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We consider the behavior of quantum Hall edges away from the Luttinger liquid fixed point that occurs in
the low-energy, large-system limit. Using the close links between quantum Hall wave functions and conformal
field theories, we construct effective Hamiltonians from general principles and then constrain their forms by
considering the effect of bulk symmetries on the properties of the edge. In examining the effect of bulk
interactions on this edge, we find remarkable simplifications to these effective theories which allow for a very
accurate description of the low-energy physics of quantum Hall edges relatively far away from the Luttinger
liquid fixed point, and which apply to small systems and higher energies.
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I. INTRODUCTION

The edges of quantum Hall systems are remarkable. This
boundary is the paradigmatic example of a chiral quantum
liquid [1,2], a one-dimensional system in which the transport
is only in one direction [3–5] (the chirality being due to
the breaking of time-reversal symmetry in the presence of a
magnetic field). Furthermore, given that the bulk of quantum
Hall systems are gapped, these edge modes constitute the only
low-energy degrees of freedom in these systems, and therefore
mediate the fascinating transport properties for which the
quantum Hall effect is so well known [6,7].

The dynamics of these modes has been a topic of great
interest since the classic papers of Wen [2,8–11]. In these
works it was found that the low-energy dynamics of edge
modes in the thermodynamic limit corresponds exactly to a
chiral linear Luttinger liquid. Linearity means that the modes
have some dispersion ω(k) which is linear in the wave number
k, i.e., ω = vk, and chirality implies that k > 0.

For generic systems, this linear picture is only true in the
scaling limit of low energies and large-system sizes. However,
in the presence of a set of special, model interactions, and
when the confinement is finely tuned, the dispersion of the
edge modes is linear regardless of system size all the way
to high energies [12–14]. Away from these special cases one
must consider the effect of irrelevant contributions, which
introduce nonlinearities such as nontrivial dispersion or scat-
tering processes between modes.

In this work we will consider exactly this nonideal case,
which can be characterized by anharmonic confinement or
interactions and will, in general, have a far richer, nonlinear
edge structure. This has been discussed in numerous works
such as Refs. [15–22]. To analyze these nonlinear effects, we
will take the ideal case where the edge dispersion is precisely
linear, with given Hamiltonian HParent, and perturb it with δH,
thus moving it towards something more realistic. We then
construct an effective field theory for the perturbed system. In
doing so, we generate a mapping from a perturbation acting
upon the whole bulk of the droplet δH onto a low-energy
effective Hamiltonian which resides only on the edge.

In order to constrain the field theory, we conjecture it to be
local and impose upon it the symmetries of the perturbation
using a construction inspired by work from Dubail, Read,
and Rezayi [23] and revisited recently in Ref. [24]. We find
that this procedure is especially fruitful as it maps symmetries
of the perturbations, such as rotational and translational invari-
ance, to powerful constraints on the effective Hamiltonian’s
form. We illustrate this mapping from bulk interactions to
their effect on the edge for the Laughlin [25] and Moore-Read
[26] quantum Hall states, although the procedure could in
principle be generalized to more exotic quantum Hall states,
such as the Read-Rezayi states [27] or any other state which
can be expressed by a conformal field theory [28,29].

We will see that this effective description of the edge
dynamics is accurate for short-range interactions and confine-
ments close to quadratic. These two conditions make our work
particularly applicable to potential cold atom realizations
of the quantum Hall effect where the interactions between
atoms are generally short range, perhaps even hard core, the
confinement can be readily tuned to a simple quadratic, and
the number of particles can be quite small [30–32]. In this
regime, our effective theories prove to be extremely good at
capturing the effects of finite-size and nonideal interactions
on the edge behavior.

We begin in Sec. II with a recap of quantum Hall edges
and their construction in terms of conformal blocks. We then
introduce the concept of an effective Hamiltonian in Sec. III,
describe how this can be expressed as a field theory on the
edge of our system, and discuss the effect of symmetries. We
then use these powerful results in Sec. IV for the Laughlin
and Moore-Read wave functions to propose generic theories
for the edge dynamics induced by nonideal bulk interactions.
Finally, we present numerics in support of these claims in
Sec. V, showing the excellent agreement between finite-size
exact diagonalization and our effective edge theories.

II. THEORETICAL BACKGROUND

In order to make progress, we will use the close links
between quantum Hall wave functions and conformal field
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theories. As such, we begin this section by introducing the
concepts of parent Hamiltonians for the Laughlin state, which
allows us to make a precise statement of our problem. We will
then discuss the formation of the edge state wave functions for
the Laughlin state in terms of conformal blocks, a construction
which we shall make judicial use of going forward.

A. Quantum Hall edges

1. Trial wave functions

A quantum Hall system is one in which charged particles
are confined to two dimensions in the presence of a perpen-
dicular magnetic field [7]. The Hamiltonian of such a system
containing N particles is

H =
N∑

i=1

( pi − q A)2

2mq

+
∑

1�i<j�N

V (|r i − rj |)

+
N∑

i=1

U (|r i |), (1)

where r i and pi are the positions and momenta of charge-q
particles whose effective mass is mq . These particles are acted
on by a magnetic field, given by the vector potential A, they
interact via some generic two-body interactions V (|r i − rj |),
and are placed in some confining trap U (|r i |). Note that
in this work we will only consider rotationally symmetric
Hamiltonians on the plane.

When the interactions are trivial, this Hamiltonian gives the
integer quantum Hall effect, which is characterized by a series
of Landau levels separated by a constant gap of h̄ωc where
ωc is the cyclotron frequency. The introduction of interactions
introduces new gaps into this spectrum of order V , thus
generating a hierarchy of fractional quantum Hall states. In
both cases, the total filling of these levels is determined by
the density of particles, which given a fixed number N is
determined by the confinement of the particles U . We will
work in the limit

h̄ωc � V � U (2)

and in taking this limit we will always work with the potential
U as its projection into the space of the zero-energy states.

So long as the number of electrons in the system fills an
integer number of Landau levels, a single-particle assump-
tion remains reasonably accurate [33,34]. When the filling
ν is fractional, however, the problem is far more difficult.
Nevertheless, a variety of extremely well-educated guesses
have been proposed over the years which approximate the true
ground states of these fractionally filled systems remarkably
well. The first of these was the Laughlin wave function [25]

�(z) =
∏

1�i<j�N

(zi − zj )β exp

(
−

N∑
i=1

|zi |2
4�2

B

)
, (3)

where zi ∈ C are the particle positions and �B the magnetic
length. This describes the fractional quantum Hall effect at
fillings ν = 1/β for non-negative integer β. Subsequent pro-
posals include the Moore-Read state, the Read-Rezayi series,
and the generalized parafermionic states [26,27,35,36]. In
each case, the wave function is a holomorphic polynomial (up

FIG. 1. A sketch of the first few edge excitations of the Laughlin
droplet. These low-energy coherent excitations can be visualized as
ripples propagating around the circumference of the droplet.

to Gaussian factors) of the positions where the power attached
to any zi is the angular momentum of that ith particle.

2. Edge states

We are interested in the low-energy states on top of these
trial wave functions, which are formed by adding angular
momentum to the ground state without changing the (bosonic
or fermionic) symmetry of the wave function or increasing
its energy too much. The specific construction in terms of
holomorphic polynomials will be discussed in Sec. II B, but
there exists an intuitive picture for the Laughlin state thanks
to Wen [8].

In this picture one first realizes that the Laughlin state in
Eq. (3) describes a circular droplet of fluid of radius R =
�B

√
2βN which is both uniformly dense and incompressible.

As such, the only low-energy excitations we can form are
area-preserving distortions of the droplet. These are our edge
modes; they are waves which encircle the droplet. The first
few modes are shown in Fig. 1, with the nth edge mode,
having a wavelength equal to 2πR

n
. These modes are analogous

to the phonons in a lattice in that they are periodic modes
of our system which distort the degrees of freedom at each
point. In the same way that a system can then contain multiple
phonons with the same wave number, thus making them
bosonic objects, our quantum Hall system is also able to
support multiple edge excitations of the same n, and so our
edge modes are also bosonic.

It is then possible to derive the behavior of these modes
in the presence of some confining potential in a semiclas-
sical manner as in Wen’s hydrodynamic formulation [8].
This argument proceeds by considering the classical energy
of a charged fluid in the presence of an electric field and
then canonically quantizes the resulting Hamiltonian. The
result is the chiral linear Luttinger liquid, meaning that these
waves propagate around the circumference of the droplet in
one direction only. More explicitly, the statement that the
Laughlin edge is a chiral linear Luttinger liquid means that
the edge corresponds to a free conformal field theory of a
compact boson. Note that the picture is more complicated
in the Moore-Read case, where there also exists a fermionic
branch of edge excitations which cannot be visualized in this
way. Nevertheless, the low-energy dynamics of these modes
corresponds, as in the Laughlin case, to a free conformal field
theory, albeit a product of bosons and fermions in this case.

3. Parent Hamiltonians

Given a trial state, it is possible in many cases to work
backwards and explicitly construct a parent Hamiltonian,
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HParent, for which the trial state is the exact ground state and
the edge states low-energy eigenstates [37]. In the Laugh-
lin case, this ideal Hamiltonian comprises ultra-short-range
interactions consisting of only a finite number of nonzero
Haldane pseudopotentials [12], which are all chosen to be
positive (corresponding to repulsive interactions). A rapid re-
view of these special interactions is given in Appendix A. For
more exotic states, the interactions are more complicated; the
Zk Read-Rezayi series (where k = 2 corresponds to Moore-
Read) are produced by a set of (k + 1)-body interactions [27].
Within this parent Hamiltonian we also add weak quadratic
confinement in the radial direction, i.e., U (|r|) = 1

2U0r2,
where U must be smaller than V to ensure that the system
remains gapped. This specific choice to make U quadratic
is made to ensure that the edge spectrum is exactly linear,
matching Wen’s Luttinger liquid theory from the outset.

We may now start to think more clearly about the original
Hamiltonian involving generic interactions and confinement.
To do so, we split it up into

H = HParent + δH, (4)

where δH is defined by this equation; it is the difference
between the true interactions and the idealized interactions
or the deviation of the true, anharmonic confinement of our
system from the quadratic confinement we have imposed.
Recalling then that these trial states are of interest because
they approximate true systems quite accurately, we may take
δH to be small and consider it as a perturbation to HParent. The
subsequent diagonalization of δH is the subject of this paper,
which we will consider within the space of zero-energy states
of HParent. As such, δH will be projected into the manifold of
model states which we discuss in the following section.

B. Effective descriptions

1. General construction

The trial states we will work with can be written as
correlation functions of operators from a chiral conformal
field theory (CFT) [23,26–28,38]. These CFTs are made up of
two sectors, CFTU(1) ⊗ CFTχ , denoted the charge sector and
the statistics sector, respectively. In this way, an individual
particle at position z is represented by an operator Aβ (z),
which can be decomposed into two parts,

Aβ (z) =: ei
√

βϕ(z) : χ (z), (5)

where this first term is the vertex operator of a free massless
Bose field ϕ(z) from the U(1) charge sector and the second
term χ (z) is from the statistics sector CFTχ . Note that the
notation : X : refers to the normal ordering of the operator
X. Furthermore, the presence of the vertex operator gives our
particle a U(1) charge of

√
β.

