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Conductance peak density in nanowires
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We present a complete numerical calculation and an experimental data analysis of the universal conductance
fluctuations in quasi-one-dimensional nanowires. The conductance peak density model, introduced in nanodevice
research by Ramos et al. [Phys. Rev. Lett. 107, 176807 (2011)], is applied successfully to obtain the coherence
length of InAs nanowire magnetoconductance and we prove its equivalence with correlation methods. We show
the efficiency of the method and therefore a prominent alternative to obtain the phase-coherence length. The
peak density model can be similarly applied to spintronic setups, graphene, and topological isolators where
phase-coherence length is a relevant experimental parameter.
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I. INTRODUCTION

Universal observable fluctuations are one of the most
important fingerprints of chaos in the quantum scattering
processes [1–13]. They began to be studied in compound
nucleus scattering due to the emerging random fluctuations
in response to energy variation in the cross section [2–4]. The
universal fluctuation is usually characterized in terms of the
correlation function C(δZ) = 〈G(Z)G(δZ)〉 − 〈G(Z)〉2 as a
function of an arbitrary parameter Z. The correlation function
measures the degree of coherence present in the otherwise
fully chaotic system. The degree of coherence resides in the
correlation width length �Z , which defines the shape of the
correlation function. The cross-section correlation has been
calculated by Ericson [14] and renders a Lorentzian shape as
a function of the energy variation, C(δε) ∝ [1 + (δε/�ε )2]−1.

In nuclear physics, Brink and Stephen [15] proposed a
simple model to access the correlation width length without
the laborious experimental data obtention associated to the
calculating of the correlation function. The model is founded
on counting the number of maxima featured from the cross
section as a function of the energy. Furthermore, they showed
that resonance peak density (number of maxima per unit reso-
nance energy) is given by ρε = √

3/(π�ε ) in the limit of large
number of reaction channels. The density peak method could
access the width �ε with more accurate and less experimental
data than from the cross-correlation function [16] that requires
a large ensemble.

The density peak model was recently introduced in the
nanodevice research in Refs. [17,18] inspired by the formal
analogy between conductance and compound-nucleus Ericson
fluctuations. They found that the conductance peak density
of nanodevices holds the same result of compound nucleus
for energy variation. However, modern nanodevices such as
nanowires [5,8,11,19–22], open quantum dots [23–28], and
graphene flakes [29–34] enable measuring the conductance as
a function of other external controllable parameters such as
perpendicular and parallel magnetic fields.

Using the correlation function for perpendicular mag-
netic field variation [27], square Lorentzian C(δB⊥) ∝ [1 +
(δB⊥/�⊥)2]−2, Ref. [17] has shown that the conductance peak
density is given by

ρ⊥ = 3

π
√

2�⊥
≈ 0.68

�⊥
, (1)

while Ref. [35] found

ρ‖ =
√

3

π�‖
≈ 0.55

�‖
, (2)

for parallel magnetic field variation. Equations (1) and (2)
give rise to efficient alternative methodology in nanodevices
to obtain the correlation width length instead of the correlation
function which requires a large number of realizations to be
calculated.

Motivated by findings of Refs. [17,18], Dietz et al. [16]
made the first test of the peak density method experimen-
tally with unprecedented accuracy, analyzing the cross-section
fluctuations in open microwave billiard and quantum graphs.
Furthermore, the density of maxima was introduced as a novel
procedure for the identification of chaos in complex biological
systems [36,37]. However, this method has not been tested
on any type of nanodevice from the point of view of the
tight-binding model and experiments on nanowires.

In nanowires research, there is a significant interest in
measuring the correlation length with high precision. From
this length, one is able to extract the phase-coherence length
(lφ) using the following relation to the quasi-one-dimensional
nanowire [5,7,8]:

lφ = �c

�⊥d
, (3)

where �c = 0.42 × �0. The �0 = h/e and d are the mag-
netic flux quanta and the nanowire diameter, respectively.
However, the correlation width length (�⊥) is usually obtained
experimentally from the correlation function [19–22].
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In this work, we perform a complete analysis of the
universal conductance fluctuations from the perspective of
the tight-binding model of a quasi-one-dimensional nanowire
submitted to a perpendicular and parallel magnetic field.
Hence, the conductance peaks density model was tested
comparing the results obtained by counting the number of
maxima of the universal conductance fluctuation with the
results obtained by the correlation function, Eqs. (1) and
(2). To conclude our study, we applied that methodology
in the experimental magnetoconductance data of an InAs
nanowire submitted to a perpendicular and parallel magnetic
field. The experimental data was obtained from measurements
documented in Ref. [19].

