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Piecewise-terminated spherical topological insulator as a virtual breadboard for Majorana circuitry
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We consider the surface states of a spherical topological insulator piecewise terminated by superconductivity
or ferromagnetism over various regions of the spherical surface. Such terminations gap the surface states by
breaking U(1) particle-number symmetry and time-reversal symmetry, respectively. Interfaces and trijunctions
between differently terminated surface regions can host propagating and bound Majorana modes, and the finite
size of the spherical system makes it easily amenable to numerical analysis via exact diagonalization of the
Bogoliubov–de Gennes Hamiltonian within a truncated Hilbert space. Creative termination patterning therefore
allows one to prototype a variety of Majorana circuits, calculating energy spectra and plotting eigenfunctions
over the spherical surface. We develop the computational framework for this approach, establishing a virtual
breadboard for Majorana circuitry, and apply it to circuits of interest, including the Majorana analog of a Mach-
Zehnder interferometer.
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I. INTRODUCTION

The study of symmetry-protected topological phenom-
ena [1–4] has experienced tremendous growth over the
past decade with the theoretical prediction [5–8] of three-
dimensional topological insulators (TIs) followed by their
experimental realization [9–12]. The interplay of topologi-
cal protection and symmetries has enlarged the library of
topological phenomena and may become the foundation of
next-generation quantum technologies [2–4,13,14]. One of the
hallmarks of a three-dimensional topological insulator is the
presence of gapless surface states that are protected by time-
reversal and charge-conservation symmetry [11,12]. These
surface states can be gapped by breaking the time-reversal
symmetry, either by application of magnetic field or by coat-
ing with a magnetic insulator, leading to a novel quantum
Hall effect at the surface. Apart from breaking time-reversal
symmetry, one can also gap the surface states by breaking the
charge conservation through proximity to a superconductor.
The existence of multiple gapping mechanisms (magnetic and
superconducting) allows us to create different types of domain
walls that are interfaces of two independent gapping terms.
These domain wall interfaces can host propagating or bound-
state neutral Majorana excitations that can be leveraged
to create topologically protected Majorana circuits [15,16].
Some examples of these Majorana circuits include analogs
of Mach-Zehnder and Fabry-Pérot interferometers [16,17].
Such circuits act as experimental probes capable of detecting
Majorana excitations as well as assisting in controlling and
manipulating them for technological applications.

Since these circuits of Majorana excitations live exclu-
sively on the TI surface, it is important to study TI surface
states in the presence of realistic material effects such as
disorder, proximity effects, and interactions. However, nu-
merical analysis of such effects has proved challenging due
to the fermion-doubling theorem [18] prohibiting a lattice

description. This is because the surface states can exist only on
the boundary of some higher-dimensional topological phase.
Recent works [19–21] have attempted to overcome this limita-
tion by developing a continuum theory of a single Dirac cone
on the surface of a topological insulator of spherical geometry.

In this paper, we build upon such efforts by implementing
Majorana circuits on the surface of a spherical topological
insulator. Chiral Majorana channels are realized at the inter-
face of surface regions with different gapping terms. Such
interfaces act as wires for the propagation of Majorana modes.
In order to include regions gapped via proximity-induced
superconductivity, we have extended the approach of Neupert
et al. [20] to a formalism based on the Bogoliubov–de Gennes
(BdG) equation. The spherical manifold allows us to study
probe circuits such as a Mach-Zehnder interferometer and
also enables us to enclose an additional bound-state Majorana
acting as a π flux within the area of the interferometer. There
are several technical advantages to studying these circuits
numerically in the spherical geometry. The finite radius of
the sphere results in a well-regulated discrete energy spec-
trum with well-defined eigenstates that can be labeled by
good quantum numbers coming from the spherical symmetry.
The time-reversal symmetry of the spherical TI surface can
be preserved by the introduction of a fictitious magnetic
monopole [19] at the center of the sphere that has opposite
sign for electrons versus holes. Imura et al. [19] showed that
the large-radius limit reproduces flat manifold physics, which
enables us to apply our results to realistic experimental setups.

This paper is organized as follows. In Sec. II, we develop
the formulation for our numerical calculation. Starting with
the Bogoliubov–de Gennes equation appropriate to the spher-
ical TI surface, we establish basis states, define a framework
for inputting surface termination patterns, compute matrix
elements, calculate energy spectra and eigenstates, and derive
expressions for quasiparticle density and quasiparticle current
density. In Sec. III, we demonstrate the utility of our numerics
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by implementing a series of termination patterns and studying
the resulting Majorana circuits, from propagating equatorial
modes to polar bound states to a Mach-Zehnder interferom-
eter. In Sec. IV, we summarize our results and outline future
directions.

