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Optimal electromechanical control of the excitonic fine structures of droplet epitaxial quantum dots
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The intrinsic fine structure splittings (FSSs) of the exciton states of semiconductor quantum dots (QDs)
are known to be the major obstacle for realizing the QD-based entangled photon pair emitters. In this paper,
we present a theoretical and computational investigation of the excitonic fine structures of droplet-epitaxial
(DE) GaAs/AlGaAs QDs under the electromechanical control of micromachined piezoelectric actuators. From
the group theory analysis with numerical confirmation based on the developed exciton theory, we reveal the
general principle for the optimal design of micromachined actuators whose application onto an elongated QD
can certainly suppress its FSS. We show that the use of two independent tuning stresses is sufficient to achieve
the FSS elimination but is not always necessary as widely deemed. The use of a single tuning stress to eliminate
the FSS of an elongated QD is possible as long as the crystal structure of the actuator material is in coincidence
with that of the QD. As a feasible example, we show that a single symmetric biaxial stress naturally generated
from the (001) [Pb(Mg1/3Nb2/3)O3]0.72−[PbTiO3]0.28 (PMN-PT) actuator can be used as a single tuning knob to
make the full FSSelimination for elongated DE GaAs QDs.
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I. INTRODUCTION

Generation of polarization-entangled photon pairs is a vital
element in advanced quantum photonic applications, such as
quantum cryptography and quantum teleportation [1]. Semi-
conductor quantum dots (QDs) were predicted to be a promis-
ing nanomaterial for being “on-demand” entangled photon
pair emitters (EPPEs), which are key devices necessary
in quantum cryptography and quantum teleportation [2–5].
However, in reality photo-excited QDs usually fail to generate
such polarization-entangled photon pairs because of the in-
trinsic fine structure splitting (FSS) between the single bright-
exciton (BX) doublet as the intermediate states in the process
of spontaneous biexciton-exciton-vacuum cascade decay. The
FSS of an exciton in a self-assembled QD is caused by the
electron-hole (e-h) exchange interactions, which are likely in-
duced by any slight symmetry breaking of QD structures, such
as shape elongation, strain, or composition randomness, and
leads to the destruction of entanglement with the reveal of the
which-path information in the processes of spontaneous exci-
ton decay [6]. Thus, technologies for fully eliminating the ex-
citon FSS, against the inherent or extrinsic symmetry breaking
of QDs have been desired for a long time and are still under ac-
tive development for QD-based photonic applications [7–10].

In earlier times, most experiments attempted to use single
generic fields, e.g., electrical [7,11,12], magnetic [13,14],
optical [15], or stress fields [16], as single tuning knobs to
suppress the FSSs of QDs, but the yield of successful devices
was extremely low. As a known example, the FSSs of QDs
can be well tuned by a single uniaxial stress but hardly really
tuned to be zero [16,17].

Until some years ago, a conceptual and technological
breakthrough was first proposed and experimentally con-
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firmed by Trotta et al. to solve the problem [9]. They show that
at least two tuning knobs are needed for a thorough elimina-
tion of the FSSs of QDs [9,18,19]. In the experiment, with the
simultaneous application of a uniaxial stress and vertical elec-
trical bias, the FSSs of the inherently strained InAs/AlGaAs
QDs were fully eliminated in a universal and deterministic
manner. Years later, with the advances in the fabrication
of micromachined actuators, the deterministic generation of
entangled photon pairs from InAs/AlGaAs QDs was also real-
ized by means of simultaneously applying two independently
tuned uniaxial stresses onto the QDs [20]. The realization
of the QD-based EPPEs by means of the electromechanical
control opens up a prospect of the integration of QD-based
photonics with microelectromechanical systems (MEMSs).
Inspired by the progress, currently more attempts are devoted
to developing the versatile QD-based EPPEs with the
functionalities useful in scalable integrated photonic systems
[20–22]. In a sense, the need and use of two tuning knobs
for the FSS tuning hinder the versatility of devices that also
require additional tuning knobs for the functional operations
[23]. Thus, for practical applications and also fundamental
curiosity, the following questions arise: Why are two tuning
knobs necessary and can the number of required tuning knobs
be reduced?

In this paper, we present a theoretical and computational
investigation of the excitonic fine structures of inherently
unstrained GaAs/AlGaAs droplet-epitaxial QDs (DE-QDs)
under the electromechanical control, implemented by micro-
machined [Pb(Mg1/3Nb2/3)O3]0.72−[PbTiO3]0.28 (PMN-PT)
piezoelectric actuators in multilegged structures [21,24–26].
As compared with more extensively studied InAs/AlGaAs
QDs grown in the Stranski-Krastanov (SK) mode [27,28],
GaAs QDs grown by DE technique are advantageous in the
well-controlled shape geometry [29,30], negligible interdiffu-
sion at interfaces [31], and the absence of internal strain [32].
Notably, the absence of inherent strain makes the electronic
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and excitonic structures of GaAs DE-QDs sensitive to and
highly tunable by external stress [26,33–35].

From the group theory analysis with numerical confir-
mation based on the multiband exciton theory, we derive
explicitly the general principle for the optimal arrangement of
uniaxial stresses from micromachined PMN-PT actuators that
can certainly suppress the FSSs of elongated GaAs DE-QDs
fully. The principle to follow is that a full elimination of the
FSS, tuned by external knobs, of an elongated QD can always
be possible as long as the symmetry of the QD can be kept
invariant during the tuning process. Surprisingly, we find that
that, beyond common intuitive understanding, the use of two
tuning knobs is actually a sufficient but not a necessary condi-
tion for a deterministic elimination of the FSS of an elongated
QD. As a feasible example, it is shown that a single symmetric
biaxial stress naturally generated from the (001) PMN-PT
actuator [35–37] can be used as a single tuning knob to make
the full FSS elimination, and advantageous in the robustness
of the FSS tuning against the poorly controlled orientation
variations of actuators. The deterministic elimination of the
FSSs of zinc-blende GaAs QDs by using a single symmetric
biaxial stress from (001) PMN-PT actuator is achievable by
taking advantage of the compatibility of crystal symmetry
between the QD- and piezoelectric actuator materials and
essentially related to the stress-enhanced valence band mixing
(VBM) in the QD-confined exciton [38].

