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Internal quantum dynamics of a nanoparticle in a thermal electromagnetic field: A minimal model
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We argue that macroscopic electrodynamics is unsuited to describe the process of radiative thermalization
between a levitated nanoparticle in high vacuum and the thermal electromagnetic field. Based on physical
arguments, we propose a model to describe such systems beyond the quasiequilibrium approximation. We
use path integral techniques to analytically solve the model and exactly calculate the time evolution of the
quantum degrees of freedom of the system. Free parameters of the microscopic quantum model are determined
by matching analytical results to well-known macroscopic response functions. The time evolution of the internal
energy of a levitated nanoparticle in a thermal electromagnetic field, as described by our model, qualitatively
differs from macroscopic electrodynamics, a prediction that can be experimentally tested.
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I. INTRODUCTION

The understanding of the interaction between electromag-
netic (EM) fields and matter is a cornerstone of physics. At
macroscopic scales, one relies on the theory of macroscopic
electrodynamics. This consists of Maxwell’s equations and
constitutive relations equipped with electric and magnetic sus-
ceptibilities that phenomenologically characterize the prop-
erties of matter. On the other hand, at microscopic scales,
the theory of quantum electrodynamics in the nonrelativistic
regime, namely quantum optics, can be used to study from
first principles the interaction between electromagnetic fields
and single atoms. The transition between the two descriptions,
however, is a challenging problem since the Schrödinger
equation for a many-particle system becomes rapidly
intractable.

Recently, a significant amount of research activity has been
devoted to levitating nanoobjects in high-vacuum: optical lev-
itation of dielectric nanospheres [1–8], magnetic levitation of
nanomagnets [9], superconducting spheres [10], electrostatic
levitation of objects hosting quantum emitters [11], etc. These
experiments offer a new paradigm to study the interaction
between electromagnetic fields and matter at the interface
between quantum optics and macroscopic electrodynamics.
So far, the research on levitated nanoobjects has been mainly
focused on controlling their external degrees of freedom,
namely the center-of-mass motion and rotation [12,13]. How-
ever, one can foresee that it will soon be possible to probe and
control their internal degrees of freedom. From a condensed
matter point of view, such a possibility might thus provide
an ideal platform to test and probe the theory of quantum
excitations in solids, as well as their interaction with photons,
in an extreme scenario: unclamped matter at the nanometer
scale, in high vacuum and out of equilibrium.
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One of the many fundamental questions that may arise
in the aforementioned systems is how a levitated nanoobject
in high vacuum thermalizes through its interaction with a
thermal electromagnetic field, i.e., how its internal energy
evolves as a function of time when the system is out of equi-
librium [14]. Within classical macroscopic electrodynamics,
this question is answered as follows. A sufficiently small
nanoparticle (NP) can be approximated as a point dipole
with a frequency-dependent polarizability (assumed scalar for
simplicity) given by the Clausius-Mossotti relation [15]

α(ω) = 3ε0V
ε(ω) − 1

ε(ω) + 2
, (1)

where ε0 is the vacuum permeability, V the volume of the
nanoparticle, and ε(ω) the frequency-dependent dielectric
constant. Assuming that the particle has a well defined, spa-
tially homogeneous bulk temperature T at every given time,
namely it is in local equilibrium, the fluctuation-dissipation
theorem [16–20] can be used to calculate the power dissipated
due to thermal fluctuations of the polarization of the particle,

P (T ) = h̄

∫ ∞

0
dωχ (ω)

ω4

π2ε0c3
[n(T , ω) − n(TEM, ω)]. (2)

Here, TEM is the temperature of the electromagnetic field,
χ (ω) ≡ Im[α̃(ω)] − ω3|α̃(ω)|2/(6πε0c

3), α̃(ω) = α(ω)(1 −
iα(ω)ω3/6πc3)−1, n−1(T , ω) ≡ exp[h̄ω/(kBT )] − 1, c is the
vacuum speed of light, and kB the Boltzmann constant. To
study the thermalization dynamics, one further assumes that
the internal equilibration time of the particle is much faster
than the rate at which energy is lost due to radiation. Then,
one can conclude that the time evolution of the nanoparticle
temperature is governed, over coarse-grained timescales, by
the quasiequilibrium differential equation [16,18]

ρV C
dT

dt
= −P (T ), (3)

where ρ is the mass density and C the heat capacity of the
nanoparticle. The approach to thermalization described by

2469-9950/2018/98(15)/155405(22) 155405-1 ©2018 American Physical Society

http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevB.98.155405&domain=pdf&date_stamp=2018-10-08
https://doi.org/10.1103/PhysRevB.98.155405


A. E. RUBIO LÓPEZ et al. PHYSICAL REVIEW B 98, 155405 (2018)

FIG. 1. Dynamics of radiative thermalization of a gold nanopar-
ticle initially at T = 1000 K in a thermal EM environment at TEM =
300 K. The temperature dynamics has been calculated using the
theory of fluctuating electrodynamics (FED), Eq. (3), for different
nanoparticle radii.

Eq. (3) is commonly referred to as fluctuation electrodynamics
(FED). As an example, we display in Fig. 1 the thermalization
curves of gold nanoparticles with different radii, modeled by
a Drude permittivity ε(ω) = 1 − ω2

Pl/(ω2 + iωγD) with the
plasma frequency ωPl = 2π × 2.72 × 1015 Hz and damping
γD = 2π × 6.45 × 1012 Hz [21].

In this paper, we aim at exploring the radiative thermaliza-
tion of a levitated nanoparticle in high vacuum, an extreme
regime which we think cannot be well described by FED.
Our work is divided in four sections; first, we devote Sec. II
to heuristically argue that FED is unsuited to describe this
problem. Based on such arguments, in Sec. III, we propose
a physically motivated minimal model to describe the internal
quantum dynamics of a levitated nanoparticle in high vacuum.
We proceed to exactly solve this model in Sec. IV, matching
most of the free parameters with experimentally measurable
quantities, and studying the out-of-equilibrium quantum dy-
namics of the internal degrees of freedom. In particular, the
internal energy as function of time is analytically calculated.
Finally, our conclusions and future perspectives are presented
in Sec. V.

II. HOW TO DESCRIBE RADIATIVE THERMALIZATION
OF A LEVITATED NANOSPHERE?

In macroscopic bodies, the mechanism for radiative ther-
malization is well understood as the compensation of an initial
energy imbalance via electromagnetic emission and absorp-
tion. Indeed, for a particle initially at a higher temperature
than the surrounding EM field, the excess of internal energy
tends to dissipate into the environment. Such internal energy
is held by some internal degrees of freedom (phonons) that
cannot interact directly with the EM field. Instead, this inter-
action is mediated by the fluctuating multipoles generated by
the stochastic, phonon-induced motion of the charges forming
the body. In particles much smaller than the thermal wave-
length (λTh ≈ 50 μm at room temperature), it is customary
to take the long-wavelength approximation, so that only the
three (x, y, z) dipole resonances play a role in the thermal-
ization [15]. It is important to stress that such resonances
lie typically in the optical range and thus are very detuned

with respect to the thermal energies involved in the process.
Hence they represent a passive channel, allowing the energy
exchange between EM field and internal degrees of freedom
while always remaining in their ground state [16–20].

While the above physical picture should remain valid for
levitated nanoparticles in ultrahigh vacuum, we believe that
the theoretical approaches based on quasiequilibrium approx-
imations might become insufficient for an accurate description
of thermalization in these systems. On the one hand, for a
small particle, the modes describing internal degrees of free-
dom become highly discretized. For instance, the phononic
eigenfrequencies of a spherical particle with radius R and
sound velocity cs ≈ 103–104 ms−1 can be shown [22] to be
the integer multiples of ωphon ≈ πcs/R ≈ 2π × 1011 Hz, val-
ues which can be comparable to the characteristic frequencies
of the EM field, i.e., kBTEM/h̄ ≈ 2π × 1012 Hz at TEM =
300 K. On the other hand, the combination of levitation and
ultrahigh vacuum should provide an extreme isolation of the
nanoparticle from its surroundings, resulting on very narrow
phononic linewidths. The combination of high discretization
and high isolation of the phononic resonances should have
a critical impact on the thermalization dynamics. First, note
that, because of the absence of external environments to which
the phonons can nonradiatively decay, the internal equili-
bration times of the nanoparticle might become very large.
Indeed, the only mechanism remaining for such equilibration
is the internal phonon-phonon interaction which, being such
phonons largely detuned with respect to each other, should be
much weaker than in bulk. For a small and isolated enough
nanoparticle, the internal equilibration times then might be-
come comparable or even larger than the rate at which en-
ergy is exchanged with the EM environment, thus violating
the quasiequilibrium assumption. We may thus expect that,
in such a regime, the thermalization will occur largely out
of equilibrium, making the very concept of temperature ill
defined during this process.

A second relevant consequence of the nanoparticle show-
ing highly discrete and narrow phononic resonances is that,
except at very high temperatures, only some of the phononic
energies are comparable to those of the thermal EM field.
Moreover, the coupling between these phonons and the op-
tical resonance will depend on the spatial overlap between
the phononic and the dipole mode functions. Since most of
these overlaps are negligible by symmetry, only a handful
of phononic modes will significantly couple to the EM field.
Conversely, most of the phonon modes will be poorly coupled
to the EM field. It is then reasonable to expect two intrin-
sic timescales to arise in the thermalization process. First,
the few lowly detuned modes will thermalize in a short-
to-intermediate timescale, during which the largely detuned
remaining phonons will remain unperturbed. The latter modes
will undergo thermalization only afterwards, at a much larger
timescale. In other words, there will be an uneven depletion of
the phonon modes, with some of them losing their energy to
the EM field much faster than the rest. This is yet a second
signature of an out of equilibrium thermalization process
where a temperature cannot be assigned to the nanoparticle.

The two arguments given above, namely long internal
thermalization times and uneven depletion of phononic levels,
support the breakdown of the quasiequilibrium approach for
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a sufficiently small nanosphere in high vacuum. Note that
both of such arguments rely on the individual phononic reso-
nances being well resolved in energies, allowing us to roughly
estimate the nanoparticle size range at which such effects
become appreciable as �phon/ωphon � 1, where �phon is a typ-
ical resonance linewidth. Assuming a spherical particle with
radius R, and using measured bulk linewidths [23] around
�phon ≈ 1011–1012 rad s−1 at moderate temperatures, we may
estimate that a necessary condition for the local equilibrium
assumption to fail is R � 10–100 nm, a regime which is
accessible for state of the art levitation experiments [5,7,8].
Note that the above estimation might be conservative, since
phononic linewidths of isolated nanoparticles are expected to
be much smaller than in bulk [24].

To summarize, we have given a heuristic argumentation
according to which it is reasonable to expect that, at least
at short and intermediate timescales, the quasiequilibrium
regime will break down for levitated nanoparticles in high
vacuum. In such a case, the thermalization dynamics cannot,
by construction, be accurately described by approaches based
on Eq. (3). This motivates the exploration of new theoretical
models able to reproduce the thermalization of such systems
in largely out of equilibrium regimes.

III. MINIMAL MODEL

Motivated by the argumentation above, we devote this
section to construct a model for the thermalization of levitated
nanoparticles in high vacuum. Contrary to the thermody-
namic considerations of FED, our aim is to build a minimal,
physically motivated Hamiltonian for the compound NP+EM
field system. Such a model should be able to describe the
nonequilibrium thermalization dynamics, while at the same
time allow us to recover some of the well-known optical and
thermal material properties, which have been experimentally
measured.

The system under consideration is composed of two dis-
tinct parts, namely the nanoparticle, fixed at the origin and
described by a Hamiltonian ĤNP, and the surrounding EM
field, with a corresponding Hamiltonian ĤEM. These two
terms, together with their interaction V̂ , compose the total
Hamiltonian of our system,

ĤTot = ĤEM + ĤNP + V̂ . (4)

The free EM contribution is well known,

ĤEM = ε0

2

∫
dr(Ê2 + c2B̂2), (5)

where Ê and B̂ are the transverse electric and magnetic fields,
respectively. Note that we do not include the center of mass
motion of the NP.

Regarding the NP contribution, we will build its compo-
nents from physically motivated arguments. First of all, our
model must describe the interaction between the NP and the
EM field. As discussed above, such interaction can be de-
scribed, in the long-wavelength approximation, by the dipolar
resonances of the NP, such as Mie resonances in dielectrics
or plasmon modes in metals [15]. Thus the first component in
our NP model will be a set of three dipole modes, one for each
orthogonal direction, which we will refer to as optical degrees

of freedom (ODF). In the usual thermalization scenario, these
dipole modes have a negligible excitation probability, since
their natural frequency �, typically in the optical range,
fulfills kBTEM/h̄ � � [25]. Moreover, based on the small size
of the NP, we neglect any retardation effects on the energy
propagation within the body or, equivalently, we assume the
time evolution is the same at every point within the NP. More
precisely, the NP is regarded as a “lumped system,” where the
physical quantities are time-dependent but not position depen-
dent [26]. Both the low excitation probability of the ODF and
the “lumped-system” assumption allow us to describe these
modes as a three-dimensional (3D) point harmonic oscillator,
such that the first contribution to the NP Hamiltonian reads

Ĥ� = p̂2
�

2m�

+ m�

2
�2x̂2

� = h̄�
∑

i=x,y,z

(
â
†
i âi + 1

2

)
, (6)

where (x̂�)i = x
zpm
� (â†

i + âi ) with x
zpm
� = [h̄/(2m��)]1/2.