II. FORMULATION

Consider a spherical TI terminated by either supercon-
ductivity or ferromagnetism over different regions of the
spherical surface. We seek solutions to the BdG equation for
the resulting surface, characterized by a piecewise-uniform
proximity-induced superconducting order parameter � and
out-of-surface magnetization M . The � = M = 0 case can
be solved exactly [20], with solutions labeled by quantum
numbers n, m, λ, and γ . Such solutions provide a basis for
our Hilbert space, which can be truncated [20] by restricting
to states with n � nmax. For a given piecewise-uniform termi-
nation pattern (a map of regions with nonzero � or M over
the surface of the sphere) our approach is to evaluate matrix
elements of the BdG Hamiltonian within our basis and diago-
nalize to obtain energy spectra and eigenstates. Quasiparticle
density and quasiparticle current density for each eigenstate
can then be evaluated and plotted over the surface of the
sphere. Such solutions are exact within the restricted Hilbert
space, with larger nmax corresponding to higher angular reso-
lution. In this work, we have limited ourselves to termination
patterns with regions bounded by segments of the equator
and/or lines of longitude (meridians). Doing so allows for
matrix elements to be computed very efficiently, with minimal
quadrature, and in turn makes it computationally feasible
to include basis states up to nmax = 10 (a 528-dimensional
Hilbert space).

A. Dirac BdG Hamiltonian

The BdG equation [22] has the following general form
[23,24]:

HBdG� = E�, (1)

HBdG =
[
H − μ �

�† μ − T HT −1

]
, (2)

where H is the single-particle Hamiltonian, μ is the chemical
potential, � is the proximity-induced superconducting order
parameter, and T is the time-reversal operator. Note that � is
a four-component Nambu spinor and HBdG is a 4 × 4 matrix
since H , �, and T are all, in general, 2 × 2 matrices acting on
spin space. In what follows, we make use of two sets of Pauli
matrices, σi acting on spin space and τi acting on particle-hole
space. The coordinate system for our spins is defined locally
over the spherical surface, with σ1, σ2, and σ3 referring to
the φ̂ (east), −θ̂ (north), and r̂ (out-of-surface) directions,
respectively. With these definitions, T = −iσ2K (where K

denotes complex conjugation), and

H = H0 + M · σ , (3)

where M is the proximity-induced magnetization vector
(in units of energy). Here H0 is the Hamiltonian of the bare
TI surface, a two-dimensional massless Dirac Hamiltonian in

spherical geometry, which was shown by Imura et al. [19] to
take the form

H0 = v

R

(
σ1�θ + σ2�φ

)
, (4)

� = −i

[
φ̂

∂

∂θ
− θ̂

1

sin θ

(
∂

∂φ
− i

2
cos θσ3

)]
, (5)

where v is the slope of the Dirac cone and R is the radius of
the spherical surface. Plugging Eq. (3) into Eq. (2) yields

HBdG =
[
H0 + M · σ − μ �

�† μ − H0 + M · σ

]
(6)

because

T H0T
−1 = H0,

T M · σT −1 = −M · σ (7)

as long as M is a real function of angles θ and φ. In this
work, we consider only s-wave superconductivity (scalar �)
and out-of-surface magnetization (M = M r̂), so

HBdG =
[
H0 + Mσ3 − μ �

�∗ μ − H0 + Mσ3

]
, (8)

but the formalism and numerics can be easily adapted to other
situations.

B. Basis states

The single-particle Hamiltonian H0 of the unterminated
spherical TI surface yields exact solutions indexed by quan-
tum numbers n, m, and λ, where n is a nonnegative inte-
ger, m = −s,−s + 1, . . . , s (where s = n + 1

2 ), and λ = ±1.
Neupert et al. [20], making use of formalism developed in
Refs. [25,26], showed that

H0ψ
λ
nm = ελ

nmψλ
nm, (9)

where the 2(n + 1)-fold degenerate eigenvalues are

ελ
nm = λ(n + 1)

v

R
(10)

and the spinor eigenstates take the form

ψλ
nm(θ, φ) =

(
φ

↑
nm

λφ
↓
nm

)
, (11)

with

φ↑
nm = (L−)s−mv̄nun+1, φ↓

nm = − S−

n + 1
φ↑

nm, (12)

where the L− and S− operators

L− ≡ v∂u − ū∂v̄, S− ≡ v̄∂u − ū∂v (13)

are defined in terms of the spinor coordinates

u ≡ cos(θ/2)eiφ/2, v ≡ sin(θ/2)e−iφ/2. (14)

We can therefore write down solutions to the Bogoliubov–de
Gennes equation for the unterminated case where � = M =
0. In this case,

H 0
BdG =

[
H0 − μ 0

0 μ − H0

]
, (15)
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and

H 0
BdG�

λγ

0 nm = E
λγ

0 nm�
λγ

0 nm, (16)

where we have introduced a fourth quantum number, γ = ±1.
The bare (unterminated) energy spectrum takes the form

E
λγ

0 nm = γ
(
ελ
nm − μ

)
, (17)

with bare (unterminated) eigenstates

�
λγ

0 nm =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

[
ψλ

nm

0

]
for γ = +1,

[
0

T ψλ
nm

]
for γ = −1,

(18)

where the zeros denote two-component spinor zeros. Such
eigenstates are orthogonal, and we normalize over the unit
sphere.

