
Dirac materials have revived experimental and theoretical
research of quasirelativistic particles in systems of different
dimensions [14,15]. Two-dimensional (2D) systems are espe-
cially of interest due to graphene, 2D topological insulators,
and the fractional quantum Hall effect [16]. Research is
focused on bound states of Dirac particles, for example, in
the context of quantum computing and waveguides [17,18].

Massless Dirac particles are notoriously difficult to con-
fine. Studies about transmission of Dirac particles through
one-dimensional potentials have shown guided modes using
abrupt potentials [19,20]; however, these potentials are not
experimentally feasible. In addition, some analytical inves-
tigations have indicated confinement only when considering
a rotating frame [21,22]. Likewise, zero energy or Majorana
bound modes have been theoretically predicted for an inte-
grable graphene quantum dot [23] and by forming bielectron
vortices [24].

An alternative approach is based on Fermi velocity en-
gineering, for example, by embedding Dirac materials on
substrates, where the bound states are achieved for specific
Fermi velocity geometries [25,26]. Furthermore, in the con-
text of quantum dots, some experimental success has been re-
ported for soft confinement only by slightly opening the Dirac
cone [27,28] and thus deviating from the truly relativistic
dispersion.

We propose an alternative geometric approach to confine
Dirac particles, namely, through static spatial curvature. His-
torically there have been other examples of quantum field
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theories solved in curved space-time in attempts to incorporate
some effects of gravity to special-relativistic quantum theories
[29] and these have also been applied to graphene sheets [30].
That is, following Einstein’s principle of equivalence, which
requires the laws of physics to be the same in all inertial
frames, the force of gravity can be modeled as a curvature
of space-time. For example, in three dimensions bound states
of moving Dirac particles in gravitational fields have been
postulated [31]. Additionally, other effects of curvature, such
as energy dissipation [32], have also been proposed for clas-
sical fluids. Specifically Dirac particles in curved space have
been studied in the context of the surface electronic structure
of topological insulators [33], electronic properties of curved
graphene sheets with distortion and defects [34], analytical
work of cold Dirac fermions on (2+1)-dimensional Rindler
metric [35], and massless Dirac fermions in curved space-
time that were implemented for understanding the behavior
of quantum walks and their use in quantum algorithms [36].
In this work we give evidence for spatial confinement of
massless Dirac fermions in general two-dimensional curved
space and on deformed pure monolayer graphene.

To this end the transmittance of Dirac fermions is explored
numerically using a solver of the Dirac equation developed by
Debus [37]. The method is based on the conceptual similar-
ities between the Dirac and the Boltzmann equations and is
an extension of the quantum lattice Boltzmann method [38] to
curved space.

First we introduce the Dirac equation and its extension to
curved space and specifically deformed graphene. In the next
section the simulations and results are presented. The paper
finishes with a summary and outlook section. Appendixes can
be found at the end including a more detailed description of
the numerical model.

II. DIRAC MODELS IN CURVED SPACE

The original Dirac equation [39] for massless fermions can
be written in compact notation:

(iγ μ∂μ)� = 0, (1)
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in natural units such that h̄ = c = 1 for h̄, Planck’s constant,
and c, the speed of light, where μ = 0, 1, 2 for 2D space-
time. � = (�+

a ,�−
a ) = (ψ+

1 , ψ+
2 , ψ−

1 , ψ−
2 ) ∈ C4 denotes the

Dirac spinor for particle, antiparticle (+,−), and γ μ = γ αe μ
α

are the generalized space-dependent γ matrices, where γ α ∈
C4×4 are the standard Dirac matrices and e μ

α is the tetrad,
which relates the flat Minkowski metric to the curved space-
time with the first and second indices, respectively.

Here the tetrad is defined by

e μ
α gμνe

ν
β = ηαβ,

where gμν denotes the metric tensor and ηαβ is the Minkowski
metric. In two dimensions the tetrad can be computed directly
as the square root of the metric. Now we define the covariant
derivative as Dμ� = ∂μ� + �μ�, where �μ denotes the spin
connection matrices given by

�μ = − i

4
ωαβ

μ σαβ,

where σαβ = i
2 [γα, γβ] and the spin connection

ωαβ
μ = e α

ν ∇μeνβ.