This paper is organized as follows. The next section
presents the theoretical and computation methodology used
throughout this paper. In Sec. II A, we present the group
theory analysis for the excitonic fine structures of elon-
gated semiconductor QDs under the action of generic tuning
stresses. Section II B is devoted to the theory of electron-hole
exchange interaction in a QD-confined exciton and the numer-
ical implementation for the simulation of the fine structures
of stressed GaAs/AlGaAs QDs. In Sec. III, we discuss the
predicted excitonic fine structures of stress-controlled QDs
by the group theory. Then, we present a general principle
for the optimal design of the stress actuators predicted from
the analysis, with confirmation by the numerical computation.
In Sec. IV, we establish a valid simplified exciton model
that incorporates the nonlinear effect of the biaxial stress and
valence-band-mixed nature of exciton. Finally, we conduct the
model analysis to discuss several advantageous features of
the zinc-blende QDs controlled by a single symmetric biaxial
stress. Section V concludes this work.

II. THEORETICAL AND COMPUTATIONAL METHODS

A. Group theory analysis

We begin with the group theory analysis for a single
exciton in an elongated QD made of zinc-blende Td semi-
conductor. Figure 1 depicts a GaAs QD in the shape of C2v

symmetry mounted on a PMN-PT piezoelectric crystal and
stretched by the generated stresses. Below we summarize the
main predicted features of exciton fine structures of the QDs
under the stress control. The technical details of the analysis
are given in Sec. S1 of Supplemental Material [39].

1. Bulk

Disregarding the C2v quantum confinement of QD, the
states of a spin exciton in a Td crystal that are created from

the direct product of the conduction band and the valence
band states are known as �6c × �8v = �3X + �4X + �5X [17],
which consists of a doublet in the irreducible representation
(irrep) �3X and two triplets in �4X and �5X. The exciton
states in the irrep �5X (�3X and �4X) are optically active
(inactive) and referred to as the BX [dark exciton (DX)]
states, according to the Wigner-Eckart theorem. Throughout
this paper, we shall use the subscript indices c, v, X, and s to
indicate conduct band, valence band, exciton state, and spin,
respectively.

2. C2v QDs

With the C2v quantum confinement of QD, the degeneracy
of the BX states in the triplet irrep �5X is lifted. With the
addition of spin-orbit interaction, the conduction band turns
out to be a doublet irrep �1c × �5s = �5c, and the topmost
valence bands �2v and �4v are regrouped into the doublet
irreps �2v × �5s ≡ �

(2)
5v is referred to as the heavy hole (HH),

and �4v × �5s ≡ �
(4)
5v is referred to as the light hole (LH) [17].

Since both of the HH and LH bands belong to the same
doublet irreps �5v , it is natural to consider �′

5v = �
(2)
5v +

β̃HL�
(4)
5v for the valence-band-mixed hole states where the HH

and LH components are intrinsically mixed. Here, we intro-
duce the complex coefficient β̃HL ≡ βHLe−iφβ to parametrize
the degree as well as the phase of VBM that are essentially
associated with the symmetry of system. For a C2v QD,
�

(2)
5v and �

(4)
5v should keep invariant under the action of the

symmetry transformations for C2v (C2z, σy , σx ,...) as given
in the character table of Fig. 2(a), so do �′

5v . Note that,
with arbitrary value of β̃HL the mixture of HH and LH,
�′

5v = �
(2)
5v + β̃HL�

(4)
5v , might not belong to the representation

of C2v if the chosen phase angle φβ is improper. In fact, only
the phase angles, φβ = 0 or π , can match the corresponding
symmetry transformations of C2v , and indicates the real value
of β̃HL. A real β̃HL indicates the fixed relative phase between
the HH and LH components and the fixed orientation of the
resulting optical polarizations. Remarkably, the invariance of
optical orientation of a single exciton in a QD under the
tuning of external fields has been well recognized as a crucial
signature to the feasibility of tuning the FSS of the QD down
to zero, as will be discussed more later [9,18,22,23,33].

3. Effects of valence band mixing

With the VBM nature, the states of the exciton bound
by electron-hole Coulomb interactions are created from the
direct product of the �5c conduction band and the �′

5v va-
lence band becomes �5c × �′

5v = �1X + �2X + �3X + �4X,
composed of the DX singlet belonging to �3X and the BX
triplet belonging to �1X, �2X and �4X, optically polarized
along the z, x, and y, respectively. The character table for the
spin double group of C2v is presented in Fig. 2(a). In this work,
we are mainly interested in the x- and y-polarized BX doublet
(�2X and �4X) that can emit light vertically out of the QDs
grown on the (001) substrate.

In principle, the four exciton states (�1X, ...,�4X) of a C2v

QD that belong to the different irreducible representations
should own distinctive energies and are subject to level split-
tings, except that some accidental degeneracy happens. Thus,
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FIG. 1. Schematics of (a) a photo-excited QD in the elongated shape of C2v symmetry that successively emits a pair of photons not in
entanglement, and, correspondingly, (b) the biexciton and single exciton levels of the elongated QD, with a nonzero fine structure splitting
(S �= 0) between the single-exciton doublet. (c) A C2v QD with two mechanical tuning knobs, a set of two uniaxial stresses generated and
controlled by a (110) micromachined PMN-PT actuator. Generation of polarization-entangled photon pairs from the stressed QD is possible if
the strengths, (σ1, σ2), and the orientations, (φ1, φ2), of the two tuning uniaxial stresses are chosen appropriately. (d) The C2v QD with a single
tuning knob of symmetric biaxial stress from (001) PMN-PT crystal that can emit a pair of photons in entanglement with only appropriate
adjustment of the strength of the single stress, irrelevant to the orientation of the stress axes. (e) The exciton-level schematics of the QD that
can emit entangled photon pairs, where the fine structure splitting (S ) is intrinsically zero or eliminated by external tuning knobs.

the only possibility of crossing over the �2X and �4X BX
levels of a C2v QD is by means of the accidental degeneracy
that might be made by using some external tuning knobs. As
pointed out previously by Singh and Bester in Ref. [17], the
formation of such an accidental degeneracy of the BX doublet
of an asymmetric QD could be possible if and only if the BX
states belong to different irreducible representations. From
our analysis, it is shown that, as long as C2v symmetry of
QD can be preserved during the FSS-tuning, the BX doublets
surely stay in the different irreps �2 and �4 [see Figs. 2(a)
and 2(c) for illustration].