Moreover, since in our model the ODF represent dipole res-
onances, their interaction with the EM field can be written in
the usual dipolar coupling form,

V̂ = q x̂� · Ê(0) = qx
zpm
�

∑
i=x,y,z

(â†
i + âi )Êi (0), (7)

where q is the effective charge that parametrizes the strength
of the EM-NP interaction via the dipole moment of the NP,
qx

zpm
� . Note that it is at this point where coupling to other

multipoles has been neglected.
The final components of the model for the NP are the

internal degrees of freedom, i.e., the phonons, that thermalize
with the EM field through the ODF. As discussed in Sec. II,
the phononic modes of the NP are highly discretized in
energies, and only a handful of them are expected to play
a significant role. Moreover, in analogy with the excitation
of a collective dipole mode by the EM field, it is reasonable
to expect that, by the same symmetry argument, each dipole
mode will mainly couple to one collective phononic excita-
tion. All the remaining modes, being either largely detuned or
uncoupled by symmetry considerations, will act as a passive
energy reservoir. Based on these arguments, we model the
internal phonons by splitting them into two groups. First, we
introduce three internal degrees of freedom (IDF) representing
the modes coupling more strongly with the ODF. Due to
the lumped-system assumption, these internal excitations will
also be described by a 3D harmonic oscillator, with natural
frequency ωθ . We therefore include two additional terms in
the NP Hamiltonian, namely, the energy of such IDF,

Ĥθ = p̂2
θ

2mθ

+ mθ

2
ω2

θ x̂2
θ = h̄ωθ

∑
i=x,y,z

(
b̂
†
i b̂i + 1

2

)
, (8)

and their interaction with the dipole modes, which we assume
to be linear,

ĤInt = h̄g
x̂�

x
zpm
�

· x̂θ

x
zpm
θ

= h̄g
∑

i=x,y,z

(â†
i + âi )(b̂

†
i + b̂i ). (9)

Here, (x̂θ )i = x
zpm
θ (b̂†i + b̂i ) with x

zpm
θ = [h̄/(2mθωθ )]1/2.

The coupling rate g parametrizes the coupling strength be-
tween the ODF and the IDF. In our model, the IDF represent
the internal modes with which the EM modes exchange
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FIG. 2. Schematic representation of our model for thermaliza-
tion: the EM field interacts with an internal degree of freedom (IDF)
through an optical degree of freedom (ODF), both described as
three-dimensional harmonic oscillators. Internal dissipation by other
internal modes is included through an internal thermal bath (ITB).

energy more efficiently. Consequently, we can assume the
frequency of the IDF is not too different from the thermal
fluctuations provided by the field, i.e., h̄ωθ ≈ O(kBTEM) � �

[25]. Note that it is also reasonable to expect the coupling rate
to be g � ωθ , since otherwise the IDF-ODF subsystem would
be in the ultrastrong coupling regime, which is unphysical in
this case.

The second part of the model for the internal phonons of
the NP contains the remaining, far detuned internal modes,
which as opposed to the IDF, are expected to play a small role
in the energy relaxation at moderate timescales. They will be
also described by harmonic oscillators, and characterized by a
Hamiltonian

ĤI =
∑

n

[
p̂2

n

2mn

+ mn

2
ω2

nx̂2
n

]
, (10)

and a coupling to the ODF which we assume linear,

ĤLin =
∑

n

κnx̂� · x̂n, (11)

with a coupling strength given by κn. Since the impact of
these modes on the dynamics is expected to be weak, we

will consider them as a passive environment with a fixed
temperature, which will be labeled Internal thermal bath
(ITB). For simplicity, we take the continuum limit of such bath
assuming an Ohmic spectral density,

JγI
(ω) =

∑
n

κ2
n

2mnωn

δ(ω − ωn) = 2m�γI

π
ωfc(ω), (12)

which is characteristic of phononic environments. In such a
way, the ITB is fully described in the minimal model by the
rate γI and a high-energy cutoff function fc [27].

Together with the ODF, the IDF and the ITB form our final
model for the nanoparticle, i.e.,

ĤNP = Ĥ� + Ĥθ + ĤInt + ĤI + ĤLin. (13)

A schematic illustration of this minimal model is depicted
in Fig. 2. It depends on the following free parameters: the
frequency of the ODF �, the frequency of the IDF ωθ , the
coupling rate between ODF and IDF g, the coupling rate
between ODF and ITB γI , and the effective dipole moment
of the nanoparticle qx

zpm
� ∝ q/

√
m�. Along the following

sections we will determine both the physical interpretation of
these parameters and their matching with experimental values,
summarized in Table I.

We remark that since the temperature TγI
is assumed fixed,

the far-detuned phononic modes composing the ITB can never
thermalize. However, since, as discussed in Sec. II, such
thermalization occurs only at very long times, our model
remains valid for the short and intermediate timescales where
the out-of-equilibrium dynamics is expected to be relevant.
Note that, by construction, our model cannot recover the
predictions of FED since it has been built ad hoc for situations
far from quasiequilibrium. A crossover towards FED could
be in principle attained by, e.g., substituting the internal
thermal bath by a discrete and finite collection of harmonic
oscillators. This would allow the bath to dynamically evolve
and, consequently, to internally thermalize as well. Extending
the model in this way, however, is not crucial as our current
model already allows us to address the short-time dynamics
where the quasiequilibrium approximation is expected to fail,
which is the objective of the present work.

As a final comment, note that, because of the interpretation
of the TDF and the ITB as the whole set of phononic degrees
of freedom, the structure of the two Hamiltonians in Eqs. (9)
and (11) is the same. Thus, considering the TDF as one of
the modes composing the spectral density Eq. (12), we can
integrate the latter in frequencies along the interval ω ∈ [ωθ −
δ, ωθ + δ], where δ is chosen such that only one phononic

TABLE I. Summary of the relevant free parameters in our model and their physical interpretation. In the second row, the plasma frequency
ωPl, the dielectric damping γD, and the Drude-Lorentz resonance ω1 (equal to zero for metals) refer to the generalized permittivity (19), whereas
�E represents the Einstein temperature. The bounds for g are calculated from Eq. (14).

Dipole resonance Dipole resonance EM-particle coupling Frequency of internal Energy exchange
frequency damping strength modes rate

Model parameter � γI q2/m� ωθ g

Physical matching
√

ω2
1 + ω2

Pl/3 γD/4 ε0V ω2
Pl kB�E/h̄ Free (g � ωθ , �)

Values for gold 2π × 1.57 × 1015 Hz 10−3 � 1.08 × 10−5[R (nm)]3 C2/Kg 1.8 × 10−3 � �3.2 × 10−5 �

Values for silica 2π × 3.39 × 1015 Hz 1.8 × 10−3 � 5.13 × 10−5[R (nm)]3 C2/Kg 2 × 10−3 � �4.8 × 10−5 �
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peak (the TDF) is included in the integration, i.e., δ � ωθ/2.
This allows us to set an upper bound for the coupling constant
g as

g � ωθ

�

√
2

π

γI

�

δ

ωθ

. (14)

Given that a lower bound for δ can only be set by the negligi-
ble phonon linewidth, i.e., δ � �phon ≈ 0, no lower bound for
g can be estimated in the same way.

IV. ANALYTICAL SOLUTION AND PARAMETER
MATCHING

Once we have set up the Hamiltonian for our model, we are
in a position to study the properties of the system. As detailed
in Appendices A and B, we choose an approach based on the
path integral formulation, a method that is especially conve-
nient in our case since all terms in the system Hamiltonian are
quadratic [28]. The advantages of this method are twofold: on
the one hand, it allows us to determine the full time evolution
of the system in a compact way by means of the closed-time-
path formalism [28]. Such a procedure results in the exact
calculation of the full quantum correlations of our system.
On the other hand, it allows for the study of the reduced
dynamics of a subsystem (for instance, the EM field alone,
or the NP alone) through the so-called Influence Functional,
which contains all the information about the external degrees
of freedom in the form of relatively simple propagators [28].
It is convenient for this goal to assume an uncorrelated and
Gaussian initial state, i.e.,

ρ̂(0) = ρ̂EM(0) ⊗ ρ̂�(0) ⊗ ρ̂θ (0) ⊗ ρ̂I(0), (15)

where the four terms represent the contributions of EM field,
ODF, IDF, and ITB, respectively. In this situation, it is pos-
sible to exactly trace out such external degrees of freedom
without any approximation on the system parameters, as
opposed to other usual methods such as Born-Markov master
equations. This includes finite degrees of freedom that cannot
be considered as a bath. Given that we make no particular
assumption about most of our parameters, and precisely aim
at assigning their values through comparison with well-known
response functions, our path-integral-based method seems to
be a well suited approach.

A. Polarizability of the NP

Our first goal is to determine the optical response of the NP,
i.e., its polarizability according to our model. Such response
is calculated by tracing out all the nanoparticle degrees of
freedom, i.e., the ODF, the IDF, and the ITB, obtaining a
modified equation of motion for the EM field. Specifically,
as detailed in Appendix C, we find the following equation of
motion for the vector potential in frequency domain,(

∇ × ∇ × −ω2

c2
[1 + δ(x)α(ω)/ε0]

)
A(ω, x) = F0. (16)

Here, the right-hand side F0 contains all the terms depending
exclusively on the initial conditions of the EM field, which are
irrelevant for the calculation of the polarizability. The function
α(ω), for which we have an exact analytical expression in

terms of the system propagators, can be identified with the
effective polarizability of our model, since it represents the
pointlike modification to the free EM field evolution. It reads

α(ω) = q2

m�

[
�2 − ω2 − i4γIω + 2�ωθg

2(
ω2 − ω2

θ

)
]−1

. (17)

Note that the above function describes the response of the
NP to every frequency of the EM field, and contains multiple
resonances associated to the subsystem ODF+IDF.

We are interested in comparing the polarizability obtained
in Eq. (17) to the usual expression for the polarizability of
a small NP, namely Eq. (1). The latter expression, however,
describes the response to the EM field at frequencies close to
the dipole resonance, i.e., in the optical range. On the contrary,
the expression extracted from our model, Eq. (17), represents
such response throughout all the frequency spectrum. Hence
we take the limit of our polarizability for frequencies close to
that of the ODF, i.e.,

α(ω)|ω≈� ≈ q2

m�

[
�2 − ω2 − i4γIω + 2ωθg

2

�

]−1

, (18)

where we have used the aforementioned relations h̄ωθ ≈
O(kBTEM) � h̄� [25]. The above function can be matched
to both a dielectric and a metallic particle, through the Drude
and Drude-Lorentz permittivity functions respectively [15].
To see this, let us define a generalized permittivity function
describing both cases as

εg (ω) = 1 + ω2
Pl(

ω2
1 − ω2 − iγDω

) , (19)

where ω1 = 0 and ω1 
= 0 for the Drude and the Drude-
Lorentz model, respectively. After introducing the above per-
mittivity into the polarizability Eq. (1), a direct comparison
with Eq. (18) yields the following set of necessary identities
which, if fulfilled, guarantee that our model reproduces the
optical response expected from the NP:

γD = 4γI , (20)

ω2
Pl

3
+ ω2

1 = �2 + 2ωθg
2

�
, (21)

ε0V ω2
Pl = q2

m�

. (22)

Since the values of the permittivity εg (ω) are experimentally
tabulated, we will use them together with the above equations
to fix the value of three free parameters in our model, namely
γI , �, and q/

√
m� (see Table I).

A few remarks are in place regarding the above parameter
matching. First, note that, in the regime of interest g �
ωθ � �, the frequency of the ODF from Eq. (21) reads

� ≈
√

ω2
1 + ω2

Pl/3, which in general lies, as expected, within
the optical range, showing no apparent inconsistencies in
our parameter matching. Second, note that it is possible to
demonstrate from Eq. (22) that the ODF is weakly coupled
to the EM field, as expected. Indeed, from Eq. (7), we can
express the EM-NP coupling rate as γe = qx

zpm
� ET/h̄, where

ET is the thermal electric field defined by kBTEM = ε0λ
3
T E2

T
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with λT = π2/3h̄c/(kBTEM) being the thermal wavelength.
Hence, using Eq. (22) one obtains

γe

�
=

(
kBTEM

h̄�

)2
√

V ω2
Pl�

2πc3
. (23)

Since ωPl � � and kBTEM � h̄�, we can conclude that
γe/� � 1 for nanoparticles smaller than the optical wave-
length V �3/c3 � 1, a condition already assumed in the
electric dipole approximation. This weak interaction, which
arises naturally from the matching of our parameters to a
physical polarizability, will simplify the calculations in the
forthcoming sections.

B. Calculation of the internal energy

The main goal of this paper is to study the process of
energy thermalization of the NP with the thermal EM field.
Because we are interested in exploring nonequilibrium sce-
narios, it is not convenient (and sometimes not even possible)
to assign a temperature to our NP throughout all the time evo-
lution. Thus we will instead study the evolution of the internal
energy of the NP, a well defined observable which, in the
quasiequilibrium limit, is closely related to the temperature

[see Eq. (3)]. Note that, in our model, neither the energy of
the ODF, which remains unexcited, nor the energy of the ITB,
which has constant temperature and is weakly coupled to the
ODF, are expected to change appreciably [25]. Thus the only
significant variation of the internal energy will be given by
the IDF. Consequently, the observable we identify as internal
energy in our model will be u(t ) ≡ 〈Ĥθ (t )〉 = tr[ρ̂θ (t )Ĥθ ].