Using these definitions, Dirac equation (2) can be naturally
extended to curved space described by a metric tensor gμν

with a covariant derivative as

(iγ μDμ)� = 0, (2)

where Dμ is the covariant spinor derivative defined above.
The Dirac equation in curved space describes relativistic
Dirac particles (e.g., electrons) moving on arbitrary manifold
trajectories (see Appendix B). The Dirac current is defined by
Jμ = �γ μ�.

In 2 + 1 dimensions, of interest in this work, the Dirac
matrices can be represented in terms of the standard Pauli
matrices σ i ∈ C2×2, as γ 0 = iσ 3, γ 1 = σ 2, and γ 2 = −σ 1,
where {σ i, σ j } = δij . Furthermore, the massless Dirac or
Weyl equation can be expressed in the chiral representation
with � = (�L,�R ), where �L/R = 1/2(1 ± γ 5)� are de-
coupled Pauli spinors. In the context of graphene, the gen-
eral Dirac spinor � = (�K

a ,�K ′
a ) = (ψK

A ,ψK
B ,ψK ′

A ,ψK ′
B ),

for sublattices A,B and valleys K,K ′. Equivalently to the
Weyl representation, the two valleys are decoupled from each
other; therefore, the spinor can be simplified to the sublattice
basis, � = (ψK

A ,ψK
B ), without loss of generality.

To model the single-layer carbon atom honeycomb lattice
structure we start from the tight-binding Hamiltonian which
is constructed assuming superposition of local waves for
isolated atoms on a honeycomb lattice [40]. In the low-energy
limit it has been shown that the tight-binding Hamiltonian
converges to the Dirac Hamiltonian in the continuum limit,

HD = −ivf

∫
�†σ i∂i�d2x, (3)

in natural units, where we have replaced γ 0γ i with σ i ∈ C2×2,
� is in the sublattice basis, and vf is the Fermi velocity.
The convergence to Eq. (3) can be seen as the Dirac cones
in graphene with linear dispersion relation at the conduction
and valence bands connecting point E = p for energy E and
momentum p.

The equation of motion from this Hamiltonian is simply the
Dirac equation. In this work, we consider a static space-time
metric with trivial time components,

gμν =
(

1 0

0 −gij

)
,

where the latin indices run across the spatial dimensions. This
simplifies the Dirac equation, Eq. (2), in 2+1 dimensions to

∂t� + σae i
a (∂i + �i )� = 0. (4)

After the addition of external vector and scalar potentials
Ai (x) and V (x), respectively, as explained in Ref. [41], the
Dirac equation takes the following form:

∂t� + σae i
a (∂i + �i − iAi )� = σ 3V �. (5)

For the given metric, the conservation law for the Dirac
current can be written as ∂tρ + ∇iJ

i = 0, where ρ = �†�
∈ R.

For graphene the effective Dirac Hamiltonian looks like
[42]

H ∗
D = −ivf

∫
�†σa

(
v∗i

a ∂i + �∗
a − iA∗

a

)
�d2x, (6)

where v∗i
a = δai + uai − βεai is the space-dependent Fermi

velocity, �∗
a = 1

2vf
∂j v

∗j
a is a complex vector field, and A∗

a

is a strain-induced pseudovector potential given by A∗
a =

(A∗
x, A

∗
y ) = β

2a
(εxx − εyy,−2εxy), where β is the electron

Grueneisen parameter, a the lattice spacing, and εij = uij +
1
2∂ih∂jh the general strain tensor with in-plane (uij ) and out-
of-plane (h) deformations. The term uai in v∗i

a can be inter-
preted as the lattice deformation potential term and is purely a
geometric consequence. Comparing this to the standard Dirac
Hamiltonian in curved space,