Using these operators, one can construct a quantum Hall
wave function at filling fraction ν = 1/β as the correlation
function

�〈v|(z) = 〈v|cN
β Aβ (z1) . . .Aβ (zN )|0〉, (6)

where z = {z1, . . . , zN } are the positions of the particles and
|0〉 is the vacuum of the full CFT with zero charge. The
operator cN

β is the background charge and is an operator with a

U(1) charge of −N
√

β. Its presence gives the correlator a net
U(1) charge of zero, without which the correlator must vanish.

Finally, the out state 〈v| is a state in the full CFT which
defines an individual edge excitation with the vacuum 〈0|
corresponding to the ground state. Effectively, there exists
some antilinear mapping from a CFT state to a physical wave
function:

|v〉 �→ �〈v|(z). (7)

The CFT states have a well-defined quantum number �L,
which, in the CFT language, is called the conformal dimen-
sion. The eigenoperator associated with �L is L0, the 0th
mode of the Virasoro algebra, which generates dilations and
is proportional to the chiral CFT’s Hamiltonian (as another
example, the −1st mode of the Virasoro algebra L−1 generates
translations). The vacuum |0〉 has a conformal dimension of
�L = 0. This quantum number also has an interpretation in
the quantum Hall language as the angular momentum of a
particular state relative to the vacuum state �〈0|.

Before continuing, it should be stressed that the mapping
introduced in Eq. (7) is surjective, as it must be to reproduce
the full set of quantum Hall edge states [39]. However, for
finite N , the mapping is not injective as there are cases where
the same edge state wave function �〈v|(z) can be generated
by two different CFT states. We will demonstrate an example
of this peculiarity for the Laughlin state in Eqs. (19) and (20)
but, in the limit of N � �L which we are interested in, this
complexity will not prove to be consequential. We will also
see below that this mapping is not an isometry, meaning it
does not preserve inner products. This has been discussed
at length by Refs. [23,24] and will become important for us
below [see in particular Eq. (68)].

2. Laughlin state

The Laughlin state has a trivial statistics sector, i.e., χ = 1,
making its CFT solely that of the free boson CFTU(1). This
CFT contains only the field

ϕ(z) = ϕ0 − ia0 ln(z) + i
∑
n
=0

an

n
z−n, (8)

where the modes of the field satisfy the commutation relations

[an, a−m] = nδn,m, [ϕ0, a0] = i. (9)

All other commutators are trivial. We then define the vacuum
of the theory, |0〉, as the state which is annihilated by all the
positive modes:

an|0〉 = 0 ∀ n � 0. (10)

We define the background charge in terms of these modes as

cN
β = e−iN

√
βϕ0 . (11)

The particle operator for this case is then simply the vertex
operator. Given that the operator product expansion (OPE) of
two bosonic fields has the form ϕ(z)ϕ(w) ∼ − ln(z − w), we
find, using the Baker-Campbell-Hausdorff formula, that

Aβ (z)Aβ (w) = (z − w)β : ei
√

β[ϕ(z)+ϕ(w)] : . (12)
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From this it is relatively straightforward to see that the ground
state, i.e., the state where 〈v| = 〈0|, has the form

�〈0|(z) =
∏
i<j

(zi − zj )β. (13)

This is almost as expected for the Laughlin state but with the
omission of the Gaussian factor we see in Eq. (3). This is
due to our choice of background charge, which is equivalent
to placing a particle with U(1) charge −N

√
β at infinity. It

is instead possible to spread this charge over the droplet, at
which point the Gaussian factors are recovered, but this is
slightly more complicated [26,40]. Therefore, we instead use
this simpler version and include the Gaussian factors as part
of the integration measure for the problem, which we define
as

{�〈v||�〈w|} =
∫

Dz �̄〈v|�〈w|, (14)

where

Dz =
∏

i

[
d2zi exp

(
−|zi |2

2�2
B

)]
. (15)

Excited states 〈v| are generated by applying the positive
modes an to the out-state vacuum, where each an raises the
conformal dimension of the state by n. Specifically, we can
define the states

〈λ| = 〈0|
∏
n∈λ

an, (16)

where λ = {λ1, λ2, . . .} is a semiordered (λ1 � λ2 � . . .) set
of positive integers. The subsequent wave function �〈λ| is the
Laughlin state multiplied by a symmetric polynomial

�〈λ|(z) = Pλ

∏
i<j

(zi − zj )β, (17)

where Pλ is a product of power sums

Pλ =
∏
n∈λ

pn, pn =
√

β
∑

i

zn
i (18)

(note that we do not normalize the zi by factors of the radius
R as is sometimes the convention). As such, we can now see
how the conformal dimension of the state corresponds to the
added angular momentum. If we recall that the power on any
zi is the angular momentum of that particle, we see that this
polynomial adds

∑
i λi units of angular momentum to the

ground state, and this is exactly the conformal dimension of
the state |λ〉.

It is worth noting how these excitations an correspond to
the semiclassical pictures of edge states presented in Fig. 1.
We note that these an excitations generate states which have
well-defined angular momentum and will therefore be rota-
tionally invariant. As such, the semiclassical edge ripples of
Fig. 1 correspond instead to coherent states. For example,
in the N → ∞ limit it can be shown that the wave function
labeled by the auxiliary state 〈δ| = 〈0|eδa1 , where δ is com-
plex, corresponds to the n = 1 excitation, as it describes a
droplet centered at the complex position δ. Therefore, a1 is
the generator of translations. Similarly, a2 can be shown to be
the generator of n = 2 distortions of the droplet’s surface, and
so on for subsequent an.

Finally, we consider a simple example of the noninjectivity
of the mapping defined by Eq. (7). Taking the N = 1 Laughlin
state then we find that

a1a1|0〉 �→ βz2
1, (19)√

βa2|0〉 �→ βz2
1. (20)

This equivalence these two states is due to the fact that the full
space of the N -variable symmetric polynomials which make
up the edge states can be fully spanned by N -independent
basis polynomials. The addition of any more to this set would
form an overcomplete basis. Therefore, one could similarly
surmount this injectivity problem by restricting our basis of
CFT states to those including the an for |n| � N . In the above
example, this would exclude the a2 mode.

3. Moore-Read state

The statistics sector for the Moore-Read wave function is
that of a free Majorana fermion whose field χ (z) = ψ (z) has
an OPE of the form

ψ (z)ψ (w) ∼ 1

z − w
(21)

and admits a mode expansion of the form

ψ (z) =
∑

n∈Z+ 1
2

ψnz
−n−1/2. (22)

These modes satisfy the anticommutation relation

{ψn,ψ−m} = δn,m (23)

and yield a vacuum |0〉, which is annihilated by the positive
fermionic modes ψn for n > 0 (in addition to |0〉 being
annihilated by the positive modes of the bosonic field; |0〉 =
|0〉U(1) ⊗ |0〉ψ ). The background charge is unchanged from the
Laughlin case.

Before we construct the trial wave functions which follow
from this CFT, it is worth noting that the fermionic CFT con-
tains a parity symmetry. This symmetry forces the correlation
function of an odd number of fermionic fields to vanish, and so
the construction differs slightly between odd and even particle
numbers. We shall focus initially on the even case. In this case,
the ground state is of the form

�〈0|(z) = Pf

(
1

zi − zj

) ∏
i<j

(zi − zj )β, (24)

where this extra term, Pf(. . .), arising from the contraction of
the fermionic fields is called the Pfaffian, and is an antisym-
metrized sum over all products of the fractions 1

zi−zj
:

Pf

(
1

zi − zj

)
= A

(
1

z1 − z2

1

z3 − z4
· · · 1

zN−1 − zN

)
, (25)

where A refers to the antisymmetrization over all the indices
1, . . . , N . Once again, the form of the wave function (24)
omits the necessity Gaussian factors which we once again
place within the integration measure, whose form is exactly
equivalent to Eq. (14).

Consistent with the Laughlin state, we excite edge modes
by applying the positive modes of the fields in our CFT on the
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vacuum. In this case, we have two branches of excitations, one
of which is an exact replication of the bosonic excitations seen
for the Laughlin and another from the fermionic field. This
second branch is more restricted than for the bosons given that
the states must obey parity symmetry and possess a fermionic
exclusion principle. As such, general states have the form

〈λ ; μ| = 〈0|
∏
n∈λ

an

∏
l∈μ

ψl, (26)

where λ is once again a semiordered set of positive integers
while μ is an ordered (μ1 > μ2 > · · · ) set of positive half-
integers (μi ∈ { 1

2 , 3
2 , 5

2 , . . .}). Parity symmetry then forces
the number of elements within the set to be even. As the
ψl anticommute, we must also enforce an ordering on this
product and we choose to order the ψl with the smallest l at
the leftmost position, i.e.,〈∅ ; 3

2 , 1
2

∣∣ = 〈0|ψ 1
2
ψ 3

2
. (27)

Despite the extra complexity of these states, they once again
raise the angular momentum by an amount equal to the
conformal dimension of the state, which in this case is

�L =
∑

i

λi +
∑

j

μj . (28)

They can also be expressed in first quantized notation as

�〈λ;μ| = Pλ

〈(∏
l∈μ ψl

)
ψ (z1) . . . ψ (zN )

〉
〈ψ (z1) . . . ψ (zN )〉 �〈0|, (29)

where these correlation functions can be evaluated by Wick’s
theorem to give similar Pfaffians to Eq. (24) (see Ref. [23] for
an explicit example).

Finally, we consider the case when N is odd. The picture
is almost identical but, due to parity symmetry, we must be
careful to ensure that the total number of fermionic operators
within any given correlator is even. As such, the edge states
from Eq. (26) are identical except for the condition that μ

must be a set containing an odd number of elements. This even
holds for the ground state, which is instead defined by the CFT
state 〈0|ψ 1

2
. Therefore, note also that the angular momentum

added by state 〈v| is now the conformal dimension of 〈v|
less the conformal dimension of this ground state (whose
conformal dimension is 1

2 ).

III. EFFECTIVE HAMILTONIANS

A. Effective Hamiltonian

We are now in a position to use the powerful language of
CFT to generate effective low-energy theories for quantum
Hall edges. As we have already discussed, we do so by
considering the problem as one of degenerate perturbation
theory. In the construction we have just introduced our phys-
ical states are labeled by auxiliary states in the CFT �〈v|.
The state 〈v| is such that it describes a state with �L units
of angular momentum with respect to the ground state. The
parent Hamiltonian, with its parabolic confinement, is then
such that the energies of these states are linear in this added
angular momentum Ev ∝ �L.

