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Resonant x-ray diffraction from chiral electric-polarization structures
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Heterostructures of PbTiO3/SrTiO3 superlattices have shown the formation of “polar vortices,” in which a
continuous rotation of ferroelectric polarization spontaneously forms. Recently, Shafer et al. [Proc. Natl. Acad.
Sci. USA (PNAS) 115, 915 (2018)] reported strong nonmagnetic circular dichroism (CD) in resonant soft x-ray
diffraction at the Ti L3 edge from such superlattices. The authors ascribe the CD to the chiral rotation of a
polar vector. However, a polar vector is invisible to the parity-even electric-dipole transition which governs
absorption in the soft x-ray region. A realistic, nonmagnetic explanation of the observed effect is found in
Templeton-Templeton scattering. Following this route, the origin of the CD in Bragg diffraction is shown by
us to be the chiral array of charge quadrupole moments that forms in these heterostructures. While there is no
charge quadrupole moment in the spherically symmetric 3d0 valence state of Ti4+, the excited state 2p53d1(t2g )
at the Ti L3 resonance is known to have a quadrupole moment. Our expressions for intensities of satellite
Bragg spots in resonance-enhanced diffraction of circularly polarized x rays, including their harmonic content,
account for all observations reported by Shafer et al. We predict both intensities of Bragg spots for the second
harmonic of a chiral superlattice and circular polarization created from unpolarized x rays, in order that our
successful explanation of existing diffraction data can be further scrutinized through renewed experimental
investigations. The increased understanding of chiral dipole arrangements could open the door to switchable
optical polarization.
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I. INTRODUCTION

Ferroelectric thin films and superlattices are currently the
subject of intensive research due to their technological appli-
cations and properties that are of fundamental scientific inter-
est. Ferroelectric materials are characterized by a spontaneous
bulk electric polarization P, which is switchable by an applied
electric field E. Typical ferroelectric P -E hysteresis loops
are akin to M-H hysteresis loops in ferromagnets with bulk
magnetization M, and applied field H. However, microscopic
features that lead to ferromagnetism and ferroelectricity are
quite distinct. Ferroelectrics have an asymmetry in the elec-
tronic charge, whereas ferromagnets have an asymmetry in
electronic spin [1,2].

The ground-state structure of most ferroelectrics is due
to small atomic displacements from the centrosymmetric
paraelectric phase that the structure adopts above the Curie
temperature Tc. In conventional transition-metal ferroelectrics
the polar phase is stabilized by lowering the energy of the
chemical bond formation, which tends to be favored by empty
d orbitals and consequently the absence of magnetism. The
tendency of a material to ferroelectric instability has been
described by a pseudo-Jahn-Teller effect [3]. The balance
between the positive and negative second-order terms usually
results in off-centering for d0 cations, such as for Ti4+ in the
prototypical ferroelectric BaTiO3. Above the ferroelectric Tc

the system is cubic; below Tc it is tetragonal. In transition
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metals with partially filled d shells, on the other hand, the
repulsive Coulomb interactions are stronger than any energy
gain from chemical bond formation, and ferroelectric off-
centering does not occur.

The largest class of all ferroelectric materials are the per-
ovskites, which are corner sharing oxygen octahedral com-
pounds, with the mineral name of calcium titanate (CaTiO3)
having a structure of the type ABO3. Examples are barium
titanate (BaTiO3), lead titanate (PTO), lead zirconate titanate
(PZT), lead lanthanum zirconate titanate (PLZT), and stron-
tium titanate (STO), all containing Ti d0.

Superlattices of ferroelectric layers offer the possibility
to tune the ferroelectric properties while maintaining perfect
crystal structure and a coherent strain, even throughout rela-
tively thick samples [4]. This tuning is achieved in practice
by adjusting both the strain, to enhance the polarization, and
the composition, to interpolate between the properties of the
combined compounds. The balance of elastic, electrostatic,
and gradience energies yield a complex phase diagram [5].
In-plane and out-of-plane P in the different ferroelectric layers
leads to an interface that shows polarization rotation. Near
the domain walls the local polarization pattern displays a
continuous polarization rotation around the domain walls,
connecting two 180◦ domains [4].