II. THE MICROSCOPIC MODEL

We begin with the Hamiltonian model of a disordered
quasi-one-dimensional semiconductor nanowire

H = 1

2meff
(p − eA)2 + μB · σ + U (r), (4)

where A is the potential vector corresponding to the compo-
nent of the magnetic field perpendicular to the nanowire, B
is the magnetic field, μ is the magnetic moment, meff is the
effective mass, σ = (σx, σy, σz) is the vector of Pauli matrix,
and U (r) is the electrostatic disorder potential.

Our aim is to study the universal conductance fluctuation of
a nanowire. Accordingly, it is convenient to use the Landauer-
Büttiker formulation at low temperature given by

G = e2

h
T , (5)

where T is the transmission coefficient between the reservoirs
of charges connected to a nanowire on the left (L) and right
(R) sides. The transmission coefficient is obtained from the
scattering matrix

S =
[
r t ′
t r ′

]
, (6)

as T = Tr[t†t], where t (t ′) and r (r ′) are the transmission
and the reflection matrix blocks, respectively. Furthermore,
in the recursive Green’s function framework, the transmission
coefficient can be written as T = Tr[�LGr

LR�RGa
LR], where

Gr,a
LR are the retarded and advanced Green’s functions which

describe the disordered nanowire and �L,R is the level width
matrices that connect the device to the left or right reservoirs
[11,38,39]. In the presence of a magnetic field, the tight-
binding Hamiltonian is written as a function of the creation
and annihilation operators as in the following:

H = −t
∑
ij

eiθij c
†
i cj + (4t + μB · σ )

∑
i

c
†
i ci , (7)

where t = h̄2/(2mef a2) is the neares-neighbor hopping en-
ergy, a is the square lattice constant, and θij is obtained from

vector potential as following θij = −e/h̄
∫ j

i
A · dl.

The quasi-one-dimensional nanowire has been numerically
simulated by a square lattice with length L = 310a and width
W = 25a in the x and y direction, respectively. Moreover, the
disorder in the square lattice is realized by an electrostatic
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FIG. 1. The average (up) and variance (down) of conductance
in the function of electrostatic potential U/t to fix Fermi energy
E = 1.5t . They were obtained from 15 000 disorder realizations. The
numerical data of variance were fitted and found that the universal
valuer of variance arises at U = 0.65t .

potential U which varies randomly from site to site uni-
formly distributed in the interval (−U/2, U/2). In order to de-
velop our numeric calculation, the KWANT software has been
used [40].

III. RESULTS

In the universal regime, the quasi-one-dimensional
nanowire has the variance of conductance given by
var[G]/(2e2/h)2 = 2/15 in the absence of magnetic field,
i.e., preserving the time-reversal symmetry [9]. Therefore, we
develop a numerical calculation to find the best width electro-
static potential U in units of t which supports the universal
regime. Figure 1 depicts the average and variance of conduc-
tance as a function of U/t with a fixed Fermi energy E = 1.5t

and without magnetic field. They were obtained from 15 000
disorder realizations. Fitting the variance numerical data, we
found that the universal variance value arises at U = 0.65t .
After obtaining the best width electrostatic potential, we are
able to analyze the conductance peak density as a function of
perpendicular and parallel magnetic fields.