However, these subspaces at a given �L will be degener-
ate. For example, in the Laughlin case at �L = 2 there are

two states �〈2| and �〈1,1|. Once we impose our perturbation
δH on the system, this degeneracy will in general break,
mixing the two states,

P δH P �〈v| =
∑
w

Hv,w�〈w|, (30)

where P is the aforementioned projection to the zero-energy
space of model states. However, given the linearity of the
description of these wave functions in terms of CFT (i.e.,
α�〈v| + β�〈w| = �〈v|α+〈w|β ), we in fact have that

δH�〈v| = �〈v′ | where 〈v′| =
∑
w

〈w|Hv,w. (31)

As such, there is an operator H which is the image of δH
under a linear mapping from the physical space of states to
the CFT which reproduces the mixing of the real states in the
CFT language, i.e.,

δH�〈v| = �〈v|H . (32)

This equation defines H . However, recall that for finite N the
mapping from CFT states to edge state wave functions is not
injective and therefore the operator H is only uniquely defined
in the limit N → ∞. Nevertheless, this nonuniqueness will
not alter the calculated spectrum even for finite N .

In what follows, we will consider the constraints imposed
upon H by the symmetries of δH. As usual in quantum me-
chanics, the symmetries of the Hamiltonian will be expressed
as a vanishing commutation relation with some operator B,
which encodes the particular symmetry. Consider then that
this operator also has a mapping to the CFT:

B�〈v| = �〈v|B. (33)

Note that there is an implicit assumption here that we are con-
sidering an operator B, which has already been projected to
the zero-energy subspace of states. In this way, the symmetry
of δH (which we also assume to be implicitly projected down)
can be simply mapped to a symmetry of H :

[B, δH] = 0 �→ [H,B] = 0. (34)

This procedure allows us to impose strong constraints on the
form of H . However, we once again stress that the com-
mutation relation of B and δH must hold for the projected
operators, which may be different from the bare operators (for
example, the position operators x and y commute but their
projections to the lowest Landau level do not).

It is worth noting a key consequence of the fact that the
mapping is linear. Consider, for example, that we perturb the
trial wave function by two perturbations δH = δH1 + δH2.
Given that our mapping to the CFT language is linear, each
of these perturbations admits its own effective description and
the two simply add:

δH = δH1 + δH2 �→ H = H1 + H2. (35)

Now, consider that δH commutes with a set of operators
{B1, . . . ,Bn} but that δH2 also has one extra symmetry Bn+1.
The former statement implies that H commutes with each
of B1 to Bn. However, δH2 also commutes with Bn+1 and,
given that the mapping to the CFT language is linear, it
must also be the case that [H2, Bn+1] = 0. Therefore, the
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individual effective Hamiltonian satisfies symmetries that the
whole might not.

This may seem like an obvious point, but it is of crucial
importance. Consider, for example, that δH1 is some con-
finement imposed on the system and δH2 corresponds to an
interaction. In this case, δH2 possesses an extra symmetry to
δH1, that of translational invariance, and this imposes extra
constraints on the form of H2. However, because the mapping
δH → H is linear, the only part of the effective Hamiltonian
that knows anything about the form of the interactions is H2.
Therefore, even when the generic perturbation to the system as
a whole, δH, does not possess translational symmetry, the fact
that our mapping is linear means that we are still able to make
strong statements about all the contributions to H arising from
interactions.

B. Preliminary example: Harmonic case

We begin with a simple example where the mapping
δH �→ H can be performed exactly. In general, this will not
be possible but this example provides a taste of the machinery
involved in the subsequent calculations. The perturbation we
will consider is a harmonic confinement imposed upon the
droplet. In the first quantized language, this perturbation has
the form

δH = U0

N∑
i=1

∣∣∣zi

R

∣∣∣2
. (36)

We now wish to consider the effect of δH acting upon our
wave function �〈v|. At first glance, this does not appear
possible as the wave function �〈v| can only be holomorphic
but the interaction contains z̄i terms. We are saved in this
instance by a procedure known as projection to the lowest
Landau level. Effectively, we need only consider the matrix
elements of δH within our subspace of states given by Eq. (6)
and where the integration measure is given by Eq. (14). In this
case, we can replace any z̄i in the integral with the differential
operator −2�2

B∂i acting on the exponential factors inside the
integration measure. Thus, following integration by parts we
find that

z̄i �→ 2�2
B∂i . (37)

In this way, we can reformulate our perturbation as a
differential operator. Recalling that R = �B

√
2βN we find

δH = U0

β
+ U0

βN

N∑
i=1

zi∂i (38)

(where the constant term arises from the action of ∂i on zi

itself). Thus, we find a constant energy shift plus an extra term
which we can map into the CFT using a Ward identity [28].
Using the identity for the Laughlin state

[L0,Aβ (z)] =
(

z∂ + β

2

)
Aβ (z), (39)

we are able to map δH into the CFT as

δH〈v|cN
β Aβ (z1) . . . |0〉 = 〈v|cN

β H̃Aβ (z1) . . . |0〉, (40)

where this operator H̃ is

H̃ = U0

β
+ U0

βN

(
L0 − βN

2

)
. (41)

Therefore, to find the Hamiltonian we simply need to com-
mute H̃ through the background charge, which takes a0 →
a0 + N

√
β and therefore gives

H = U0

βN
(L0 + a0N

√
β ) + U0

β(N − 1) + 2

2β
. (42)

Thus, we have our first effective Hamiltonian. In the space
of neutral edge states (i.e., a0|v〉 = 0) this simply reduces to a
linear model

H = U0

βN
L0 + const, (43)

where L0 simply counts the conformal dimension �L of the
state |v〉, and so

E = U0

βN
�L + const. (44)

This also proves that any perturbing confinement to the
quantum Hall system which is quadratic gives only a linear
contribution to the spectrum.

Note that a similar mapping is also possible for a quadratic
interaction

δH = V0

∑
i 
=j

∣∣∣∣zi − zj

2�B

∣∣∣∣
2

. (45)

We find that

H = NV0

(
L0 − a−1a1 − 1

N
√

β
L−1a1

)
+ const (46)

in the sector where the states have zero U(1) charge (i.e., a0 =
0). The derivation of this result is presented in Appendix C.

C. Symmetries of the effective Hamiltonian

A priori, we know nothing about the form of H but we shall
attempt to constrain it using a simple symmetry analysis. In
what follows, we shall use a local field theory description for
H and then map the symmetries of the perturbation δH into
the CFT language in order to find symmetry constraints on the
terms in H .

1. A local field theory

We begin by noting that our effective Hamiltonian operator
H is a CFT operator which acts only within the space of edge
states and so is supported along the edge. We then conjecture
this Hamiltonian should be local, following from the work
of Dubail, Read, and Rezayi [23] who emphasized the im-
portance of local field theories in the description of quantum
Hall states. To motivate this idea, we appeal to the generalized
screening hypothesis, which states that correlations within the
bulk of quantum Hall droplets decay exponentially [7,25]. For
the Laughlin state, this can be understood in terms of the
plasma analogy, which reimagines the probability distribution
of particles in the ground state as the partition function of
a two-dimensional plasma of charge-β particles. Numerical
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work [41] suggests that this plasma is in a screening phase
when β < βc for a critical value of βc � 65. Hence, the inter-
actions between particles in this plasma decay exponentially
and one expects the relevant physics to be local. Generalized
screening arguments also exist for the Moore-Read and k = 3
Read-Rezayi states which, while much more in depth, also
conclude that bulk correlations decay exponentially [42,43].

Thus, we are conjecturing that our effective Hamiltonian,
which by its definition is some operator supported along the
edge of our droplet, should be local. This means that we take
H to be of the form

H =
∫

dx
∑

a

h̃a (x, δH)�a (x), (47)

where x is the one-dimensional coordinate encircling the sur-
face of the droplet and �a (x) are local operators made up of
the fields ϕ(x) and χ (x) and which have associated coupling
constants h̃a that depend a priori on the position x and the
perturbation δH. A nonlocal form would be an integral over
multiple edge coordinates with local Hamiltonian densities
depending in some nontrivial manner on each coordinate, thus
coupling well-separated regions of space along our edge.

The mapping between this edge coordinate x and a com-
plex planar coordinate z is given by z = reix/R for any r (but
physically we consider r � R) and where R is the droplet’s
radius. Working with this planar coordinate proves to be a
large simplification. If we make this change of variables, we
find that

H =
∑

a

∮
dz

2πi
ha (z, δH)

( z

R

)da−1
�a (z), (48)

where da is the scaling dimension of the field �a . Note,
however, that we do not wish to restrict ourselves to �a which
are primary fields and so the general transformation of �a will
be

�a (x) →
( z

R

)da

�a (z) + subleading contributions, (49)

where these subleading contributions will also scale as R−da .
Therefore, we have also redefined the coupling coefficients
h̃a → ha within Eq. (48) to work more readily with this basis
of fields in the planar coordinate.

Given that we are interested in cases where the number
of particles is finite but still large, we see that the effective
Hamiltonian is an expansion in 1

R
where R is large. As such,

we may restrict ourselves to considering only contributions
with a small scaling dimension da , and still hope to gain an
accurate picture for relatively large system sizes. Furthermore,
in the scaling limit, for which R → ∞, the behavior is given
simply by the term with the lowest scaling dimension da .

It should be stressed that this locality conjecture is not
a rigorous constraint on H . We have motivated it here on
the idea that the bulk physics is local though exactly how
this should transfer to the form of H is not fully understood
(though we provide some further evidence in the integer
quantum Hall effect in a future publication [44]). Therefore,
we provide supporting numerical evidence in Sec. V which
further substantiates that this local description is very accurate
for at least short-range interactions. Nevertheless, the local-
ity conjecture may incur some loss of generality when the

perturbation we add to the Hamiltonian describes some long-
range interactions, in which case one might no longer expect
a local field theory to provide an ample description of the
dynamics. However, without the powerful simplification that
this conjecture imposes on the theory, it would be extremely
difficult to make significant progress.

2. Number conservation

We now move onto rigorous constraints on our Hamil-
tonian, of which we shall consider three. The first is the
conservation of total number of particles in the system. This
is conservation of U(1) charge, as each particle possesses a
charge of

√
β. The operator which counts this charge is a0

and, therefore, the particle number in the CFT language is
N̂ = a0/

√
β. As such, the Hamiltonian must commute with

a0:

[H, a0] = 0. (50)

The consequence of this is relatively simple and means
that our Hamiltonian must obey the same underlying U(1)
symmetry of the free boson CFT. For the field this symmetry
manifests itself as a shift to the field under the action of the
U(1) generator

ϕ(z) → ϕ(z) + δϕ0. (51)

As such, the individual operators �a (z) can only involve ϕ(z)
as a derivative, i.e., ∂nϕ(z) for n > 0. Note that there is no
constraint on the statistics sector due to this conservation law.