These bare eigenstates provide the basis that we will use
to study the full (piecewise terminated by � or M) BdG
Hamiltonian. In principle, since n is unbounded from above,
there are an infinite number of them. However, as discussed
in Refs. [20,27], the bulk band gap provides a natural cutoff
� for the single-particle energy spectrum. Thus, following
Refs. [20,27], we truncate our Hilbert space at n = nmax ≡
�R�

v
− 1�, where the brackets denote the greatest integer or

floor function. Doing so limits the number of single-particle
states to N = 2(nmax + 1)(nmax + 2), such that there are 2N

states in the BdG problem. Since a principal aim of our
work is to use the spherical model as a computational aid to
study the flat TI surface, we are primarily interested in the
large-R, and therefore large-nmax, limit. From this point of
view, Hilbert space truncation at finite nmax is a computational
approximation that serves to limit the angular resolution of our
results. Trading computation time (which increases quickly
with increasing nmax) versus angular resolution, we work with
nmax = 10, which yields 528 BdG states.

Inspection of Eqs. (11) through (14) reveals that each of
the four components of each of our basis states �

λγ

0 nm can be
expressed as a polynomial of the form

NSCE∑
k=1

Ak

(
sin

θ

2

)pk
(

cos
θ

2

)qk

(eiφ/2)rk , (19)

where Ak are complex numbers and pk , qk , and rk are
integers. Such polynomials were dubbed SCE (sine-cosine-
exponential) polynomials in Ref. [27]. Thus, in our numerics,
it is convenient to store each basis-state component as a
4 × NSCE matrix of A-p-q-r parameters, where NSCE is the
number of terms in that SCE polynomial. Since the set of
SCE polynomials is closed under addition, multiplication, and
complex conjugation, such data structures are easily manipu-
lated and (as shown in the next section) efficiently integrated
to compute matrix elements.

C. Matrix elements

With basis states in hand, we proceed to evaluate the matrix
elements of the full BdG Hamiltonian HBdG in the basis of the
eigenstates �

λγ

0 nm of the bare (unterminated) BdG Hamiltonian
H 0

BdG. If i and j index the 2N basis states, these matrix

elements take the form

Hij ≡ 〈
�

λiγi

0 nimi

∣∣HBdG

∣∣�λj γj

0 nj mj

〉
= E

λiγi

0 nimi
δij + �Hij , (20)

where

�Hij = 〈
�

λiγi

0 nimi

∣∣�HBdG

∣∣�λj γj

0 nj mj

〉
(21)

and

�HBdG =
[
Mσ3 �

�∗ Mσ3

]
. (22)

If M and � are general functions of θ and φ, the two-
dimensional integral over the unit sphere in Eq. (21) must be
computed numerically. But if M and � are piecewise uniform,
then for each region of uniform M and �, the integrand is
itself an SCE polynomial (since sums and products of SCE
polynomials are SCE polynomials), and such integrals take
the form

�H
region
ij =

∑
k

Ak

∫∫
dθdφ

(
sin

θ

2

)pk
(

cos
θ

2

)qk

(eiφ/2)rk ,

(23)
where the A-p-q-r constants are those appropriate to the
entire integrand, including the sin θ measure. If we specify
that all boundaries between regions must be segments of lines
of longitude or latitude, then Eq. (23) becomes

�H
region
ij =

∑
k

Ak Iθ (pk, qk, θ1, θ2) Iφ (rk, φ1, φ2), (24)

where

Iθ (pk, qk, θ1, θ2) =
∫ θ2

θ1

(
sin

θ

2

)pk
(

cos
θ

2

)qk

dθ, (25)

Iφ (rk, φ1, φ2) =
∫ φ2

φ1

eirkφ/2dφ

=
{ 2

irk
(eirkφ2/2 − eirkφ1/2) for rk �= 0,

φ2 − φ1 for rk = 0,

(26)

and we can take advantage of the fact that the Iφ integral is
easily evaluated analytically.

