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Circuit QED with a quantum-dot charge qubit dressed by Cooper pairs
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Coupling double-quantum-dot circuits to microwave cavities provides a powerful means to control, couple,
and manipulate qubits based on the charge or spin of individual electrons. Here, we revisit this standard
configuration by adding superconductivity to the circuit. We combine theory and experiment to study a
superconductor–double-quantum-dot circuit coupled to microwave cavity photons. First, we use the cavity as
a spectroscopic probe. This allows us to determine the low-energy spectrum of the device and to reveal directly
Cooper-pair-assisted tunneling between the two dots. Second, we observe a vacuum Rabi splitting which is a
signature of strong charge photon coupling and a premiere with carbon-nanotube-based quantum-dot circuits.
We show that our circuit design intrinsically combines a set of key features to achieve the strong coupling
regime to the cavity. A low charging energy reduces the device sensitivity to charge noise, while sufficient
coupling is provided by the shaping of the spectrum of the double quantum dot by the superconducting reservoir.
Our findings could be adapted to many other circuit designs and shed light on the coupling of superconducting
nanoscale devices to microwave fields.
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I. INTRODUCTION

Circuit quantum electrodynamics (cQED) allows one to
probe, manipulate, and couple superconducting quantum bits
at an exquisite level using cavity photons. Transferring the
methods of cavity quantum electrodynamics to quantum dots
circuits is appealing for multiple reasons [1]. Electrons con-
fined in quantum dots can be used as quantum bits based
on their spin or charge degree of freedom. In the context of
quantum information processing, cavity photons were first
envisioned as a powerful way to manipulate such quantum
bits. Therefore, most experimental efforts [2–8] have been
directed towards achieving the strong coupling regime, which
allows one to hybridize coherently light and matter [9]. To
that purpose, tunneling between the double quantum dot and
metallic contacts is usually considered as an undesired dissi-
pation channel and minimized.

However, metallic reservoirs can also be seen as a resource,
as quantum-dot circuits can include a variety of normal metal,
ferromagnetic, or superconducting electrodes. The engineer-
ing of electronic states in devices combining materials with
different electronic properties is at the heart of many recent
methods put forward for quantum information processing.
One particularly promising venue is the coupling of super-
conductors to nanoconductors. For example, semiconducting
nanowires proximitized by superconductors are under active
investigation because of the possibility to induce nonlocal su-
perconducting correlations in the topological regime [10,11].
Double quantum dots with a central superconducting contact
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are sought for creating distant entangled spins by the splitting
of Cooper pairs [12–15].

Combining cQED architectures with hybrid superconduct-
ing mesoscopic circuits is only at its premises. This has
been successful in the case of superconducting quantum point
contacts, as epitomized by the recent manipulation of an An-
dreev qubit by a microwave resonator [16]. Looking at hybrid
superconductor quantum-dot circuits, a single experiment has
been reported so far, with a single dot [17].

Here, we present the first implementation of a hybrid
superconductor–double-quantum-dot circuit coupled to a mi-
crowave cavity. Such an experiment was theoretically pro-
posed to test the coherence of Cooper pair splitting between
the two dots [18,19]. As we will show below, our circuit
operates in a parameter regime where the coherent injection
of Cooper pair appears in a different way as was theoreti-
cally considered in those references. Nevertheless, our results
confirm the idea that cQED tools are a powerful method to
probe the spectrum of hybrid superconductor–quantum-dot
circuits. Surprisingly, our work also demonstrates the recip-
rocal, namely, that adding a superconducting electrode to a
double-quantum-dot circuit can be instrumental in building a
strongly coupled mesoscopic cQED system.

As observed in previous experiments, the cavity transmis-
sion shows a resonance between the cavity mode and a circuit
transition. We find that the behavior of our hybrid double
dot is dominated by tunnel coupling between the left and the
right dot, which results in a “charge-qubit”-like transition.
However, the cavity transmission reveals the shaping of the
spectrum of the double quantum dot by the superconducting
reservoir. This represents the first spectroscopic observation
of Cooper-pair-assisted cotunneling between the left and the
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right dots [20–22], in equilibrium conditions. So far, this
effect had been observed only indirectly through out-of-
equilibrium transport measurements [23,24]. We present a
theoretical description of the eigenenergies and eigenmodes
of the dressed superconductor–charge qubit. The interplay
between bare interdot tunneling and the superconducting
proximity effect was not considered in previous derivations
of the spectrum of superconductor–double quantum dots. Our
theoretical results are validated by their ability to reproduce
the very peculiar features of our measurements.