3. Rotational invariance

We will also consider perturbations δH which are ro-
tationally invariant. Once again, this is a very reasonable
constraint for interactions, though perhaps more restrictive for
confining potentials. On a mathematical level, it is relatively
simple to derive the concomitant commutation relation for this
symmetry by noting that the Hamiltonian should leave the
total amount of angular momentum in the system invariant.
Recalling that the angular momentum relative to the ground
state is equal to the conformal dimension of the state 〈v|, and
this is measured by the operator L0, we therefore have that

[H,L0] = 0. (52)

However, once again, it is perhaps simpler to consider
this constraint from a more physical perspective. Our droplet
is a disk, and this system is invariant under rotations. Our
edge is the circle at the edge of this disk, and the rotation
of the bulk coordinate corresponds to a translation of the
edge coordinate. Therefore, our edge Hamiltonian must be
translationally invariant. This has a simple consequence that
the coupling coefficients ha which we introduced in Eq. (47)
must be independent of x.

4. Translational invariance

The final bulk symmetry we may consider is two-
dimensional translational invariance. Of course, this symme-
try is not applicable to confining potentials but it does provide
very strong constraints on the forms of field theories which
describe interaction perturbations. Such perturbations will be
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FIG. 2. On the left we show a droplet with some edge excitation
which is evolved by our translationally invariant perturbation δH.
Given that δH is translationally invariant, this evolution will be about
the center of mass, and thus should be the same for the droplet on the
right, whose center of mass is slightly shifted. Crucially, δH cannot
move this center of mass.

translationally invariant within the bulk, meaning that the
perturbation commutes with the generator of translations[

δH ,
∑

i

∂i

]
= 0, (53)

where ∂i = ∂
∂zi

. Thus, if we can map this generator into our
conformal field theory, i.e.,∑

i

∂i�〈v| = �〈v|D, (54)

then we know that our effective Hamiltonian H must com-
mute with D.

Nevertheless, there is once again a simpler picture to
keep in mind. Consider that our perturbation δH will induce
dynamics on the edge states of our system. This is shown in
Fig. 2. On the left of this figure the droplet is centered and
the arrow indicates the dynamics induced by δH (there may
be additional dynamics due to the parabolic confinement in
Hparent which we ignore here). Now, consider the right picture,
where we shift the position of our droplet. The dynamics
induced by δH, assuming that it is a translationally invariant
perturbation, should be identical, but now about a new origin.
Therefore, there must be some decoupling of the center-of-
mass mode from the underlying field theory. If we reconsider
our pictures for the edge modes in Fig. 1, then we see that the
an edge mode creates n equally sized lobes of charge around
the surface of the droplet. For n � 2 these cancel out, leading
to no net shift of the center of mass. The a1 mode, however, is
equivalent to a shift of the droplet. As such, the field theory H

cannot induce any dynamics on this edge mode. Therefore, a
state 〈v| will have the same energy under δH as a shifted state
〈v|a1 and so

[H, a1] = 0. (55)

However, this argument is far from rigorous and is too
much of a simplistic treatment which does not capture
the full complexity of the situation. Therefore, we perform
the explicit mapping of the symmetry in Eq. (53) directly
into the CFT language in two different ways, producing two
(closely related) consequences for our effective Hamiltonian.

Constraint 1. For the first consequence, we simply map
the generator of translations into the edge mode language.
This can be done quite simply given the L−1 Virasoro mode,

which is the generator of translations in the CFT language.
This operator has the properties that

[L−1,Aβ (z)] = ∂Aβ (z), L−1|0〉 = 0. (56)

As such, it is simple to reproduce the action of our translation
operator on the correlation function via∑

i

∂i�〈v| = 〈v|cN
β L−1Aβ (z1) . . .Aβ (zN )|0〉. (57)

This is one step away from finding the CFT operator D as
defined in Eq. (54). We now simply need to move L−1 through
the background charge.

To do so, we need to better understand the exact form of
L−1. This operator is a sum of the Virasoro modes from each
CFT:

L−1 = L
U(1)
−1 + L

χ

−1, (58)

where

L
U(1)
−1 = 1

2

∮
dz

2πi
: (i∂ϕ(z))2 : (59)

and L
χ

−1 is the −1 mode of the stress energy tensor T (z) of
CFTχ . Therefore, L

χ

−1 moves through the background charge
(which depends only on ϕ0) without consequence, whereas
L

U(1)
−1 acquires an extra term. Specifically, when the field ϕ(z)

is conjugated by the background charge it becomes

cN
β ϕ(z)c−N

β = ϕ(z) − iN
√

β ln(z). (60)

As such, one can conjugate the full L−1 operator by the
background charge to find that

D = L−1 + N
√

βa−1, (61)

which implies that our effective Hamiltonian has the symme-
try [

H, a−1 + 1

N
√

β
L−1

]
= 0. (62)

Constraint 2. The second consequence of translational
invariance is exactly that in Eq. (55), that [H, a1] = 0. To
prove this, we will consider the Hermitian conjugate of the
derivation which produced the result in Eq. (62). In that
derivation we began with the condition [δH,

∑
i ∂i] = 0.

When considering the matrix elements of this condition,

{�〈v||
[
δH,

∑
i

∂i

]
|�〈w|} = 0, (63)

we mapped both
∑

i ∂i and δH into the CFT to find that

{�〈v||
[
δH,

∑
i

∂i

]
|�〈w|} = {�〈v||�〈w|[D,H ]} = 0. (64)

Therefore, we claimed that, for this to hold for any states
〈v| and 〈w|, it must be that �〈w|[D,H ] = 0 which implies that
[D,H ] = 0.

We now run through the Hermitian conjugate of this ar-
gument. First, the perturbation δH is Hermitian and therefore
can act backwards on the bra-state

{�〈v||δH|�〈w|} = {�〈v|H | �〈w|}. (65)

155321-8



EFFECTIVE EDGE STATE DYNAMICS IN THE … PHYSICAL REVIEW B 98, 155321 (2018)

Therefore, if we can also find a mapping of
∑

i ∂i on the bra-
state, i.e., some K such that

{�〈v||
∑

i

∂i |�〈w|} = {�〈v|K|�〈w|}, (66)

then we have another condition on H , namely, [H,K] = 0.
To find K we need to find a way to convert the translation

operator
∑

i ∂i , which acts on holomorphic wave functions,
into some operator which acts only on antiholomorphic wave
functions, i.e., the bra-state �̄〈v|, which is a function of the
z̄i instead of the zi . Recall then the procedure of projection
to the lowest Landau level [Eq. (37)], the result of which
is that z̄i ≡ 2�2

B∂i within the lowest Landau level [that ∂i ≡
z̄i/2�2

B can be seen by considering the matrix element of
∂i in integral form and integrating by parts, taking care to
remember the exponential factors in the integration measure,
Eq. (14)]. Therefore, we find that

{�〈v||
∑

i

∂i |�〈w|} = {�〈v||
∑

i

z̄i

2�2
B

|�〈w|}. (67)

This can be readily mapped to an operator acting on the
bra-state’s auxiliary state when we remember that the edge
mode a1 is simply the polynomial

√
β

∑
i z̄i . Therefore, K =

a1/2�2
B

√
β, thus confirming that [H, a1] = 0 as claimed.

One may well worry about the apparent contradiction
between the two constraints in Eqs. (55) and (62). If one
takes a Hermitian conjugate of the former, using the fact
that (a1)† = a−1, one does not reproduce the latter if one
assumes that the effective Hamiltonian is Hermitian. This is
because the effective Hamiltonian is not necessarily Hermitian
with respect to the inner product of the CFT. As we have
defined it, it is an operator which reproduces the action of a
Hermitian perturbation on some auxiliary space. Therefore,
it must have only real eigenvalues. In fact, in the case of
quadratically increasing repulsive interactions which we are
able to map exactly into the CFT (see Appendix C), the
resulting Hamiltonian was indeed non-Hermitian with respect
to this CFT inner product. The cause of this non-Hermiticity
is that the inner product of two quantum Hall states labeled by
different 〈v| are not necessarily orthogonal. In fact,

{�〈v||�〈w|} = 〈w|GN |v〉, (68)

where GN is some operator close, but not equal, to the identity
[23,24]. Therefore, while H need not be Hermitian in the CFT,
it must be Hermitian with respect to the inner product of the
model states (which then implies that HGN be Hermitian with
respect to the CFT inner product).

5. Confinement vs interactions

To summarize the results of the preceding section, we
have found the mapping of various symmetries of a general
perturbation δH into our CFT language. They are as follows:

(1) Number conservation implies that

[H, a0] = 0. (69)

(2) Rotational invariance implies that

[H,L0] = 0. (70)

(3) Translational invariance of δH implies that

[H, a1] = 0, (71)[
H, a−1 + 1

N
√

β
L−1

]
= 0. (72)

Note that these are general symmetries which apply to H

regardless of our conjecture of locality.
Now, consider some generic perturbation δH, which we

split up into a confining part δHU , and an interaction term
δHV . As discussed previously, these individual perturbations
will have mappings into the CFT of the form HU and HV

which simply add. In the rotationally symmetric cases we will
consider, HU will then satisfy the first two symmetries, of
number conservation and rotational invariance. However, we
will find that we can constrain the form of HV significantly
more given that it must also satisfy the third symmetry,
corresponding to bulk translational invariance.

IV. RESULTS

A. Confinement

We begin by considering the effect of number conservation
and rotational symmetry on the form of effective Hamilto-
nians. This is the situation which corresponds to the part of
our field theory which describes the effects of confinement
on the droplet. We recall that number conservation forces
H to commute with a0, thus forcing ϕ(z) to appear in H

only as a derivative and that rotational invariance equates to
one-dimensional translations along the edge, removing the
possibility for our coupling coefficients ha to depend on
position z.

Let us consider the effect of these symmetries for the
Laughlin and Moore-Read wave functions. In the Laughlin
case the statistics sector is trivial (χ = 1) leaving only a theory
made from the bosonic field. In general, the fields �a (z) have
the form

�a (z) = (i∂ϕ(z))m1 (i∂2ϕ(z))m2 . . . (73)

for non-negative integers m1,m2, . . . . Each term has a scaling
dimension da = m1 + 2m2 + · · · and it is always assumed
that they are normal ordered. Therefore, we can consider the
first few most relevant terms (up to total derivatives) to be

H =
∮

dz

2πi

(v

2
z(i∂ϕ(z))2 + gz2(i∂ϕ(z))3

)
+ O(R−3).

(74)

The first of these terms is the usual chiral linear Luttinger
liquid term, and by itself would lead to a dispersion E =
v�L. The second term is then a scattering term which, for
example, might take the n = 2 mode (recall Fig. 1) and scatter
this into two n = 1 modes.