In the present work, we consider only termination patterns
with regions bounded by segments of meridians (lines of
longitude) and the equator. Thus, we need only evaluate Iθ

from 0 to π/2 and from π/2 to π . It is straightforward to
show that the latter integral is equal to the former with p and
q indices interchanged:

IS (p, q ) ≡ Iθ (p, q, π/2, π ) = Iθ (q, p, 0, π/2) ≡ IN (q, p).
(27)

Thus, computation of matrix elements reduces to the numeri-
cal evaluation of IN (p, q ) for a limited set of whole-number
indices p and q. In practice, we precompute these once for all
required indices and save to a look-up table, eliminating the
need to do any numerical integration on the fly, which vastly
speeds up the computation of matrix elements and allows us
to maximize the dimensionality of our Hilbert space.
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D. Exact diagonalization

Matrix element computation yields the 2N × 2N matrix
Hij . In the present work, with nmax = 10, this is a 528 × 528
matrix. We diagonalize it numerically to obtain the 2N eigen-
values and eigenvectors. The eigenvalues Ej are the energy
levels of HBdG. The 2N components of eigenvector vj are the
coefficients that define eigenstate �j as a linear combination
of the 2N bare eigenstates:

�j =
∑

i

v
j

i �
λiγi

0 nimi
. (28)

Each of the 2N eigenstates computed in this manner is a
four-component Nambu spinor, where each component is a
function of θ and φ that can be expressed as an SCE poly-
nomial [see Eq. (19)]. Via Eq. (28), we compute the A-p-q-r
constants associated with each, and store all eigenstates in this
convenient SCE format.

E. Quasiparticle current density

Since quasiparticle density is conserved, the quasiparticle
current density functional j[�] is obtained from the quasipar-
ticle density functional

ρ[�] = �†� (29)

via the continuity equation

∂ρ

∂t
+ ∇ · j = 0, (30)

where � is the wave function, a four-component Nambu
spinor. Plugging in for ρ and noting that i∂�/∂t = HBdG�

yields

i∇ · j = (HBdG� )†� − �†(HBdG� ), (31)

which becomes

∇ · j = v

R sin θ

[
∂

∂θ

(
sin θ�†σ2τ3�

) + ∂

∂φ
(−�†σ1τ3�)

]
(32)

once we have inserted HBdG via Eqs. (4)–(6). Noting that the
divergence of a surface vector in spherical coordinates [28]
has the form

∇ · A = 1

R sin θ

[
∂

∂θ
(sin θAθ ) + ∂Aφ

∂φ

]
, (33)

this reduces to

∇ · j = ∇ · v�†(σ2θ̂ − σ1φ̂
)
τ3�. (34)

Thus, the quasiparticle current density functional is simply

j = j1φ̂ + j2(−θ̂ ), (35)

where the eastward component j1 and the northward compo-
nent j2 take the form

j1[�] = −v�†σ1τ3�, j2[�] = −v�†σ2τ3�. (36)

(Note that the minus signs are due to a sign convention,
originally introduced in Ref. [20], in the definition of the
single-particle Dirac Hamiltonian.) If the components of �

are defined such that �T = [�1,�2,�3,�4], then

j1 = −2v Re[�∗
1 �2 − �∗

3 �4], (37)

j2 = −2v Im[�∗
1 �2 − �∗

3 �4]. (38)

Once the 2N eigenstates �j have been computed as per
Sec. II D, it is straightforward to compute the quasiparticle
density and quasiparticle current density for each and then to
plot these over the surface of the unit sphere.

III. RESULTS

We have developed a computational utility to apply the
procedure described in Sec. II to any piecewise-uniform M-�
surface termination pattern with region boundaries that are
either meridian segments or equator segments. Here we ex-
plore the results of applying this utility to a number of simple
termination patterns. Throughout, we consider the case where
the chemical potential is fixed at the Dirac point (μ = 0), and
we truncate our Hilbert space at nmax = 10 (528 BdG states).

A. Propagating Majorana modes

The simplest termination pattern, of course, is no termina-
tion at all. In this case, the energy spectrum is given directly
by Eqs. (17) and (10). For μ = 0, the result is a ladder of
energy levels of rung separation v/R, with the zero-energy
rung absent and degeneracy increasing linearly away from
zero energy (four times the rung number, counting away from
zero in both the positive and negative directions). Inputting no
termination to our numerics yields this spectrum trivially, as
plotted in Fig. 1(a).

Terminating the entire sphere with an s-wave superconduc-
tor of order parameter � and constant phase breaks particle-
number conservation and opens up a gap from −|�| to |�|,
with an energy spectrum of the form ±√

(ελ
nm)2 + |�|2 for

μ = 0. Similarly, terminating the entire sphere with an out-
of-surface magnetization M breaks time-reversal symmetry
and opens up a gap from −M to M , with an energy spectrum
of the form ±√

(ελ
nm)2 + M2 for μ = 0. Numerics-generated

spectra for these two cases are plotted in Figs. 1(b) and 1(c),
respectively. In these cases and all that follow, we take |�| =
|M| = 4v/R.