“Polar vortices,” where the sense of rotation can be
reversed by an external electric field, were found in
(PbTiO3)n/(SrTiO3)n superlattices (often referred to as
PTO/STO) grown on a DyScO3(001) substrate with repeti-
tions of n unit cells [6,7].
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The soft x-ray wavelength (1–3 nm) is ideally matched to
the periodicity of the lateral vortex modulations (∼10 nm).
Recently, Shafer et al. [8] reported strong nonmagnetic circu-
lar dichroism (CD) in the resonant x-ray diffraction (RXD) at
the Ti L3 edge (2p → 3d transition) from the chiral electric-
polarization texture of PTO/STO superlattices with n = 10–16
unit cells. The authors ascribe the observation of CD to the
helical rotation of the electric-polarization vector. While the
experimental result is not in question, a sound interpretation
of the effect is absent so far. Note that no magnetization is
involved to create the CD. Hence the question that we will
address in this paper is the following: What is the optical
mechanism of the CD effect here? Since the underlying
physical origin has remained unclear in the paper by Shafer
et al. [8], we will present a plausible theoretical interpretation
of the phenomenon, which will inspire further experiments
on ferroelectric materials. We start by revisiting and indeed
excluding some alternative explanations.

Optical transitions can be expanded in multipole terms like
the electric dipole (E1), electric quadrupole (E2), magnetic
dipole (M1), together with higher-order multipole terms that
can normally be neglected [9]. In the soft x-ray region,
electric-dipole (E1) transitions are by far the most dominant
contribution in the light-matter interaction. As a general rule,
dichroism can only exist if there is no symmetry that reverses
one measurable observable but leaves the rest of the system
unchanged. For instance, shining circularly polarized x rays
onto a magnetic material gives rise to x-ray magnetic circular
dichroism (XMCD) in x-ray absorption spectroscopy (XAS)
[10]. The magnetization M is given by an axial vector, which
is time-odd and parity-even. The time-reversal operator re-
verses both the magnetization and the photon spin. Chiral
structures, such as the chiral magnetic domain structure in ul-
trathin FePd films [11] and the skyrmion lattice of Cu2OSeO3

[12], show strong CD of the magnetic satellite peaks in RXD.
Satellite peaks, however, are no longer expected to be

present when the magnetization M is replaced by the electric
polarization P, which is a polar vector that is time-even and
parity-odd. This means that P is invisible for soft x rays,
since the transition probability is not fully symmetric. The
parity-odd P can only be observed under parity breaking,
i.e., interference between even and odd terms in the optical
transition. Natural circular dichroism is forbidden for pure
electric-dipole transitions (E1-E1) but instead requires optical
activity of either E1-M1 [13] or E1-E2 interference terms
[14–16].

M1 transitions can only be seen in the visible and mi-
crowave region, and become vanishingly small in the soft
and hard x-ray region, due to the restriction imposed by the
monopole selection rule for the radial part [17]. The ratio of
the magnetic dipole to the electric dipole is a realistic estimate
of the relative amplitudes of M1 and E1 events. The said
ratio is μB/(ea0) = α/2 ≈ 0.00365, where μB is the Bohr
magneton, a0 is the Bohr radius, and α the fine-structure
constant [13].

E1 and E2 transitions from a Ti 2p core state are allowed to
3d and (4p, 4f ) excited states, respectively. Thus the E1-E2
interference term requires a substantial parity mixing between
the Ti 3d and 4p states, for which inversion symmetry at the
Ti site has to be broken. The E2 transition is only significant

FIG. 1. Self-organized arrays of electric-polarization textures in
(PbTiO3)n/(SrTiO3)n superlattices exhibit a chiral RXD pattern. The
chiral array of quadrupole moments produce diffraction satellites that
decorate the specular reflection along the lateral direction, [100],
for x rays tuned at the Ti L3 resonance. The specular scattering
plane is shown in light blue. Blue arrows give the primary and
secondary beam. Red arrows give the satellite peaks, which show
nonmagnetic CD. τ represents the helix wave vector 2π/d . The
sample is rotated about the wave vector q − q′ by an angle ψ . The
physical picture differs from that by Shafer et al. [8], who uses polar
vectors, representing P, instead of quadrupole moments, representing
the charge anisotropy.

for hard x rays (>3 keV). Atomic calculations for Ti4+ using
Cowan’s code [17] show that E1-E2 is ∼1% of E1-E1 and can
be safely neglected. A further discussion of E1-E2 is given in
Appendix.