4. Effects of external tuning knobs

Yet, in reality, imposing tuning knobs onto a QD to tune
the FSS is likely to break the C2v symmetry down to the lower
ones, say C2 symmetry. For a QD in the low symmetry caused
by knob tunings, it turns out that the four exciton states belong
to the irrep 2�1X + 2�2X in the C2 group (see Fig. 2(b) for the
character table) with the two BX singlets optically polarized
along the x and y directions belonging to the same irrep �2X,

and it becomes impossible to eliminate the FSS of the QD in
any way. Figure 2(d) depicts the exciton levels of a QD in the
lowest C2 symmetry, which are always anticrossed and cannot
recover the degeneracy by knob tunings. The same conclusion
can be obtained also for the even lower C1 symmetry in which
only one representation exists. In the situation of the low
symmetry, it is thus necessary to use the second tuning knob
to retain the C2v symmetry and the possibility of eliminating
the FSS. This accounts for that the successful elimination of
the FSSs of QDs usually relies on the use of two tuning knobs,
e.g., the combination of two independently controlled stresses,
or that of a stress and an electric field [9,18,20].

Remarkably, with the recent advances in the micromachine
techniques, the PMN-PT actuators can be fabricated in the
multilegged structures to generate multiple (N ) stresses (act-
ing as mechanical tuning knobs), allowing for more flexible
controls and additional functionalities of devices. Recently,
the micromachined piezoelectric actuators in the three-legged,
four-legged, and six-legged structures have been demon-
strated for a full control of the generated in-plane stress ten-
sor in semiconductor nanomembranes [20–22,35]. With the
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(a)

(b)

(c)

C2v E C2 σy σx Basis func�on

Γ1 1 1 1 1 z
Γ2 1 -1 1 -1 x
Γ3 1 1 -1 -1 xy
Γ4 1 -1 -1 1 y

C1 E C2 Basis func�on

Γ1 1 1 z

Γ2 1 -1 x, y
Γ3 2 0

Γ5 2 0 0 0

(d)

The character table of the spin double group C2v

The character table of group C2

C2v C2v
tuning

XE

S

2( )
2

vCΓ

2( )
4

vCΓ
2Γ

4Γ

C2v C2
tuning

XE

S 2( )
2
CΓ}

2Γ

4Γ

accidental degeneracy

FIG. 2. The character tables of (a) the spin double group C2v and (b) group C2. (c) Schematics of the stress-tuned exciton levels of a C2v QD
with the preservation of the C2v symmetry, e.g., by means of symmetric biaxial stress. In this case, a direct crossing (leading to S = 0) of the
distinct exciton levels belonging to different irreducible representations, �2 and �4, can be made by an accidental degeneracy. (d) Schematics
of the exciton levels of an elongated C2v QD whose symmetry is reduced to C2 by a misaligned uniaxial stress from the elongation axis.
Without the preservation of the C2v symmetry, the two exciton states belong to the same irreducible representations, �2, and no level crossing
can happen.

multilegged structure, the total generated stress is composed
of multiple stresses each of which can be individually con-
trolled and serves as an independent tuning knob. With the
multiple tuning stresses, the EPPE devices that are wavelength
tunable and suited for being quantum repeaters have been
successfully fabricated, where two stresses are used for the
suppression of the FSS and the others for the tuning of the
light wavelength or other functionalities [20,21].

B. Deterministic elimination of exciton FSS
by N uniaxial stresses

The resultant strain in a GaAs QD under N uniaxial
stresses with the magnitudes {σi} and the angles with respect
to the elongation-axis {φi} is derived, through the standard
procedures of tensor transformation as detailed in Sec. S2
of Ref. [39], as characterized by the nonzero strain tensor
elements given by

εxx = s11 + s12

2
·
(

N∑
i=1

σi

)
+ s44

4
·
(

N∑
i=1

σi cos 2φi

)
,

εyy = s11 + s12

2
·
(

N∑
i=1

σi

)
− s44

4
·
(

N∑
i=1

σi cos 2φi

)
,

εxy = s11 − s12

2
·
(

N∑
i=1

σi sin 2φi

)
,

εzz = (s11 + s12) ·
(

N∑
i=1

σi

)
, (1)

where the elastic compliance constants are s11 =
0.0082 GPa−1, s12 = −0.002 GPa−1, and s44 =
0.0168 GPa−1 for GaAs [40].

Following the Neumann’s principle [41,42], the strain ten-
sor given by Eqs. (1) owns the C2v symmetry if it is invariant
under the operation of any C2v symmetry operators. As de-
tailed in Sec. S2.D of Ref. [39], one can show that the strain
generated by N tuning uniaxial stresses can keep invariant the
symmetry of C2v and enables the full FSS elimination for a
C2v QD as long as the following equation for the arrangement
of the stresses is fulfilled:

N∑
i=1

σi sin 2φi = 0. (2)

Equation (2) can serve as a general guideline for the opti-
mal design of the useful micromachined actuators that can
generate N uniaxial stresses for the deterministic control and
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elimination of the FSSs of elongated QDs. Without losing the
generality, hereafter we shall focus the study on the QDs under
single-stress (N = 1) or dual-stress (N = 2) controls, which
are most feasible to be implemented in experiments [35].

C. Numerical approaches

To confirm the prediction of the group theory analysis, we
carry out the numerical calculations of the spectral fine struc-
tures and optical polarizations of single excitons in GaAs DE-
QDs under various single- and dual-stress controls by using
the computational methodology employed in Refs. [43–46].
Considering the GaAs material as a wide band-gapped semi-
conductor, we neglect the weak coupling between the conduc-
tion and valence bands, and compute separately the electronic
structures of an electron and a valence hole in a GaAs QD
in the single-band theory and the four-band k · p theory,
respectively. In the former (latter) theory, the wave function
of a conduction electron (a valence hole) in a QD is writ-
ten as ψe

ie
(�r ) = ge

ie
(�r )uc

sz
(ψh

ih
(�r ) = ∑

jz=±1/2,±3/2 gh
ih

(�r )uv
j,jz

),

where g
e/h

i are the slowly varying electron/hole envelope
functions, ie/h stands for a composite index composed of those
of the orbital and spin of an electron/a hole state, sz is the z

component of electron spin, jz is the z component of the an-
gular momentum j = 3/2 of valence hole, and uc

sz
(uv

j=3/2,jz
)

is the microscopic periodic part of the Bloch function of the
conduction (valence) band. Based on the calculated electronic
structures of an electron and a valence hole in a GaAs QD, the
theory for the electron-hole exchange interaction of an exciton
in the QD is established and used to compute the excitonic fine
structures.