Importantly, the superconductor does not only modify the
spectrum but also the electron-photon coupling. In addition to
the usual coupling mechanism where cavity photons modulate
the energy difference between the two dots, our theoretical
model clearly highlights the possibility of coupling via a
symmetric modulation of the dot energies. In presence of
a superconducting central electrode, such a common-mode
excitation effectively results in a strong sensitivity of the
double-dot tunnel barrier to the cavity electric field. This
corresponds to the original driving mechanism proposed by
DiVincenzo [25–28], which is implemented here in a cavity.

Our coupling mechanism is more than a simple curiosity as
it actually provides a way to reach the strong coupling regime
between the cavity and our modified charge qubit. Such a
regime was obtained recently using two different approaches
[7,8]. Mi et al. built their double quantum dot in a low charge
noise material, namely, SiGe. Stockklauser et al. used a squid
array resonator to boost the value of the electron-photon cou-
pling. Here, we demonstrate a third approach: the common-
mode coupling scheme allows us to decrease the charging
energy of our device and correspondingly decrease the device
sensitivity to charge noise, while keeping a sufficient coupling
strength. It is worth noting that the strong electron-photon
coupling was also obtained with the spin degree of freedom
very recently [29–31].

This paper is organized as follows. Section II presents
our experimental setup. Section III presents our theoretical
derivation of the spectrum of the hybrid superconductor–
charge qubit in absence of the cavity. Section IV gives
and discusses the expression of the coupling of the dressed
charge qubit to the cavity. The theoretical description is
confronted to experimental data in Sec. V. Section VI shows
our experimental observation of the strong coupling regime.
Section VII summarizes our results and gives various per-
spectives. Appendices A, B, and C provide experimental,
theoretical, and simulation details, respectively.

II. SAMPLE AND MEASUREMENT SETUP

We use carbon-nanotube-based double-quantum-dot cir-
cuits embedded in a high-finesse superconducting microwave
cavity [6,32,33]. The microwave cavity is a Nb copla-
nar waveguide cavity with resonance frequency of about
6.636 GHz and a quality factor of about 16 000. Throughout
the paper, we describe results obtained with two different
devices (samples A and B) which had exactly the same layout.
Figures 1(a)–1(c) show optical as well as scanning electron
microscope pictures of one of our devices. A single-wall car-
bon nanotube is tunnel coupled to a central superconducting
finger (in orange) and two outer nonsuperconducting elec-

FIG. 1. (a) Optical photograph of the layout of our cavity QED
architecture on a large scale. (b), (c) SEM micrographs of our devices
on two different scales in false colors. The “fork” coupling gate is
colored in red. The superconducting electrode is colored in orange.
The normal (nonsuperconducting) electrodes are colored blue. The
gates are colored in green. (d) Circuit diagram of our hybrid double
quantum dot highlighting the symmetric coupling scheme between
the two dots and the resonator in red.

trodes (in blue). Two side gates (in green) are used to tune the
double-dot energy levels. A finger galvanically coupled to the
central conductor of our cavity (in red) is attached to two top
gates in a fork geometry. This coupling scheme is markedly
different from the double-dot/cavity coupling schemes used so
far in that context [2,3,5–8]. Instead of favoring a microwave
modulation of the difference of the energy between the left
and the right dots, the fork geometry shown in Fig. 1(c) favors
the modulation of the sum of the left and right dot energies by
microwave photons.

All the measurements have been carried out at about
18 mK. We simultaneously measure dc transport through the
quantum-dot device and microwave transmission through the
coplanar waveguide resonator. Our control parameters of the
quantum-dot circuit are the bias voltage VS applied to the
superconducting electrode and the gate voltages VL and VR .
For convenience, measurements are often taken in the rotated
frame V�-Vδ , as defined in Appendix A. Concerning the cav-
ity, the tunable parameters are the frequency and power of the
probe tone. Details about sample fabrication and measurement
setup are given in Appendix A.