Having established that the dominant contribution arises
from the E1-E1 transition, and dismissed dipoles M and P
as possible origins, another possibility is given by the charge
quadrupole moment 〈T2〉. This anisotropic charge distribution
gives rise to x-ray linear dichroism (XLD) in XAS, and
Templeton-Templeton (T&T) scattering in RXD.

There will be no circular dichroism from 〈T2〉 at a single
site, since this tensor is time-even. It is easy to see that
〈T2〉 would have to contain an imaginary part, which for a
centrosymmetric site is unphysical.

However, an ordered chiral configuration of quadrupole
moments contains an imaginary component. The spherical
tensor 〈T2

Q〉, with projections Q = 0, ±1, ±2, transforms
under space rotation like a spherical harmonic Y 2

Q(θ, ϕ) with
azimuthal ϕ dependence exp(iQϕ). An angular rotation by
2π/n of the spherical tensor gives a phase shift exp(2πiQ/n)
and a translation over R gives a phase factor exp(iτ · R).
Properly taking all phase factors into account in the coher-
ent sum for the diffracted intensity from a chiral structure
of quadrupole moments, incident x rays of left- and right-
circularly polarization with phase factors exp(±π/2) give
different intensities. Thus, there will be nonmagnetic CD
in RXD. The scattering geometry of the measurement is
schematically illustrated in Fig. 1, showing a helical array of
quadrupoles with wave vector τ . The chiral satellites appear
in the lateral direction with respect to the scattering plane.

By tuning the x-ray energy near the Ti L2,3

resonance (2p → 3d transition), the RXD becomes sensitive
to the anisotropic electronic structure of the distorted
TiO6 octahedra. Previous XAS studies [18] of ferroelectric
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Pb(Zr0.2Ti0.8)O3 already showed a large XLD, evidencing
charge anisotropy of the Ti site, despite the d0 ground
state (see Sec. II B). Absorption and diffraction are two
sides of the same coin for they are derived from the same
scattering length in quantum electrodynamics. Diffraction,
which is the main interest in this communication, has superior
discriminatory puissance; a bulk probe, like a dichroic signal,
of a crystalline material is subject to one of 32 point groups,
whereas diffraction patterns are indexed on one of 230 three-
dimensional space groups. In the face of chiral properties
of specific interest to us dichroic absorption techniques
can be ineffective while the properties are visible in
diffraction [19].

In the following, we will present a precise analysis of
the nonmagnetic CD effect in RXD and provide further pre-
dictions. For ease of reference, we will consistently use the
notation laid out in the review of Lovesey et al. [20].

II. RESONANCE-ENHANCED DIFFRACTION

A. Preamble and survey

An approximation of spherical ions in a material is central
to electronic structure determinations from Bragg diffrac-
tion patterns. Departures from spherical symmetry in atomic
charge distributions are announced by the addition of weak
Bragg spots. For example, Adachi et al. [21] report basis-
forbidden reflections in Thompson scattering from dyspro-
sium borocarbide. A helpful enhancement of weak spots can
be captured by tuning the primary x-ray beam to an atomic
resonance. The enhancement afforded by the E1-E1 absorp-
tion event was exploited by Templeton and Templeton [22–24]
in their pioneer studies of weak spots in Bragg diffraction
patterns. They demonstrate that angular anisotropy in the
charge quadrupole can create such basis-forbidden Bragg
spots.

Moreover, resonance-enhanced diffraction can rotate pri-
mary polarization, and thus depend on photon helicity,
whereas this is not possible in Thomson scattering that is
diagonal in polarization states. Absence of translation sym-
metry also generates basis-forbidden reflections, or satel-
lite reflections. Bragg spots for a composite material that
we examine are consequences of departures from spherical
symmetry in electronic structure and, also, the absence of
translation symmetry in a chiral structure. Oscillators make
up the energy profile we employ, leaving us the task of
calculating structure factors for diffraction. A division of the
energy profile from atomic properties of valence electrons in
their ground state is an approximation that is consistent with
the fast-collision concept and angular isotropy of the core
state [20,25,26].