1. Four-band k · p model for a valence hole in a stressed QD

In the four-band model, the Hamiltonian for a single hole
in a stressed QD is formulated as a 4 × 4 matrix composed of
the kinetic energy-, strain-, and potential parts, Hh = Hh

k +
Hh

ε + V h
QD. In the basis of the Bloch functions ordered by

{uj,jz
} = {|u 3

2 , 3
2
〉, |u 3

2 , 1
2
〉, |u 3

2 ,− 1
2
〉, |u 3

2 ,− 3
2
〉}, the Hamiltonian

is expressed as [29,40,46,47]

Hh =

⎛⎜⎜⎜⎝
P + Q −S R 0

−S+ P − Q 0 R

R+ 0 P − Q S

0 R+ S+ P + Q

⎞⎟⎟⎟⎠ + V h
QDI4×4 ,

(3)

where P = Pk + Pε , Q = Qk + Qε , R = Rk + Rε , S = Sk +
Sε , Pk = h̄2γ1

2m0
(k2

x + k2
y + k2

z ), Qk = h̄2γ2

2m0
(k2

x + k2
y − 2k2

z ), Rk =
√

3h̄2

2m0
[−γ3(k2

x − k2
y ) + 2iγ2kxky], Sk =

√
3h̄2γ3

2m0
(kx − iky )kz,

Pε = −av (εxx + εyy + εzz), Qε = − b
2 (εxx + εyy − 2εzz),

Rε = d
2 (εxx − εyy ) − i

√
3bεxy , and Sε = − d

2 (εxz − iεyz),
�k = (kx, ky, kz) ≡ −i ���r is the wave vector operator,
�r = (x, y, z) is the coordinate position of carrier, e > 0(m0)
stands for the elementary charge (mass) of free electron, and
γ1 = 7.1, γ2 = 2.02, γ3 = 2.91, av = 1.16 eV, b = −1.7 eV,
and d = −4.55 eV are the Luttinger parameters for GaAs.
In the numerical studies, according to the observations of
atomic force microscope we model the shape of elongated

GaAs/Al0.35Ga0.65As DE-QDs in terms of the characteristic
function,

X(�r ) =
{

1, 0 � z � Hexp
(− x2

�2
x

− y2

�2
y

)
0, elsewhere,

(4)

where H is the height of QD and �x/y parametrize the
lateral characteristic length of QD along the x/y direction
[29,32]. In this work, we consider asymmetric QDs on (001)-
substrate and elongated along the crystalline axis of [11̄0],
and specify the growth (elongation) axis as the z (x) axis.
The confining potential of a GaAs/AlGaAs QD for a carrier
can be written as V ν

QD(�rν ) = V ν
b · XQD(�rν ), where ν = e/h

denotes electron/hole and the band-offset V e
b = 300 meV and

V h
b = 200 meV are taken for GaAs/AlGaAs heterostructure.

2. Single-band model for a conduction electron in a stressed QD

In the single-band model, the Schrödinger equations for a
single electron in a stressed QD reads Heg

e
ie

= Ee
ie
ge

ie
, where

He = h̄2
(
k2
x + k2

y + k2
z

)
2m∗

e

+ V e
QD(�re ) + ac(εxx + εyy + εzz)

(5)

is the strain-dependent Hamiltonian for single electron in the
single-band model, ge

ie
is the envelope wave function of elec-

tron, V e
QD(�re ) is the position-dependent confining potential for

an electron in the dot, m∗
e = 0.067 m0 is the effective mass of

electron, m0 is the free electron mass, and ac = −8.013 eV
for GaAs [40].

In the presence of an electric field, �F = (Fx, Fy,F z), the
field-induced Hamiltonian for an electron (a valence hole),
e �F · �re (−e �F · �rh), is imposed to Eq. (5) [Eq. (3)], where e (>
0) is the elementary charge of electron. The energy levels and
wave functions of a single electron (hole) in a GaAs QD are
numerically calculated within the single-band effective mass
(four-band k · p) theory using the finite-difference method as
employed in Ref. [46].

3. Computations of the excitonic fine structures of QDs

Following the methodology of Ref. [46], the Hamiltonian
for an interacting exciton in a QD reads HX = ∑

ie
Ee

ie
c+
ie
cie +∑

ih
Eh

ih
h+

ih
hih − ∑

ie,jh,kh,le
V eh

ie,jh,kh,le
c+
ie
h+

jh
hkh

cle + ∑
ie,jh,kh,le

V
eh,xc
ie,jh,kh,le

c+
ie
h+

jh
hkh

cle , where ie (ih) represents a composite
index composed of the labels of orbital and spin of a
single-electron (single-hole) state, c+

ie
and cie (h+

ih
and hih) are

the particle creation and annihilation operators,

V eh
ie,jh,kh,le

≡
∫∫

d3red
3rhψ

e∗
ie

( �r1)ψh∗
jh

( �r2)

× e2

4πε0εb|�r12|ψ
h
kh

( �r2)ψe
le

( �r1) (6)

are the matrix elements of Coulomb interactions causing the
electron-hole scatterings, and

V
eh,xc
ie,jh,kh,le

≡
∫∫

d3r1d
3r2ψ

e∗
ie

( �r2)ψh
jh

( �r2)

× e2

4πε0εb|�r12|ψ
h∗
kh

( �r1)ψe
le

( �r1) (7)
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are those of e-h exchange interactions, �ri denotes the coordi-
nate position of particle, �r12 ≡ �r1 − �r2, ε0 is vacuum permit-
tivity, εb is the dielectric constant of QD material (εb = 12.9
for GaAs), Ee

ie
and Eh

ih
(ψe

ie
and ψh

ih
) are the eigenenergies

(wave functions) of a single electron and single hole in the
QD, respectively.