HD = −i

∫
�†σae i

a (∂i + �i − iAi )�
√

gd2x, (7)

we can match both Hamiltonians HD and H ∗
D by fulfilling the

following relations:

v∗i
a = vf

√
ge i

a , �∗
a = vf

√
ge i

a �i , A∗
a = vf

√
ge i

a Ai. (8)

All three can be simultaneously fulfilled by an effective metric
tensor derived from the explicit expression of the tetrad [41].
The effective Dirac model for nonuniform strained graphene
as explained in Ref. [42] does not distinguish between the
graphene valleys K and K ′ as it relies on the basic principle
that the theory for graphene under nonuniform strain should
describe the particular case of a uniform strain, where both
Dirac points in the Brillouin zone are affected the same
way and thus considered equivalent. The numerical model
implemented is explained in Appendix A.

III. SIMULATIONS AND RESULTS

The transmittance of a traveling wave packet through a
curved-space obstacle is investigated similarly to Ref. [43] for
the graphene effective Hamiltonian equation (6). A Gaussian
wave packet is initialized as

�(r, k) = 1√
2πσ 2

(
1

λeiθ

)
e
− |r|2

4σ2 +ik·r
, (9)

155419-2



CONFINING MASSLESS DIRAC PARTICLES IN TWO- … PHYSICAL REVIEW B 98, 155419 (2018)

FIG. 1. (a) Density of the wave packet at an initial and a later
time step when the wave packet exits the curved region in a squeezed
Gaussian state with a higher probability in the center. The white
rectangle represents region II within the numerical domain, where we
measure confinement. The arrow denotes the propagation direction.
(b) Ricci scalar for 〈R〉 = 3.9 × 10−3 nm−2.

where λ = ±1 is the band index, θ = arctan(ky/kx ), σ is a
measure for the width, r = (x, y), x and y are the two space
dimensions, and k = (kx, ky ), where kx and ky represent the x

and y momenta, respectively. kx is initialized to 1, ky to zero,
and λ to +1. In the simulations, we consider a rectangular
sheet with periodic boundary conditions on a grid of size Lx ×
Ly = 512 × 128 or 20 nm × 5 nm; Aa , the external potential,
is set to zero. The norm of the wave function, ‖�‖2, i.e., the
probability density, ρ, is plotted in Fig. 1(a) for the initial
and a later time step. For the latter, the wave packet has been
reshaped by curvature; in the case of a flat metric it will only
spread [see Fig. 2(a)]. The kinematics of relativistic wave
packets for Minkowski space-time is explained in Ref. [44].

Defining δgij (x, y) = C0 exp((x/σ ′)2 + (y/σ ′)2), where
C0 denotes the amplitude and σ ′ = 0.2Ly , the metric is

gij =
(

1 + δg11(x, y) δg12(x, y)

δg21(x, y) 1 + δg22(x, y)

)
. (10)

Here C0 < 0, which constitutes an attractive spatial curvature,
resulting in a squeezing effect on the wave packet as seen
in Fig. 2. In the case of C0 > 0 the wave packet would be
repelled from the central region, splitting it up. For numerical
stability we keep |C0| < 0.1Ly ; additionally, small out-of-
plane deformations are more easily physically realizable.

Experimentally, optical forging can be used to construct
graphene into the free-standing three-dimensional shape [45].
The method exploits local strain induction due to irradiation
with laser pulses under inert atmosphere and has been shown
to form up to 20-nm-high custom-made structures. The metric

FIG. 2. Density plots of the wave packet at three different time
steps for (a) 〈R〉 = 0, (b) 〈R〉 = 0.16 × 10−3 nm−2, and (c) 〈R〉 =
3.9 × 10−3 nm−2. The arrow denotes the propagation direction. The
wave packet exits the curved-space region in a squeezed state.

tensor can be computed from the discreet mapping (or chart)
hα (x, y) relating the positions of the atoms from the three-
dimensional flat space (laboratory frame with Minkowski
metric) to the curved space by

gij = ∂hα (x, y)

∂xi

∂hβ (x, y)

∂xj
ηαβ, (11)

as explained in Ref. [46]. The positions of the atoms and
consequently hα can be determined by scanning tunneling
microscopy and atomic force microscopy.