We begin by analyzing the universal conductance fluc-
tuations as a function of the adimensional perpendicular
magnetic flux �/�0 = B⊥a2/(h/e), where we take B =
(0, 0, B⊥), A = (−B⊥y, 0, 0) in Eq. (7). Figure 2 plots the
variance of conductance in the function of perpendicular mag-
netic flux to U = 0.65t and E = 1.5t from 15 000 disorder
realizations. The variance does a crossover between 2/15 and
1/15 because of the breaking of time-reversal symmetry, as
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FIG. 2. The variance of conductance in the function of perpen-
dicular magnetic flux to fix Fermi energy E = 1.5t and electrostatic
potential U = 0.65t from 15 000 disorder realizations. As expected,
the variance does a crossover between 2/15 and 1/15.

expected [9]. Furthermore, Fig. 3(a) shows ten typical curves
of conductance, each one for a single disorder realization with
U = 0.65t , E = 1.5t , and magnetic flux steps of 5 × 10−5.
From these typical curves, we were able to count the number
of maxima. Dividing the number of maxima by the range of

perpendicular magnetic flux [�(�/�0) = 0.06] one obtains
the average of density peak 〈ρ⊥〉 = 308.3.

We can also calculate the peak density using Eq. (1).
However, first it is necessary to obtain the correlation length,
�⊥, defined as the half height of the correlation function. The
procedure requires a large number of realizations to be evalu-
ated. Figure 3(b) shows the correlation function obtained from
1000 disorder realizations as a function of the perpendicular
magnetic flux. From Fig. 3(b), one found a correlation length
�⊥ = 2.25 × 10−3. Replacing in Eq. (1) the peak density is
〈ρ⊥〉 = 300.1, which is in accordance to the result obtained
counting the number of maxima.

After the analysis of the conductance peaks density in
a quasi-one-dimensional nanowire using a numerical point
of view, we apply the methodology to experimental data
of a semiconductor nanowire. Figure 3(c) shows the typical
experimental magnetoconductance data at 30 mK of an InAs
nanowire with length L = 107 nm submitted to a perpendicu-
lar magnetic field.

Although the typical numeric curves of Fig. 3(a) and the
experimental curve of Fig. 3(c) have an apparently similar
behavior, one cannot count the number of peaks directly
of the latter. The inset display of Fig. 3(c) shows that the
experimental curve has a random noise background which
is not present in Fig. 3(a). The background appears in the
experimental magnetoconductance data due to the thermal
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FIG. 3. (a) Ten typical conductance curves in the function of an adimensional perpendicular magnetic flux; each one is for a single disorder
realization with U = 0.65t , E = 1.5t , and magnetic flux steps of 5 × 10−5. The parameter ρ⊥ is the density of maxima (number of peaks over
a range of perpendicular magnetic flux). (b) Conductance correlation in the function of a perpendicular magnetic flux obtained from 1000
realizations. (c) The black curve is a typical experimental magnetoconductance at 30 mK of an InAs nanowire with length L = 107 nm
submitted to a perpendicular magnetic field and the red curve is the Bézier fit. (d) Magnetoconductance correlation in the function of a
perpendicular magnetic field obtained from the experimental curve.
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FIG. 4. (a) Ten typical conductance curves in the function of an adimensional parallel magnetic flux; each one is for a single disorder
realization with U = 0.65t , E = 1.5t , and magnetic flux steps of 5 × 10−5. The parameter ρ‖ is the density of maxima (number of peaks over
a range of parallel magnetic flux). (b) Conductance correlation in the function of a parallel magnetic flux obtained from 1000 realizations.
(c) The black curve is a typical experimental magnetoconductance at 30 mK of an InAs nanowire with length L = 440 nm submitted to a
parallel magnetic field and the red curve is the Bézier fit. (d) Magnetoconductance correlation in the function of a parallel magnetic field
obtained from the experimental curve.

noise and the experimental apparatus. The random back-
ground is irrelevant to the process under investigation, as a
smoothing in its behavior is necessary.

To smooth the experimental conductance data of Fig. 3(c),
we apply the Bézier algorithm [41] and the result, the con-
ductance as a function of the perpendicular magnetic field,
is displayed in red. To obtain the red curve in Fig. 3(c), we
developed the Bézier algorithm on the experimental data, the
number of times necessary for the peak number to converge.
The inset display of Fig. 3(c) shows that the Bézier curve
eliminates the random experimental data background holding
only the general chaotic behavior. The procedure ensures the
count of the number of maxima from the Bézier fit obtained
from the average of peak density 〈ρ⊥〉 = 3.4 T−1, where the
range of the perpendicular magnetic field is �B⊥ = 4.915 T.