We may also consider the consequences of these simple
symmetries on the generic effective Hamiltonian describing a
Moore-Read edge. In this case, the statistics sector is a free
fermion CFT with χ (z) = ψ (z). Therefore, our general fields
have the form

�a (z) = (i∂ϕ(z))m1 · · · × (ψ (z))k0 (∂ψ (z))k1 . . . , (75)
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where the mi are once again any non-negative integer but
ki ∈ {0, 1} due to fermionic exclusion. In this case, the scaling
dimension of a given term is da = ∑

n nmn + ∑
l (l + 1

2 )kl .
As such, the first few most relevant terms will be

H =
∮

dz

2πi

(
−v1

2
z(ψ∂ψ (z)) + v2

2
z(i∂ϕ(z))2

+ g1z
2(i∂ϕ(z))3 + g2z

2(i∂ϕψ∂ψ (z))
)

+ O(R−3).

(76)

In this Hamiltonian, the first two terms are once again linear
edge velocities which by themselves would simply give us
the spectrum E = v1�Lψ + v2�Lϕ , giving the fermionic
modes a velocity v1 and the bosonic modes a velocity v2. We
then have two scattering terms, one exactly equivalent to the
Laughlin scattering term, which scatters bosonic modes, and
one coupling term which scatters a single bosonic mode into
two fermions and vice versa.

B. Interacting Laughlin

We now consider the addition of two-dimensional trans-
lational symmetry to the effective Hamiltonian, which will
allow us to describe the effects of interactions on the edge
dynamics. We will find that this symmetry is very restrictive,
removing the majority of those terms which were present in
those effective Hamiltonians describing confinement. Given
these restrictions, we will need to go to rather high order (large
da) to find the major contributing terms. In doing so, we need
to find a good basis of operators with which to work and then
use those to construct linearly independent Hamiltonians Ha

such that

H =
∑

a

haHa, (77)

where the Ha are individual blocks which satisfy the trans-
lational symmetry commutation relations and ha (δH) are
coefficients which scale as ha ∼ R1−da where da is the scaling
dimension of the leading term (the term with the lowest
scaling dimension) in Ha .

1. A basis of fields

To consider this problem generally, it is useful to generate
a basis of terms which can arise within the field theory. We
label these terms with partitions � = {γ1, γ2, . . .} of integers
γi > 0. These integers refer to the derivatives we have of the
field ϕ(z), as defined by terms

T� =
∮

dz

2πi
z|�|−1

∏
γi∈�

i∂γi ϕ(z), (78)

where the factor of z|�|−1 for |�| = ∑
i γi is required by the

rotational invariance condition. These terms have a scaling
dimension d� = |�|. In this way, we may generate any general
contribution Ha as some linear combination of these T� with
d� = da .

Note that the order of γi in � is unimportant in the defini-
tion of T� as the fields are bosonic and so we take the ordering
γ1 � γ2 � · · · . Note further that the basis is overcomplete. To

see this, consider T21, which we can integrate by parts to give

T21 =
∮

dz

2πi
z2 1

2
∂ ((i∂ϕ(z))2) = −T11 = −2L0. (79)

Therefore, one must be careful to use a basis of T� which
includes only “unique” � (i.e., linearly independent T�). At
low orders it is sufficient to find these unique � simply by
the integration by parts procedure described above, though
for higher orders it may be necessary to decompose the
subsequent terms into bosonic modes and analyze whether the
individual matrices are linearly independent.

It is worth noting an apparent oddity in Eq. (79). On the
left-hand side we have T21 with scaling dimension 3 and on the
right-hand side T11, whose scaling dimension is 2. The source
of this contradiction is really just notation. When we construct
the Hamiltonian in Eq. (47) as H = ∫

dx
∑

a ha�a (x) we do
not expect (∂ϕ)2 to appear at scaling dimension da = 3. We
only expect ∂2ϕ∂ϕ at this order [and also (∂ϕ)3 and ∂3ϕ].
However, we are searching for a convenient basis to use and so
it makes little sense to keep careful track of both T21 and T11 in
the effective Hamiltonian if they are simply the same operator.
Therefore, it is more convenient to simply throw away T21 and
allow T11 to appear at both scaling dimensions 2 and 3. A
similar reasoning applies at higher orders and this means that
any T� in the final basis can appear at scaling dimension d�

and any scaling dimension higher. This further implies that
the coefficients will vary as ha ∼ cR1−da + c′R−da + · · · for
some constants c, c′, and so on.

Once we rid ourselves of these extraneous terms, we are
left with a linearly independent basis up to scaling dimension
7 (or R−6) given in Table I. Note that we do not consider
the scaling dimension d� = 1 as the sole term here is T1 = a0

and we work with states |λ〉 [recall the definition in Eq. (16)]
which have U(1) charge of zero (i.e., a0|λ〉 = 0 for all |λ〉).
Therefore, this term and others like it are trivial.

2. Constraining H

We will now restrict to interactions, considering δH to
be translationally invariant, thus implying that each of our
effective Hamiltonians Ha must satisfy the commutation

TABLE I. A table of some of the first few linearly independent
terms from which H can be constructed. Note that the choices made
for � are not unique. For example, as we have already seen, T11

and T21 are exactly equivalent up to an overall sign and so to keep
notation simpler we replace T21 with T11, although must then allow
part of the coefficient of T11 to vary as R1−d21 .

d� Unique terms

2 T11

3 T111

4 T22, T1111

5 T221, T11111

6 T33, T222, T2211, T111111

7 T331, T2221, T22111, T1111111

...
...
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relations (55) and (62), which we recall to have the form

[Ha, a1] = 0, (80)[
Ha, a−1 + 1

N
√

β
L−1

]
= 0. (81)

By inspecting Eq. (81) we note that we will need to expand
Ha in powers of 1

N
√

β
of the form

Ha = H (0)
a + H (1)

a

N
√

β
+ H (2)

a

(N
√

β )2
+ · · · . (82)

Note here that the expansion in powers of 1/N can be com-
pared to our overall expansion of the effective Hamiltonian
in powers of 1/R. To relate the two, we recall that the
radius varies as the square root of the particle number R =
�B

√
2βN . Therefore, if H (0)

a is made up from terms of scaling
dimension da this tells us that H (1)

a can be made only from
terms with a scaling dimension da + 2 or smaller. In general,
H (n)

a is a combination of terms with scaling dimension da +
2n or smaller. Furthermore, recalling that ha scales as R1−da

and given that R ∼ √
N we note that the overall coefficient in

front of any H (n)
a must vary as

√
N

1−da−2n
.

Using this expansion, we find from Eqs. (80) and (81) that
the leading-order terms in any Ha are those which satisfy the
simple relations[

H (0)
a , a1

] = [
H (0)

a , a−1
] = 0. (83)

For example, of the terms listed in Table I those which satisfy
both of these constraints are T22 and T33. A summary of these
leading terms up to a scaling dimension of 9 is provided
in Table II. The majority of these are simple bilinear terms,
which will predominantly modify the dispersion of the edge
modes (see below), although we will also find at da = 9 that
there is a three-body scattering term.

Nevertheless, the leading terms do not tell the whole story
and we must generate the subleading terms via Eq. (81),
which necessarily generates interesting nonlinear scattering
terms. This ladder of subleading corrections is generated by
the constraints

[
H (n)

a , a1
] = 0 ∀ n, (84)[

H (n)
a , a−1

] = [
L−1,H

(n−1)
a

]
(85)

TABLE II. The first few leading contributions to the effective
Hamiltonian for the Laughlin case which commute with both a1 and
a−1 and whose effects are suppressed by factors of R1−da . We note
that the first three are bilinears in the bosonic modes, which means
that their primary effect is on the dispersion of edge modes. The
final example at da = 9 is a trilinear, which corresponds to some
three-body scattering of bosonic modes.

da H (0)
a

4 T22

6 T33

8 T44

9 T333 + T332 − 1
3 T222

...
...

with the former equation from Eq. (80) later arising from
Eq. (81).

3. Leading contributions

Let us consider this in greater detail for the least irrelevant
term with leading contribution T22. To see that this satisfies
the leading-order requirements for a translationally invariant
effective Hamiltonian (83), consider that in terms of bosonic
modes this term has the form

T22 =
∮

dz

2πi
z3(i∂2ϕ)2 = −2

∑
n>0

(n2 − 1)a−nan. (86)

Therefore, it is clear that the n = ±1 modes are absent from
this term. We then proceed to apply Eqs. (84) and (85) to
produce the subleading terms H (n)

a . We first consider Eq. (84)
in the context of the individual fields:

[i∂nϕ(z), a1] = −δn,1. (87)

Therefore, in order to satisfy this condition, we must have that
n > 1, and so we only consider T� where � contains integers
greater than or equal to 2 such as T222, T33, T2222, and so on.

We then consider Eq. (85), recalling that L−1 acts to
differentiate the fields of the CFT [28], and so this constraint
becomes

[
H

(1)
22 , a−1

] =
∮

dz

2πi
z3∂ ((i∂2ϕ)2). (88)

We must now consider which terms might appear in H
(1)
22 .

Recall that by scaling arguments, the pool of terms which
might appear is restricted to those with a scaling dimension
d22 + 2 = 6 or smaller. This therefore includes T22, T33, or
T222. A priori, any of these might appear in H

(1)
22 but, given

that T22 and T33 commute with a−1 their coefficients are un-
constrained by this equation. Initially, this appears worrisome
as it suggests that

H
(1)
22 = αT22 + βT33 + γ T222, (89)

where we are unable to say anything about α and β. However,
in practice this is not a problem as T22 and T33 are also per-
missible H (0)

a terms, exactly because they commute with a−1.
Therefore, whatever the values of α and β, these coefficients
can be combined with h22 and h33, thus yielding no new
coefficients. This argument is indicative of a more general
principle. When considering what terms might appear in any
H (n)

a where n > 0, one should first remove any terms which
commute with a−1 and therefore produce their own H

(0)
a′ to

avoid adding unnecessary extra coefficients.
Therefore, returning to our example, we note that H

(1)
22

should be made up of only T222. To find how much of this
term is present, consider once again the commutation of the
mode with the field, which in this case is

[i∂nϕ(z), a−1] = ∂n−1(z−2). (90)

Therefore, if we state that H
(1)
22 = αT222, then we find by

evaluating Eq. (88) that

α = 1
2 . (91)
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Thus,

H22 = T22 + 1

2N
√

β
T222 + · · · . (92)

In fact, this procedure can be continued easily to all orders,
with the result that

H22 = T22 +
∞∑

n=1

8

(N
√

β )n
(2n + 1)!!

(2n + 4)!!
T2n , (93)

where 2n refers to the partition containing n copies of 2.
We can also consider this picture for the Ha whose leading

contribution is T33. For this root, the first subleading correc-
tion as calculated using Eq. (85) has the form

H33 = T33 + 5

2N
√

β
T332 − 15

2N
√

β
T222 + · · · . (94)

In general, this contribution is made from the terms T332n−2 and
T2n of the form

H33 = T33 +
∞∑

n=1

(
αn

(N
√

β )n
T332n + βn

(N
√

β )n
T2n+2

)
, (95)

where the coefficients αn and βn satisfy the recursive relation

αn = 2n + 3

2n
αn, (96)

βn = 2n + 1

2n + 4
βn−1 − 6(2n + 1)

(n + 1)(n + 2)
αn, (97)

for all n > 0 and where (α0, β0) = (1, 0). A similar procedure
can be repeated to fix all the Ha , leaving only ha as free
parameters which depend on the bulk interactions and cannot
be fixed by symmetry only.