The amount of spatial curvature is best described by the
Ricci scalar R, shown in Fig. 1(b). R represents the contrac-
tion of the Riemann curvature tensor R = gijRk

ikj (see Ap-
pendix B). The space-averaged Ricci scalar 〈R〉 is calculated
from

〈R〉 =
(∫ x,y

R(x, y)
√

gdxdy

)/∫ x,y √
gdxdy, (12)

where an explicit expression can be found in Appendix C.
The wave packet undergoes some spreading perpendicular

to the motion as expected qualitatively from the Dirac equa-
tion [44], shown in Fig. 2(a). The effect of curvature is to
squeeze the wave packet along the zero-momentum direction
as shown in Figs. 2(b) and 2(c). This is not a geometrical ar-
tifact as the squeezed shape is retained, with some spreading,
even after the wave packet exits the curved region.

The relative change in normalized probability density,

�ρ(t ) =
x,y ∈ II∑

[ρ(x, y, t ) − ρ(x, y, t = 0)], (13)
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FIG. 3. (a) Time evolution of the total relative change of the
probability density in region II for different average curvatures 〈R〉,
in semilogarithmic scale. (b) Density change in region II for t = 3.0
fs and 〈R〉 = 3.9 × 10−3 nm−2 plotted against different resolutions
as x data points. The residual density is exponentially converging
with resolution to an asymptotic value shown as the dotted line.
The curve 2.5 × 10−5 exp(−1.006RF ) + 1.058 × 10−4 is fitted to
the data as the dashed line. The inset shows the probability density
within region II for 〈R〉 = 3.9 × 10−3 nm−2 and RF = 8 after a long
time.

within the central region II, as indicated in Fig. 1(a), is
measured for all time steps and plotted in logarithmic scale
in Fig. 3(a). The main bulk of the wave -packet exits region II
at around t = 2.6 fs. Comparing the flat with the curved cases,
one sees that some density is left within region II.

In order to exclude the possibility of a numerical artifact,
the residual density relative to the flat case at t = 3 fs,

�ρ̃ = �ρ(t = 3 fs) − �ρ〈R〉=0(t = 3 fs), (14)

is plotted in logarithmic scale for 〈R〉 = 3.9 × 10−3 nm−2

against the resolution factor [(RF ) = (number of compu-
tational cells)/(smallest number of computational cells)], for
the same physical scenario. From Fig. 3(b), by fitting the
exponential 2.5 × 10−5 exp(−1.006RF ) + 1.058 × 10−4, we
conclude that the residual density is exponentially converging
with resolution to an asymptotic value. Therefore, the density-
confining effect is a real solution and not a numerical artifact.

In Ref. [47], the vorticity or angular momentum of a
relativistic wave packet is defined as wD = ∇ × Jμ = ∇ ×
�γ μ�. Therefore, as a measure of the angular momentum the
total vorticity of the wave packet relative to the flat scenario,

�|wD (t )| =
x,y ∈ II∑

[|wD|(x, y, t ) − |wD|(x, y, t = 0)]

−
x,y ∈ II∑

[|wD|(x, y, t ) − |wD|(x, y, t = 0)]〈R〉=0

(15)

FIG. 4. (a) Time evolution of total vorticity change, a measure
of angular momentum, in region II for 〈R〉 = 3.9 × 10−3 nm−2, in
semilogarithmic scale. (b) Total vorticity within region II for t =
2.9 fs and 〈R〉 = 3.9 × 10−3 nm−2.

within region II is plotted against time in Fig. 4(a). Similarly
to the probability density, some residual angular momentum
remains confined even after the wave packet exits the region.
The confined �wD (t = 2.9 fs) is plotted in Fig. 4(b).