A theory of resonance-enhanced diffraction is set out
by Dmitrienko [27,28], and Templeton and Templeton
[22–24] report the first relevant data, e.g., tetragonal K2PtCl4

(P 4/mmm-type) and sodium bromate (P 213-type). Formula-
tions of RXD found in the cited papers use classical optics
and physical properties of crystals with Cartesian tensors,
as in the treatise by Nye [29], and no attempt is made to
calculate an energy profile. An atomic theory appeared shortly
afterwards [25] in response to the publication of experimental

data for RXD by an incommensurate magnetic motif. Han-
non et al. [25,30] show that resonance-enhanced diffraction
provides sensitivity to a wealth of electronic properties of
a material, and their insight is the basis of current atomic
theories.

For the sake of demonstration, Hannon et al. [25] tackle
the formidable task of describing electronic structure in the
scattering length by imposing cylindrical symmetry at sites
occupied by resonant ions. In consequence, the task is reduced
to a vector model using a single material dipole for the reso-
nant ion. This early approximation to the scattering amplitude
is not universal and it is inadequate for the interpretation in
hand. Reviews of many applications of resonance-enhanced
diffraction include Refs. [20,31–35].

As we have mentioned, a vector model that imposes
cylindrical symmetry on electronic charge distributions is
too restrictive for present purposes. Instead, we place no
restrictions on local charge distributions associated with res-
onant Ti ions in the superlattices. A coherent sum of un-
restricted distributions to form a helix is shown to account
for pivotal properties of the diffraction pattern observed
with circularly polarized x rays. Assuming intensities of
Bragg spots are enhanced by an E1-E1 absorption event, it
follows that Ti charge distributions engaged in diffraction
must be electronic quadrupoles. Our appeal to T&T scatter-
ing for an interpretation of the diffraction pattern produced
by PTO/STO superlattices illuminated with circularly polar-
ized photons mirrors previous work for crystalline materials
[36,37].

B. Charge-quadrupole moment for Ti4+

We shall first explain that the Ti4+ ground state 3d0 is not
a limitation for having access to a quadrupole moment. After
all, Ti L2,3 XAS of lead zirconate titanate shows linear dichro-
ism [18]. The measured Ti L2,3 XAS exhibits the characteris-
tic structure of a Ti4+ 3d0 configuration due to E1 transitions
to 2p53d1 final states [38]. The 2p spin-orbit interaction splits
the spectrum into 2p3/2 (L3) and 2p1/2 (L2) peaks with energy
separation of ∼5.5 eV. These peaks are further split up by
crystal-field interaction, i.e., the electrostatic potential V , due
to the neighboring lattice sites acting on the 3d orbitals. In
octahedral (O) site symmetry the eg orbitals of Ti point toward
the oxygen ligands, while the t2g orbitals point in between
them, resulting in a lower energy for the latter. With increasing
photon energy the four main peaks can therefore be labeled ac-
cording to their main character as 2p3/23d(t2g ), 2p3/23d(eg ),
2p1/23d(t2g ), and 2p1/23d(eg ); cf. Fig. 1 in Arenholz et al.
[18]. Lowering to tetragonal symmetry splits the t2g (O ) states
into b2 = d(xy) and e = d(xz, yz) and the eg (O ) states into
b1 = d(x2 − y2) and a1 = d(z2). This results in a difference
between XAS spectra taken with polarization along the z

and (x, y) directions. The multiplet structure contains peaks
with mixed character of these crystal-field states [9]. The
nominal 2p3/23d(t2g ) excited state has the largest quadrupole
moment, so that this resonance is used to tune the pho-
ton energy in RXD. The superlattice is expected to have
a continuous tilt of the Ti t2g orbitals relative to polarized
x-ray beam.
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FIG. 2. Primary (σ , π ) and secondary (σ ′, π ′) states of polar-
ization. Corresponding wave vectors q and q′ subtend an angle 2θ .
Helicity in the primary beam is proportional to a Stokes parameter
P2 that is a time-even pseudoscalar [20]. Cell edges of the sample
and depicted Cartesian coordinates (x, y, z) coincide in the nominal
setting, and the sample is rotated to align q − q′ = [001], which is
along the −x direction. The desired alignment is rotation by 90◦

about the y axis, and the sample axis [010] lies in the plane of
scattering for the azimuthal angle ψ = 0◦.