By applying different terminations to the northern and
southern hemispheres, it is possible to introduce propagat-
ing interface states at the equator, with energies that fall
within the gap. (Several of these are discussed in Fig. 18.2
of Ref. [4]. Here we demonstrate them with our numerics.)
A �-terminated northern hemisphere with an M-terminated
southern hemisphere (referred to in what follows as a �/M

configuration) yields a chiral Majorana mode propagating
eastward around the equator. The resulting energy spectrum
is shown in Fig. 1(d), where each within-gap energy level is
nondegenerate. The quasiparticle current density associated
with the lowest-positive-energy state is plotted in Fig. 1(g).
Swapping � for M or reversing the sign of the magnetization
leaves the energy spectrum unchanged but changes the current
direction from eastward to westward, as plotted in Fig. 1(h).
A −M/M termination pattern yields two degenerate chiral
Majorana modes propagating in the same direction (eastward)
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FIG. 1. Equatorial propagating Majorana modes. (a)–(f) Energy
spectra of the spherical TI surface terminated over the northern and
southern hemispheres by various combinations of s-wave supercon-
ductor �, out-of-surface magnetization M , and into-surface magne-
tization −M . (g) and (h) The quasiparticle current density patterns
corresponding to eastward- and westward-propagating equatorial
Majorana modes (hue from blue to red denotes current magnitude;
arrows denote current direction). The lowest positive-energy level
of (d) yields a single eastward mode, that of (e) yields two coprop-
agating eastward modes, and that of (f) yields counterpropagating
eastward and westward modes. Results were computed via exact
diagonalization up to nmax = 10 (528 BdG states) for |�| = |M| =
4v/R and μ = 0.

around the equator. The energy spectrum is that of Fig. 1(e),
where each within-gap energy level is twofold degenerate.
Finally, a �/ − � termination pattern (an equatorial Joseph-
son π junction) yields two degenerate counterpropagating
Majorana modes, one associated with an eastward equatorial
current and the other associated with a westward equatorial
current. The energy spectrum computed for this configuration
is that of Fig. 1(f), where each within-gap energy level is once
again twofold degenerate.

These simple two-region patterns provide helpful rules of
thumb for understanding the propagating Majorana currents
associated with more complex termination patterns. The basic
rules are as follows: (1) �/M and �/ − M interfaces are
single-lane one-way streets for Majorana current, oriented
such that an M region is to one’s right, or a −M region is to
one’s left, as one flows along with the current. (2) M/ − M

interfaces are two-lane one-way streets for Majorana current,
hosting two copropagating Majorana modes flowing such
that the M region is to one’s right and the −M region is to
one’s left as one flows along with the current. Such interfaces
can be thought of as M/�/ − M double interfaces, with an

infinitely narrow �-median separating lanes. (3) Josephson
junction interfaces of the form �1/�2 support propagating
Majorana modes only when their phase difference is π .
Such π -junction interfaces are two-lane two-way streets that
support Majorana current in both directions. Increasingly
complex surface termination patterns can support interface
states of increasing complexity, but for such a state to support
current flow, there must exist a closed interface path that
satisfies the above traffic rules.

B. Majorana bound states

Fu and Kane [15] showed that superconductor trijunctions,
TI surface terminations where three superconducting regions
with different phases meet at a point, can support Majorana
bound states (MBSs) at the trijunction if the three phases are
selected appropriately. Such a configuration is easily realized
within our spherical geometry. The simple three-region beach-
ball termination pattern depicted in Fig. 2(a) demonstrates this
nicely. Here we divide the spherical surface into three regions,
separated by equally spaced lines of longitude (meridians),
where each region is terminated by s-wave superconductors
with order parameters of the same magnitude but different
phases, φ1, φ2, and φ3. The interface lines meet at the north
and south poles, resulting in two polar trijunctions. We expect
to find MBSs at the poles for values of φ1 and φ2 within the
shaded regions of the Fu-Kane [15] phase diagram, depicted
in Fig. 2(c), where φ3 has been defined to be zero.