In order to calculate the internal energy, we trace out the
unrelated degrees of freedom: the EM field (Appendix D),
the ITB (Appendix C), and the ODF (Appendix E), to obtain
an effective equation of motion for the IDF [Eq. (E9)]. In
the process, we assume the initial states of all the system
components to be thermal, i.e.,

ρ̂j (0) ∝ e−βj Ĥj ; (j = EM,�, θ, I ), (24)

where βj = (kBTj )−1. Moreover, the fact that the ODF and
the EM field are weakly coupled to each other, as discussed
above, allows us to perform a weak coupling approximation
between these two subsystems. This guarantees the absence
of runaways (also known as the radiation reaction problem,
see, e.g., Refs. [15,29]) and therefore yields stable solutions
(Appendix D). The final expression after such approximation
simplifies to

u(t ) = 3h̄

4ωθ

coth

(
βθ h̄ωθ

2

)(
[G̈θ (t )]2 + 2ω2

θ [Ġθ (t )]2 + ω4
θ [Gθ (t )]2

)

+ 3h̄

4mθ

∫ t

0
dλdλ′[Ġθ (t − λ)NEnv(λ, λ′)Ġθ (t − λ′) + ω2

θGθ (t − λ)NEnv(λ, λ′)Gθ (t − λ′)
]
. (25)

Written in this way, the above expression has a clear interpre-
tation. The first line directly represents the effective evolution
associated to the initial state of the IDF. Specifically, it ac-
counts for the value of the energy at t = 0 and, additionally,
for the relaxation dynamics of the IDF due to the dissipation
induced by the remaining subsystems (the ODF, the ITB, and
the EM field), through the retarded propagator Gθ (t ). On the
other hand, the second line accounts for the fluctuations that
such subsystems induce on the IDF, through the noise kernel
NEnv(t, t ′). According to the effective dynamics we obtain
for the IDF, the fluctuations are provided by each part of the
system and funnelled through the retarded propagator, leading
to terms of the form GθNEnvGθ . Since the first line of Eq. (25)
accounts exclusively for the relaxation dynamics, it is clear
that the contribution at infinite time (i.e., the steady state) will
be provided by the second line, that is, the contribution of the
fluctuations. A more detailed explanation of all the functions
involved in Eq. (25), together with their analytical expres-
sions, can be found in Appendix F. Before studying the full
thermalization dynamics described by Eq. (25), we discuss
asymptotic limits that allow us to match the parameters of the
minimal model.

C. Asymptotics of thermalization and specific heat

Although the components of the internal energy Eq. (25)
are obtained analytically, calculating its value as a function
of time requires a numerical integration [27]. However, the

structure of the propagators and kernels allows to simplify the
equation in some limits. For instance, it is possible to show
that at short times, t → 0, the internal energy reads

u(t ≈ 0) ≈ u0 + ωθg
2

�
u�0t

2

[
1 − 1

2

(
4γI + �2

ωq

)
t

]
. (26)

Here, u0 = (3h̄ωθ/2) coth (βθ h̄ωθ/2) and u�0 = (3h̄�/2)
coth (β�h̄�/2) represent the initial energies of the
IDF and the ODF, respectively, while the frequency
ωq = 6πm�c3ε0/q

2 is defined for convenience. In the
above equation, the first term corresponds to the initial
energy, whereas the second term, which contains quadratic
but not linear corrections, describes the evolution of the
initial thermal state of the IDF caused by its interaction
with the remaining degrees of freedom. At sufficiently short
times such that the quadratic terms dominate, only the ODF
contribute to the dynamics, indicating a certain degree of
retardation in the influence of the continuous environments
(EM and ITB). In this regime, the energy shows an increasing
behavior, stemming from the coupling between the IDF-ODF
being turned on at t = 0 in our calculations. However, at later
times, when the cubic term becomes relevant, the continuous
environments start affecting the dynamics, introducing a
negative counterterm that results in the expected decrease
in energy. The time at which the increasing tendency is
reverted, i.e., the maximum of Eq. (26) is tmax = (4/3)
[4γI + (�2/ωq )]−1 ≈ 4ωq/(3�2) ≈ 0.05 fs for a gold
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nanoparticle with R = 50 nm. This value is irrelevant for the
thermalization timescales we are interested in. However, note
that having a Hamiltonian allows us to calculate the evolution
at arbitrarily short timescales, something that cannot be done
by quasiequilibrium models such as FED.

Let us now focus on the opposite limit, namely the long-
time behavior of Eq. (25). Note that, even though we are
taking t → ∞ in our expression, the resulting asymptotic
behavior represents only the long-time limit within the inter-
mediate timescales where our model is valid. It can be shown
that in such limit the NP thermalizes with the environment,
as the internal energy tends to the following constant (see
Appendix G),

u∞ = u(t → ∞) = 3h̄ωθg
2�

2π

∫ ∞

0
dωK (ω)

×
[
�2

ωq

coth

(
βEM

2
h̄ω

)
+ 4γI coth

(
βγI

2
h̄ω

)]
. (27)

The function K (ω) can be constructed from the retarded
propagators and is given by

K (ω) = m2
�

q4

ω
(
ω2

θ + ω2
)

(
ω2

θ − ω2
)2

∣∣∣∣ α(ω)

1 − iω�2α(ω)/(6πε0c3)

∣∣∣∣
2

. (28)

In the expression above, the term inside the modulus squared
corresponds to the effective polarizability employed in the
literature to include the corrections of radiation reaction [15].
Note that the long-time limit has two contributions, associated
to the two baths (EM and ITB) which continuously provide
fluctuations to the IDF.

In analogy with the polarizability, the long-time limit of the
internal energy, Eq. (27), provides us with a tool to recover the
thermal response of the NP, since in the long-time limit we
expect such NP to be in, or very close to, thermal equilibrium.
This allows us to assign thermodynamic properties to our NP,
specifically a heat capacity, and use it to fix the value of a
fourth free parameter in our model. In order to define the
heat capacity we note that, based on the optical matching
Eqs. (20)–(22), it can be shown that γI � �2/ωq . Thus, in
the second line of Eq. (27), the contribution of the ITB is
negligible, and the whole thermal dynamics will be mainly
governed by the free EM field. To define the specific heat,
we consider a small variation in the temperature of the EM
field, which according to Eq. (27) will induce a corresponding
variation in the energy of the IDF. As mentioned above, this
energy exchange can be assigned to the whole nanoparticle
since, on the one hand, the ODF remains unexcited and, on
the other hand, the ITB is a passive bath with no absorption. In
other words, we can interpret the variation of u(t ) with respect
to TEM as the heat exchanged between NP and EM field upon
changing the temperature of the latter. Thus, at long times, we
can define the heat capacity of the NP in terms of our internal
energy in the usual way,

Cθ (βEM) ≡ −kBβ2
EM

∂u∞
∂βEM

. (29)

The specific heat extracted from our model is plotted in
Fig. 3 for a gold NP with radius R = 50 nm. Note that, once
the polarizability has been matched with empirical data, only

FIG. 3. Specific heat as predicted by Eq. (29) for different fre-
quencies ωθ of the IDF. The dashed black lines show the Einstein
specific heat of a three-dimensional harmonic oscillator with natural
frequency ωθ . This plot corresponds to a gold NP with a radius
R = 50 nm and a coupling g = 10−9�.

two free parameters remain, namely the frequency of the IDF,
ωθ , and its coupling to the ODF, g. Regarding the specific
heat, however, the dependence with the latter only becomes
relevant for very large values of the coupling constant, g �
ωθ . Since, as mentioned above, we focus on the physical
regime where g � ωθ , our expression for the specific heat
effectively depends only on the parameter ωθ . This suggests
that, being the IDF a 3D harmonic oscillator, Eq. (29) could
be matched with the usual expression given by the Einstein
model [30]

CE(βEM) = 3kB(h̄ωθβEM)2 eh̄ωθβEM

(eh̄ωθβEM − 1)2
. (30)

The above Einstein formula turns out to be in excellent
agreement with our results, as illustrated by the dashed lines
in Fig. 3. On the one hand, this certifies that, as expected,
the NP is in thermal equilibrium in the long-time limit. On
the other hand, the matching between Eqs. (29) and (30)
allows us to fix the value of the free parameter ωθ through
the phenomenological Einstein temperature �E = h̄ωθ/kB,
which can be determined experimentally. For most materials,
this parameter lies in the range �E ≈ 100–2000 K, which
implies ωθ ≈ 2π × (1012–1013) Hz. Note that our matching is
consistent, as such frequencies fulfill the physically motivated
assumption kBTEM ≈ ωθ � � used in previous sections [25].
Additionally, the values obtained for ωθ are compatible with
the phononic frequencies of nanometric particles, i.e., ωphon ≈
2π × (n × 1013/R[nm]) Hz (n = 1, 2, 3, . . . , N , with N be-
ing the number of atoms composing the particle).

D. Full thermalization dynamics

Once we have matched the optical and thermal response
of our NP, we can study the full time evolution, Eq. (25),
as a function of the only remaining free parameter g. Since
such parameter describes the coupling between the IDF and
the remaining degrees of freedom, it will be responsible for
the timescale of the thermalization. At this point, in order to
clearly describe this thermalization process, it is convenient
to define a notion of “temperature” for the relevant degree
of freedom. Specifically, since the magnitude u(t ) represents
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FIG. 4. Time evolution of the internal energy as given by
Eq. (25), for a gold (upper panel) and silica (lower panel) NP with
radius R = 50 nm and initial temperature T = 1000 K, interacting
with an EM field at TEM = 300 K. The colored lines show three
different values of the coupling rate between ODF and IDF. The
dashed line illustrates the FED result, Eq. (3).

the internal energy of a set of three degenerate harmonic
oscillators (the IDF), it is reasonable to consider the magni-
tude u(t )/3kB as the closest definition of temperature in our
system. Indeed, it is possible to show that u(t )/3kB → T for
a NP in thermal equilibrium in the limit T � �E. An example
of such tendency can be easily observed in the thermal (and
thus equilibrium) initial state of the NP, whose internal energy
is given by Eq. (26). However, let us remark that u(t )/3kB is
only meaningful in energetic terms as, in general, our system
is not in thermal equilibrium at any time during the evolution
and, consequently, a temperature cannot be assigned to the
entire NP.

The full time evolution of the internal energy for both gold
and silica is shown in Fig. 4, assuming an initial NP temper-
ature T� = Tθ = TγI

= 1000 K and an EM field temperature
TEM = 300 K. Interestingly, all three colored curves in each
panel, corresponding to different values of the remaining
free parameter of our model, g, share a common shape, the
effect of modifying g being only a global horizontal shift
proportional to g2. This fact is consistent with our definition
of the internal energy as the energy of the IDF alone which, in
order to equilibrate with the EM environment, must funnel its
extra energy to the ODF at a rate given by g. In other words,
we can physically interpret g as the energy exchange rate of
the NP. Note that the value of g yielding a thermalization
timescale consistent with that of Fig. 1 is g ≈ 10−8 � for gold
and g ≈ 10−9 � for silica. Moreover, the same qualitative
behavior remains when varying the radius of the NP, as shown
in Fig. 5. As expected, a larger radius results in a larger
polarizability (i.e., a larger EM field-ODF coupling), thus
inducing a faster thermalization.

FIG. 5. Time evolution of the internal energy for silica and
different NP radii according to the parameters given in Table I.
Similar results are found for gold (by rescaling the couplings g as
shown in Fig. 4).

The full internal energy relaxation dynamics calculated
with our model can be compared with the results of macro-
scopic electrodynamics, namely FED. As shown by the
dashed lines in Fig. 4, the results obtained with our model
differ not only quantitatively but qualitatively with FED.
Indeed, whereas the energy in our model decays following
a multi-exponential behavior, FED predicts an approximately
polynomial decay, faster at short times and slower close to the
final state. This discrepancy, which as discussed in Sec. II was
to be expected in the way we constructed our model, could be
resolved by experiments capable of measuring Fig. 4. This
would also determine the free parameter of our model, g,
which critically characterizes the relaxation timescale of the
nanoparticle. Indeed, experiments attempting at measuring the
internal temperature of an optically levitated nanosphere have
been recently reported [31].

V. CONCLUSIONS

In this work, we have addressed the problem of the ther-
malization of a levitated nanoparticle in high-vacuum, by
developing a physically motivated minimal model describ-
ing the interaction between the nanoparticle and the thermal
electromagnetic field. First, we give a detailed description
of the physical aspects of the problem, which leads us to
infer that the commonly used assumption of quasiequilibrium
might not hold for the entire nanoparticle. Specifically, on
the one hand, the extreme isolation of the internal phonon
modes should lead to very high internal thermalization times
whereas, on the other hand, the uneven coupling between
such phonons and the external environment is expected to
induce a faster depletion of some of these modes. Motivated
by this, we have built a physically motivated minimal model
able to account for these out-of-equilibrium processes. Then,
we have exactly solved the dynamics of our model using
path integral techniques and the influence functional method.
This has allowed us to reproduce both the optical and the
thermal response of a nanoparticle in terms of the polariz-
ability and the specific heat, respectively. Building on the
above results, we have studied the thermalization dynamics
of the nanoparticle. We have shown that it occurs largely out
of equilibrium, differing from the predictions of approaches
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based on the quasiequilibrium assumption, such as fluctuation
electrodynamics. Although, to our knowledge, no experiments
have yet reported the thermalization dynamics of a levitated
nanoparticle in high vacuum, promising recent works [31]
suggest that reaching this out-of-equilibrium regime lies well
within experimental reach.

