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Plasmon spectrum of single-layer antimonene
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The collective excitation spectrum of two-dimensional (2D) antimonene is calculated beyond the low-energy
continuum approximation. The dynamical polarizability is computed using a six-orbital tight-binding model that
properly accounts for the band structure of antimonene in a broad energy range. Electron-electron interaction
is considered within the random phase approximation. The obtained spectrum is rich, containing the standard
intraband 2D plasmon and a set of single interband modes. We find that spin-orbit interaction plays a fundamental
role in the reconstruction of the excitation spectrum, with the emergence of novel interband branches in the

continuum that interact with the plasmon.

DOI: 10.1103/PhysRevB.98.155411

I. INTRODUCTION

Antimonene, a single layer of Sb atoms arranged in a
buckled honeycomb lattice [1], has been recently fabricated
by different methods, from mechanical [2] and chemical
exfoliation [3], to epitaxial growth [4-6]. As phosphorene, it
is a monoelemental atomically thin crystal of group-VA, with
the advantage of being highly stable in ambient conditions.
Single-layer Sb is an indirect gap semiconductor, with a
strong spin-orbit coupling (SOC). Compared with standard
3D semiconductors such as gallium arsenide or silicon, two-
dimensional (2D) materials present many special features like
quantum confinement in the direction perpendicular to the
layer, tuneability of the band gap, or easy integrability in
optoelectronic structures, what make them good candidates
for nanophotonics [7].

Huge attention has been paid to the study of plasmons
[8] and polaritons [9] of 2D materials like graphene [10-13],
black phosphorus [14—16], or hexagonal boron nitride (h-BN)
[17]. Antimonene, like other families of 2D materials [18],
presents optical and electronic properties that can be manip-
ulated and tuned by controlled thickness (number of layers),
applied strain, external electric fields, or chemical function-
alization. In particular, while a single layer of antimonene is
a trivial semiconductor, increasing the number of layers can
lead to a transition to a topological semimetal, including the
appearance of quantum spin Hall phases. Furthermore, the
strong SOC present in this material combined with its high
flexibility means that strain engineering can be used to drive
a transition from a trivial indirect gap semiconductor to a 2D
topological insulator [1,19]. This may open the door to use
antimonene for nanoscale transistors with high on/off ratio,
nanomechanical sensors, or optoelectronics devices operating
in a broad range of the spectrum.

In this paper, we present a systematic study of the excita-
tion spectrum of single-layer antimonene. The band structure
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is obtained from a tight-binding (TB) Hamiltonian that con-
siders the 3-p orbitals of each of the two Sb atoms of the
unit cell [20]. The dielectric function is obtained within the
random phase approximation (RPA). Due to the large number
of bands considered in the calculation, the obtained excitation
spectrum is rich, with several plasmon and interband modes.
Consideration of SOC is shown to be essential to capture the
correct low-energy excitations, due to strong reconstruction of
the band structure.

II. METHOD

Single-layer antimonene has a buckled honeycomb struc-
ture with lattice parameter a = 4.12 A, where the two sub-
lattices are vertically displaced by b = 1.65A. The band
structure, including SOC, can be well described by the TB
model developed in Ref. [20]. The TB model Hamiltonian is
given by

H=>"3 1"l cjn+ Hso. (1)

ma ij

where #/}" is the hopping parameter between the m and n
orbitals at sites i and j. The model considers the three p
orbitals of Sb, the hopping parameters being obtained from the
formalism of maximally localized Wannier functions. Fifteen
relevant terms are included, corresponding to hopping be-
tween atoms separated up to a distance of 8.24 A. Intra-atomic
SOC is considered by the term Hgo = A L - S, where L and S
are the total atomic angular momentum operator and the total
electronic spin operator, respectively, and & = 0.34 eV is the
intra-atomic SOC constant obtained for Sb. The band structure
obtained from this TB model, Fig. 1, fairly reproduces the
spectrum obtained from first-principles density-functional-
theory methods in an energy range from [—4, +3]eV. We
notice the important role played by SOC, that reconstructs the
band structure leading to an overall reduction of the indirect
gap in ~0.3 eV, as well as to a number of avoided crossings
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FIG. 1. (a) The buckled atomic structure and (c) Brillouin zone
of SL-Sb. (b) The band structure of SL-Sb as obtained in Ref. [20] us-
ing their TB Hamiltonian with (solid red lines) and without (dashed
black lines) spin-orbit coupling.

between some bands. Those will play an important role when
studying the single particle excitation spectrum, as we will see
below.