The density confined in region II at t = 2.9 fs is plotted
over a wire-frame visualization of the Ricci scalar in Fig. 5.
The density retains a squeezed Gaussian shape with a higher
probability in the center, similar to the forward-moving wave
packet. The trapped Dirac fermion density can be understood
as the probability of confining a Dirac fermion within the
curved-space region. Therefore, a Gaussian peak is the nat-
ural, expected shape of the confined density. For relatively
small curvatures, as investigated here, this probability is about
0.1%. Alternatively the wave packet can be apprehended as a
collection of Dirac fermions, which can break apart, and some
remain within the “curved-space trap.”

The local density of states (LDOS) is calculated from
the energy spectrum En of the system and its normalized

FIG. 5. Normalized confined density within region II, indicated
by the top rectangle, for t = 2.9 fs and 〈R〉 = 3.9 × 10−3 nm−2. The
curved wire frame represents the Ricci scalar of the domain.
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FIG. 6. Local density of states plotted for energy along the x

dimension for y = 0.5Ly .

eigenfunctions φn(x) according to the following relation:

ρLDOS(x,E) = 1

π

∑
n

|φn(x)|2Im
1

E − En − iδε
. (16)

δε ≈ 0.02 eV is the approximate broadening of the energy
spectrum peaks and is expected to be present in the material.
The result is plotted in Fig. 6, where the discrete energy levels
of the system are clearly visible.

The stability of the confined density is investigated by
simulating a longer time. This result is shown in the inset
of Fig. 3(b). The confined �ρ̃ remains constant for up to
1.2 × 103 computational time steps and, within numerical
errors, shows no indications of depletion. The oscillations of
O(10−5) relative to �ρ̃ are caused by minor boundary effects
since their period of oscillation is dependent on domain size.
In real units, using graphene as an example, for deformation
of 20 nm and Fermi velocity vf ≈ 1 × 106 m/s [48], one
computational time step corresponds to 0.01 fs of physical
time. The total simulation time is then equivalent to 12 fs.

For completeness, the same wave packet is initialized at
rest (kx = ky = 0) at the center of region II. The time evolu-
tion of the relative change in normalized probability density
within region II is plotted in Fig. 7. The wave packet spreads
outwards but similarly to the previous scenario (kx ≈ 1) there
is some residual density in region II for the curved relative to
the flat space. As seen in the inset of Fig. 7, the difference be-
tween the curved and flat spaces remains constant, indicating
confined charge density in the region.

The present model describes perfect Dirac fermions and a
pure monolayer graphene sheet for low energy levels close to
the Dirac point. In experimental reality the result should be
stable to disorder significantly smaller than the curved-space
trap. For example, ripples of the order of 0.1 nm would not
affect the trapping. Equivalently, any impurities and/or dislo-
cations would only become significant if they alter the basic
properties of graphene such as lattice periodicity, affecting
dramatically the phase-space representation.

0.5 1 1.5 2 2.5
-100

-10-1 <R>=0nm-2

<R>=2.5632e-05nm-2

<R>=7.2735e-05nm-2

1.6 1.8 2 2.2 2.4 2.6
0.015

0.02

0.025
0.03

0.035

FIG. 7. Wave packet at rest; time evolution of total relative
change of the probability density in region II for different aver-
age curvatures 〈R〉, in semilogarithmic scale. The inset shows the
residual of the difference between the curved and flat geometries in
logarithmic scale.

The dependence of confinement on curvature is plotted in
Fig. 8 and fitted with a power law. Specifically, the residual
density relative to the flat case at t = 3.0 fs is plotted against
total average curvature 〈R〉. From Fig. 8, an explicit expres-
sion for the probability of confinement, Pc, can be deduced:

Pc = �‖�‖2

〈‖�‖2〉 ∝ 〈R〉α
〈‖�‖2〉 , (17)

where �‖�‖2 denotes the change in probability density and
〈R〉 the space-averaged Ricci scalar. Equation (17) is only
valid for an attracting and confining curved-space manifold;
the exponent α is also case specific, where we find in the cur-
rent scenario α = 0.77 and α = 0.81 for the pure Dirac equa-
tion (3) and the graphene effective Hamiltonians [Eq. (6)], re-
spectively. The discrepancy between the two cases is expected
due to the differences in the models; pure Dirac particles are
less likely to be confined relative to electrons on graphene.