Since our interest is in the fine structures of the low-
est exciton states, we take into account only the relevant
lowest single-electron and single-hole orbitals and, for the
brevity of notation, label them only with the spin indices, i.e.,
|ψe

ie=↑e/↓e
〉 ≡ |↑e/↓e〉, (|ψh

ih=⇑′
h/⇓′

h
〉 ≡ |⇑′

h/⇓′
h〉), where ↑e/↓e

denotes the up/down electron spin and ⇑′
h / ⇓′

h indicates the
up/down pseudospin of a HH-like hole state. In the reduced
basis of the direct products of the single-electron and -hole
states, |↑e〉|⇓′

h〉 and |↓e〉|⇑′
h〉, being the two lowest BX con-

figurations, the Hamiltonian for a valence-band-mixed BX in
a QD is written as a 2 × 2 matrix,

HX =
(

E
(0)
X �̃xc

eff

�̃xc ∗
eff E

(0)
X

)
, (8)

where E
(0)
X = Ee

↑e
+ Eh

⇓′
h
− V eh

↑e⇓′
h⇓′

h↑e
= Ee

↓e
+ Eh

⇑′
h
−

V eh
↓e⇑′

h⇑′
h↓e

denotes the energy of exciton regardless of the

e − h exchange interactions, and �̃xc
eff ≡ V ehxc

↑⇓′⇑′↓ is the
off-diagonal matrix element of the e − h exchange interaction
that couples the two VBM BX configurations of opposite
angular momenta and results in the FSS of the exciton
doublet, |S| = 2|�̃xc

eff|.
In the numerical calculation, the matrix elements of e-h

exchange interactions are divided by the short-ranged and
long-ranged parts according to the averaged Wigner-Seitz
radius, and computed separately [45,46]. The former is treated
in the dipole-dipole interaction approximation and numeri-
cally integrated using trapezoidal rules and graphics process-
ing unit (GPU) parallel computing technique for numerical
acceleration. The latter is considered for the matrix elements
involving the exciton basis of the same angular momenta and
evaluated using the formalism of Eq. (2.17) in Ref. [43], in
terms of the energy splitting between the BX and DX states
of a QD, ES

X = �xc
eh,bulk × [π (a∗

B )3
∫

d3r|ge

sz=± 1
2
|2|gh

jz=∓ 3
2
|2],

which is extrapolated, in terms of the effective Bohr radius of
exciton a∗

B , from the BX-DX splitting �xc
eh,bulk = 20 μeV of a

pure HH exciton in the GaAs bulk.
From the solved eigenstates, |�X

±〉, and the corresponding
eigenenergies, EX

± = E
(0)
X ± |�̃xc

eff|, for Eq. (8), one can cal-
culate the intensities I±(ê, ω) of the ê-polarized photolumi-
nescences (PLs) from the exciton states using the formalism
of the Fermi’s golden rule, as employed in Ref. [46]. The PL
intensity as a function of the polarization ê reaches the max-
imum, I±,max = I±(ê = ê±, ω = EX

±/h̄), as the polarization
is along the optical axis of the exciton state |�X

±〉, specified
by the unit vector along the axis, ê± = (cos φ

opt
± , sin φ

opt
± , 0).

Note that both exciton basis for Eq. (8) are circularly polar-
ized. The e-h exchange interaction �̃xc

eff leading to the off-
diagonal matrix element of Eq. (8) mixes the both circularly
polarized exciton basis and the resulting eigenstates of exciton
usually turn out to be linear polarized. As discussed thor-
oughly in Ref. [46], the exciton eigenstates of an x-elongated

QD are polarized in the direction parallel or perpendicular
to the elongation of the QD (along the x or y axes) as the
off-diagonal matrix elements are real. On the other hand,
the misaligned polarization of a exciton eigenstate from the
elongation axis results from the off-diagonal matrix elements
that are complex and can be characterized by a nonzero phase
angle, which is related to the phase angle φβ introduced
previously for the HH-LH coupling of an exciton in the group
theory analysis and is an indication of the lowered symmetry.
As previously discussed in the group theory analysis, the
lowering of the symmetry of QD makes it no longer possible
to tune the FSS of an elongated QD down to zero. Thus, the
feasibility of using external tuning knobs to eliminate the FSS
of an elongated QD can be observed from the orientation, i.e.,
φ

opt
± , of the optical polarization of the exciton states (see if it

is aligned to or misaligned from the elongation axis). More
discussion on the issue for the specific examples of QDs will
be given in the next section.

III. RESULTS AND DISCUSSION

A. Useful stress actuators predicted by the group theory

1. Single uniaxial stress

As a known example, using a single uniaxial stress can
fully eliminate the FSS of an elongated QD only if the
stress and elongation axes are exactly aligned (φ1 = 0◦) [17].
Substituting σ2 = 0 into Eq. (2), we obtain σ1 sin 2φ1 = 0,
indicating φ1 = 0 for σ1 �= 0, i.e., the perfect alignment of
the stress σ1 onto the elongation axis of QD. By contrast,
with a misaligned single uniaxial stress of φ1 �= 0, Eq. (2) is
no longer fulfilled unless σ2 �= 0, indicating the need of the
second tuning knob for retaining the C2v symmetry of QD and
the possibility of fully eliminating the FSS of the dot.

2. Two uniaxial stresses

For the cases of two uniaxial stresses (σ1 �= 0, σ2 �= 0), let
us define the stress ratio by m ≡ σ2

σ1
and rewrite Eq. (2) as

m(φ1, φ2) = − sin 2φ1

sin 2φ2
for further analysis. In Fig. 3, we plot

the contour curves of m as a function of φ1 and φ2. By tracing
the m-contours in Fig. 3 where Eq. (2) is surely fulfilled,
we are able to predict various useful dual-stress actuators
that can promisingly generate the strain remaining in the C2v

symmetry and enable the FSS elimination. Accordingly, one
can determine the strength ratio m of a dual-stress arranged
in specific axes with fixed (φ1, φ2) for the FSS elimination. In
turn, for a stress actuator that can generate a pair of stresses
with a fixed strength ratio m, Fig. 3 guides us to find the
optimal arrangement of φ1 and φ2 for the purpose of FSS
elimination.

For instance, a single uniaxial stress perfectly aligned to
the elongation axis is represented by the vertical line for
m = 0 and depicted in Fig. 3(a), which is useful to eliminate
the FSS of an x-elongated QD as discussed previously. The
horizontal contour line at φ2 = 90◦ labeled by m → ∞ in
Fig. 3 indicates a single uniaxial stress (σ1 = 0, σ2 �= 0) that is
perpendicular to the elongation axis, as depicted by Fig. 3(d).
In another case, the black circle at (φ1, φ2) = (0◦, 90◦) that
connects all m contour curves in Fig. 3 represents a generic
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FIG. 3. The contour plot of the stress ratio m ≡ σ2/σ1 for a set of two uniaxial stresses, as a function of the angles of the stress axes, φ1

and φ2, that fulfills Eq.(2) and allows for the possibility of mechanically tuning and making S = 0. The insets depict various predicted useful
dual-stress actuators that can deterministically make the FSS elimination for C2v QDs.

orthogonal biaxial stress with the freely tuned σ1 and σ2 as
depicted in Fig. 3(e). A feasible example of Fig. 3(e) is the
asymmetric biaxial stress produced from the (100) facet of
PMN-PT crystal, which has been successfully employed to
tune and suppress the FSSs of elongated InGaAs SK-QDs,
yet, with the strict requirement for the precise alignment of
the stress and elongation axes [22,23].