C. Interacting Moore-Read state

Effective Hamiltonians for the Moore-Read state follow an
extremely similar pattern to that we have seen for the Laughlin
state. Once again, the imposition of bulk translational symme-
try on the effective Hamiltonian prompts us to search for in-
dividual, independent contributions Ha = H (0)

a + 1
N

√
β
H (1)

a +
· · · , which satisfy the commutation relations in Eqs. (84) and
(85). The sole difference is that the individual terms H (n)

a for
the expansions in 1

N
√

β
are some terms expressed in terms of

both the bosonic field ϕ(z) and the fermionic field ψ (z).

1. A basis of fields

We proceed exactly as before, beginning with a definition
of the basis we can use to express any local Hamiltonian
constructed from these two fields ϕ(z) and ψ (z), which are
relevant to the problem. These will now be labeled by a pair
of partitions � = {γ1, γ2, . . .} and also � = {ξ1, ξ2, . . .}, one
for the bosonic sector and one for the fermionic sector:

T�,� =
∮

dz

2πi
z|�|+|�|+ l(�)

2 −1
∏
γi∈�

i∂γi ϕ(z)
∏
ξi∈�

∂ξi ψ (z).

(98)

There are a few things to note about this definition. First, �,
relating to the bosonic fields, is as before; it is a partition of
positive integers which we order such that γ1 � γ2 � · · · . The
new, fermionic partition � is also a set of integers although it
cannot contain any integer twice (due to fermionic exclusion)
and it must have an even number of elements (due to parity
symmetry). We denote the number of elements by l(�) so, for
example, l({0, 1}) = 2 and l({0, 1, 2, 3}) = 4. Furthermore, it
can also contain 0 as an entry (i∂0ϕ is excluded due to number
conservation though no such symmetry prevents ∂0ψ). To
further distinguish this partition from �, we will also order it
in reverse, with ξ1 < ξ2 < · · · . Finally, the product over the
elements ξi must have a specific ordering, as permutations
may bring about an overall sign change, so we define this
product such that∏

ξi∈�

∂ξi ψ = ∂ξ1ψ∂ξ2ψ . . . . (99)

Note that in both the bosonic and fermionic cases the empty
set, ∅, refers to no contributions from that sector. So, for
example, T�,∅ are all the purely bosonic terms which we found
when considering the Laughlin state and include no fermionic
fields.

Once again, there is a large degeneracy in this definition of
basis elements. For example,

T∅,02 =
∮

dz

2πi
z2ψ∂2ψ = −

∮
dz

2πi
∂ (z2ψ )∂ψ = −2T∅,01.

(100)

Therefore, we must once again weed out these duplicate
entries, and so we provide a particular choice of a linearly
independent basis of terms in Table III for the first few scaling
dimensions, where the scaling dimension of a given term is
d�,� = |�| + |�| + l(�)

2 .

2. Leading contributions

We will now restrict the wide array of possible terms
in Table III to those which satisfy the symmetries of our
Hamiltonian. Recall that to first order this entails searching
for H (0)

a which commute with both a1 and a−1. In the Laughlin
case, this was extremely restrictive. However, in this Moore-
Read case the constraint is somewhat less powerful due to
the fact that the center-of-mass mode commutes with terms of
purely fermionic nature. As such, there are more contributions
than previously, as provided in Table IV.

TABLE III. A table of some of the first few linearly independent
terms from which H can be constructed in the Moore-Read case.
The number of possibilities grows much quicker with the scaling
dimension than it did in the Laughlin case.

d�,� Unique terms

2 T11,∅, T∅,01

3 T111,∅, T1,01

4 T22,∅, T1111,∅, T2,01, T11,01, T∅,12

5 T221,∅, T11111,∅, T3,01, T21,01, T111,01, T1,12

...
...
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TABLE IV. The leading contributions to the effective Hamilto-
nian in the Moore-Read case. These contributions occur at order
R1−da and are mostly diagonal in the basis defined by Eq. (26), and so
primarily affect the dispersion. However, there is a scattering term at
order R−4 which couples the fermionic edge states with the bosonic
modes.

da H (0)
a

2 T∅,01

3
4 T22,∅ T∅,12

5 T3,01 + 3T2,01

6 T33,∅ T∅,23

...
...

Finding all the subleading contributions is then a case of
applying the commutation relation in Eq. (85) to generate
the ladder of terms H (1)

a , H (2)
a , and so on. As before, the

situation is relatively simple, with L−1 acting as a derivative
on the fields within each T�,� on the right and a−1 seeing
only bosonic fields on the left. Applying this procedure,
one then finds that the three leading terms for Moore-Read
Hamiltonians have the form

H∅,01 = T∅,01 +
∞∑

n=1

1

(N
√

β )n
(2n − 1)!!

(2n)!!
T2n,01, (101)

H22,∅ = T22,∅ +
∞∑

n=1

8

(N
√

β )n
(2n + 1)!!

(2n + 4)!!
T2n+2,∅, (102)

H∅,12 = T∅,12 +
∞∑

n=1

1

(N
√

β )n
(2n + 1)!!

(2n)!!
T2n,12. (103)

Therefore, each of the terms which, to leading order, simply
change the dispersion of the fermionic modes (i.e., those of the
form H∅,�) necessarily have subleading contributions which
couple the bosonic and fermionic excitations, suppressed by a
factor of 1

N
√

β
.

V. NUMERICS

We once again stress that the claim of locality which was
so instrumental in calculating these allowed contributions to
our Hamiltonian was a conjecture based primarily on the un-
derstanding of the Laughlin state as a plasma in its screening
phase (for 1

ν
� 65). As such, we present thorough numerical

evidence to further motivate this claim by comparing the
results of these local effective Hamiltonians, which we hope
will provide a very accurate description of the low-energy
physics, with exact numerical results [45].

To assess our effective Hamiltonians, we will take H to be
simply a sum of the first few, least irrelevant terms from the
field theoretic considerations we have made, including their
coupling coefficients ha , which we cannot fix by symmetry
alone. These Hamiltonians are then simple to diagonalize,
being phrased in terms of second quantized operators. We then
perform the exact numerics by generating the full edge states

FIG. 3. A comparison of our effective Hamiltonian with fit
parameters g and v with the exact spectrum for an N = 10
Laughlin state at ν = 1

3 confined purely by a weak octic con-
finement U = U0

∑
i (ri/R)8 (i.e., there is no additional quadratic

confinement).

in a basis of single-particle states, the monomial basis, by
using their expression in terms of Jack polynomials [46–49].
We then exactly diagonalize the interaction within reduced
subspaces of edge states at fixed angular momentum to find
the eigenstates and eigenvalues, and compare to the effective
Hamiltonians H (ha ) by fitting the coupling coefficients to the
data.

A. Confinement

We will initially consider the simpler case of confinement
where the perturbation is simply a single-body term in the
Hamiltonian. Recall then that we cannot use translational
invariance to significantly constrain the final form of the
effective Hamiltonian, so we simply take the first few least
irrelevant contributions

H =
∮

dz

2πi

(v

2
z(i∂ϕ(z))2 + gz2(i∂ϕ(z))3

)
+ O(R−3).

(104)

We will use this to consider a relatively steep edge con-
finement of U = U0(r/R)8 and fit the coefficients v and g

by simply matching the exact and effective spectra. We find
the results in Fig. 3 for the ν = 1

3 Laughlin state containing
N = 10 particles, and find a very good match.

We also consider the Moore-Read case. Once again, with-
out translational invariance the resulting effective Hamilto-
nian cannot be significantly simplified, which leaves us with
the following least irrelevant terms:

H =
∮

dz

2πi

(
−v1

2
z(ψ∂ψ (z)) + v2

2
z(i∂ϕ(z))2

+ g1z
2(i∂ϕ(z))3 + g2z

2(i∂ϕψ∂ψ (z))
)

+ O(R−3).

(105)
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FIG. 4. A comparison of our effective Hamiltonian with fit pa-
rameters v1, v2, g1, and g2 with the exact spectrum for a ν =
1 Moore-Read state confined by a weak octic confinement U =
U0

∑
i (ri/R)8 when N = 14. Once again, the quadratic confinement

was set to zero for these results.

Once again, we check this against exact numerical results for
a Moore-Read droplet confined by radial potential of the form
U0(r/R)8. The results are given in Fig. 4 and show good
agreement once again.

B. Interacting Laughlin state

For the Laughlin state perturbed by nontrivial interactions
we shall employ a simple two-parameter effective Hamilto-
nian, including only the two least irrelevant contributions:

H = h22H22 + h33H33. (106)

This should replicate the matrix elements of the Hamiltonian
as calculated numerically up to corrections of order R−7.

We then note that, given this form for the effective Hamil-
tonian, certain matrix elements will constrain the coefficients
h22 and h33 exactly. Specifically, consider the element 〈2|H |2〉
where |2〉 = a−2|0〉 as defined in Eq. (16). The only nonzero
contribution to this comes from T22 contained in H22. Not
only is this true for the truncated expansion, but we expect
it to hold true at every order. Furthermore, the only local
terms which we expect can contribute to the matrix element
〈3|H |3〉, even in an infinite-order expansion, are T22 and
T33. Therefore, these two matrix elements should determine
h22 and h33 exactly, and these are what we use to fit these
coefficients.

Note that to find the effective Hamiltonian H from the
data requires one to also calculate the overlaps of the wave
functions. To see this, recall that the states in the quantum
Hall language are not orthogonal, i.e.,

{�〈v||�〈w|} = 〈w|GN |v〉. (107)

The quadratic form GN was discussed in length in
Refs. [23,24]. Furthermore,

{�〈v||δH|�〈w|} = 〈w|HGN |v〉. (108)

FIG. 5. Perturbing the integer quantum Hall effect at ν = 1 with
a first pseudopotential V1, we find the above scaling of the coeffi-
cients h22 and h33 in the effective Hamiltonian. In both cases, the
coefficients appear to obey the scaling hypothesis well, varying as

ha ∼ √
N

1−da
where d22 = 4 and d33 = 6.

Therefore, we can calculate the matrices GN and (HGN ), and
hence we find the effective Hamiltonian by

H = (HGN )G−1
N . (109)

1. Coefficient scaling

Upon fitting the coefficients, it is important to check that
the scaling arguments made previously hold. These claimed
that the coefficients ha should scale as R1−da . Then, given
that the radius scales as the square root of particle number
N means

ha ∼
√

N
1−da

. (110)

To check that this scaling is borne out in the data, we fit the
parameters for a variety of system sizes for fillings ν = 1 and
1
2 and plot the results in Figs. 5 and 6. The exact results will
depend upon the interaction and filling, and in these examples
we take the interaction to be the first Haldane pseudopotential
for ν = 1 and the second Haldane pseudopotential at ν = 1

2 .
We see that the results appear to be consistent with the scaling
hypothesis, with h22 varying in the large-N limit as h22 ∼√

N
−3

, exactly as expected. h33 is less clear. For the integer

case it also appears to vary as expected, h33 ∼ √
N

−5
, but at

ν = 1
2 it appears that subleading corrections to this coefficient

are large enough that the value does not converge for the range
of N we can reach with exact methods. Nevertheless, it does
not appear to fall off slower than

√
N

−5
, so this also appears

consistent with scaling arguments.