Our numerics provide a convenient way to explore the
nature of this polar-trijunction system. Consider a trace across
the Fu-Kane phase diagram for φ2 = π/2, shown in green in
Fig. 2(c). By varying φ1 from 0 to 2π in steps of π/32, we
have calculated the energy spectra and eigenstates for every
step along this trace. The energy spectra are plotted versus
φ1 in Fig. 2(b). Note the two near-zero energy levels that
develop as we enter the MBS region of the phase diagram
(π � φ1 � 3π

2 ). These are the polar Majorana bound states.
Since our numerics compute not just energy levels but also
eigenstates, it is straightforward and instructive to plot quasi-
particle density corresponding to an MBS eigenstate as we
move through the shaded MBS region of the phase diagram.
We do so in Figs. 2(d)–2(h) for each of the points marked by
green dots in Fig. 2(b): φ1 = π, 9π

8 , 5π
4 , 11π

8 , 3π
2 . For φ1 < π ,

there are no MBSs. For φ1 = π , the interface between region
1 and region 3 becomes a π junction since φ1 − φ3 = π . As
discussed in Sec. III A, this allows Majorana current to flow
along that interface, which it does as the MBSs are created at
the poles. Figure 2(d) shows the resulting quasiparticle density
along the 1-3 interface meridian connecting the poles. As φ1

increases toward 5π
4 , the center of the shaded MBS region,

quasiparticle density becomes more concentrated at the poles,
as seen in Figs. 2(d)–2(f). Then as φ1 increases further, beyond
the center of the shaded MBS region, it spreads out once
again, as seen in Figs. 2(f)–2(h). For φ1 = 3π

2 , the interface
between region 1 and region 2 becomes a π junction since
φ1 − φ2 = π . The resulting Majorana current along the 1-2
interface meridian allows the MBSs to escape the poles and
fuse/annihilate, as shown in Fig. 2(h). For φ1 > 3π

2 , the MBSs
are gone once again.
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FIG. 2. Majorana bound states at poles. (a) Spherical TI surface
terminated by s-wave superconductors in a three-region beach-ball
pattern, with order parameters of the same magnitude, |�|, but
different phases: 0 < φ1 < 2π , φ2 = π/2, and φ3 = 0. (b) Computed
energy spectra as a function of phase φ1. Note the development
of near-zero-energy Majorana bound states (MBSs) for π < φ1 <

3π/2, in agreement with the Fu-Kane [15] phase diagram shown
in (c). The quasiparticle density of the lowest-positive-energy state
is plotted over the spherical surface in (d)–(h) for each of the five
φ1 values marked in (b) by green dots. These quasiparticle density
snapshots illustrate the arrival and departure of the polar MBSs
across interfaces of phase difference π . Results were computed via
exact diagonalization up to nmax = 10 (528 BdG states) for |�| =
4v/R and μ = 0.

C. Mach-Zehnder interferometer

Now that we have seen how simple two-region and three-
region termination patterns can be used to demonstrate the
nature of propagating and bound Majorana states, let us
consider a slightly more complex termination pattern that
illustrates how propagating Majorana modes can be used to
probe Majorana bound states.

We begin by constructing our probe, a spherical-TI-surface
Majorana-current analog of a Mach-Zehnder interferome-
ter [16,17]. Consider the three-region termination pattern
depicted in Fig. 3(a). The northern hemisphere is entirely
� terminated, with uniform phase (for now). The southern
hemisphere is half terminated by M and half terminated by

FIG. 3. Mach-Zehnder interferometer. (a) Spherical TI surface
terminated by s-wave superconductor � over the northern hemi-
sphere, out-of-surface magnetization M in the eastern half of the
southern hemisphere, and into-surface magnetization −M in the
western half of the southern hemisphere. Since two Majorana modes
copropagate northward from the south pole, split into two branches
that propagate eastward and westward around the equator, and then
merge again to copropagate southward, this configuration is the Ma-
jorana analog of a Mach-Zehnder interferometer with its output fed
back into its input, as depicted in (b). Since the northern hemisphere
is uniform, this Mach-Zehnder is essentially empty. (c) The within-
gap energy spectrum is therefore an evenly spaced ladder of doubly
degenerate levels, corresponding, respectively, to the modes that
branch westward and eastward. (d) and (e) The quasiparticle current
density distributions for each of the lowest-positive-energy states.
Results were computed via exact diagonalization up to nmax = 10
(528 BdG states) for |�| = |M| = 4v/R and μ = 0.

−M , with the dividing interface running along a great-circle
segment from a point on the equator, through the south pole,
back to the equator on the opposite side of the sphere. As
per the rules of thumb developed at the end of Sec. III A,
we expect current to flow in the directions indicated by the
white arrows. Two copropagating modes are allowed along
the −M/M interface, and single propagating modes are al-
lowed along the eastward-propagating �/M interface and the
westward-propagating �/ − M interface. The resulting flow
is that of two modes copropagating northward from the south
pole, splitting into two equatorial modes (one eastward, one
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westward), rejoining on the opposite side of the sphere, and
copropagating southward toward the south pole. This situation
is analogous to that of a Mach-Zehnder interferometer, with its
output fed back into its input, as depicted in Fig. 3(b). Since
the two arms of this Mach-Zehnder wrap around the equator,
it encloses the entire northern hemisphere and can be used
as a probe thereof. In the current configuration, the north-
ern hemisphere is effectively empty, terminated by a single
superconducting region of uniform phase. Our numerics can
be used to calculate the energy spectrum and eigenstates. The
resulting energy spectrum, plotted in Fig. 3(c), reveals inter-
face states within the gap, corresponding to Majorana modes
propagating through the Mach-Zehnder. Each interface level
is doubly degenerate, as there are two allowed modes. The
current patterns associated with the lowest-positive-energy
states are plotted in Figs. 3(d) and 3(e). The former depicts
the mode that follows the westward branch, while the latter
depicts the mode that follows the eastward branch. Since these
two eigenstates are degenerate, linear combinations thereof,
which follow both the westward and eastward branches, are
also eigenstates and could just as easily have been used to
represent the propagating modes.