If the σ1-axis is misaligned from the elongation one (φ1 �=
0), by tracing the vertical dashed line of φ1 and examining the
m-values of the crossed contours by the vertical line, one can
find that all of the stress ratios required for FSS-elimination
are nonzero, i.e., m = σ2/σ1 �= 0. This indicates that a second
tuning stress (σ2 �= 0) is necessary if the uniaxial stress axes
cannot be aligned to the elongation one. As a specific example,
for a set of two misaligned uniaxial stresses with φ1 = 10◦
and φ2 = 55◦, the stress-ratio m = −0.363 is predicted to
suppress the FSS of a QD with the stress [see Fig. 3(b)]. The
numerical confirmation for those predictions is presented in
the next section.

3. Deterministic FSS-elimination with a single stress:
Beyond the two-tuning-knob scheme

Beyond the use of two tuning knobs, a single knob tuning
for making S = 0 is possible if some underlying relation-
ship between the tuning stresses exists and can be utilized
to reduce the number of independent variables of Eq. (2).
Among the predicted useful dual-stress actuators, we find that
a symmetric biaxial stress (m = 1 and φ2 = φ1 + 90◦) can act
as a single mechanical tuning knob, represented by the red
straight line of m = 1 and Fig. 3(f). Besides the equality of
σ1 and σ2, the straightness of the m = 1 contour indicates the
fixed angle between the σ1 and σ2 axes, �φ21 = φ2 − φ1 =
90◦, which can be naturally kept by the cubic nature of the
crystal structure of PMN-PT piezoelectric crystal. Such a
symmetric biaxial stress can be generated naturally from the
(001) facet of PMN-PT crystal under a single tuning electrical
bias [36,37] and remain invariant in the symmetry no matter
how orientated the PMN-PT crystal is.
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FIG. 4. The calculated fine structure splitting of the exciton doublet of a GaAs DE-QD under (a) a uniaxial stress misaligned to the
elongation axis by the angle φ1 = 10◦, (b) a set of two uniaxial stresses with φ1 = 10◦, φ2 = 55◦, and the fixed stress ratio m = σ2/σ1 =
sin 2φ2/ sin 2φ1 = −0.363, and (c) a single symmetric biaxial stress. The numerical (model calculated) results are indicated by filled red
circles (solid lines). (d)–(f): The angles, φ

opt
+ , with respect to the QD-elongation axis, of the optical polarization axes of the upper level state

of the exciton doublet of the QD versus the applied stresses. Insets: the polar plots of the intensities of the emitted polarized photons from
the exciton doublet (blue: the upper level; red: the lower one) of the stressed QD with some specific stresses. In the numerical computation,
we consider the x-elongated droplet epitaxial GaAs/AlGaAs quantum dot of �x = 25.7 nm, �x = 17.2 nm, and H = 12 nm. For the model
calculation, the length parameters for the spatial extents of the wave function, lx = 7.9 nm, ly = 6.7 nm and lz = 4.3 nm, are taken.

B. Numerical results

1. Single uniaxial stress

Figure 4(a) shows the numerically calculated FSS (S) be-
tween the lowest BX states of the x-elongated GaAs DE-QD
of H = 12 nm, �x = 26 nm, and �y = 17 nm under a single
tuning uniaxial stress along the direction with the angle φ1 =
10◦ with respect to the x axis. As we expected, the application
of the misaligned uniaxial stress leads to the reduction of the
symmetry of the QD down to C1 and cannot fully eliminate
the FSS [16,17,23]. To retain the C2v symmetry of QD, one
can introduce and use a second tuning knob.

2. Two uniaxial stresses

Figure 4(b) shows the calculated FSS of the same stressed
QD with, additionally, a second uniaxial stress set in the fixed
direction with φ2 = 55◦. The FSS of the QD tuned by the
two mechanical knobs is shown fully eliminated with σ1 =
−140 MPa and σ2 = 51 MPa, whose ratio m = σ2

σ1
= −0.363

is exactly as predicted by Eq. (2). Intuitively, the necessity of
using two tuning knobs to make FSS elimination is widely
understood from the observed correlation between the FSS

and the optical anisotropy featured by the degree as well as
orientation of polarization [9,18,22,23,33], as evidenced here
by the comparison between Figs. 4(a)–4(c) and Figs. 4(d)–
4(f). Figures 4(d)–4(f) present the calculated angles, φ

opt
+ , of

the optical axes for the upper exciton level of the QD under the
different types of stresses, corresponding to Figs. 4(a)–4(c),
respectively. Note that, once the FSS of a QD can be tuned
to be zero [see Figs. 4(b), 4(c), 4(e), and 4(f)], the orientation
of optical polarization remains unchanged against the stress
tuning (except that S = 0 happens). The angle invariance of
the optical polarization implies the preservation of the C2v

symmetry of QD. From the above observations, the use of two
tuning knobs is effective to tune the FSS and simultaneously
keep the orientation of polarization invariant [9].