10-7

10-5

10-4

Simulation Dirac equation
Power law fit,  = 0.77 0.02
Simulation Graphene
Power law fit,  = 0.81 0.02

FIG. 8. Normalized confined density in region II plotted against
average curvature, in logarithmic scale, for the pure Dirac and the
effective graphene Hamiltonians. Power-law fit with its fitting error,
where α denotes the exponent.
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IV. SUMMARY AND OUTLOOK

We presented a study on transmittance and confining of
Dirac particles in 2D curved space and graphene sheets show-
ing that curvature can squeeze a traveling wave packet.

Furthermore, we have shown that it is possible to confine
a portion of a traveling wave packet within a curved-space
region on a 2D manifold. We propose Eq. (17) for describing
the probability of confinement. In principle, this effect could
be experimentally verified by forging graphene into a curved
shape [45] to reproduce the metric in Eq. (10).

Building on these results, other geometries and even time-
dependent metrics can be further investigated to increase
confinement probability and lifetime. Locally confined Dirac
fermions on graphene might be potentially utilized in ad-
vanced electronics applications such as memory modules and
quantum computing. Additionally, by experimenting further
with possible geometries and their effect on traveling wave
packets and currents, a viable graphene waveguide might be
numerically engineered.

For this study we implemented a curved-space Dirac equa-
tion solver [37,41] based on the quantum lattice Boltzmann
method [38]. This solver can be further developed to curved
space-time, opening up the possibility of numerically solving
quantum field theories in curved space-time towards combin-
ing quantum field theory with general relativity.
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APPENDIX A: NUMERICAL MODEL: QUANTUM
LATTICE BOLTZMANN

The Dirac equation in curved space can be written as

∂t� + σa∂a� = C� + Fψ, (A1)

where the left-hand side represents the “free streaming” step
along matrix-valued “velocities” σ i and the right-hand side
contains a collision term

C = −(
imγ 0 + σae i

a �i

)
, (A2)

where m is the fermion mass, and a forcing term,

F = −σa
(
e i
a − δi

a

)
∂i . (A3)

As explained in Ref. [41], to avoid interpolation the partial
derivative is distributed between the streaming part and the
forcing term, resulting in a lattice-compatible streaming op-
erator of the form ∂t + va∂a . In order to obtain a diagonal
streaming operator the complex σ matrices have to be diago-
nalized first, which also yields a diagonal velocity matrix with
eigenvalues va = ±1. The digitalization is achieved by

X†
c αc Xc =

⎛
⎜⎜⎜⎝

1 0 0 0

0 1 0 0

0 0 −1 0

0 0 0 −1

⎞
⎟⎟⎟⎠ = γ 0 for c = 0, 1, 2,

with unitary transformation matrices X1, X2 given by

X1 = 1√
2

⎛
⎜⎜⎜⎝

1 0 −1 0

0 1 0 −1

0 1 0 1

1 0 1 0

⎞
⎟⎟⎟⎠,

X2 = 1√
2

⎛
⎜⎜⎜⎝

0 i 0 1

−i 0 i 0

−1 0 −1 0

0 −1 0 −i

⎞
⎟⎟⎟⎠.

The streaming and collision operations are performed in
successive steps using operator splitting because simultaneous
diagonalization of three σ matrices is not possible; please
refer to Ref. [41] for the operator splitting procedure. Here, the
collision operator is expanded in a unitary way to conserve the
norm but since the streaming and forcing terms contain deriva-
tive operators a unitary expansion is not possible. Therefore,
a simple second-order expansion is performed, limiting the
probability norm to �t2 accuracy.

The manifold itself is described by a chart h defined in
linear space (see Appendix B), which is discretized on a
regular rectangular lattice. The curved-space quantum lat-
tice Boltzmann method evolves the spinor � = (�+,�−) =
(�+

1 ,�+
2 ,�−

1 ,�−
2 ) from t to t + δt . Once the operators are

split, the following algorithm is performed consecutively for
each lattice direction na , where n1 = (1, 0), n2 = (0, 1), and
a = 1, 2.