C. Scattering length

The Kramers-Heisenberg dispersion formula yields a scat-
tering length,

g = − re

m

Fμ′ν

(E − � + 1
2 i�)

, (1)

with the primary x-ray energy E = 2πch̄/λ in the vicin-
ity of an atomic resonance � that has a lifetime ∝ h̄/�

(re ≈ 0.282 × 10−12 cm, mc2 ≈ 511 keV, and λ[Å] ≈
12.4/E[keV]). Fμ′ν is an amplitude for polarizations μ′ (sec-
ondary) and ν (primary). Following the usual conventions
for polarization states depicted in Fig. 2, where σ (π ) labels
polarization normal (parallel) to the scattering plane. The
illuminated sample is rotated about the wave vector q − q′ by
an angle ψ , and q · q′ = (2π/λ)2 cos 2θ .

Intensities J of Bragg spots proportional to the primary
photon helicity (Stokes parameter P2) are derived from

J = P2 Im[F ∗
σ ′πFσ ′σ + F ∗

π ′πFπ ′σ ]. (2)

Evidently, the true scalar J can be different from zero when
the combination of scattering amplitudes is both time-even
and a pseudoscalar to match discrete symmetries of P2. For
the case in hand, Fμ′ν is a (dimensionless) linear combination
of axial quadrupoles 〈T2

Q〉 engaged in diffraction enhanced
by an E1-E1 resonance. Expressions we need for Fμ′ν(E1-E1)
have been listed by Scagnoli and Lovesey [39].

D. Atomic states

A titanium ion (Ti4+) nominally possesses an empty 3d

shell that accepts a photoejected 2p electron. For such a con-
figuration of electrons the T&T scattering is zero, because the
3d shell is spherically symmetric with no angular anisotropy.
A nonzero result for bulk lead titanate [18] is attributed to the
influence of a local electrostatic potential experienced by a
Ti ion that splits 3d states in levels of lower than octahedral
symmetry, as discussed in Sec. II B.

Dependence of 〈T2
Q〉 on the total angular momentum of the

core state J gives rise to sum rules for dichroic signals [40].
The reduced matrix element (RME) of the spherical tensor
operator is derived in Ref. [26] and expressed in Eq. (73)
of Ref. [20]. For L edges the RME has one component for
J = 1/2 and three components for J = 3/2. Differences
in the RMEs can lead to striking differences in intensities
of diffraction spots, with intensity at L2 small and beyond
observation while L3 intensity is significant.

The sum rule for quadrupoles that produce T&T scattering
at L edges is obtained by making a sum on J in the RME
[Eq. (80) in Ref. [20]]. One finds

〈T2〉L3 + 〈T2〉L2 = 〈{L ⊗ L}2〉/60. (3)

Here, {L ⊗ L}2 is a standard tensor product of rank 2 formed
with angular momentum L, with a diagonal component
{L ⊗ L}2

0 = [3(Lz)2 − L(L + 1)]/
√

6. The sum rule is noth-
ing more than an identity satisfied by the relevant RMEs, and
it can be applied to any ground-state wave function for the
expectation value denoted by 〈· · · 〉.

E. Bulk lead titanate

Displacement of a Ti ion from the center of the O octahe-
dron below a temperature ∼760 K in bulk PbTiO3 creates a
ferroelectric moment. In the polar, acentric tetragonal struc-
ture P4mm (#99) cell lengths c/a ≈ 1.063, with titanium ions
at sites 1a that have symmetry 4mm (C4v). The tetrad axis of
rotation symmetry renders all electronic quadrupoles diagonal
(Q = 0).