Our minimal model attempts at theoretically studying
the extreme physical regimes of ultra high-vacuum levitated
nanomatter. It hints at the possibility that conventionally
accepted approximations and regimes, both in condensed
matter and in light-matter interaction physics, are unsuited to
describe this scenario. We believe that, in the following years,
a deeper theoretical study of these systems, combined with
their experimental availability, will unravel plenty of exotic
and unexplored physical phenomena.
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APPENDIX A: BASICS ON FUNCTIONAL METHODS:
INFLUENCE FUNCTIONAL AND CLOSED-TIME-PATH

FORMALISMS

Here and in the following appendices, we set h̄ ≡ 1 for
simplicity and use Einstein summation convention over re-
peated indices. In this appendix, we present a basic introduc-
tion to the path integral methods used in the article. In order to
address the quantum dynamics of time-dependent, out of equi-
librium systems, we will combine two formalisms. On the one
hand, the closed-time-path method, which allows us to study
the time evolution of quantum systems in terms of functional
integrals. On the other hand, the influence functional method,
suitable for addressing the effective dynamics of a system in
presence of another one considered as an environment.

Our starting point is to express the matrix elements of
the time evolution operator, 〈xt |Û (t )|x0〉, in terms of a path
integral. Here, xt represents an arbitrary complete set of dy-
namical variables at time t . As detailed in Ref. [28], the above
matrix element is determined by discretizing the time interval
(0, t ) into infinitesimal time steps which, in the continuum
limit, become an infinite set of zero-length intervals. This
allows us to write

〈xt |Û (t )|x0〉 =
∫ x(t )=xt

x(0)=x0

Dx eiS, (A1)

where
∫

Dx represents a functional integral over all the trajec-
tories x(t ) passing through the initial and final points, and S

is the classical action expressed in terms of x and its temporal
derivatives. As detailed in Ref. [28], the above equation has
been obtained by explicitly carrying out the integration in
the momentum variables assuming a quadratic kinetic term.

Thus it is generally valid for Hamiltonians with quadratic
dependence on the momentum operator.

1. Closed-time-path integrals

The fundamental representation of the time evolution op-
erator in Eq. (A1) allows us to describe the dynamics of the
density matrix and, consequently, of any expectation value.
Indeed, it is straightforward to write the matrix elements of
the density operator in the Heisenberg picture as

ρ(x, x ′, t ) = 〈x|Û (t )ρ̂Û †(t )|x ′〉
=

∫
dx(0)

∫
dx ′(0) ρ(x(0), x ′(0), 0)

×
∫ x(t )=x

x(0)
Dx

∫ x ′(t )=x ′

x ′(0)
Dx ′ei(S[x]−S[x ′]). (A2)

This expression shows the density matrix elements written
in terms of a path integral along two independent histories,
i.e., the paths x and x ′. In general, however, we will not be
interested in the whole density matrix, but on the correlations
between the operators X̂ at different times, i.e., G12(τ, τ ′) ≡
〈X̂(τ ′)X̂(τ )〉. In order to calculate such correlators in a com-
pact and elegant way, we will use the closed-time-path (CTP)
formalism.

Our first step is to define a more general difference action
than in Eq. (A2), by introducing two artificial linear sources,
J (t ) and J ′(t ), for the two paths, i.e.,

SCTP[x, J ; x ′, J ′] = S[x] − S[x ′]

+
∫ t

0
dλ[J (λ)x(λ) − J ′(λ)x ′(λ)]. (A3)

We can now use the above CTP action to define the generating
functional, i.e., a functional of the two sources J and J ′,
which, as we detail below, will contain all the information
about the correlations we seek. This generating functional is
defined as

Z[J, J ′] =
∫

dx

∫
dx(0)

∫
dx ′(0)ρ(x(0), x ′(0), 0)

×
∫ x(t )=x

x(0)
Dx

∫ x ′(t )=x

x ′(0)
Dx ′eiSCTP[x,J ;x ′,J ′], (A4)

and is closely related to the evolution of the density matrix
[notice the similarity with Eq. (A2)]. However, it is important
to remark that, unlike the density operator, the two path inte-
grals in Eq. (A4) are not independent due to the tracing over
the final time variable, i.e., the integral over x together with
the common upper limit for the two path integrals. The fact
that the two histories are connected through their final point
allows the interpretation of the double integral as a single path
integral along a unique history defined in a closed-time path,
x(0) → x → x ′(0).

According to the definition of the generating functional, it
is straightforward to demonstrate [28] that every correlation
can be calculated as a functional derivative of Z[J, J ′], i.e.,

G12(τ, τ ′) =
[

1

i

δ

δJ (τ )

][
−1

i

δ

δJ ′(τ ′)

]
Z[J, J ′]|J,J ′=0.

(A5)
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Thus the problem of finding correlations is reduced to the
calculation of the generating functional. Importantly, in cases
where the momentum can be defined as p = mẋ, any other
correlation such as, for instance, that of two momentum
operators, is also deducible from the generating functional
[28]. Note that although the expression (A5) is independent
of the temporal ordering between τ and τ ′, it is possible to
also obtain time-ordered correlations from Z.

Aside from calculating correlations, the CTP action de-
fined in Eq. (A3) can be used to derive the equation of motion
for the physical degree of freedom x, through the prescription

δSCTP[x; x ′]
δx

∣∣∣∣
x=x ′,J=J ′=0

= 0. (A6)

As we will see in the next section, the equation of motion
resulting from Eq. (A6) is real and causal, even for open
systems with nonunitary evolutions. It is important to remark
also that the equation deduced in this way can eventually
include dissipation but not noise. In fact, such an equation can
be interpreted as averaged over all the noise realizations. In
the case of open dynamics, however, it is possible to obtain a
Langevin-type equation (including noise) by including in the
imaginary part of the CTP effective action a stochastic source

with a given distribution as a variable in the functional integra-
tions. The resulting equation can be related to the Heisenberg
equation of motion for the corresponding operator, albeit with
a different interpretation (see Ref. [32] for more details). In the
following section, we will detail how the effective dynamics
of open systems can be addressed using the path integral
formalism.

2. Influence functional

Let us consider a system S represented by a degree of
freedom x, in interaction with an environment E described
by the set of degrees of freedom q = {qn}. The Hamiltonian
of the total system is Ĥ = ĤS + ĤE + Ĥint, with

ĤS = p̂2

2M
+ V (x̂) ; Ĥint = Vint (x̂, q̂ ). (A7)

For simplicity, we will assume that ĤE is a quadratic function
of the momentum operators p̂n. In analogy with the previous
section, the quantum state of the compound S + E system is
given by its density matrix ρ̂(t ), which evolves in a unitary
fashion from its initial state ρ̂(0), i.e., ρ̂(t ) = e−itĤ ρ̂(0) eitĤ .
Therefore we can write this evolution in terms of a path
integral as shown in Eq. (A2), using the classical action
S[x, q] = SS[x] + SE[q] + Sint[x, q], as

ρ(x q, x ′q ′, t ) = 〈x q, t |ρ̂|x ′q ′, t〉 =
∫

dxidqi

∫
dx ′

idq ′
i〈x q, t |xiqi, 0〉〈xiqi, 0|ρ̂|x ′

iq
′
i , 0〉〈x ′

iq
′
i , 0|x ′q ′, t〉

=
∫

dxidqi

∫
dx ′

idq ′
i

∫ x

xi

Dx

∫ q

qi

Dq eiS[x,q] ρ(xiqi, x
′
iq

′
i , 0)

∫ x ′

x ′
i

Dx ′
∫ q

q ′
i

Dq ′ e−iS[x ′,q ′]

≡
∫

dxidqi

∫
dx ′

idq ′
i K (x q, x ′q, t |xiqi, x

′
iq

′
i , 0) ρ(xiqi, x

′
iq

′
i , 0). (A8)

In the last step, we have defined K as the propagator of the
total system. This function contains all the information of
the internal system dynamics and is the object we aim at
computing.

In the usual open system scenario, one is interested in
the dynamics of the system S, the detailed dynamics of the
environment E being unnecessary. More specifically, we are
interested in the expectation values of operators with the form
Â ⊗ IE , where Â is an operator acting only on the Hilbert
space of system S. Such expectation values can be calculated
from the reduced density matrix of S, ρ̂r , obtained by tracing
over the environmental degrees of freedom, i.e., ρ̂r = Trq (ρ̂).
The matrix elements of the reduced density operator can thus
be written as

ρr (x, x ′, t ) = Trq (ρ̂) =
∫ +∞

−∞
dq ρ(x q, x ′q, t ). (A9)

Assuming that the S − E interaction is turned on at t = 0,
and that the initial state is uncorrelated, ρ(xiqi, x

′
iq

′
i , 0) =

ρS(xi, x
′
i , 0) ⊗ ρE(qi, q

′
i , 0), we can easily take the trace over

the total density matrix elements in Eq. (A8) to obtain

ρr (x, x ′, t ) =
∫

dxidx ′
i

×Kr (x, x ′, t |xi, x
′
i , 0)ρr (xi, x

′
i , 0), (A10)

which is written in terms of a new propagator for the reduced
density matrix,

Kr (x, x ′, t |xi, x
′
i , 0)

≡
∫ x

xi

Dx

∫ x ′

x ′
i

Dx ′ ei(S[x]−S[x ′])F [x, x ′]. (A11)

Note that Eq. (A10) has the form of the of the evolution of
the density matrix of a closed system. However, the prop-
agator Eq. (A11) does not only contain the free evolution
phase S[x] − S[x ′], but also the Feynman-Vernon influence
functional,

F [x, x ′] =
∫

dqdqidq ′
i ρE(qi, q

′
i , 0)

∫ q

qi

Dqei(SE[q]+Sint [x,q])

×
∫ q

q ′
i

Dq ′e−i(SE[q ′]+Sint [x ′,q ′]). (A12)

This influence functional accounts for the effect of the envi-
ronment on the system dynamics, being F [x, x ′] = 1 in the
case of a closed system, i.e., when Ĥint = 0. Usually, it is
convenient to define the Influence action SIF through

F [x, x ′] = eiSIF[x,x ′,t]. (A13)
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This allows us to interpret the influence of the environment
as an extra term in the action that couples the paths on the
functional integral (A11), x and x ′. Thus, in open quantum
systems, the calculation of the generating functional Z is more
involved, since it requires calculating the influence functional
and then performing the coupled double path integral.

The influence functional formalism is very suitable for
treating open quantum systems. Indeed, it leads to Langevin-
type equations for the effective dynamics of the systems,
where the effect of the environment appears through both
dissipation and noise. In the next section, we analyze the
specific case of linear couplings, which is a cornerstone across
many areas involving the study of dissipative dynamics.

3. Linear couplings

Here, we will detail the expression for the calculation of
the generating functional Z in a more specific scenario. Let us
consider that the environment action is quadratic in its vari-
ables q, and assume the initial state is Gaussian. Furthermore,
we will assume the interaction term of the action to be linear,
Sint = ∫

dt xa (t ) qa (t ). Here, the scripts denote summation
over the different CTP branches, i.e., xa ∈ (x, x ′), while
the coordinates qa can include a coupling constant. Under
all these assumptions, the influence functional in Eq. (A12)
can be interpreted as the functional Fourier transform of a
Gaussian functional with variables q and q ′. As a result,
the influence action is necessarily a quadratic form of x and
x ′, i.e., SIF = (1/2)

∫
dtdt ′ xa (t )Mab(t, t ′)xb(t ). Here, the

matrix elements are by definition equal to

Mab(t, t ′) = −i
δ2

δxa (t )δxb(t ′)
eiSIF[xa,tf ]

∣∣∣∣
xa=0

, (A14)

where tf is the final time of the considered evolution.
Importantly, thanks to the assumptions undertaken above,

the matrix elements of Mab(t, t ′) can also be analytically
calculated by directly taking the variations of the influence
action in Eq. (A13). Specifically, it can be shown that such
elements depend on the expected values of the quantum
operators associated to the dynamical variable q, i.e.,

Mab(t, t ′) = i

(〈T [q̂(t )q̂(t ′)]〉 −〈q̂(t ′)q̂(t )〉
−〈q̂(t )q̂(t ′)〉 〈T̃ [q̂(t )q̂(t ′)]〉

)
. (A15)

Here, T and T̃ represent, respectively, the time ordering and
reverse-time ordering operator, and the expected values are
taken without considering the interaction with the system,
i.e., evolving only with ĤE. Using the above result, we can
explicitly write the influence action in terms of the system
variables as

SIF = i

2

∫
dtdt ′[〈T [q̂(t )q̂(t ′)]〉x(t )x(t ′)

−〈q̂(t ′)q̂(t )〉x(t )x ′(t ′) − 〈q̂(t )q̂(t ′)〉x ′(t )x(t ′)

+〈T̃ [q̂(t )q̂(t ′)]〉x ′(t )x ′(t ′)]. (A16)

A more convenient expression in order to determine the gen-
erating functional can be obtained by changing to the sum and
difference variables, x + x ′ and x − x ′, and using the relations

between the different correlation functions:

SIF =
∫

dtdt ′
[

(x − x ′)(t )D(t, t ′)(x + x ′)(t ′)

+ i

2
(x − x ′)(t )N (t, t ′)(x − x ′)(t ′)

]
. (A17)

The first term above is related to the dissipation in x, and
is governed by the so-called dissipation kernel D(t, t ′). Such
dissipation kernel corresponds to a retarded propagator,

D(t, t ′) = i

2
〈[q̂(t ), q̂(t ′)]〉θ (t − t ′). (A18)

On the other hand, the second term is associated to the fluc-
tuations induced in x by the environment. These fluctuations
are characterized by the noise kernel, which corresponds to a
Hadamard propagator

N (t, t ′) = 1
2 〈{q̂(t ), q̂(t ′)}〉. (A19)

It is important to note that, given the hermiticity of the
involved operators, both kernels are real, while the dissipation
kernel is also causal.