3. Deterministic FSS elimination with a single stress

Figure 4(c) shows the numerically calculated results for
the x-elongated QD under a single symmetric biaxial stress
with the misaligned axes from the x and y axes by φ1 = φ2 −
90◦ = 10◦. As predicted by previous analysis, the numerical
simulation confirms that the excitonic FSS of the C2v QD
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FIG. 5. Calculated excitonic fine structure splittings of the same QD under the stresses considered in Fig. 2 of the main paper, and
additionally biased by a vertical electrical field, Fz. As compared with the cases of single uni-axial stress in (a) and of the dual uniaxial
stress in (b), the FSS of the QD controlled by a single symmetric biaxial stress shown in (c) is most tunable by electric field, and suited to
be the “on-demand” electrically triggered EPPE device, which requires the FSS to be electrically switchable below or above the threshold,
S = 1 μeV, for the generation of entangled photon pairs.

indeed can be eliminated fully by the single tuning biaxial
stress of σ = 177 MPa, in spite of the misalignment of the
stress and elongation axes. This result examples that, beyond
common intuitive understanding, the use of two tuning knobs
is a sufficient but not always a necessary condition for elimi-
nating the FSS of a QD. The full elimination of the FSS of the
DE-QD with the single mechanical tuning knob is achieved by
taking the advantage of the compatibility of crystal symmetry
between the QD and piezoelectric actuator materials, which
can always ensure the C2v preservation and allow for some
accidental degeneracy happening in the BX doublet. The use
of a symmetric biaxial stress for tuning the FSSs of self-
assembled QDs has been previously explored but was not
found so advantageous in the FSS elimination for the studied
InGaAs SK-QDs [18]. The usefulness of symmetric biaxial
stress is limited for elongated InGaAs SK-QDs since there
exist intrinsic strains in the SK-QDs, which are themselves
asymmetric and spoil the symmetry of the applied biaxial
stresses [18].

4. Electrical tunabilities of stressed QDs

The high tunability for the FSSs of QDs is a crucial
functional feature for realizing the “on-demand” QD-based
EPPEs that requires the efficient switch-on (S < 1 μeV) and
-off (S � 1 μeV) of the devices by electrically gating for
the integrated application with microelectronics. Figure 5
presents the numerically calculated excitonic FSSs of the
stressed QD as considered in Figs. 4(a)–4(c) and additionally
applied by a vertical electrical field, �F = (0, 0, Fz). As the
FSS of the QD is tuned to be nearly vanishing by an appro-
priate stress, an external electric field is used here to reopen
the splitting to switch off the device. In turn, the device can
be switched on by turning off the applied electric field. The
FSS of the QD under the three types of stress control is shown
all electrically tunable, but to different extents. Among them,
only the FSS of the QD imposed by a single symmetric biaxial
stress [Fig. 5(c)] is so well tunable by the external electric
field that the FSS can be varied over a practically useful wide

range of energy. In Fig. 4(c), the FSS of the stressed QD is
shown quickly changed from S = 0 to over 5 μeV by applying
the small electric field Fz ∼ 5 kV/cm onto the QD. This is
attributed to the nonlinear nature of the biaxial term (that will
be discussed more by the model analysis later) in the VBM
of an exciton confined in the stressed QD, which can make
more impact on the VBM-relevant FSS of the QD as the wave
function extents are varied only slightly by an external electric
field.

IV. EFFECTIVE EXCITON MODEL

Following the methodology in Ref. [46], we proceed to es-
tablish a simplified generic exciton model for stress-controlled
QDs that is consistent with the previous analysis and nu-
merical results, and allows for more physical analysis. By
treating the HH-LH coupling terms in the four-band theory as
perturbation, one can derive an effective exciton Hamiltonian
in the compact form of 2 × 2 matrix, explicitly in terms of the
QD parameters and applied stresses, as presented below.

In the lowest-order approximation, the lowest spin-up
(spin-down) HH-like hole state, |⇑′

h〉 (|⇓′
h〉), of a

stressed QD can be written as |⇑′
h〉 ≈ |⇑h〉 − β̃HL|↓h〉

(|⇓′
h〉 ≈ |⇓h〉 − β̃∗

HL|↑h〉), composed of the dominant pure
HH component, |⇑h〉 (|⇓h〉) mixed by the secondary LH one,
|↑h〉 (|↓h〉), via the complex coefficient, β̃HL ≡ βHLe−iφβ that
reflects the degree of VBM [48]. In the parabolic model, the
envelope wave function of the HH component is modeled by
〈�r|⇑′

h〉 ≡ ψ⇑′
h
(�r ) ≈ φ0(�r )ujz=3/2(�r ) − β∗

HLφ0(�r )ujz=−1/2(�r ),

where φ0(�r ) =
√

1
π3/2lx ly lz

exp {− 1
2 [( x

lx
)2 + ( y

ly
)2 + ( z

lz
)2]} is

the wave function of the lowest Fock-Darwin state in the
parabolic model and lα=x,y,z is the characteristic length of the
wave function extent along the α direction. In the basis of the
VBM-exciton configurations, 1√

2
(|↓e ⇑′

h〉 ± |↑e ⇓′
h〉, one can

derive the effective exciton Hamiltonian for a stressed QD as

H ′
X =

(
E

(0)
X + �[�̃eff] �[�̃eff]

−�[�̃eff] E
(0)
X − �[�̃eff]

)
, (9)
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where E
(0)
X denotes the average energy of the spin-split exci-

ton levels, and �̃eff is the complex matrix element of the e-h
exchange interaction between the two VBM-exciton configu-
rations, |↓e ⇑′

h〉 and |↑e ⇓′
h〉, which, following Ref. [46], can

be formulated as

�̃eff = −�1 + 2√
3
ES

X · β̃HL (10)

where −�1 is the matrix element of the attractive long-
ranged e-h exchange interaction between the pure-HH exci-
ton, |↓e ⇑h〉 and |↑e ⇓h〉, the second term on the right-hand
side originates from the short-ranged e-h exchange interaction
associated with the VBM, β̃HL, and ES

X is the exchange
splitting between the BX and DX states of the QD that, as an
empirical parameter, can be extrapolated from the measured
BX-DX splitting of GaAs bulk, E

X,bulk
S = 20 μeV for GaAs

[46]. As a result, the FSS of exciton is given by

S = 2
√

(�[�̃eff])2 + (�[�̃eff])2 (11)

From the solved eigenstates of Eq. (9), the polarized PL can
be calculated using the formalisms based on the Feri’s golden
rules as presented in Ref. [46]. For a QD with two uniaxial
stresses, the VBM coefficient is derived as

β̃HL = ρ0
HL + λ(σ1e

2iφ1 + σ2e
2iφ2 )

�0
HL + μσb

, (12)

where σb ≡ σ1 + σ2 is the biaxial stress, ρ0
HL (�0

HL) is the ma-
trix element of HH-LH coupling (energy difference between
the pure HH and LH levels) in the absence of strain, and the
constants, λ and μ, are associated with the deformation pa-
rameters of QD. Equation (11) shows that S = 0 requires that
the both of real and imaginary parts of the exchange interac-
tion vanish, i.e., �[�̃eff] = 0 and �[�̃eff] = 0. From Eqs. (10)
and (12), the former condition, �[�̃eff] = 0 ∝ �[β̃HL] = 0
leads to that β̃HL is real and σ1 sin 2φ1 + σ2 sin 2φ2 = 0, the
same as Eq. (2) derived by the group theory.