Now we can change the northern hemisphere a bit so our
southern hemisphere Mach-Zehnder has something interest-
ing to probe. Consider the five-region termination pattern
depicted in Fig. 4(a). The M and −M regions in the southern
hemisphere remain the same, but the single uniform-phase
� region in the northern hemisphere has now been replaced
by three equal-area � regions bounded by the equator and
equally spaced meridians that meet at the north pole. The
three order parameters have the same magnitude but different
phases, φ1, φ2, and φ3. Thus, while the equator continues
to host the propagating modes that define the arms of the
Mach-Zehnder, the north pole can support Majorana bound
states if the phases are selected within the shaded region
of the Fu-Kane phase diagram in Fig. 2(c). Setting φ3 = 0
and φ2 = π/2, we can move along the green trace in the
phase diagram by varying φ1 from 0 to 2π in steps of π/32.
Doing so and calculating energy spectra at every step yield the
energy versus phase plots of Fig. 4(b). Note how these plots
represent a hybridization of the phase-dependent spectra of
the trijunction [Fig. 2(b)] and the phase-independent spectra
of our Mach-Zehnder probe [Fig. 3(c)]. In addition to energy
spectra, we compute, at every step, all 528 eigenstates and can
plot for each one the associated quasiparticle density ρ and
quasiparticle current density j over the surface of the sphere.
For φ1 = π/4, the ρ and j plots for the lowest-positive-
energy eigenstate are shown in Fig. 4(c). Note the absence
of quasiparticle density at the north pole. This makes sense
since for φ1 = π/4, we are in the no-MBS (unshaded) part of
the Fu-Kane phase diagram. Note also that a robust Majorana
current flows through the Mach-Zehnder at this value of φ1.
As we increase φ1 and enter the MBS (shaded) part of the
Fu-Kane phase diagram, quasiparticle density builds up at the
north pole. This is evident from Fig. 4(d), which contains the
ρ and j plots for φ1 = 5π/4. Here the quasiparticle density
plot reveals a clear peak at the north pole. The corresponding
quasiparticle current density plot shows something interest-
ing, a substantially diminished Majorana current throughout
the Mach-Zehnder.

FIG. 4. Mach-Zehnder interferometer with a trijunction at the
north pole. (a) Five-region termination pattern consisting of the
Mach-Zehnder pattern from Fig. 3 with the northern hemisphere
superconductor replaced by three superconductor regions with dif-
ferent phases meeting at the north pole in a trijunction. (b) Energy
spectra as a function of phase φ1. (c) Quasiparticle density ρ and
quasiparticle current density j of the lowest-positive-energy state for
φ1 = π/4. (d) The same for φ1 = 5π/4. In (c), the absence of an
MBS at the north pole is accompanied by a robust quasiparticle
current in the Mach-Zehnder. In (d), the presence of an MBS at the
north pole is accompanied by a diminished quasiparticle current in
the Mach-Zehnder. Results were computed via exact diagonalization
up to nmax = 10 (528 BdG states) for |�| = |M| = 4v/R and μ = 0.

This diminished current is closely related to the change
in energy level quantization that occurs in the presence of
the MBS at the north pole, which acts as an effective π

flux between the arms of the interferometer. In the pres-
ence of this effective π flux, our Mach-Zehnder setup is

155401-7



ADAM C. DURST AND SRIRAM GANESHAN PHYSICAL REVIEW B 98, 155401 (2018)

FIG. 5. Mach-Zehnder detection of a Majorana bound state. For
the lowest-positive-energy eigenstate associated with the depicted
termination pattern (right inset), quasiparticle current density at the
south pole is plotted as a function of phase φ1 for each of the
three traces across the Fu-Kane [15] phase diagram (left inset). Note
that south pole current is depressed by a factor of roughly 1/2 in
regions of phase space where there is a Majorana bound state at
the north pole. Hence, this configuration enables the detection of a
north pole MBS via measurement of south pole current. Results were
computed via exact diagonalization up to nmax = 10 (528 BdG states)
for |�| = |M| = 4v/R and μ = 0.