III. SUPERLATTICES

A. Diffraction intensities

Titanium quadrupoles in a superlattice are likely devoid of
any local angular symmetry and all five components of 〈T2

Q〉
are therefore permitted. Our minimal model uses a helix that
propagates along the unit-cell axis [100]. In diffraction the
axis is arranged normal to the plane of scattering at the origin
of an azimuthal-angle scan. A coherent sum of quadrupoles
in such a helix is C2

Q(f ) [in the following denoted as CQ(f )]
where integer f is the order of the harmonic, and projections
are Q = 0, ±1, ±2. CQ(f ) is constructed with a unit twist in
the y-z plane ϕ = ±2π/(2n + 1) and the total twist through
(2n + 1) units = ±2πn. A unit wave vector = 2π/d where d

is the length of a helix.
An expression for CQ(f ) provided in Ref. [39] can be

written as

(2n + 1)[CQ ± C−Q] = [〈
T2

Q

〉 ± 〈
T2

−Q

〉]
+ 2

∑
m,p

d2
Q,p(mϕ) cos

[
mϕf + π

2
(Q−p)

][〈
T2

p

〉 ± 〈
T2

−p

〉]
,

(4)

in which d2
Q,p(mϕ) is a purely real element of the standard

Wigner rotation matrix, the sum on integer m is in the range
1 to n, and projections p = 0, ±1, ±2. CQ(f ) is a com-
plex quantity in the general case and not Hermitian, unlike
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the quadrupoles 〈T2
Q〉 from which it is constructed, i.e., the

complex conjugate satisfies 〈T2
−Q〉 = (−1)Q〈T2

Q〉∗.
We consider the first and second harmonics with f = 1 and

2, respectively. One finds that CQ(f ) is determined by one of
its five components for a given f , and these are taken to be
C1(1) and C0(2) with

C1(1) = 1√
6

[
i
〈
T2

xy

〉 − 〈
T2

zx

〉]
, (5a)

C0(2) = 3

8

〈
T2

zz

〉 + 1

8

〈
T2

xx − T2
yy

〉 − i

2

〈
T2

yz

〉
. (5b)

In these results, we use Cartesian forms of the quadrupoles
〈T2

αβ〉 that are purely real, with 〈T2
zz〉 = 〈T2

0〉. Additional
quadrupoles epitomize the angular anisotropy of a TiO6 com-
plex participating in a helix.

Intensities are

J (f =1) = −P2|C1(1)|2βγ cos3 θ cos ψ sin 2ψ, (6a)

J (f =2) = − 1
3P2|C0(2)|2β cos θ sin ψ

× [α(2 + cos2 θ ) − γ cos2 θ cos 2ψ]. (6b)

Quantities α (Q = 0), β (Q = 1), and γ (Q = 2) are
weights of CQ(f ) that make up a helix, and they are taken
to be purely real. Note that C0(1) = 0 which accounts for the
absence of α in J (f =1). The handedness of the helix allows
J (f ) to be different from zero; chirality in the sample and
impressed helicity in the photon beam engage in diffraction.
Specifically, intensity arises from interference between odd
projections (Q = ±1) and even projections (Q = 0 and ±2)
of CQ(f ) as might be expected.

Intensities are zero at the origin of an azimuthal-angle scan
ψ = 0◦ where the plane of rotation of the helix and the
plane of scattering are parallel. And they are zero for ψ =
180◦ and maximum for ψ = 90◦, all of which accords with
the observations. Authors of Ref. [8] obligingly disentangle
the Bragg setting from the azimuthal-angle dependence of a
Bragg spot. For ψ = ψB + ψR , where ψB indexes a Bragg
spot, determined by the global structure about which we can
say little, and ψR is rotation about the Bragg wave vector.
The authors of the experimental data under discussion give
intensities as a function of ψR .

A nonzero J (f ) emerges when a projection of the photon
wave vector = 2π/λ matches the helix wave vector = 2π/d.
More precisely, diffraction occurs for a Bragg condition esti-
mated to be sin ψ = ±λf/(d cos θ ). A change in sign of ψ is
equivalent to swapping between helices with opposing twists,
which amounts to the statement that the product (ϕ sin ψ ) has
one sign. The two properties mentioned agree with reported
observations of J (2). Failure of J (1) to account for the
observations implies C1(1) ≈ 0 from very small values of
〈T2

xy〉 and 〈T2
zx〉. Intensities are independent of the sign of the

angle θ set by the superlattice.