The influence action given in Eq. (A17) allows us to
directly calculate the generating functional for a system in
contact with an environment. This calculation is performed
by simply introducing the influence function SIF as an extra
term of the CTP action SCTP defined in Eqs. (A3) and (A4). In
this case, however, the integrations are not so straightforward
as in the case of a closed system, since the two paths x and
x ′ are coupled by the influence action term. Nevertheless,
the computation of Z can be carried out also in this case,
as proven in Ref. [32] for the action used in this paper (and
generalized to fields in Ref. [33]). The procedure requires
to obtain the equations of motion for the system degrees of
freedom using Eq. (A6). From such equations, we extract
their associated propagators GRet, with initial conditions set
to GRet (0) = 0, ĠRet (0) = 1. Then, it is possible to write the
paths in terms of such Green functions and obtain a compact
expression for the generating functional:

Z[J, J ′] = 〈e−iJ−∗X0〉Xi,pi
e−iJ−∗GRet∗J+

× e− 1
2 J−∗GRet∗N∗(J−∗GRet )T , (A20)

with J− = J ′ − J and J+ = (J ′ + J )/2. Here, we have
defined the operation A ∗ B ≡ ∫

dtA(t )B(t ). Note that
such operation can be concatenated by adding inte-
grations, e.g., J ∗ GRet ∗ J ′ ≡ ∫

dt
∫

dt ′J (t )GRet (t, t ′)J ′(t ′).
Additionally, the expected value is taken using the initial
Wigner function of our state, W (X,p, 0), as 〈· · · 〉Xi,pi

≡∫ +∞
−∞ dXi

∫ +∞
−∞ dpi . . . W (Xi, pi, 0). Finally, X0 is the homo-

geneous solution of the effective equation of motion obtained
through Eq. (A6), written in terms of the initial conditions
Xi, pi :

X0(t ) = ĠRet (t ) Xi + GRet (t )
pi

M
. (A21)

It is important to remark that in many situations, including
our model, there is not a single environment but an ensemble
of layered environments which have to be traced out sequen-
tially. For instance, in the main text, we obtain an effective
equation of motion for the EM field by tracing first the IDF
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and the ITB to get an effective evolution for the ODF, and
afterwards continue by tracing such ODF in the final step.
In these situations, the influence action always has a similar
structure to that of Eq. (A17). However, after performing more
than one trace, the corresponding dissipation and noise kernels
become more involved: on the one hand, the dissipation
kernel becomes an effective retarded propagator including the
retarded propagators of the external systems already traced
out. On the other hand, the noise kernel is not anymore a
Hadamard propagator, but a more involved object including
both the noise and the dissipation kernels of the traced out
environments. Regardless of this difference, the generating
functional can always be calculated by successive application
of Eq. (A20).

APPENDIX B: THE MODEL ACTIONS

This appendix is devoted to give the actions that are
associated to the Hamiltonians of Eqs. (4)–(11). Note that
our formalism is based on Eq. (A1), where we assumed a
quadratic dependence of the system Hamiltonian in all the
canonical momenta in order to integrate such variables out.
As a result, the classical actions appearing in the functional
integrals depend on the variables of the degrees of freedom (x
in the previous section) and their time derivatives, but not on
their momenta. Hence we have to explicitly write the classical
actions in this form.

From now one and throughout all the appendices, greek
subscripts will denote both temporal and spatial coordinates,
whereas latin subscripts will indicate spatial coordinates only.
Under this convention, the spacetime metric will be ημν =
(1,−1,−1,−1), and the four-potential which describes the
EM field will be Aμ. Analogously, three-dimensional vectors
such as the electric field and other quantum degrees of free-
dom will be written either with a latin subscript Ej or, or
equivalently, in vector form as E.

The total action of the system must contain seven terms,
corresponding to the free actions of the four components
of our system (EM field, ITB, ODF, IDF) and the three
interaction terms (see Fig. 2 for illustration). Using the same
notation as in the main text, we thus have

S[Aμ, x�, xθ , {xn}]
= SEM[Aμ] + SI [{xn}] + S�[x�] + Sθ [xθ ]

+ SDip[Aμ, x�] + SInt[x�, xθ ] + SLin[xθ , {xn}]. (B1)

The first four terms correspond to the free actions, and are
given by

SEM[Aμ] = −ε0

4

∫ tf

tin

d4xFμνF
μν = ε0

2

∫ tf

tin

d4x(E2 − c2B2),

(B2)

S�[x�] =
∫ tf

tin

dλ
m�

2

[
ẋ2

�(λ) − �2x2
�(λ)

]
, (B3)

Sθ [xθ ] =
∫ tf

tin

dλ
mθ

2

[
ẋ2

θ (λ) − ω2
θx2

θ (λ)
]
, (B4)

SI[{xn}] =
∑

n

∫ tf

tin

dλ
mn

2

[
ẋ2

n(λ) − ω2
nx2

n(λ)
]
, (B5)

where Fμν = ∂μAν − ∂νAμ is the EM tensor (with ∂μ =
( 1

c
∂
∂t

,∇)), and λ is a time variable. On the other hand, the
last three terms in Eq. (B1) represent the interaction actions,
given by

SDip[Aμ, x�] = q

∫ tf

tin

dλ x�(λ) · E
(
z
μ
0

)
, (B6)

SInt[x�, xθ ] = 2
√

m�mθ�ωθg

∫ tf

tin

dλx�(λ)·xθ (λ), (B7)

SLin[xθ , {xn}] =
∑

n

κn

∫ tf

tin

dλ x�(λ) · xn(λ), (B8)

where for the sake of clarity we indicate by z0 the position
of the particle (taken at the origin in the main text), such that
z
μ
0 = (λ, z0). In the calculations, we will rewrite the EM-ODF

interaction Eq. (B6) in the more convenient, Lorentz-invariant
form

SDip[Aμ, x�] ≡ SDip[Jμ,Aμ] =
∫

d4xJμ(x)Aμ(x), (B9)

with an effective current given by

Jμ(x) = −q

∫ tf

tin

dλx
j

�(λ) × (ηjμ∂0 + cη0μ∂j )δ
(
xα − zα

0

)
.

(B10)

APPENDIX C: TRACING OUT THE INTERNAL DEGREES
OF FREEDOM

In this appendix, we detail the functional integrations over
all the internal degrees of freedom in our model (ITB, IDF,
and ODF) required to obtain the effective influence action
for the EM field and, consequently, its effective equation
of motion given in Eq. (16). The structure of our model,
schematically depicted in Fig. 2, requires a sequential tracing
over such degrees of freedom: first, we trace the ITB and
the IDF, and only after we use the modified influence action
of the ODF to trace it over. This procedure is schematically
illustrated in the first three columns of Table II.

We start by the trace of the ITB acting over the ODF. Be-
cause the ITB-ODF interaction is linear, such trace leads to an
effective action for the ODF analogous to that of a Brownian
particle. Following Ref. [34], we replace the discrete ITB with
a continuous bath characterized by the spectral density JγI

(ω)
[Eq. (12)], obtaining the following influence action:

SQBM[x�, x′
�] = −

∫ tf

tin

dλdλ′x−
�(λ) ·

[
G0

γ (λ − λ′)x+
�(λ′)

− i

2
H 0

γ (λ − λ′)x−
�(λ′)

]
, (C1)

where x−
� ≡ x′

� − x� and x+
� ≡ (x� + x′

�)/2. Note that the
above equation has the same form of Eq. (A17), in this
case with dissipation and noise kernels corresponding to the
quantum Brownian motion (QBM):

G0
γ (λ − λ′) = 2

∫ +∞

0
dω JγI

(ω) sin(ω[λ − λ′]), (C2)

H 0
γ (λ−λ′)=2

∫ +∞

0
dωJγI

(ω)× coth

(
βγI

2
ω

)
cos[ω(λ−λ′)].

(C3)
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TABLE II. Summary of the notation for the different kernels in our calculation. The red colored circles represent the degree of freedom
being traced out, whereas the gray circles represent additional traces taken in a previous step. The first row shows the retarded propagators,
i.e., the dissipation kernels, whereas the noise kernels are split between those which can be expressed as Hadamard propagators (second row)
and the more involved compound noise kernels (third row). In the last column, the different notation for ZTot arises from the fact that this term
represents a fluctuation but not technically a noise source.

Retarded propagator G0
γ [Eq. (C2)] G0

θ [Eq. (C5)] GNP [Eq. (C8)] GEM [Eq. (D29)] G� [Eq. (E3)] Gθ [Eq. (F5)]

Hadamard propagator H 0
γ [Eq. (C3)] H 0

θ [Eq. (C6)] �� HEM [Eq. (D31)] �� ��

Compound Noise kernel �� �� NNP [Eq. (C9)] �� NEnv [Eq. (E4)] ZTot [Eq. (F6)]

This tracing process corresponds to the first column of
Table II.

The second step is to trace out the IDF. Here, the form of
the involved free and interaction actions guarantees that the
integrals are Gaussian and thus analytically solvable. After
performing them, we obtain a second contribution to the
effective influence functional for the ODF, this time due to
the IDF:

SIF[x�, x′
�] =

∫ tf

tin

dλdλ′4m��ωθg
2x−

�(λ) ·
[
G0

θ (λ − λ′)

×x+
�(λ′) + i

2
H 0

θ (λ − λ′)x−
�(λ′)

]
, (C4)

where G0
θ and H 0

θ are the retarded and Hadamard propagators
of the free IDF. Such propagators are more easily defined
through their Laplace transforms (expressed as functions of
the variable s from now on):

G0
θ (s) = 1[

s2 + ω2
θ

] , (C5)

H 0
θ (s) = 1

ωθ

coth

(
βθ

2
ωθ

)
s(

s2 + ω2
θ

) . (C6)

It is worth noting that the influence action Eq. (C4) is analo-
gous to Eq. (C1) but for an environment composed of a single
oscillator (the IDF in this case).

The final step corresponds to the third column of Table II,
i.e., tracing out the ODF under the extra influence action
SQBM[x�, x′

�] + SIF[x�, x′
�] [Eq. (C1) and (C4)]. Again, all

the actions involved in this step are quadratic and, therefore,
the functional integration can be performed exactly. After
carrying them out, we obtain the following influence action
for the EM field:

SIF[Aμ,A′μ] =
∫ tf

tin

dλdλ′ q2

m�

E−(λ, z0) ·
[
GNP(λ − λ′)

× E+(λ′, z0) + i

2
NNP(λ, λ′)E−(λ′, z0)

]
.

(C7)

Here, we define the retarded propagator of the NP as that of
the ODF obtained after tracing out the IDF and the ITB. This

function is defined through its Laplace transform as

G−1
NP(s) =

[
s2 + �2 − Gγ (s)

m�

− 2�ωθg
2 G0

θ (s)

]
. (C8)

In Eq. (C7), the noise kernel of the nanoparticle, NNP, it does
not correspond to a Hadamard propagator of the ODF but to a
more complex structure involving both the Hadamard propa-
gators of the ITB and the IDF and their retarded propagators:

NNP(λ, λ′) = 1

2�
coth

[
β�

2
�

]
[ĠNP(λ − tin )ĠNP(λ′ − tin )

+�2GNP(λ − tin )GNP(λ′ − tin )] +

+
∫ tf

tin

dλ′′dλ′′′GNP(λ − λ′′)GNP(λ′ − λ′′′)

×
[

2�ωθg
2H 0

θ (λ′′ − λ′′′) + 1

2
H 0

γ (λ − λ′)
]
.

(C9)

Once the influence functional for the EM field under the
influence of the remaining subsystems [Eq. (C7)] has been
calculated, our goal is to obtain the effective equation of
motion of the EM field. In order to do this, it is useful to
rewrite Eq. (C7) as

SIF[Aμ,A′μ] =
∫

dx
∫ tf

tin

dλ δ(x − z0)E−(λ, x) ·
∫ tf

tin

dλ′ q2

m�

×
[
GNP(λ − λ′)E+(λ′, x) +

+ i

2
NNP(λ, λ′)E−(λ′, x)

]
. (C10)

We now follow Ref. [33] by introducing a gauge fixing action
for the EM field, where we specifically choose the temporal
gauge A0 ≡ 0 (such that E = −Ȧ). In this way, the four
equations of motion for each component of Aμ are reduced to
three equations for the components of the vector potential, A,
plus one residual condition provided by the fourth equation in
combination with the chosen gauge. Such a residual condition
is referred to as the generalized Coulomb gauge condition
[33]. The computation of the effective equation of motion
for the EM field, which in this gauge is particularly simple,
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is now carried out by extreming the CTP action SEM[Aμ] −
SEM[A′μ] + SIF[Aμ,A′μ] according to Eq. (A6). Noting that
the condition A = A′ implies A− ≡ 0 and A+ = A, we can
obtain

∇ × (∇ × A) + 1

c2

∂2A
dt2

+ δ(x − z0)

× d

dt

[∫ t

tin

dλ
q2

m�c2ε0
GNP(t − λ)Ȧ(λ, x)

]
= 0,

(C11)

or, after transforming to Laplace space,

∇ × (∇ × A) + s2

c2

[
1 + δ(x − z0)

q2GNP(s)

m�ε0

]
A(s, x) = F0.