2. Effective Hamiltonian spectra

Perhaps the most crucial check that our effective Hamil-
tonians describe the true behavior of quantum Hall edges is
that they faithfully reproduce the spectrum of edge states.
Therefore, we take the Hamiltonian in Eq. (106) and fit values
for h22 and h33 based on the method described above. We
then plot the agreement for the case of exponential repulsion
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FIG. 6. We perturb the Laughlin wave function at ν = 1
2 by the

second pseudopotential. Plotted here is the value we fit for h22

(which we expect to scale as v2

√
N

−3
) in the effective Hamiltonian

as N is varied, which appears to converge very quickly to some

constant/
√

N
3
. Unfortunately, h33, which is expected to vary as√

N
−5

, does not converge for this range of system sizes but does

appear to decay at least as quickly as
√

N
−5

, if not faster, as required
by the scaling hypothesis.

between particles,

V = w0

∑
i<j

exp

(
−

∣∣∣∣zi − zj

2�2
B

∣∣∣∣
2
)

, (111)

at a variety of filling fractions in Figs. 7–9. In each case, we
find that this two-parameter fit is very good.

Note that in these plots the linear slope is a free parameter
of the parent Hamiltonian derived from the confinement,
which we always take as quadratic. Therefore, in each plot we
add an arbitrary harmonic potential (specified in each figure)
which produces the accompanying linear slope. The repulsive
interactions then cause the energies to decrease with respect
to this linear edge as angular momentum is increased. This is
because these excited states allow the particles to avoid each
other more successfully, increasing their average separations.
The states which then lie exactly on the Luttinger liquid line
are those edge states which correspond simply to translations
of the original circular droplet as a whole, i.e., the states
a�L

−1 |0〉.

3. Constraints on nonlocal terms

Throughout the preceding text we have assumed that the
only terms which contribute to H are local. However, this is a
conjecture based on the Laughlin state being in a screening
phase for β � 65, which makes correlations short range.
However, for sufficiently long-range interactions we expect
nonlocal terms to also contribute. One such example is the
harmonic interaction, for which we can find the effective
Hamiltonian exactly as presented in Appendix C and which
contains nonlocal contributions.

However, this is a special case of an interaction which
actually grows with separation. In a more general setting, one

FIG. 7. A comparison of our two-parameter effective Hamilto-
nian with the exact edge spectrum for a ν = 1 quantum Hall state
perturbed by exponential repulsive interactions in Eq. (111) in the
limit where w0 is small. Recall that, because we expect the only
terms in H which contribute to the matrix elements we use to fit h22

and h33 are H22 and H33, we expect that the fits to these coefficients
are exact for these systems at these particle numbers. We find that
the subsequent agreement is extremely good, capturing the distinct
characteristics of the spectrum and matching most points extremely
closely.

of the most well-known nonlocal terms we might expect to
contribute is the Benjamin-Ono term [21,22,50], which has
the form

TBO =
∮

dz

2πi

∮
dw

2πi
|z|>|w|

zw

(z − w)2
: i∂ϕ(z)i∂ϕ(w) :

=
∑
n>0

na−nan (112)

FIG. 8. A comparison of numerical results for a ν = 1
2 Laughlin

state perturbed by exponential interactions with our two-parameter
effective Hamiltonians. As with the integer quantum Hall case, the
agreement is excellent.
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FIG. 9. A final comparison of numerical results with our effec-
tive description for the ν = 1

3 Laughlin state, which once again shows
excellent agreement.

and has the lowest scaling dimension possible for such a
double-integral term. Therefore, to ascertain the likelihood
that a nonlocal term might appear, we insert it into the
Hamiltonian and attempt to fit its coefficient. We will then
analyze the scaling of the resulting coefficient.

Therefore, we take the ultrasimple Hamiltonian

H = gBO
(
TBO − 1

2T11
) + g22T22 + · · · (113)

and fit these two coefficients. Note that the inclusion of the T11

here ensures that the overall Benjamin-Ono term which we
have inserted here obeys the leading condition of translational
symmetry, i.e., [

a1,H
(0)
a

] = [
a−1,H

(0)
a

] = 0. (114)

The terms that we throw away in Eq. (113) are then either off
diagonal (terms which are generated by this Benjamin-Ono
term to satisfy translational invariance at all orders) or of order
N−5/2. We then fit the coefficients gBO and g22 with the first
two nontrivial diagonal elements 〈2|H |2〉 and 〈3|H |3〉.

The fits for the coefficients are plotted in Fig. 10 for the
case of an exponential interaction at ν = 1

2 . We see that the

scaling of g22 is very close to the expected
√

N
−3

, whereas the
Benjamin-Ono coefficient does not scale in a manner which
can even be approximated by a power law. Nevertheless, we
see that it is always much smaller than g22 despite the fact
that it is expected to be roughly

√
N times larger. Therefore,

it is unlikely that the Benjamin-Ono term contributes to our
effective Hamiltonian, or at least its effects are much smaller
than expected by simple scaling arguments.

4. Couplings for pseudopotentials

We now look at what the values for the couplings h22 and
h33 look like for the first few Haldane pseudopotentials. In
theory, each pseudopotential has associated with it an effective
Hamiltonian,

Vk�〈λ| = �〈λ|Hk
, (115)

FIG. 10. We assume for the moment that the Hamiltonian might
contain nonlocal terms and fit them taking the form in Eq. (113) for
H and taking exponential interactions between the particles at filling
ν = 1

2 . We see that the Benjamin-Ono coefficient is consistently
smaller than g22 despite scaling arguments suggesting that it should
be ∼√

N times larger. As such, any contribution this term makes
to the dynamics is much smaller than expected. Clearly, this does
not prevent any nonlocal term being present at any order in the
expansion, but it does provide evidence against this most likely
contribution.

and, therefore, given that any interaction can be formed from
a sum of pseudopotentials, i.e., V = ∑

k vkVk , the effective
Hamiltonian of such an interaction is simply

H =
∑

k

vkHk. (116)

Recall that the parent Hamiltonian at ν = 1/m is constructed
from all the pseudopotentials Vk with k < m and so these
annihilate all our wave functions at these filling fractions.
Therefore, knowledge of the coupling coefficients within the
Hk of Eq. (116) for k � m is all we require to be able to build
the effective Hamiltonian for any interaction.

Unfortunately, as we have already seen in Fig. 6, for exam-
ple, fitting some of these coefficients can be difficult or simply
unreliable for the system sizes we are able to compute exactly.
Therefore, we fit only the leading-order contribution h22 for
each and give the values in Table V for the pseudopotentials
contributing to the interactions at ν = 1

2 .

TABLE V. The leading coupling coefficient for the effective
Hamiltonian of various pseudopotentials at fractional fillings ν = 1

2 .
For the case at half-filling the convergence to a constant appears
robust and the errors are very small. Similar extrapolations could not
be made reliably for the case at ν = 1

3 given the inferior convergence
in this case.

Pseudopotential h
ν=1/2
22

V2 0.079 ± 0.007
V4 0.074 ± 0.020
V6 0.087 ± 0.036
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TABLE VI. The coupling coefficients for the first few contributing pseudopotentials at filling ν = 1. We note that the higher-order
coefficients are larger relative to the lower-order coefficients for the higher pseudopotentials (which are the pseudopotentials that are more
important for less local interactions), i.e., |h(3)

22 /h
(5)
22 | is smaller for Vk where k is larger. Furthermore, we note that the coefficient of h22 at order√

N
−4

is very small relative to the coefficients at fractional powers of N . This is in good agreement with our calculation for the asymptotic
behavior of the exponential potential shown in a future publication [44], which predicts vanishing coefficients at even order (i.e., at order√

N
−2n

).

Pseudopotential h
(3)
22 h

(4)
22 h

(5)
22 h

(5)
33

V1 0.282 ± 0.001 0.000 ± 0.002 −0.179 ± 0.016 0.071 ± 0.001
V3 0.423 ± 0.001 0.001 ± 0.017 −0.633 ± 0.187 0.247 ± 0.001
V5 0.529 ± 0.001 0.004 ± 0.014 −1.268 ± 0.156 0.485 ± 0.001
V7 0.617 ± 0.001 0.010 ± 0.010 −2.088 ± 0.135 0.771 ± 0.005
V9 0.694 ± 0.006 0.014 ± 0.278 −2.982 ± 5.472 1.103 ± 0.189

However, while our data for fractional fillings remain too
small to form a reliable conclusion about the subleading
corrections to the effective Hamiltonian, we can perform this
analysis extremely reliably for ν = 1, where we consider N

as high as 160. Thus, we fit the effective Hamiltonian to fifth
order, expanding the leading coupling coefficient as

h22 = h
(3)
22√
N

3 + h
(4)
22√
N

4 + h
(5)
22√
N

5 + O(
√

N
−6

) (117)

and considering only the leading order for h33 = h
(5)
33 /

√
N

5 +
O(

√
N

−6
). Each of these coefficients is shown in Table VI.

C. Interacting Moore-Read state

The spectra for the Moore-Read state are more complex
than those for the Laughlin state. For example, consider the
subspace of states with �L = 5 units of angular momentum
added with respect to the ground state. In the Laughlin case,
this is a seven-dimensional subspace but in the Moore-Read
case there are 16 states. As such, the matrix δH, which our
effective Hamiltonian H must reproduce, includes over four
times as many matrix elements. Nevertheless, as we shall
see, an effective Hamiltonian containing only three terms (and
thus three fit parameters) can still provide an extremely good
description of the resulting behavior. Thus, in the resulting
discussion we will take the effective Hamiltonian to include
the three least irrelevant terms

H = h∅,01H∅,01 + h22,∅H22,∅ + h∅,12H∅,12. (118)

Note that to leading order, each term of this Hamiltonian is
purely fermionic or bosonic, and hence the modes appear to
decouple. However, one should recall that to first order each
of these fermionic terms [as given in Eqs. (101) and (103)]
will couple the bosonic and fermionic edge channels.