B. Diffracted beam polarization

Mindful of renewed experiments on PTO/STO super-
lattices, we provide our prediction for polarization in the
diffracted beam [20]. A telling probe of chirality within
the superlattice is circular polarization P ′

2, created from an

unpolarized beam. One finds

P ′
2(f =1)unpol

= 4(γ /β ) cos3 θ cos2 ψ sin ψ

2 cos2 θ cos2 ψ + (γ /β )2(cos4 θ sin2 2ψ + 2 sin2 θ )
,

(7)

which shows that γ /β can be inferred from experimental
data. Note that J (f =1) is proportional to the numerator of
P ′

2(f =1). More generally, the primary beam carries linear
polarization P3, and circular polarization P2. Circular polar-
ization in the diffracted beam satisfies

P ′
2(f =1) = |C1(1)|2

Jo(f =1)
{2βγ cos θ cos2 ψ sin ψ

×[cos2 θ + P3(sin2 θ + 1)]

+P2(γ 2 sin2 θ − β2 cos2 θ cos2 ψ )}, (8)

where Jo(f =1) is the total intensity. If the primary beam
possesses linear polarization alone (P2 = 0),

Jo(f =1) = 1
2 |C1(1)|2{2β2 cos2 θ cos2 ψ

+ 2γ 2 sin2 θ cos2 2ψ + γ 2 sin2 2ψ

+ [1 + sin4 θ + P3 cos2 θ (sin2 θ + 1)]
}
. (9)

A Stokes parameter P3 = +1 corresponds to 100% linear
polarization normal to the plane of scattering obtained with
x-ray synchrotron sources, to a good approximation.

Corresponding expressions for the second harmonic are
very complicated, as might be anticipated from the foregoing
lengthy results for f = 1.

IV. DISCUSSION AND CONCLUSION

We have presented a highly plausible explanation for the
appearance of nonmagnetic circular dichroism (CD) in reso-
nant x-ray diffraction (RXD) of PbTiO3/SrTiO3 superlattices,
which show the formation of “polar vortices.” The diffraction
effect is due to the chiral array of charge quadrupole mo-
ments that forms in this heterostructure, which contributes
Templeton-Templeton scattering of circularly polarized x
rays. Our calculated intensities are different from zero be-
cause the structure is chiral, which is in accord with the
interpretation offered by the authors of Ref. [8]. Intensities
we label J (f ) in Eq. (6) result from constructive interference
between chirality in a handed structure and circular polariza-
tion in the primary beam—an achiral structure would give null
intensity [36].

Note that the observation of nonmagnetic CD in RXD does
not per se mean the presence of a ferroelectric vector, since
it only indicates the presence of a chiral array of quadrupole
moments. Therefore, strictly speaking the presence of “polar
vortices” is implied and not firmly established from the exper-
imental results in Ref. [8].

The necessary condition for a quadrupole moment in the
resonant state is fulfilled, as previously demonstrated by x-ray
linear dichroism (XLD). Additional tests of our explanation
might include studies of scattering by the second harmonic of
the chiral structure, and a measurement of polarization created
from an unpolarized x-ray beam.

155410-5



S. W. LOVESEY AND G. VAN DER LAAN PHYSICAL REVIEW B 98, 155410 (2018)

While usually magnetism is at the origin of circular dichro-
ism in RXD, our analysis shows that this is not the only
possible source. Chiral charge distributions, such as found
sometimes at interfaces and surfaces, can also lead to CD in
RXD, where the intensity due to the E1-E1 transition will
easily exceed that of the E1-E2 interference. Therefore, our
analysis will be applicable to a wider class of materials.

A useful analogy for our achievement is to liken it to
interpreting diffraction by a molecular crystal. We make cal-
culations for the correct molecular unit that we submit is a
helix of quadrupoles. But we are unable to assign a refined
global structure for the units in the superlattice with severely
limited diffraction data at this time. In the case of a skyrmion
lattice, computer simulations of the coherent diffraction of
all the magnetic moments, taking into account their positions
and directions in the unit supercell with respect to the x-ray
beam, has been very successful [41]. A similar approach—
but replacing the vector M by the quadruple moment 〈T2〉
in the coherent sum—can be used to simulate the electric-
polarization lattice.

Our model, which previously has only been applied to
crystalline structures, has been extended for heterostructures,
which are usually incommensurate with the underlying lat-
tice periodicity. A future proposed step is to measure these
effects on multiferroics, where normally the central cation has
partially filled d states. Contributions from the quadrupole
moment can be separated from those from the magnetization
by measuring the angular dependence and the polarization of
the diffracted beam.