(C12)

Here, the right-hand side of the equation contains all the terms
dependent on the initial conditions of the field, which we do
not write explicitly since they are unnecessary for determining
the polarizability of our model. Noting that the propagators in
Eq. (C12) are causal, we can easily transform to Fourier space
by substituting s = −iω and, after setting z0 ≡ 0, directly
obtain Eq. (16) of the main text.

APPENDIX D: TRACING OUT THE EM FIELD

The remaining appendices are devoted to the calculation of the internal energy u(t ) in the main text, by means of calculating
the generating functional [this functional is given in Eq. (F1)]. The first step in this procedure is to trace both the EM and the
ITB environments (first and fourth columns in Table II). Note that the latter trace has already been undertaken in Appendix C.
This appendix is thus devoted to taking the trace over the EM field, a procedure involving some delicate steps.

To trace out the EM field, we first separate all the factors and integrations involving the EM field on Eq. (F1), the resulting
object being the influence functional of the EM field over the rest of the system, given by

FEM[Jμ, J ′
μ] =

∫
dA

μ
f

∫
dA

μ
indA

′μ
in ρEM

(
A

μ
in, A

′μ
in ; tin

) ×
∫ A

μ
f

A
μ
in

DAμ

∫ A
μ
f

A
′μ
in

DA′μei(SEM[Aμ]+SDip[Jμ,Aμ]) × e−i(SEM[A′μ]+SDip
[
J ′

μ,A′μ]
).

(D1)

In order to perform the path integrations, it is important to note that, due to the gauge symmetry of the EM theory, such
integrations must be taken over one class of paths for the EM field, i.e., redundant paths connected through gauge transformations
must be excluded from the integration. Formally, this is done by introducing the so-called Faddeev-Popov procedure in the
calculations [33]. Nevertheless, regardless on the chosen gauge, the CTP-integral is Gaussian, so we can perform it analytically
to obtain

FEM[Jμ−, J μ+] = exp

{
i

∫
d4y

∫
d4y ′Jμ−(y) ×

[
DRet

μν (y, y ′)J ν+(y ′) + i

4
DH

μν (y, y ′)J ν−(y ′)
]}

, (D2)

where J ν+ = (J ν + J ′ν )/2 and J ν− = J ν − J ′ν . The tensors DRet
μν and DH

μν stand, respectively, for the retarded and Hadamard
propagators of the EM field in the chosen state, which we assume is a thermal state with temperature TEM. Note that, whereas
Eq. (D2) is valid for every gauge, the expression of the propagators is not. In our case, it is convenient to fix the Feynman gauge,
where DRet

μν and DH
μν can be expressed in terms of the massless scalar field propagators GRet and GH [35],

DRet,H
μν (y, y ′) = 1

ε0
ημνGRet,H(y, y ′). (D3)

Such scalar field propagators are given by

GRet (y, y ′) ≡ GRet (y − y ′) =
∫

d4p

(2π )4

e−ip(y−y ′ )

(p0 + iε)2 − c2p2
= −

∫
dp

(2π )3
eip·(y−y′)θ (t − t ′)

sin[ωp(t − t ′)]
ωp

, (D4)

and

GH(y, y ′) ≡ GH(y − y ′) =
∫

d4p

(2π )3
e−ip(y−y ′ )δ

(
p2

0 − c2p2
)

coth

(
βEM

2
|p0|

)

=
∫

dp
(2π )3

eip·(y−y′) coth

(
βEM

2
ωp

)
cos[ωp(t − t ′)]

ωp
, (D5)

where ε stands for the small parameter of Feynman prescription for propagators, y0 = ct , and ωp = c|p|.
It is important to note that FEM is a functional of x�, x′

� and also a function of z0 through its dependence on the four-currents
Jμ. We can express this combined dependence as FEM[x−

�, x+
�, z0). Note that, in the forthcoming section, we will be interested

in tracing out the degrees of freedom of the ODF, x� and x′
�. Thus it is convenient to write the influence functional Eq. (D2)

in a form where the dependence with these variables is explicit. This is easily achieved by using the definition of the currents
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[Eq. (B10)] to write the influence functional as

FEM[x−
�, x+

�, z0) = exp

{
i

∫ tf

tin

dλdλ′xj−
� (λ)

[
2Gjk

EM(λ, λ′; z0)xk+
� (λ′) + i

2
Hjk

EM(λ, λ′; z0)xk−
� (λ′)

]}
. (D6)

The above recasting of the influence functional defines yet another set of retarded and noise propagators:

Gjk

EM(λ, λ′; z0) ≡ Gjk

EM(λ − λ′) = q2

2

[( − δ
μ

j ∂0 + cδ
μ
0 ∂j

)( − δν
k ∂

′
0 + cδν

0∂ ′
k

)
DRet

μν (y, y ′)
]∣∣

yα=zα
0 ,y ′α=z′α

0
, (D7)

Hjk

EM(λ, λ′; z0) ≡ Hjk

EM(λ − λ′) = q2

2

[( − δ
μ

j ∂0 + cδ
μ
0 ∂j

)( − δν
k ∂

′
0 + cδν

0∂ ′
k

)
DH

μν (y, y ′)
]∣∣

yα=zα
0 ,y ′α=z′α

0
. (D8)

Here, the simplification from the variables λ, λ′ to the difference λ − λ′ originates from the property DRet,H
μν (y, y ′) ≡ DRet,H

μν (y −
y ′) of the original propagators.

The propagators defined by Eqs. (D7) and (D8) can be analytically calculated. For the kernel associated to the retarded
propagator, we have

Gjk

EM(λ − λ′) = q2

2ε0

[∫
dp

(2π )3
[∂0∂

′
0δjk − c2pjpk]θ (t − t ′)

sin[ωp(t − t ′)]
ωp

]∣∣∣∣
t=λ,t ′=λ′

= − q2

2ε0
δjkδ(λ − λ′)

∫
dp

(2π )3
+ q2

2ε0
δjkθ (λ − λ′)

∫
dp

(2π )3

[
ω2

p − c2p2
j

] sin[ωp(λ − λ′)]
ωp

= − q2

2c3ε0
δjkδ(λ − λ′)

∫ +∞

0

dωp

2π

ω2
p

π
+ q2

3c3ε0
δjkθ (λ − λ′)

∫ +∞

0

dωp

2π

ω3
p

π
sin[ωp(λ − λ′)], (D9)

where in the second line we have used the fact that the off-diagonal terms are zero, and in the third line we have computed
the angular integrations in spherical coordinates. Note that the first term in the last line of Eq. (D9) is divergent and should
be included in a frequency renormalization of the ODF as detailed below. On the other hand, the second term represents the
causality kernel that generates dissipation on the ODF, and is given also by a divergent integral. Such a divergence originates
from the consideration of the body as a static point (i.e., with its center of mass being not in motion), the resulting interaction
with the EM field occurring at a single spatial point. In practice, the divergent behavior is prevented by introducing a frequency
cut-off function I (ωp) fulfilling I (ωp) → 0 for ωp � �EM, which accounts for the fact that the body does not interact with EM
modes above the cut-off frequency �EM. We can thus finally write the dissipation kernel as

Gjk

EM(λ − λ′) = −q2δjk

2c3ε0
δ(λ − λ′)

∫ +∞

0

dωp

2π
ω2

p
I (ωp)

π
+ q2δjk

3c3ε0
θ (λ − λ′)

∫ +∞

0

dωp

2π
ω3

p
I (ωp)

π
sin[ωp(λ − λ′)]. (D10)

In part of the literature, the cutoff function stems from the interpretation of the quantity q2I (ωp) as the spectral density associated
to the EM field, since it characterizes its interaction properties as an environment.

Let us now focus on the kernel associated to the Hadamard propagator of the EM field. Introducing the same cutoff function
as above and assuming it is an even function of ωp, we can write such kernel as

Hjk

EM(λ − λ′) = q2

3c3ε0
δjk

∫ +∞

0

dωp

2π
ω3

p
I (ωp)

π
coth

(
βEM

2
ωp

)
cos[ωp(λ − λ′)]

= q2

6c3ε0
δjk

∫ +∞

−∞

dωp

2π
ω3

p
I (ωp)

π
coth

(
βEM

2
ωp

)
e−iωp(λ−λ′ ). (D11)

Importantly, both kernels Gjk

EM and Hjk

EM are diagonal and proportional to the identity operator, i.e., Gjk

EM ≡ δjkGEM, Hjk

EM ≡
δjkHEM. This allows us to simplify the influence functional Eq. (D6) to

FEM[x−
�, x+

�] = exp

{
i

∫ tf

tin

dλdλ′ x−
�(λ) ·

[
2GEM(λ − λ′) x+

�(λ′) + i

2
HEM(λ − λ′) x−

�(λ′)
]}

. (D12)

It is clear that each cartesian component of the ODF degrees of freedom x−
�(λ) is uncoupled from the others, a fact that will

simplify the following calculations.

Radiation reaction and (weak coupling) Markov approximation

So far, we have traced out the EM field, obtaining the influence functional, Eq. (D12), describing its effect on the ODF. Our
next step towards the calculation of the internal energy should be to trace out the ODF including both such influence functional
and the one corresponding to the ITB. However, as we will see below, the effect of the EM field on the ODF dynamics presents
mathematical problems that have to be taken into account first. In this appendix, we detail such problems and the weak-coupling
approximation that we use to solve them.
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Let us derive the equation of motion for the ODF under the influence of the EM field. Since, according to Eq. (D12), each
cartesian component of x� is uncoupled from the rest, we can treat them separately. The CTP action for component j can thus
be written as

Seff
[
x

j

�, x
′j
�

] = S�

[
x

j

�

] − S�

[
x

′j
�

] +
∫ tf

tin

dλdλ′xj−
� (λ)

[
2GEM(λ − λ′)xj+

� (λ′) + i

2
HEM(λ − λ′)xj−

� (λ′)
]
. (D13)

From here, the semiclassical equation of motion for the ODF can be obtained by extreming the effective action,

δSeff
[
x

j

�, x
′j
�

]
δx

j−
� (t )

∣∣∣∣
x

j−
� =0

= 0, (D14)

which yields

ẍ
j

�(t ) + �2x
j

�(t ) − 2

m�

∫ t

tin

dλGEM(t − λ) x
j

�(λ) = 0. (D15)

If we now introduce above the expression for the retarded kernel, Eq. (D10), we find that its first term results in a renormalization
of the frequency �, while its second term acts as the radiation reaction kernel, i.e.,

ẍ
j

�(t ) +
[
�2 + q2

m�c3ε0

∫ +∞

0

dωp

2π
ω2

p
I (ωp)

π

]
x

j

�(t ) − 2

m�

∫ t

tin

dλGRR
EM(t − λ)xj

�(λ) = 0. (D16)

Let us now rewrite the above equation in a more transparent way. Noting that the radiation reaction kernel, GRR
EM, is defined as

GRR
EM(t − λ) = q2

3c3ε0
θ (t − λ)

∫ +∞

0

dωp

2π
ω3

p
I (ωp)

π
sin[ωp(t − λ)] = q2

3c3ε0
θ (t − λ)

∂3

∂t3

[∫ +∞

0

dωp

2π

I (ωp)

π
cos[ωp(t − λ)]

]
,

(D17)

the convolution in Eq. (D16) can be recast as

− 2

m�

∫ t

tin

dλ GRR
EM(t − λ) x

j

�(λ) = − 2

m�

d

dt

[∫ t

tin

dλ �RR(t − λ) x
j

�(λ)

]
− 2q2

3m�c3ε0

∫ +∞

0

dωp

2π
ω2

p
I (ωp)

π
x

j

�(t ). (D18)

The second term on the right-hand side above can be reab-
sorbed in the renormalization of the frequency �. This would
result in two renormalization terms in Eq. (D16), which can
always be erased by including a counter-term in the initial
ODF actions with no repercussion in the dynamics. We will
thus omit these terms hereafter, so that the equation of motion
simplifies to

ẍ
j

�(t ) + �2x
j

�(t ) − 2

m�

d

dt

[∫ t

tin

dλ �RR(t − λ)xj

�(λ)

]
= 0.

(D19)

The above equation contains the radiation reaction damping
kernel �RR, which can be analytically computed as

�RR(t − λ) = q2

3c3ε0
θ (t − λ)

∂2

∂t2

×
∫ +∞

0

dωp

2π

I (ωp)

π
cos[ωp(t − λ)]

= q2

6πc3ε0
θ (t − λ) δ

′′
(t − λ), (D20)

where in the last term we take the cutoff function equal to 1
for simplicity, since this has no crucial impact on our final
argument.

Finally, introducing Eq. (D20) into the semi-classical equa-
tion of motion Eq. (D19), we simplify it to

ẍ
j

�(t ) + �2 x
j

�(t ) − γRR
...
x

j

�(t ) = 0, (D21)

where the radiation reaction coefficient is defined as γRR =
q2/(6πm�c3ε0). This is the well-known radiation reaction
equation of motion, i.e., the equation describing a dipole inter-
acting with an EM field in for any value of the coupling [29].
The solutions of such equation, however, are known to present
several problems due to “runaways” and “preaccelerations”
which result in causality violations. These inconsistencies
originate from the punctual nature of the considered interac-
tion [29].