The TB-Hamiltonian Eq. (1) is used to numerically cal-
culate the dynamical polarization I1(q, @) and the dielectric
function €(q, @) using the Lindhard function [21]

K E — Ewr
H(q’w):_@iﬁ /BZde np(Ex) —np(Egr)

NG Ekl - Ekf[f +a)+18
x [(K'l'le"9" [KI)|?, 2)

where |kl) and Ey; are eigenstates and eigenvalues of the
Hamiltonian Eq. (1), respectively, with / being the band
index, K =k +q, np(E) = m is the Fermi-Dirac dis-
tribution, § — 0" and we have taken /i = 1. The integral is
taken over the Brillouin zone (BZ), and the sum is calculated
over all bands in the TB Hamiltonian. From the dynamical
polarization, one can obtain the dielectric function within the
RPA as

€(q, w) =1 - V(g)Il(q, »), (€)

with V(q) = 2:?22 the Fourier component of the Coulomb
interaction in two dimensions, with €5 being the background
dielectric constant. We use €z = 3.9 to represent a dielectric
substrate.

To explore the long wavelength limit of the dielectric func-
tion of single layer Sb, we make use of the following relation
with the imaginary part of the 2D optical conductivity [22]:

Im 0y (w)
Reeyy(@q=0,0)=1—- ——, 4
wde B
where d is the height of single-layer Sb, which can be approxi-
mated as the interlayer distance in its bulk structure (d = 0.36
nm), and Imo,, (@) is obtained by using the Kramers-Kronig
relations from the optical conductivity along the ¢-direction

Re(00u(@)) = — o Im[z |kl K1)
BZ L

o S(Ew — ) — f(Ex — 1)
Ey — Exy + 0 +1i6

]dzk, (3)

where €2 is the unit cell surface, and J, is the current operator
in the «-direction:

ie
Jaz—%znj(r,—r,»)ac]ﬁickj. (6)
ij

For isotropic materials such as antimonene, the subscript «
in the dielectric function can be ignored as € is also isotropic
and €, = €y,.

II1. RESULTS

A. Dynamical polarization

The particle-hole excitation spectrum of the 2D electron
gas in single-layer antimonene is defined, as usual, as the
region of the energy-momentum space that is available for
electron-hole excitations. For noninteracting electrons, it is
defined as the region where Im T1(q, w), as given by Eq. (2),
is nonzero [21]. Figure 2 shows the dynamical polarization
function for different directions of q (along I'-M and I'-K)
and different chemical potentials p, at T = 300 K. Due to the
high number of bands taken into account in the calculation,
the spectrum is rich in features with contributions from many
interband excitations. Although similar, the dynamical polar-
ization for both directions of the wave-vector features some
different excitations. We observe that modifying the chemical
potential in Eq. (2) leads to the inclusion, or exclusion, of ad-
ditional interband electron-hole excitations, resulting in extra
low-energy peaks in the dynamical polarization. For a given
wave-vector ¢, we can see that the spectra for different values
of w present similar structure at high energies, while they are
notably different at low energies. The high energy sector of
the polarization function IT(q, w) stays mostly undisturbed
because it is built by interband transitions involving the lower
(higher) energy bands of the hole (electron) sectors. For
undoped antimonene (u = 0), only interband transitions are
allowed, and therefore Im I1(q, @) = O for frequencies below
the band gap w < A [23].

When we consider electron or hole doping, we obtain a
finite contribution to the spectral weight at low energies, due
to activation of intraband electron-hole transitions. These are
the processes that dominate the spectrum at long wavelengths,
as it is seen for the small wave-vector sector of Figs. 2(a)
and 2(d) [see also Figs. 8(b) and 8(c) of the Appendix].

B. Dielectric function and collective modes

The next step is to consider electron-electron interaction
in the spectrum. Within the RPA, the dielectric function of
the system €(q, w) is calculated from Eq. (3), and the corre-
sponding results are shown in Fig. 3. As usual, the zeros of
the dielectric function will define the existence and dispersion
of collective plasmon modes. There are two distinct regions
where Rele(q, w)] = 0, indicating the existence of several
modes. In particular, there is a high-energy plasmon mode at
around w ~ 7eV. The exact location of these modes depend
on both the chemical potential . and the wave-vector q in the
BZ. We must notice that, although this mode corresponds to a
zero of the dielectric function, as it can be seen in Fig. 3, itis a
mode whose dispersion lies inside the continuum of electron-
hole excitations: —Im I1(q, wp) > O at the plasmon energy
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FIG. 2. Imaginary part of the polarization function Il(q, w) for different values of wave-vector q and chemical potential . In the top
images, q lies on the I"-M line in the BZ, while in the bottom images q lies on the I'-K line.

wp1, what implies that the mode is damped, continuously
decaying into electron-hole pairs. Nevertheless, it is a well-
defined mode that could be measured experimentally using
electron energy loss spectroscopy (EELS) [24], technique that
has been successfully applied to study the plasmon spectrum
of graphene [25] and other 2D materials [26].