Multiferroics, which have simultaneous magnetic and fer-
roelectric ordering, contain all the potential applications and
basic scientific interest of their parent ferroelectric and fer-
romagnetic materials, as well as a whole range of new phe-
nomena and potential technologies resulting from interactions
between the two orderings. The functionalization of multifer-
roics leads to spintronics applications [42]. From a practical
standpoint, if existing magnetism technologies could be tuned
or controlled with electric instead of magnetic fields, large im-
provements in miniaturization and power consumption should
be expected.
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APPENDIX: E1-E2 TRANSITION

Here we provide further details concerning the E1-E2
transition, which is also allowed but gives only a small con-
tribution. Bragg diffraction enhanced by the E1-E2 event has
featured in investigations of nonmagnetic and magnetic mate-
rials, e.g., studies of vanadium sesquioxide (V2O3) [19,43].

The ratio of E1-E2 to E1-E1 amplitudes mentioned in the
main text is

R = αE

2a0R∞

〈2p|R2|4p〉
〈2p|R1|3d〉 , (A1)

where α and R∞ are the fine-structure constant and the
Rydberg unit of energy, respectively, and E ≈ 457 eV at the Ti
L3 edge. The two radial integrals are measured in units of the
Bohr radius a0. In so far as hydrogenic forms of radial wave
functions are appropriate for the photoejected 2p electron and
empty 3d and 4p valence states 〈2p|R2|4p〉/〈2p|R1|3d〉 =
−1.66a0/Zo, where Zo is the effective core charge seen by the
jumping electron. Taking Zo = 18, appropriate for the argon
core of Ti4+, yields an estimate 〈2p|R2|4p〉/〈2p|R1|3d〉 =
−0.092 a0, which is in line with atomic calculations. Indeed,
Cowan’s atomic Hartree-Fock code with relativistic correc-
tions [17] gives the radial integrals for Ti4+ as 〈2p|R1|3d〉
= −0.26266 a0, 〈2p|R2|4p〉 = 0.02613 (a0)2 [and for com-
pleteness we also give 〈2p|R2|4f 〉 = 0.01208 (a0)2], which
amounts to R ≈ −0.012, so that E1-E2 is about 1% of
E1-E1.

Diffraction enhanced by an E1-E2 event accesses time-
even polar multipoles 〈UK

Q〉 with ranks K = 1, 2, and 3.
Polar multipoles satisfy sum rules akin to their parity-even
counterparts and full results can be found in Refs. [44,45].
The dipole 〈U1〉 is related to the atomic displacement of the
resonant ion while the quadrupole 〈U2〉 is more complicated
and fully understood. The first harmonic f =1 contains all
allowed multipoles whereas the dipole is absent in the second
harmonic f =2, as expected. By way of orientation to E1-E2
enhanced diffraction by a helix we report intensities calcu-
lated with leading dipoles for a given harmonic. The analog
of Eq. (6a) is the estimate,

J (E1-E2; f =1) ≈ − 3

200
P2

[〈
U1

z

〉2 + 〈
U1

y

〉2]
×R2αβ sin θ sin 4θ sin ψ. (A2)

While retaining dipoles alone as the leading contribution to
the diffraction amplitude the coefficient γ , the weight of
projections Q = ±2, is understandably absent. Additional
comments are given following the companion intensity for
f =2.

We set aside the polar octupole for the second harmonic
and arrive at the estimate,

J (E1-E2; f =2)

≈ −1

3
P2

{
1

16

[
3
〈
U2

zz

〉 + 〈
U2

xx − U2
yy

〉]2 + 〈
U2

yz

〉2}

×R2βγ cos θ sin2 2θ cos ψ sin 2ψ. (A3)

The contribution to J (E1-E2; f =2) from quadrupoles
proportional to α, i.e., projection Q = 0, adds up to zero. Note
that intensities in Eqs. (6a) and (6b) for diffraction enhanced
by an E1-E1 event are likewise proportional to sin ψ . Hence,
all our calculations show that intensity proportional to circular
polarization in the primary beam P2 tracks the lateral wave
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vector in Fig. 1 as the superlattice is rotated about the Bragg
wave vector. The factor R2 in Eqs. (A2) and (A3) serve to

remind that E1-E2 intensities are a very small fraction of the
E1-E1 intensities reported in the main text.
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