There are two ways in which one can get around the
runaway problem. First, including in our problem the non-
punctual nature of the dipole. The second is to perform a
weak coupling approximation (also labeled Markovian in the
literature). Given that our results in the main text show that
the coupling between the EM field and the ODF is indeed
weak, we will opt here for the latter. We start by noticing that
the radiation reaction kernel in Eq. (D20) is always a sharply
peaked function of its argument, since the cutoff function
I (ωp) is assumed to be very broad in frequencies. Thus, in
Eq. (D19), the integral in λ is effectively restricted to a narrow
peak around λ = t . In this small time window, if the coupling
between EM field and dipole is weak, we can approximate the
full time evolution of x� by its free evolution,

x
j

�(λ) ≈ x
j

�(tin ) cos [�(λ − tin )] + ẋ
j

�(tin )
sin [�(λ − tin )]

�

= cos [�(λ − t )]xj

�(t ) + sin [�(λ − t )]

�
ẋ

j

�(t ). (D22)
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The above free evolution is simply the one of a harmonic
oscillator of natural frequency �, first expressed in terms of
its initial conditions and later in terms of its final conditions.
By introducing the latter form into the convolution term of
Eq. (D19), together with the expression for the radiation
reaction damping kernel Eq. (D20), we obtain

− 2

m�

d

dt

[∫ t

tin

dλ�RR(t − λ)xj

�(λ)

]
≈ q2�2

6πm�c3ε0
ẋ

j

�(t ).

(D23)

With this result, the final equation of motion in the (weak
coupling) Markov approximation yields

ẍ
j

�(t ) + �2 x
j

�(t ) + q2�2

6πm�c3ε0
ẋ

j

�(t ) = 0, (D24)

which is equivalent to the equation of motion of a damped
harmonic oscillator of frequency �2 and damping constant
q2�2/(6πm�c3ε0). Equation (D24) presents no problems
with either causality, preaccelerations, or runaways.

Although we have undertaken the weak coupling approxi-
mation in the equation of motion, it is convenient for our cal-
culations to understand it in terms of the EM field propagators.
It is well known that such approximation acts effectively as a
change in the nature of the EM bath, from a supraohmic to
an ohmic environment. This can be observed in the effective
change suffered by the retarded kernel under the weak cou-
pling approximation. To see such change, we first note that
we can define an effective retarded kernel under the Markov
approximation, GMA

EM (t − λ), by writing the dissipation term
in Eq. (D24) as a convolution:

q2�2

6πm�c3ε0
ẋ

j

�(t ) = − 2

m�

∫ t

tin

dλGMA
EM (t − λ)xj

�(λ), (D25)

with

GMA
EM (t − λ) ≡ − q2�2

6πc3ε0
δ′(t − λ). (D26)

In order to compare with the full propagator (i.e., without the
Markov approximation), it is convenient to write the above
equation in Fourier space as

G
MA
EM (ωp) = iωp

q2�2

6πc3ε0
= i Im

[
G

MA
EM (ωp)

]
. (D27)

Note that we denote the Fourier transform by a bar over the
transformed function, i.e., G(ω). On the other hand, from the
definition of the full propagator GRR

EM on Eq. (D17), we can
directly express its Fourier transform as

G
RR
EM(ωp) = iω3

p
q2I (ωp)

6πc3ε0
= i Im

[
G

RR
EM(ωp)

]
, (D28)

where in the last step we have assumed that I (ωp) is real.
From the comparison of the above two equations it becomes
indeed evident that the effect of the weak coupling approxi-
mation is to change from a super-Ohmic to an Ohmic spectral
density in Fourier space, i.e.,

G
RR
EM(ωp) = iω3

p
q2

6πc3ε0
−→ iωp

q2�2

6πc3ε0
= G

MA
EM (ωp).

(D29)
Importantly, the change in the retarded propagator de-

scribed above is not the only modification to take into
consideration. Indeed, the Hadamard propagator also has to
undergo a change under the weak coupling approximation,
since both are linked by a fluctuation-dissipation relation
(FDR). Specifically, by combining Eqs. (D11) and (D28), it
is straightforward to prove that such FDR reads

H EM(ωp) = coth

[
βEMωp

2

]
Im

[
G

RR
EM(ωp)

]
. (D30)

In other words, for a thermal state of the EM field, its
Hadamard and retarded kernels are related in Fourier space
by the equation above. This is a general property of prop-
agator of the EM field in a thermal state, and thus has to
hold also within the weak coupling approximation. Hence we
enforce such relation by performing the substitution of the
retarded propagator by its Markovian version in the equation
above, i.e.,

H EM(ωp) = coth

(
βEMωp

2

)
Im

[
G

RR
EM(ωp)

]

−→ coth

(
βEMωp

2

)
Im

[
G

MA
EM (ωp)

] = H
MA
EM (ωp). (D31)

The above equality defines the Hadamard propagator for the
EM field under the weak coupling approximation. These two

propagators, G
MA
EM and H

MA
EM , are the ones we will use to cal-

culate the internal energy in the main text. The corresponding
influence action in the Markov approximation is obtained by
direct substitution of the EM propagators by their Markovian
counterparts in Eq. (D12), obtaining

FEM[x−
�, x+

�] −→ FMA
EM [x−

�, x+
�]

= exp

{
i

∫ tf

tin

dλdλ′x−
�(λ) · [

2GMA
EM (λ − λ′)x+

�(λ′)

+ i

2
H MA

EM (λ − λ′)x−
�(λ′)

]}
, (D32)

after discarding the frequency renormalization terms.

APPENDIX E: TRACING OUT THE OPTICAL DEGREES OF FREEDOM

So far, we have undertaken the first two steps toward the computation of the internal energy, i.e., tracing out the ITB in
Appendix C, and the EM field in Appendix D. These processes correspond to the first and fourth columns of Table II. This
Appendix is devoted to the following step, namely tracing out the ODF under the influence of the environments already traced
(fifth column in Table II).

The two influence actions we have obtained for the ODF correspond to the effect of the ITB [Eq. (C1)] and the EM field
[Eq. (D32)]. Since these environments are independent of each other, their infuence functionals appear as a simple product in
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the trace over the ODF, i.e.,

Fθ [x+
θ , x−

θ ] =
∫

dx�,f

∫
dx�,indx′

�,inρ�(x�,in, x′
�,in; tin )

∫ x�,f

x�,in

Dx�

∫ x�,f

x′
�,in

Dx�

× ei(S�[x�]+SInt [x�,xθ ]−S�[x′
�]−SInt [x′

�,x′
θ ])FQBM[x�, x′

�]FMA
EM [x�, x′

�], (E1)

where FQBM[x�, x′
�] ≡ eiSQBM[x�,x′

�]. The above expression represents the influence functional modifying the free dynamics of
the IDF, due to the dynamics of the ODF which, in turn, evolves under the influence of both the EM field and the ITB.

It is clear that the expression for the influence functional Eq. (E1) is given in terms of a Gaussian CTP integral. It is worth
noting that, in this integral, the IDF’s variables appear as sources, resulting in Fθ being a functional of these variables. Moreover,
given the form of the actions involved, each cartesian component of the ODF couples only to the same component of the IDF
and, as a consequence, the functional integration can be carried out for each component independently. Assuming an initial
thermal state for the ODF, the influence functional Eq. (E1) can be computed, yielding

Fθ [x+
θ , x−

θ ] = exp

{
i

∫ tf

tin

dλ′′dλ′′′x−
θ (λ′′) ·

[
−2mθ�ωθg

2 G�(λ′′ − λ′′′) x+
θ (λ′′′) + i

2
NEnv(λ′′, λ′′′) x−

θ (λ′′′)
]}

. (E2)

Here, G� is the retarded propagator for the ODF under the effective influence of the EM field and the ITB, and obtained from
the effective equation of motion of the ODF. In Laplace space, this propagator reads

G�(s) = 1[
s2 + �2 + (

q2�2

6πm�c3ε0
+ 4γI

)
s
] . (E3)

It is important to remark that it is at this precise point where the Markov approximation discussed above is crucial. Indeed,
in order to calculate G�(s), we have employed the Markovian equation of motion (D24). Contrary to the full equation, the
Markovian one, being of second order, has solutions which are fully determined by G�(tin ) and Ġ�(tin ), as required for
dynamical problems. Moreover, under such weak coupling approximation the poles of Eq. (E3) have negative real parts, ensuring
the causality property and excluding runaways or divergent behaviors.

While in Eq. (E2) the retarded propagator describes the effective dynamics of the ODF under the action of the EM+ITB
environments, the kernel NEnv contains the information about the fluctuations of ODF, ITB, and EM field as an entire
environment, being written as the sum of three contributions,

NEnv(λ′′, λ′′′) = N�(λ′′, λ′′′) + NEM(λ′′, λ′′′) + NγI
(λ′′, λ′′′), (E4)

each of which is given by

N�(λ′′, λ′′′) = 2mθωθg
2 coth

(
β��

2

)
[Ġ�(λ′′ − tin )Ġ�(λ′′′ − tin ) + �2G�(λ′′ − tin )G�(λ′′′ − tin )], (E5)

NEM(λ′′, λ′′′) = 2mθ�ωθg
2

m�

∫ tf

tin

dλdλ′ G�(λ′′ − λ)H MA
EM (λ − λ′) G�(λ′′′ − λ′), (E6)

NγI
(λ′′, λ′′′) = 2mθ�ωθg

2

m�

∫ tf

tin

dλdλ′ GRet
� (λ′′ − λ)H 0

γ (λ − λ′) GRet
� (λ′′′ − λ′), (E7)

where T� is the temperature of the ODF. It is clear that N� is related to the initial state of the ODF and its effective dynamics
under the influence of the EM+ITB baths, while NEM and NγI

are the noises received by the IDF (through the ODF) from the
EM and the ITB environments, respectively.

Finally, note that, from Eq. (E2), we can define the influence action for the IDF as Fθ [x+
θ , x−

θ ] ≡ exp{iSIθ [x+
θ , x−

θ ]}, i.e.,

SIθ [x+
θ , x−

θ ] =
∫ tf

tin

dλdλ′x−
θ (λ) ×

[
−2mθ�ωθg

2G�(λ − λ′)x+
θ (λ′) + i

2
NEnv(λ, λ′)x−

θ (λ′)
]
. (E8)

This effective action, together with the above defined kernels, allows us to write an effective equation of motion for the IDF as
an open system. Indeed, by extreming the total SCP action of the ODF, Sθ [xθ ] − Sθ [x′

θ ] + SIθ [x+
θ , x−

θ ], we obtain

ẍω + ω2
θ xθ − 2�ωθg

2
∫ t

tin

dλ G�(t − λ′) xθ (λ′) = 0, (E9)

an equation we will use in the following sections in order to calculate the internal energy of the IDF.
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APPENDIX F: THE GENERATING FUNCTIONAL AND THE CORRELATION FUNCTION

This appendix is devoted to the final step in the calculation of the internal energy of the IDF. First, we will detail the calculation
of the generating functional for the IDF. Then, we will use it to calculate the correlations required for the determination of the
internal energy. The trace required in this step is schematically depicted in the last column of Table II.

The initial definition of the CTP generating functional for the IDF is the extension of Eq. (A4) to our system:

Z[J, J′] =
∫

dxθ,f

∫
dxθ,indx′

θ,in

∫
dx�,f

∫
dx�,indx′

�,in

∫
dA

μ
f

∫
dA

μ
indA

′μ
in

∏
n

∫
dxn,f

∫
dxn,indx′

n,in

×
∫ xθ,f

xθ,in

Dxθ

∫ xθ,f

x′
θ,in

Dx′
θ

∫ x�,f

x�,in

Dx�

∫ x�,f

x′
�,in

Dx′
�

∫ A
μ
f

A
μ
in

DAμ

∫ A
μ
f

A
′μ
in

DA′μ
∫ xn,f

xn,in

Dxn

∫ xn,f

x′
n,in

Dx′
n

× ρ(xθ,in, x′
θ,in, x�,in, x′

�,in, A
μ
in, A

′μ
in , {xn,in}, {x′

n,in}; tin )ei(S[Aμ,x�,xθ ,{xn}]−S[A′μ,x′
�,x′

θ ,{x′
n}]+J∗xθ −J′∗x′

θ ), (F1)

where the operation (∗) is now extended to vector functions as A ∗ B ≡ ∫ tf
tin

dτAj (τ )Bj (τ ), and the elements of the initial density
matrix are defined as

ρ
(
xθ,in, x′

θ,in, x�,in, x′
�,in, A

μ
in, A

′μ
in , {xn,in}, {x′

n,in}; tin
)

≡ 〈
xθ,in, x�,in, A

μ
in, {xn,in}|ρ̂(tin )|x′

θ,in, x′
�,in, A

′μ
in , {x′

n,in}
〉

= ρEM
(
A

μ
in, A

′μ
in ; tin

)
ρ�(x�,in, x′

�,in; tin )ρθ (xθ,in, x′
θ,in; tin )ρI ({xn,in}, {x′

n,in}; tin ). (F2)

In the last step above, we have particularized to the case of interest, i.e., that of an uncorrelated initial state.
The functional integrations in Eq. (F1) can be, in principle, performed in any order. Since we are interested in the dynamics

of the IDF, in the previous appendices we have carried out the integrations along the remaining degrees of freedom, i.e., the ITB
(Appendix C), the EM field (Appendix D), and the ODF (Appendix E). After taking these traces, the generating functional is
reduced to

Z[J, J′] =
∫

dxθ,f

∫
dxθ,indx′

θ,in ρθ (xθ,in, x′
θ,in; tin )

∫ xθ,f

xθ,in

Dxθ

∫ xθ,f

x′
θ,in

Dx′
θ ei(Sθ [xθ ]−Sθ [x′

θ]+J·xθ −J′ ·x′
θ )Fθ [x+

θ , x−
θ ], (F3)

where it is evident that the unitary free evolution of the IDF is modified by the environment through its influence functional
Fθ . Such influence functional, given in Eq. (E2), makes the evolution of the IDF nonunitary, an expected behavior for an open
quantum system.