After obtaining the average of the peak density from the
Bézier fit, we are able to estimate the phase-coherence length
of InAs nanowire with d = 80 nm [19]. Replacing 〈ρ⊥〉 =
3.4 T−1 in Eq. (1), we obtain that �⊥ = 0.1952 T. Hence, we
can estimate from Eq. (3) that the phase-coherence length is
lφ ≈ 111 nm.

In order to confirm the result obtained by counting the
number of maxima, the correlation function was calculated
from the experimental data shown in Fig. 3(d). Using the
latter, we obtain a correlation length of �⊥ = 0.1975 T.

Replacing in Eq. (1), one obtains the peak density 〈ρ⊥〉 =
3.4 T−1, which is in good accordance with the result obtained
by counting the number of maxima.

As a second preponderant result, we analyze the conduc-
tance peak density as a function of the adimensional parallel
magnetic field b‖ = μB‖/t , where it is taken B = (B‖, 0, 0)
in Eq. (7). Figure 4(a) shows ten typical curves of conduc-
tance, each one for a single disorder realization with U =
0.65t , E = 1.5t , and magnetic flux steps of 5 × 10−5. We can
realize that the peak density of Fig. 4(a) is smaller than that of
Fig. 3(a), which is according to the theoretical results Eqs. (1)
and (2), and hence with the experimental data of nanowire,
Figs. 3(c) and 4(c).

From the typical curves of Fig. 4(a), we count the number
of maxima. Dividing the number of maxima by the range
of parallel magnetic flux [�(b‖) = 0.06] one obtains the
average of the peak density 〈ρ‖〉 = 128.3. Moreover, Fig. 4(b)
shows the correlation function obtained from 1000 disorder
realizations in the function of the parallel magnetic flux. From
the latter, it was found that the length correlation is �‖ =
4.05 × 10−3. Replacing in Eq. (2), one shows that the peak
density is 〈ρ‖〉 = 136.1, which is in good accordance with the
result obtained by counting the number of maxima.

In Fig. 4(c), the typical experimental magnetoconductance
data at 30 mK of an InAs nanowire with length L = 440 nm
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submitted to a parallel magnetic field was plotted. As dis-
cussed previously, we cannot count the number of maxima
from the experimental data because of an intrinsic noise white
noise background. Hence, we use again the Bézier algorithm
to display in red the conductance as a function of the parallel
magnetic field, as can be seen in Fig. 4(c). From the latter,
we were able to count the number of maxima and obtain the
average of the peak density 〈ρ‖〉 = 2.3 T−1, where the range
of the parallel magnetic field is �B‖ = 4.859 T. Furthermore,
Fig. 4(d) shows the correlation function obtained from the
experimental data of Fig. 4(c). From the latter, we found
the correlation length �‖ = 0.1901 T. Replacing this result
in Eq. (2) one holds that the peak density is 〈ρ‖〉 = 2.9 T−1,
which is in accordance to the result obtained by counting the
number of maxima.

IV. CONCLUSION

In summary, we have done a complete analysis of universal
conductance fluctuation in quasi-one-dimensional nanowires
submitted to perpendicular and parallel magnetic fields using
the tight-binding model. We use the conductance peak density
model showing a satisfactory accordance between the model,
Eqs. (1) and (2), and numeric calculations. Furthermore,

we successfully applied s the peak density model in the
experimental magnetoconductance data of an InAs nanowire
submitted to perpendicular and parallel magnetic fields at
30 mK.

We conclude that the method is an efficient alternative
to obtain the correlation width length, which is normally
obtained experimentally from the correlation function [19–
22]. We believe that our work can support a myriad of future
works getting more precise results for correlation length and,
consequently, the phase-coherence length in nanowires. As
we have shown, the application of the theory can be funda-
mental in the obtaining and characterization of the universal
regime, of the coherence length responsible for the various
quantum phenomena including entanglement. Therefore, this
method and their respective developments deserve attention in
spintronics, graphene flakes, and topological isolators where
phase-coherence length is a relevant experimental parameter
[32–34,42–51].
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