qualitatively similar (aside from the drain being fed back
into the source) to the Z2 Majorana interferometer proposed
by Fu and Kane [16]. In Fig. 4(b), which shows the energy
spectrum as a function of the phase φ1 that controls the pres-
ence/absence of the north pole MBS, we see that for φ1 = 0,
where the MBS is absent, the nearly doubly degenerate energy
levels are approximately quantized as integer-plus-one-half
multiples of the fundamental energy scale v/R. In the absence
of the MBS, these two nearly degenerate modes correspond
to equivalent linear combinations of eastward- and westward-
propagating Majorana channels. As we increase φ1 and tune in
an MBS at the north pole, these levels split such that, at φ1 =
5π/4, one of the energy levels is approximately quantized as
integer multiples of v/R, while the other remains roughly un-
changed. This implies that one of the modes is π phase shifted
with respect to the other, resulting in a net interference effect
that is also reflected in the computed quasiparticle current.

We can explore this effect further by computing quasipar-
ticle current density right at the south pole as a function of
phase φ1. Results for the φ2 = π/2 case that we have been
considering are plotted as the green curve in Fig. 5. Note the
dip in the south pole current by roughly one half, centered
at φ1 = 5π/4, the center of the MBS region of the Fu-Kane
phase diagram (see inset). At half maximum, this dip extends
from π to 3π/2, which is the parameter regime where the
MBS is present at the north pole. (The gradual nature of this
dip is a consequence of the finite angular resolution of our
numerics.) The red and blue curves correspond to equivalent
calculations of south pole current for the red trace (φ2 = π/3)
and the blue trace (φ2 = 2π/3) in the inset phase diagram.

Once again, there is a dip in the south pole current by roughly
one half for φ1 within the range where the north pole hosts
an MBS. This range is narrower for the red curve because
the red trace crosses a narrower slice of the MBS region of
the phase diagram and is wider for the blue curve because the
blue trace crosses a wider slice of the MBS region. In the pres-
ence of a north pole MBS, there is a phase difference between
the eastward- and westward-propagating arms of the Mach-
Zehnder. The resulting interference leads to a diminished
south pole current whenever there is an MBS at the north pole.
Hence, our southern hemisphere Mach-Zehnder functions as
a detector of Majorana bound states at the north pole.

IV. CONCLUSIONS

In this work, we numerically solved the Bogoliubov–de
Gennes equation for a spherical topological insulator surface
characterized by a piecewise-uniform proximity-induced su-
perconducting order parameter and out-of-surface magnetiza-
tion. The interface of two independent gapping terms forms a
domain wall that carries Majorana excitations. By using dif-
ferent patterning of these gapping terms, one can implement
both bound-state and propagating Majorana modes. We devel-
oped a computational framework that allows us to prototype
a wide variety of Majorana circuits simply by specifying the
surface termination pattern in an input file. Using exact diag-
onalization, we computed the energy spectra and eigenstates
of Majorana excitations at domain wall interfaces and trijunc-
tions. For each computed eigenstate, our numerics generates
plots of quasiparticle density and quasiparticle current density
over the surface of the sphere, some of which were presented
in this paper. We used this utility to investigate the non-
Abelian nature of Majorana excitations by probing their braid-
ing properties. To this end, we implemented a Mach-Zehnder
interferometer circuit with equatorial interferometer arms sur-
rounding a polar trijunction. By manipulating the phases of
the superconducting order parameters, we were able to tune in
a Majorana bound state that acts as a π flux within the area of
the interferometer. We computed the interference signatures in
the quasiparticle current density and found results consistent
with the Fu-Kane trijunction phase diagram [15].

The cases considered in this paper are just a sample of the
many surface termination patterns that can be probed using
the computational utility developed herein. Possibilities for
studying increasingly complex Majorana circuits are limited
only by computation time and imagination. Since the large
radius limit of the spherical geometry reproduces flat manifold
physics [19], our results can be extended to realistic experi-
mental setups.

The main strength of our work lies in the numerical flex-
ibility of our computational framework, which will make it
possible, in the future, to add realistic effects of disorder and
interactions and study how they may alter transport signatures
in experiments. The role of disorder in (unterminated) TI
surface states was recently studied in Ref. [27]. Extending the
framework developed in this paper to include disorder will
allow us to study its effects on the braiding and transport
signatures of Majorana circuits, effects which we expect to
play a key role in understanding experimental probes of the
non-Abelian nature of Majorana excitations. Our formalism
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is also well suited to include interaction effects [20] on these
braiding and transport signatures, providing an additional path
forward for future work. Another interesting direction will be
to consider the effect of the proximity of unconventional and
topological superconductors on the surface states and to study
the interface excitations arising therefrom.
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