As discussed in the previous section, changing the chem-
ical potential only has a noticeable effect for energy values
smaller than ~4 eV [27]. In the presence of finite doping u
and for small wave vectors, the standard low-energy plasmon
mode is recovered. The dielectric function of antimonene in
the long wavelength limit is given for different values of

the chemical potential, in Fig. 4. The main features of the
low-energy spectrum will be discussed in Sec. IV.

IV. DISCUSSION

In this section, we focus on the low-energy region of the
excitation spectrum, which is the most relevant for future
experimental probes and possible applications. Figure 5 shows
the loss function for hole-doped antimonene with w < leV
and g < O.IA_] for different values of u, including SOC or
not in the calculation. Each contour plot is extrapolated from
50 g points. The first thing we notice is the existence of an

3
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FIG. 3. Real part of the dielectric function €(q, w) for different wave-vector q and chemical potential p. In the top images, q lies along
the I"-M direction of the BZ, while in the bottom images q lies along I"-K. For a given q and u, the energy of the collective plasmon mode is

given by the zeros of the dielectric function.
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FIG. 4. Real part of the dielectric function €(0, w) for different
chemical potential u, calculated using Eq. (4).

intraband plasmon with a dispersion o /q. This is expected
for any 2D electron gas, and constitutes the standard collective
oscillation of carriers due to long-range Coulomb interaction
[28]. The dispersion of this mode, at low energies and for
g — 0,is

3
q -+ Zv%qz,

2e21
&b

wpi(q) ~ (N
where vp = d€/0k|i=, is the Fermi velocity and kp =
J4nn/g is the Fermi wave vector, in terms of the carrier
density n and the degeneracy factor g = g,g,, where g, = 2
is the spin degeneracy and g, = 1 is the valley degeneracy for
carriers in a single hole pocket around the I" point of the BZ.

By looking at the loss spectrum for u = —0.75eV in
Fig. 5(d), we can corroborate the existence of a mode whose
dispersion responds to Eq. (7). To analyze the effect of SOC,

FIG. 6. Comparison of the band structure and density of states
of single-layer antimonene with (solid red) and without (dashed
black) spin-orbit coupling. Green dotted lines show the values of the
chemical potential o used in the calculations of the loss function in
Fig. 5.

let us compare Figs. 5(a) and 5(d). If SOC is neglected, there
are two bands (labeled here as i = 1, 2) that are occupied for
w = —0.75eV. See Fig. 6 for a clear visualization of the band
filling at given u, for the cases with (solid red) and without
(dashed black) SOC. Notice that, if SOC is not considered,
these bands are degenerate exactly at the I point. The loss
function for this case, Fig. 5(a), shows two well-defined
branches. The branch with larger slope is the plasmon, while
the other structure is originated from the interaction between
the two intraband single-particle continua associated to bands
1 and 2. The equation for the plasmon in this case has the

(a)10 500 (b) 1.0 >5.00 (¢) 1.0 >5.00
0.8
:;UA6 . 0.6
2.50 L 2.50 2.50
3
0.00 0.00 0.00
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0.00 0.00

0.05

q (A7)

FIG. 5. The loss function —Im(1/€) in the low-energy and wave-vector region of the spectrum. Panels in the first row correspond to
—Im(1/€) without SOC, while the second row is with SOC. For each image, the loss function is calculated for 50 ¢ points, with fitted points
in between. Due to this, some of the figures have a chopped appearance.
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FIG. 7. The loss function —Im(1/€) in the low-energy and wave-vector region of the spectrum for electron doping. For each image, the
loss function is calculated for 50 ¢ points, with fitted points in between. Due to this, some of the figures have a chopped appearance.

form [29]
[1 - V(g »)][1 - V(@q, »)]
~V(9)*11Y(q, »)T15(q, ®) = 0, 8)

where the polarization function of the carriers of bandi = 1, 2
can be approximated, in the dynamical long wavelength limit,
as [21]

0 PO
IM;(q, w)  —— 9
m

where n; and m; are the corresponding density and effective
mass of carriers in pocket i. The solution of Eq. (8) gives a
plasmon mode with low-energy dispersion

np ny
wpi(g) (— + —)q. (10)
mi

my

However, the role of SOC has been proven to be very
important in antimonene [20], leading to a reconstruction of
the band structure that, in particular, lifts the degeneracy be-
tween those two bands at the I" point (see Fig. 6). Therefore, a
reliable calculation that includes SOC considers, for the same
value of u ~ —0.75eV, carriers filling only one subband,
with the corresponding reduction (for similar values of the
effective masses) in the slope of the dispersion, as it is indeed
observed in Fig. 5(d).