As in the Laughlin case, we will fit the coupling coeffi-
cients in Eq. (118) by comparison with particular matrix ele-
ments. Specifically, 〈2; ∅|H |2; ∅〉 will fit the coefficient h22,∅.
Additionally, we use 〈∅; 3

2
1
2 |H |∅; 3

2
1
2 〉 and 〈∅; 5

2
1
2 |H |∅; 5

2
1
2 〉

together to fit the coefficients h∅,01 and h∅,12. We present a
scaling analysis of the resulting fit coefficients for the bosonic
ν = 1 Moore-Read state perturbed by exponential interactions
in Fig. 11. As these plots show, the scaling hypothesis appears
to work well even for these relatively small system sizes. The
convergence for the least irrelevant contribution h∅,01 is very

good and is shown to vary as
√

N
−1

as expected by scaling
arguments. Less clear are the forms of scaling for h22,∅ and
h∅,12 which do not converge so convincingly over the system
sizes we are able to access though still appear to fall off no

faster than the
√

N
−3

required.

1. Effective Hamiltonian spectra

Once again, the most crucial check of our effective theory
is that they are able to reproduce the spectra of the correspond-
ing systems. As such, we calculate the spectrum numerically
for Moore-Read states containing N = 16 particles at filling
ν = 1. The data when the interactions we perturb with are ex-
ponentially repulsive [i.e., the same as in Eq. (111)] are shown
in Fig. 12 alongside a comparison to the effective Hamiltonian

FIG. 11. We consider the Moore-Read state at ν = 1 perturbed
by an exponential repulsive interaction [Eq. (111)] and fit the cou-
pling coefficients h∅,01, h22,∅, and h∅,12 at a variety of system sizes
N . We then plot the variation of h∅,01 and h22,∅ with N , which are

expected to vary as
√

N
−1

and
√

N
−3

, respectively, based on scaling
arguments. The convergence to this scaling behavior is quite good
for both h∅,01 and h22,∅. However, the convergence is unclear for the
coefficient h∅,12, whose scaling behavior we do not show here, as we
cannot reach large enough N with these exact methods for the value
to converge. Nevertheless, the scaling hypothesis does not appear to
be incompatible with any of these data.
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FIG. 12. We show the spectrum for the Moore-Read state con-
taining N = 16 particles at filling ν = 1 perturbed by an exponential
repulsive interaction [Eq. (111)]. The three coupling coefficients in
the effective Hamiltonian H are fit using the process described above
and provide a very accurate fit to the numerically calculated spectrum
(the dots correspond to the spectrum of δH while the orange lines are
the spectra of H ). As in the Laughlin case, the gradient of this linear
Luttinger liquid slope (the blue line corresponding to an unperturbed
droplet) is a free parameter of the parent Hamiltonian arising from
the assumption of quadratic confinement.

H (h∅,01, h22,∅, h∅,12), where these coupling coefficients are fit
using the procedure described above.

This comparison shows very good agreement between the
exact numerical data and our low-energy effective theories.
Notably, the renormalization of the velocity of the fermionic
modes is indeed borne out by the data, with the lowest-
energy modes in Fig. 12 corresponding to cases where all of
the angular momentum goes into the excitation of fermionic
edge modes. Their velocity is reduced by the presence of
interactions.

However, we show here data only for the ν = 1 Moore-
Read state as smaller filling fractions do not converge suffi-
ciently to be described by our effective theories at the system
sizes we can reach with these exact methods. We suspect that
this is due to a larger correlation length in these systems [43],
which therefore requires higher-order terms to be included in
H to provide an adequate description of the data at small
system sizes. This point is also true for the Laughlin state,
whose agreement with our low-energy theories also worsens
as the filling fraction decreases. We present an illustration of
this point in Appendix B.

VI. CONCLUSION

We have found the behavior of quantum Hall edge states
in anharmonic traps and in the presence of short-range inter-
actions and shown that these theories are extremely accurate
descriptions of the low-energy structure of both the Laughlin
and Moore-Read states. These effective theories show that
the addition of bulk translational symmetry causes surprising
simplifications in the nonlinear Luttinger liquid expansion.

Furthermore, we find that these local descriptions of the edge
behavior are at odds with alternative proposals for the edge
state behavior relying on nonlocal models such as the quantum
Benjamin-Ono equation [22].

However, the present analysis does not cover the full
behavior of the resulting theories. It would be extremely in-
teresting to analyze the consequences of the remaining terms
in greater details, considering for example the implications
on the hydrodynamics of the systems, perhaps along similar
lines to previous works [16,18,21] which have, among other
things, considered the potential for shock waves along the
edge. Furthermore, the line of reasoning we use in this paper
is readily applicable to any other quantum Hall wave function
which can be expressed in terms of conformal blocks, which
might indicate further interesting results in, for example, the
Read-Rezayi states. Finally, given that these results depend
intimately on our conjecture of locality and that this is not
fully understood, it would be worth exploring exactly how and
why the Hamiltonian can be claimed to be local, something
which we partially consider for the integer quantum Hall
effect in a future publication [44].

In compliance with EPSRC policy framework on research
data, this publication is theoretical work that does not require
supporting research data.
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APPENDIX A: HALDANE PSEUDOPOTENTIALS

We provide a rapid review of the two-body problem and
discuss the concept of Haldane pseudopotentials. These pseu-
dopotentials are a convenient way to think about potentials
and generate parent Hamiltonians for the Laughlin state. They
are reviewed in [7] but we summarize the points pertinent to
our discussion here.

The lowest Landau level of the single-particle quantum
Hall effect is a set of degenerate states gapped by h̄ωc where
ωc is the cyclotron frequency. As is customary [51], we use
the Bargmann-Fock space of holomorphic polynomials as our
Hilbert space with an inner product of the form

{f |g} =
∫

d2z

π
e
− |z|2

2�2
B g(z)f (z), (A1)

where �B is the magnetic length and z = x + iy is the particle
position. Note that we use curly kets to distinguish states in
the physical space from those in the conformal field theory,
which we introduce later. Within this space, the wave function
{z | ψl} = zl describes a particle with angular momentum l

about the origin.
We perturb the single-particle picture with a two-body

interaction V (|z1 − z2|) � h̄ωc. This perturbation is rotation-
ally invariant and so is diagonal in a basis of states with
well-defined relative and total angular momentum

{z1, z2|m,M} = zm
r ZM, (A2)
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where zr = z1 − z2 and Z = z1+z2
2 are the relative and center-

of-mass coordinates. The interaction is also translationally
invariant so the eigenvalues of V are independent of M .

This leads to the concept of pseudopotentials. We define
the mth pseudopotential of V as

vm[V ] = {m,M|V |m,M}
{m,M|m,M} . (A3)

Therefore, given some set of functions Vk (|zr |) for which
vm[Vk] = δm,k , we can represent any generic interaction po-
tential in this Hilbert space as

V (|zr |) =
∞∑

k=0

vk[V ]Vk (|zr |). (A4)

These Vk (|z|) may then be expressed as the derivative of a
delta function

Vk (|zr |) = Lk

(−�2
B∇2

r

)[
4π�2

Bδ(2)(zr )
]
, (A5)

where Lk is the kth Laguerre polynomial.

APPENDIX B: SMALLER FILLINGS

We present a series of plots in Fig. 13 to demonstrate the
agreement between our effective Hamiltonians and numerics
for a variety of filling fractions in the Laughlin state. In each
case, we take only the least irrelevant term in the Hamiltonian,
neglecting all other terms,

H = g22T22 + O(R−5). (B1)

Then, as in the main text, we fit the coupling coefficient
g22 using the matrix element 〈0|a2Ha−2|0〉 which, in theory,
should depend only on g22 to all orders. Plotted are the sub-
sequent agreements between this simple fit and the numerics
in the case where the interactions we take in each case are
the first contributing pseudopotentials for fillings ν = 1

2 , 1
3 ,

and 1
4 , each at a system size of N = 8 (which constitutes

an approximate limit for our exact numerical methods in the
ν = 1

4 state). They show that the agreement becomes worse
for smaller filling fractions, which also corresponds to larger
correlation lengths and therefore one might expect to require
a larger number of higher-order terms to achieve an adequate
agreement with the data.

APPENDIX C: HARMONIC INTERACTIONS

Consider the Harmonic interaction, which we take to have
the form

δH = V0

∑
i 
=j

∣∣∣∣zi − zj

2�B

∣∣∣∣
2

. (C1)

This interaction is clearly very nonlocal, coupling particles
with larger separations more than those which are close. In
order to find the mapping of this operator onto the CFT,
we must first convert it into a differential operator using
projection to the lowest Landau level z̄i → 2�2

B∂i . The result
of this is that

δH = NV0

∑
i

zi∂i − V0

∑
i

zi

∑
j

∂j + V0N (N − 1). (C2)

FIG. 13. A trio of plots showing the spectrum for the quantum
Hall edge when the bulk interactions are the first nonvanishing
pseudopotentials at filling fractions ν = 1

2 , 1
3 , and 1

4 (i.e., at filling
1/m we add the pseudopotential Vk) and the system size is N = 8.
The effective Hamiltonian we fit is simply H = g22T22, with the
coefficient fit using only the data at �L = 2. The blue points are
the numerical data and the orange levels are the result of diagonaliz-
ing the effective Hamiltonian. These data show that the agreement
becomes steadily worse as the filling fraction decreases, with the
agreement very poor for ν = 1

4 . To describe this case well, one would
require higher-order terms in the effective Hamiltonian.
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Therefore, we simply need the mapping of these operators into
the CFT. These are all derived in the main text with

∑
i

zi → 1√
β

a1, (C3)

∑
i

zi∂i → L0 + βN (N − 1)

2
, (C4)

∑
j

∂j → L−1 + N
√

βa−1 (C5)

in the sector with zero charge (i.e., a0 = 0). Collating these
results we therefore find that

H = NV0

(
L0 − a−1a1 − 1

N
√

β
L−1a1

)

+ 1

2
V0N (N − 1)(Nβ + 2). (C6)

Note that this effective Hamiltonian is clearly nonlocal with
the L−1a1 term being of the form

L−1a1 = 1

2

∮
dz

2πi

∮
dw

2πi
: (i∂ϕ(w))2 : zi∂ϕ(z). (C7)

[1] A. M. Chang, L. N. Pfeiffer, and K. W. West, Phys. Rev. Lett.
77, 2538 (1996).

[2] X. G. Wen, Phys. Rev. B 41, 12838 (1990).
[3] A. M. Chang, Rev. Mod. Phys. 75, 1449 (2003).
[4] C. L. Kane and M. P. A. Fisher, Phys. Rev. Lett. 68, 1220

(1992).
[5] T. Giamarchi, Quantum Physics in One Dimension (Oxford

University Press, Oxford, 2003).
[6] B. I. Halperin, Phys. Rev. B 25, 2185 (1982).
[7] S. M. Girvin, Topological Aspects of Low Dimensional Systems

(Springer, Berlin, 1998), pp. 53–175.
[8] X.-G. Wen, Int. J. Mod. Phys. B 06, 1711 (1992).
[9] X.-G. Wen, Adv. Phys. 44, 405 (1995).

[10] X. G. Wen, Phys. Rev. B 43, 11025 (1991).
[11] X. G. Wen, Phys. Rev. Lett. 64, 2206 (1990).
[12] F. D. M. Haldane and E. H. Rezayi, Phys. Rev. Lett. 54, 237

(1985).
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