Advantageous effects of a symmetric biaxial stress:
The model analysis

With the proper consideration of the strain-dependent
VBM on the base of the four-band theory, in Eq. (12) the VBM
(parametrized by β̃HL) in a QD-confined exciton is shown
tunable by uniaxial stresses or a biaxial one, so are the FSS
(S) according to Eqs. (10) and (11). In Eq. (12), one sees
that the terms of uniaxial stress appear in the numerator and
are associated with the orientations of the stress axes (φ1 and
φ2). In contrast, that of biaxial stress lying in the denominator
is shown irrelevant to the orientation angles of the applied
uniaxial stresses. This implies that tuning the FSS of a QD
with a single biaxial stress could be free from uncertainty
in the poor-controlled alignment of the stress and elongation
axes, while the orientation alignment of uniaxial stress and
elongation axes is critical for the FSS tuning.

For the comparison with the numerical results in Fig. 4,
the FSSs and the optical polarizations of the stressed QD
are calculated by using the exciton model with the length
parameters of the wave function, lx = 7.9 nm, ly = 6.7 nm,
and lz = 4.3 nm, as presented by the black solid lines in
Fig. 4, showing the consistence with the numerical results.
Our derived exciton model is consistent with and even beyond
the previous one in Ref. [49] that was developed for their stud-
ies of strained InGaAs/AlGaAs SK-QDs. In the latter model,
the matrix elements of the exciton Hamiltonian were assumed
to be linearized with respect to the applied stress and the
biaxial term in the denominator of Eq. (12) was overlooked.
The assumption of linear stress dependence is acceptable
for the studied InGaAs/AlGaAs SK-QDs where the intrinsic
biaxial strain from the lattice mismatch between InGaAs and
AlGaAs is significant so that �0

HL � μσb and the effect of
external biaxial stress, σb, is thus negligible. For unstrained
GaAs DE-QDs under our study, �0

HL is small because of the
absence of intrinsic biaxial strain and the application of an
external biaxial stress makes more impaction onto the elec-
tronic and excitonic structures. Expanding Eq. (12) in terms
of stress, an external biaxial stress lying in the denominator
yields considerable high-order stress terms, making the FSSs
of DE-QDs sensitive to and well tunable by external stresses
as shown in Fig. 4(c). For the same sake, the nonlinear nature

FIG. 6. Calculated excitonic fine structure splittings of the same QD considered in Fig. 2 with (a) a single uniaxial stress, (b) a set of two
uniaxial stresses, and (c) a single symmetric biaxial stress, versus the varied stress σ1 from the actuators arranged in varied orientation, φ1

(while m and �φ12 = φ2 − φ1 are kept fixed). The minimal stress-tuned fine structure splittings (Smin) of the stressed QD versus φ1 are plotted
in the x-z plane of the plots. One sees that, with a single uniaxial stress or the combination of two independently tunable uniaxial stresses, the
S can be zero only as φ1 is at a specific angle. By contrast, with a symmetric biaxial stress, the S of the stressed QD can be tuned to be stably
zero against any variation of φ1.
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of the biaxial term in the denominator of Eq. (12) for the
VBM of exciton leads to the high electrical tunability of the
FSS of the QD with a biaxial stress, as presented in Fig. 5.
Figure 4(c) reveals the pronounced effect of biaxial stress on
the high tunability (maximally ∼600 μeV/GPa) for the FSS
of the QD, which might be related to the stress-enhanced
supercoupling in the VBM of exciton as recently reported by
Ref. [38].

Figure 6 shows the calculated FSS, S, of the stressed QD
versus the stresses generated from the micromachined PMN-
PT actuators of Fig. 4 but arranged in various orientations. The
minimum stress-tuned FSSs, Smin, of the stressed QD versus
the varied orientations of the stress actuators are projected
onto the x − z plane of Fig. 6. Figures 6(a) and 6(b) show that
it is very critical to set the orientations of a single uniaxial
stress or a set of two asymmetric uniaxial ones so as to fully
eliminate the FSS of the stressed QD. With the application of
the single uniaxial stress (the set of two uniaxial stresses), S

can be fully vanishing only as the orientation of the stress of
σ1 is set exactly to be φ1 = 0◦ (φ1 = 10◦). By contrast, the
Smin of a QD can be eliminated always by a tuning symmetric
biaxial stress, disregarding any orientation variation of the
biaxial stress actuator, as shown in Fig. 6(c). It is the phase
irrelevance of the biaxial stress term in the denominator of
Eq. (12) that makes the robustness of the FSS tuning against
the variation of actuator orientation.

V. CONCLUSION

In summary, we present a theoretical and computational
investigation of the excitonic FSSs of GaAs/AlGaAs DE-QDs
mechanically tuned by the stress actuators of micromachined
PMN-PT crystals. From group theory analysis confirmed by

fully numerical simulation, we reveal the general principle
for the optimal arrangement of two uniaxial stresses whose
application onto elongated an elongated GaAs DE-QD can
certainly eliminate the FSS of an exciton therein. Moreover,
as a main finding of this work, we point out that the use of
two tuning knobs for a certain elimination of the FSSs of
QDs is a sufficient but not always a necessary condition as
commonly believed. The feasibility of using only single knob
for making QD-based EPPE devices is significant to simplify
the process of device fabrication and allows for developing
versatile photonic devices crucial in integrated photonic sys-
tems. As a feasible example, a single symmetric biaxial stress
naturally generated from the (001) PMN-PT actuator can be
a single tuning knob for eliminating the FSSs of DE-QDs,
whose feasibility is achieved by taking the advantage of the
compatibility of the crystal structure symmetries of the QD
and piezoelectric materials. Beyond the existing exciton mod-
els for stress-tuned QDs, our derived effective exciton model
on the base of multiband theory well captures the nonlinearity
nature of biaxial stress terms in the exciton Hamiltonian and
enables us to understand more the usefulness of symmetric
biaxial stress, including the robustness of deterministic FSS
elimination against the poor-controlled orientations of stress
actuators and the high electrical and mechanical FSS tun-
ability crucial for realizing “on-demand” electrically triggered
EPPEs.
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