We now proceed to trace out the IDF. Fortunately, the influence functional still conserves a Gaussian shape, with each cartesian
component of xθ uncoupled the others. Thus the integral has the same form as the CTP integrals performed in the previous
sections, and can be carried out analytically. Assuming a thermal state for the IDF, it is straightforward to show that

Z[J, J′] = exp

{
i

∫ tf

tin

dtdt ′J−(t ) ×
[
Gθ (t − t ′)J+(t ′) + i

2
ZTot (t, t

′)J−(t ′)
]}

. (F4)

Here, Gθ is the retarded Green function for the IDF under the influence of the composite environment, and is defined through its
Laplace transform as

Gθ (s) = 1(
s2 + ω2

θ − 2�ωθg2G�(s)
) . (F5)

On the other hand, the noise kernel Z has the same structure as that of the ODF (NEnv), i.e., it is split into different contributions:

ZTot (t, t
′) = Zθ (t, t ′) + ZEnv(t, t ′). (F6)

The first contribution is related to the initial state of the IDF,

Zθ (t, t ′) = coth(βθωθ/2)

2ωθmθ

[
Ġθ (t − tin )Ġθ (t ′ − tin ) + ω2

θGθ (t − tin )Gθ (t ′ − tin )
]
, (F7)

with Tθ the temperature of the IDF. The second contribution is related to the environment surrounding the IDF, i.e., the rest of
the system:

ZEnv(t, t ′) = 1

2m2
θ

∫ tf

tin

dλdλ′ × Gθ (t − λ)NEnv(λ, λ′)Gθ (t ′ − λ′). (F8)

The internal structure of ZEnv is inherited from the number of noise kernels perceived by the IDF [see Eq. (E4)]. Note that,
whereas the propagator Gθ has a clear interpretation as a retarded kernel, the kernel ZEnv here represents the contribution to the
correlations of the IDF originated in the fluctuations of the environment.
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Once we have calculated the generating functional Z, we can obtain any quantum correlation of the IDF by taking functional
derivatives [see Eq. (A5)]:

〈
x̂

j

θ (t )x̂k
θ (t ′)

〉 = δ2Z

δJ j (t )δJ ′k (t ′)
. (F9)

We are interested in the expected value of the bare energy of the IDF, i.e., Ĥθ = (p̂2
θ /2mθ ) + (mθω

2
θ x̂2

θ /2). Thus we need to
calculate two correlators, namely, 〈x̂2

θ 〉 and 〈p̂2
θ 〉. The former is straightforward to compute using the above equation, as

〈
x̂2

θ (t )
〉 = lim

t ′→t
δjk

〈
x̂

j

θ (t )x̂k
θ (t ′)

〉 = lim
t ′→t

δjk

2

〈
x̂

j

θ (t )x̂k
θ (t ′) + x̂k

θ (t ′)x̂j

θ (t )
〉
. (F10)

Using the final form of the generating functional Eq. (F4), the above quantum correlation of the IDF can be calculated in a
straightforward way [32], yielding

1
2 〈x̂θ

j (t )x̂θ
k (t ′) + x̂θ

k (t ′)x̂θ
j (t )〉 = δjkZTot (t, t

′). (F11)

By substitution of the noise kernel Eq. (F6) in the above expression, we find〈
x̂2

θ (t )
〉 = 3ZTot (t, t ) = 3Zθ (t, t ) + 3ZEnv(t, t )

= 3

2m2
θ

(
mθ

ωθ

coth

(
βθωθ

2

){
[Ġθ (t − tin )]2 + ω2

θ [Gθ (t − tin )]2
} +

∫ tf

tin

dλdλ′Gθ (t − λ)NEnv(λ, λ′)Gθ (t − λ′)
)

. (F12)

We now focus on the correlator between momenta. Note that, since all the coupling terms related with the IDF contain only the
degree of freedom xθ and not its time derivatives, the canonical momentum is defined as usual, p̂θ = mθ

˙̂xθ . Thus the expected
value we seek is proportional to the correlation 〈 ˙̂x2

θ (t )〉, which we can calculate as

〈
˙̂x2
θ (t )

〉 = lim
t ′→t

δjk

〈
˙̂xj

θ (t ) ˙̂xk
θ (t ′)

〉 = lim
t ′→t

δjk

2
∂t∂t ′

〈
x̂

j

θ (t )x̂k
θ (t ′) + x̂k

θ (t ′)x̂j

θ (t )
〉 = lim

t ′→t

3

2
∂t∂t ′ZTot (t, t

′)

= 3

2ωθmθ

coth

[
βθωθ

2

][(
G̈θ (t − tin )

)2 + ω2
θ

(
Ġθ (t − tin )

)2] + 3

2m2
θ

∫ tf

tin

dλdλ′Ġθ (t − λ)NEnv(λ, λ′)Ġθ (t − λ′). (F13)

In the last line, we have taken into account the causal property of the retarded Green function, Gθ ∝ θ (t − t ′), that restricts the
integration interval, as well as the fact that t, t ′ > tin.

Finally, combining Eq. (F12) and (F13), we can immediately determine the expected value of the internal energy as

〈Ĥθ (t )〉 = mθ

2

〈
˙̂x2
θ (t )

〉 + mθω
2
θ

2

〈
x̂2

θ (t )
〉 = lim

t ′→t

mθ

2

[
∂t∂t ′ + ω2

θ

]δjk

2

〈
x̂

j

θ (t )x̂k
θ (t ′) + x̂k

θ (t ′)x̂j

θ (t )
〉

= 3

4ωθ

coth

(
βθωθ

2

)(
[G̈θ (t − tin )]2 + 2ω2

θ [Ġθ (t − tin )]2 + ω4
θ [Gθ (t − tin )]2)

+ 3

4mθ

∫ t

tin

dλdλ′[Ġθ (t − λ)NEnv(λ, λ′)Ġθ (t − λ′) + ω2
θ Gθ (t − λ)NEnv(λ, λ′)Gθ (t − λ′)

]
, (F14)

which corresponds to Eq.(25) after setting tin = 0. This expression describes the full time evolution of the energy of the IDF.
Note that due to the properties of the retarded propagators, the initial energy is 〈Ĥθ (tin )〉 = (3/2)ωθ coth (βθωθ/2). As expected
from our choice of initial state, this is the energy of a harmonic oscillator in a thermal state.

APPENDIX G: LIMITING BEHAVIORS OF THE IDF’S ENERGY

This appendix is devoted to deduce the short- and long-time asymptotic expressions of the internal energy Eq. (F14) or,
equivalently, of Eq. (25). Specifically, we aim at recovering Eqs. (26) and (27).

1. Short-time behavior

Let us start by noticing that, from their Laplace transforms, both the time-domain Green function of the IDF and its time
derivatives can be calculated by residues through a Mellin formula:

Gθ (t ) =
∫ l+i∞

l−i∞

ds

2πi
estGθ (s) =

∫ l+i∞

l−i∞

dv

2πi
evGθ

(v

t

)
. (G1)
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The convenient change of variable performed in the last step above will allow us to expand the internal energy for short times,
t � 0. We start by expanding the first contribution in Eq. (F14), i.e., the terms associated to the initial state of the IDF:

3

4ωθ

coth

(
βθωθ

2

){
[G̈θ (t − tin )]2 + 2ω2

θ [Ġθ (t − tin )]2 + ω4
θ [Gθ (t − tin )]2

} ≈ 3ωθ

2
coth

(
βθωθ

2

)
+ O[(t − tin )4]. (G2)

Note that the above term is zero up to fourth order in time, a direct consequence of the initial thermal state commuting with the
free Hamiltonian of the IDF. The time evolution at short times will thus be generated only by the interaction terms, given by the
second line of Eq. (F14). In order to calculate such second term, we write the integrands as a two-times-coincidence limit (t ′ → t)
of a correlation function depending on t, t ′, i.e., Gθ (t − λ)NEnv(λ, λ′)Gθ (t − λ′) = limt→t ′ Gθ (t − λ)NEnv(λ, λ′)Gθ (t ′ − λ′).
Then, we double-Laplace transform in each variable t, t ′, and perform the change of variables shown in Eq. (G1) in both Laplace
integrals. We then expand each integral for short times and, as a final step, take the limit t → t ′ to obtain

3

4mθ

∫ t

tin

dλdλ′[Ġθ (t − λ)NEnv(λ, λ′)Ġθ (t − λ′) + ω2
θ Gθ (t − λ)NEnv(λ, λ′)Gθ (t − λ′)

] ≈

≈ 3

2
ωθg

2 coth

(
β�

2
�

)
(t − tin )2

[
1 −

(
4γI + q2�2

6πm�c3ε0

)
(t − tin )

2

]
, (G3)

up to third order. Finally, by combining Eqs. (G2) and (G3), we can express the expectation value of the energy at short times as

〈Ĥθ (t )〉 ≈ 3ωθ

2
coth

(
βθωθ

2

)
+ 3

2
ωθg

2 coth

(
β�

2
�

)
(t − tin )2

[
1 −

(
4γI + q2�2

6πm�c3ε0

)
(t − tin )

2

]
. (G4)

Note that, in the equation above, at short times O((t − tin )2), only the information of the ODF appears. On the other hand, the
fluctuations of both the EM field and the ITB only act on the IDF at a later step O((t − tin )3). This third order correction is
always negative, thus reverting the universal quadratic growth to a physically consistent decay of the internal energy. As a final
remark, note that by setting tin = 0, Eq. (G4) can be easily cast in the form of Eq. (26) in the main text.

2. Long-time limit

In order to obtain the long-time limit of Eq. (F14), we take the limit tin → −∞. For each of the terms appearing in Eq. (F14),
such limit is calculated in different ways. We start by the first line, related to the initial state of the IDF. Here, we use the final
value theorem, which states that the long-time limit of a given time-dependent function f (t ) is equal to lims→0 sf (s), f (s) being
the Laplace transform of f (t ). Noting that the limit of each term as s → 0 is finite, we immediately find that

lim
tin→−∞

(
[G̈θ (t − tin )]2 + 2ω2

θ [Ġθ (t − tin )]2 + ω4
θ [Gθ (t − tin )]2

) = 0. (G5)

In other words, the asymptotic state of the system for long times has no memory of the initial state of the IDF.
Regarding the second term in Eq. (F14), it is more convenient to take its long-time limit directly in the integral. Note that, by

the same argument given above, it is straightforward to show that N� → 0 for tin → −∞. Thus we have∫ t

tin

dλdλ′[Ġθ (t − λ)NEnv(λ, λ′)Ġθ (t − λ′) + ω2
θ Gθ (t − λ)NEnv(λ, λ′)Gθ (t − λ′)

]

→
∫ +∞

−∞
dλdλ′[Ġθ (t − λ)[NEM(λ, λ′) + NγI

(λ, λ′)]Ġθ (t − λ′) + ω2
θGθ (t − λ)[NEM(λ, λ′) + NγI

(λ, λ′)]Gθ (t − λ′)
]
,

(G6)

where we have used the causal property of the Green functions to extend the upper limit of the integral to +∞. Moreover, such
causal behavior allows us to compute the above expression in Fourier space since, for any causal time-dependent function f (t ),
the Fourier and Laplace transforms are related by f (ω) = f (s = −iω). Then, using the expressions of the Fourier transforms

H
MA
EM [Eq. (D31)] and Hγ [Eq. (C3)], we can calculate the value on the right-hand side of the last equation as a single integral in

frequency space,∫ t

tin

dλdλ′[Ġθ (t − λ)NEnv(λ, λ′)Ġθ (t − λ′) + ω2
θ Gθ (t − λ)NEnv(λ, λ′)Gθ (t − λ′)

]

→ 4mθωθg
2�

∫ +∞

0

dω

2π
ω

[
q2�2

6πm�c3ε0
coth

(
βEM

2
ω

)
+ 4γI coth

(
βγI

2
ω

)](
ω2 + ω2

θ

)|Gθ (−iω)G�(−iω)|2. (G7)

Here, we have omitted the cutoff functions I (ω) and f (ω) for simplicity, although we will introduce them when computing the
integral. From the equation above, it is straightforward to write the asymptotic long-time limit of the internal energy as

〈
Ĥ∞

θ

〉 = 3ωθg
2�

∫ +∞

0

dω

2π
ω

[
q2�2

6πm�c3ε0
coth

(
βEM

2
ω

)
+ 4γI coth

(
βγI

2
ω

)](
ω2 + ω2

θ

)|Gθ (−iω)|2|G�(−iω)|2, (G8)

155405-21



A. E. RUBIO LÓPEZ et al. PHYSICAL REVIEW B 98, 155405 (2018)

which can easily be recast into the form of Eq. (27). In the above equation, it is clear that the only contributions stem from the
EM and ITB environments, which provide fluctuations to the IDF.
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