(1) Rotation: The spinor is rotated by Xa ,

�̃a (x, t ) = X†
a�(x, t ). (A4)

(2) Collisions and curvature: The collision and force oper-
ators are applied on the rotated spinor,

�̃∗
a (x, t ) =

(
�tF̃a +

(
1 − �t

2
C̃a

)−1(
1 + �t

2
C̃a

))
�̃a (x, t ),

where �̃∗
a (x, t ) denotes an auxiliary field,

C̃a = 1
2X†

aCXa, (A5)

F̃a�̃a (x, t ) = (
e i
a − δi

a

)
(�̃a (x ∓ ni�t, t ) − �̃a (x, t )),

(A6)

where ni is the lattice direction and C is the collision term
[Eq. (A2)]. The minus sign applies for the spin-up components
(�+

1 ,�+
2 ) and the plus sign for the spin-down components

(�−
1 ,�−

2 ).
(3) Streaming: The spinor components are streamed to the

closest grid points along the lattice direction ±na ,

�̃a

(
x, t + �t

2

)
= �̃∗

a (x ∓ na�t, t ). (A7)

(4) Inverse rotation: The spinor is rotated back by Xa ,

�a

(
x, t + �t

2

)
= Xa�̃a

(
x, t + �t

2

)
. (A8)

(5) Repeat steps 2–4 for the next spatial direction.
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The simulation for strained graphene is carried out with
modified Eqs. (A5) and (A6) such that

C̃a → √
gC̃a, e i

a → √
ge i

a .

The additional factor of
√

g originates from the volume ele-
ment of the Hamiltonian in Eq. (7).

APPENDIX B: RIEMANNIAN GEOMETRY

The latin indices run over the spatial dimensions, and
Einstein summation convection is used for repeated indices.

A D-dimensional curved space is represented by a Rie-
mannian manifold M , which is locally described by a smooth
diffeomorphism h, called the chart. The set of tangential
vectors attached to each point y on the manifold is called the
tangent space TyM . In the fluid model, all the vector quantities
are represented as elements of TyM . The derivatives of the
chart h are used to define the standard basis (e1, . . . , eD ) =
∂h
∂x1 , . . . ,

∂h
∂xD .

The metric tensor g can be used to measure the length of a
vector or the angle between two vectors. In local coordinates,
the components of the metric tensor are given by

gij (x) = ei (x) · ej (x) = ∂h
∂xi

· ∂h
∂xj

, (B1)

where · is the standard Euclidean scalar product.
For a given metric tensor, the vector v = viei ∈ TyM has

a norm ||v||g = √
vigij vj and a corresponding dual vector

v∗ = viei ∈ T ∗
y M in the cotangent space, which is spanned

by the differential 1-forms dxi = g(ei , ·). The coefficients vi

of the dual vector are typically denoted by a lower index
and are related to the upper-index coefficients vi by con-
traction with the metric tensor vi = gij v

j or, equivalently,
vi = gij vj , where gij denotes the inverse of the metric tensor.
The upper-index coefficients vi of a vector v are typically
called contravariant components, whereas the lower-index co-
efficients vi of the dual vectors v∗ are known as the covariant
components.

A necessary feature for the description of objects moving
on the manifold is parallel transport of vectors along the
manifold. The tangent space is equipped with a covariant
derivative ∇ (Levi-Civita connection), which connects the
tangent spaces at different points on the manifold and thus
allows to transport a tangent vector from one tangent space to
the other along a given curve γ (t ). The covariant derivative
can be viewed as the orthogonal projection of the Euclidean
derivative ∂ onto the tangent space, such that the tangency
of the vectors is preserved during the transport. In local
coordinates, the covariant derivative is fully characterized by
its connection coefficients �i

jk (Christoffel symbols), which
are defined by the action of the covariant derivative on the

basis vector, ∇j ek = �i
jk . In the standard basis, ei = ∂h

∂xi , the
Christoffel symbols are related to the metric by

�i
jk = 1

2gij (∂jgkl + ∂kgjl − ∂lgjk ). (B2)