Inclusion of SOC is not only necessary to get the correct
dispersion relation of the plasmon. The reconstruction of the
band structure after consideration of SOC is such that several
avoided crossings that occur lead to emergence of new modes

in the spectrum, as it can be seen by comparing Figs. 5(b)
and 5(e), or Figs. 5(c) and 5(f). The new modes, seen as bright
branches in the excitation spectrum, are gapped single-particle
resonances associated to interband transitions. The number
of these modes is determined by the possible interband tran-
sitions from occupied to unoccupied states. Their intensity
depend on the DOS at the corresponding energy, which are
enhanced for flat bands (saddle points) in the dispersion,
associated to the aforementioned avoided crossings in the
band structure due to SOC (see lateral panel of Fig. 6 for a
comparison of the DOS). Importantly, these interband modes
interact with the intraband plasmon, which becomes a source
of damping for this mode, an effect that is absent when SOC is
neglected. Such effect can be easily seen in Figs. 5(e) and 5(f),
where the intraband ~ /g plasmon interact with intersubband
continuum, with boundaries E;; & vrq + g*/2m (assuming
equally dispersing parabolic bands), where E;; is the energy
separation between bands i and j. When the intraband plas-
mon hits the intersubband continuum, the mode is damped,
decaying into interband electron-hole pairs, leading to avoided
crossings in the dispersion relation. This effect is reminis-
cent of the interaction of graphene plasmons with optical
phonons [30], and could also be observed with midinfrared
transmission measurements, or with EELS experiments, as
discussed experimentally [25,26] and theoretically [31-33]
for graphene.

We finally consider the case of electron doping. In the low-
energy sector of the conduction band, SOC only leads to some
shifts of the band edges, with no qualitative difference with
respect to the spectrum without SOC (see Fig. 6). Therefore

0.00 10 0.00
Im(IT) pp = —1.25 eV

-0.14 -0.13

w (eV)

10 0.00 10
8 Im(IT) ¢ = 0.0 eV 8 Im(IT) ¢ = 1.0 eV
— 6 — 6
- -
2 0.14 &
3 4 3 4
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FIG. 8. Electron-hole excitation spectrum of single-layer antimonene. Imaginary part of the polarization function Im I1°(q, ) for different
values of the chemical potential p, with q along the I'-K line in the BZ. The dotted black lines represent the q values depicted in the bottom

images of Fig. 2.
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FIG. 9. Real part of the dielectric function €(q, @) (top panels) and the loss function —Im(1/e(q, w)) (bottom panels) for different values
of the chemical potential u, with q along I"-K of the Brillouin zone. The black dotted lines indicate the values of q used in Fig. 3.

we present only the excitation spectrum of antimonene for
the electron-doped regime including SOC. The loss function,
Fig. 7, shows the existence of a well defined plasmon branch
whose slope increases with doping. This is expected because,
for a single occupied band, the velocity of the mode grows
with u, Eq. (7). Furthermore, as discussed above, the slope
also increases as one starts filling new pockets of the band
structure, as given by Eq. (10).

V. CONCLUSION

In summary, we have calculated the excitation spectrum for
single layer antimony, using a six-orbital TB Hamiltonian that
includes SOC. The dielectric function is calculated within the
RPA. We obtain a rich spectrum that contains standard plas-
mons and a set of interband modes originated from the band
reconstruction due to SOC. At high energies, the obtained
loss functions show a broad peak at ~6 eV, associated to the
existence of a plasmon, which could be measured by EELS
experiments [26]. At low energies, the interaction between the
plasmon and the interband single-particle continuum leads to
damping of this collective mode. We find avoided crossing
features in the dispersion of the modes that could be observed
with midinfrared transmission measurements [30].
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APPENDIX

To obtain more information about the collective modes,
in this Appendix we calculate the loss function, defined as
—Im(1/€). Figure 8 shows the noninteracting electron-hole
continuum of single-layer antimonene in the @ — q plane and
Fig. 9 shows the loss spectrum. Notice that, whereas in the
dynamical polarization and in the dielectric function, the spec-
trum consists of many different peaks of similar amplitude, in
the loss function there are some modes that clearly dominate.
For these, both the imaginary part and the real part of the
dielectric function tend to zero, giving rise to well-defined
modes in the loss spectrum, which could be directly observed
with experimental measurements such as EELS.
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