Acting on a general vector v = viei , the covariant derivative
becomes

∇kv = (
∂kv

i + �i
kj v

j
)
ei , (B3)

where the product rule has been applied, using that the co-
variant derivative acts as a normal derivative on the scalar
functions vi . Extending to tensors of higher rank, for example,
the second-order tensors T = T ij ,

∇kT = (
∂kT

ij + �i
klT

lj + �
j

klT
il
)
ei ⊗ ej , (B4)

in this work the basis vectors ei are generally dropped. Com-
patibility of the covariant derivative with the metric tensor
implies that ∇kg

ij = ∇kgij = 0. This property allows us to
commute the covariant derivative with the metric tensor for
the raising or lowering of tensor indices in derivative expres-
sions.

The motion of the particle can be described by the curve
γ (t ), which parametrizes the position of the particle at time t .
The geodesic equation, ∇γ̇ γ̇ = 0, in local coordinates γ (t ) =
γ i (t )ei is defined by

γ̈ i + �i
jkγ̇

j γ̇ k = 0. (B5)

The geodesic equation can be interpreted as the generalization
of Newton’s law of inertia to curved space. The solutions of
Eq. (B5) represent lines of constant kinetic energy on the
manifold, i.e., the geodesics. The Riemann curvature tensor
R can be used to measure curvature or, more precisely, it
measures curvature-induced change of a tangent vector v

when transported along a closed loop:

R(ei , ej )v = ∇i∇j v − ∇j∇iv. (B6)

In a local coordinate basis ei , the coefficients of the Riemann
curvature tensor are given by

Rl
ijk = g(R(ei , ej )ek, el )

= ∂j�
l
ik − ∂k�

l
ij + �l

jm�m
ik − �l

km�m
ij . (B7)

Contraction of Ri
jkl to a rank 2 and 1 tensor yields the Ricci

tensor Rij = Rk
ikj and the Ricci scalar R = gijRij , respec-

tively, which can also be used to quantify curvature.
The gradient is defined as ∇if = gij ∂jf , the divergence

as ∇iv
i = 1√

g
∂i (

√
gvi ), and the integration over the curved

volume as V = ∫
V

QdV , where dV = √
gdx1 · · · dxD =:√

gdDx denotes the volume element.
√

g denotes the square
root of the determinant of the metric tensor.

It should be clarified that in the simulations there is no time
curvature and gij denotes the curved-space metric.

APPENDIX C: EXPLICIT RICCI SCALAR

The Ricci scalar R as explicitly calculated for the metric Eq. (10) is as follows:

R = −(
C0e

− 7
4 (x2+y2 )[2C4

0

(
e

3
4 (x2+y2 ) − 4

)2(
e

3
4 (x2+y2 ) + 1

)
(x − y)2 + C3

0e
1
4 (x2+y2 )(e3(x2+y2 )(x − y)2 + e

9
4 (x2+y2 )

×(x2 − 2xy + y2 − 32) − 2e
3
2 (x2+y2 )(3x2 − 6xy + 3y2 + 80) + 4e

3
4 (x2+y2 )(49x2 − 98xy + 49y2 − 32) + 16(x − y)2

)
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+C2
0e

5
4 (x2+y2 )

(
2e

9
4 (x2+y2 )(3x2 − 6xy + 3y2 − 8) + 32(3x2 − 6xy + 3y2 − 2) + 16e

3
4 (x2+y2 )(10x2 − 20xy + 10y2 − 17)

+e
3
2 (x2+y2 )(55x2 − 110xy + 55y2 − 128)

) + C0e
9
4 (x2+y2 )

(
e

3
2 (5x2 − 10xy + 5y2 − 24)

+16(5x2 − 10xy + 5y2 − 6) + 2e
3
4 (47x2 − 94xy + 47y2 − 60)

)
+2e4(x2 − 2xy + y2 − 4) + 32e

13
4 (x2 − 2xy + y2 − 1)

]
/
(
16

(
2C0 + e

1
4
)2

(2C0 + ex2+y2
)2

)
.
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