From the transport measurement shown in Fig. 2(a) we are
able to assess the electrical contact between the double dot and
a superconducting reservoir. We measure a superconducting
gap � of about 150 μeV. The fact that we do not observe any
measurable subgap currents indicate that our tunnel barriers
are rather opaque. In the following, transport data will be
omitted, as it would be blank at most working points (see
Appendix A). However, we will show that cavity signals can
be very strong and contain signatures of tunneling processes
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(a) (b)

FIG. 2. (a) Color scale map of the current IL flowing through
the left (L) normal metal contact as a function of bias voltage VS

and the gate voltage V� for sample A. From this map, we read
off a superconducting gap � ∼ 150 μeV. (b) Cotunneling scheme
accounting for the renormalization of the hopping constant between
the left and the right quantum dots.

between the dots and the superconducting lead. This is mainly
because the charge-qubit transition of a double dot is modified
by the superconducting reservoir, as we explain now.

III. LOW-ENERGY SPECTRUM OF THE HYBRID
SUPERCONDUCTOR DOUBLE DOT IN THE ABSENCE

OF THE CAVITY

Contrarily to normal contacts, a superconducting contact
is expected to modify coherently the spectrum of a double
quantum dot. Let us first recall the double-dot spectrum in
absence of superconductor. The double-dot Hamiltonian reads
as HDQD = εL n̂L + εR n̂R + tb(c†L↑cR↑ + c

†
L↓cR↓) + H.c. +

Umn̂Ln̂R + 1
2ULn̂L(n̂L − 1) + 1

2URn̂R (n̂R − 1) where, for
each dot i ∈ {L,R}, εi denotes the orbital energy, Ui the
charging energy, c

†
iσ the electron creation operator with spin

σ ∈ {↓,↑}, and n̂i the electron number operator. The mu-
tual charging energy between the two dots is Um and tb is
the direct hopping strength between the L and the R dots.
Close to the (0,1)/(1,0) degeneracy line, the relevant eigen-
states are the antibonding and bonding states: |+〉 = u|L〉 +
v|R〉, |−〉 = −v|L〉 + u|R〉 with the eigenenergies E± =
−Um+ε�±

√
ε2
δ +4t2

b

2 , where εδ = εL − εR , u =
√

1
2 − 1

2
εδ√

ε2
δ +4t2

b

,

and v =
√

1
2 + 1

2
εδ√

ε2
δ +4t2

b

. This gives a transition energy of the

double quantum dot: h̄ωDQD = E+ − E− =
√

ε2
δ + 4t2

b . We

will see below that this quantity is deeply modified by the
presence of the superconducting lead.

Figure 2(b) gives a qualitative picture of the main process
responsible for dressing the bonding and antibonding states of
a double-dot charge qubit. In addition to the bare tunneling
between the two dots (gray solid arrow), the superconductor
induces cotunneling processes: an electron from one dot can
virtually excite a quasiparticle in the superconductor and
tunnel to the other dot (blue dotted arrows).

We now outline the formal derivation of the spectrum
of the double quantum dot in presence of a superconductor
(see Appendix B for details). We start by considering the
Hamiltonian of our double-quantum-dot–superconductor de-
vice H = HDQD + HS + HS−DQD, which naturally contains
the double-quantum-dot Hamiltonian HDQD discussed above.
Additionally, there is a term describing the quasiparticles
in the superconductor: HS = ∑

kσ Ekγ
†
kσ γkσ where γ

†
kσ (γ kσ )

are the creation (annihilation) Bogoliubov quasiparticle op-
erators. Finally, HS−DQD accounts for electron tunneling be-
tween the superconductor and the two dots and can be written
HS−DQD = ∑

kσ,i∈{L,R} t∗i Ai
kσ c

†
jσ + H.c. where ti ≡ √

�Si is
the hopping strength between the superconductor and dot i

and Ai
kσ is a linear combination of Bogoliubov operators

(formula given in Appendix B). At second order in ti , the
states |+〉 and |−〉 become coupled to the singlet and triplet
states: |S〉, |T0〉, |T+〉, |T−〉, whose energies are, close to the
degeneracy line, ES = ET0 = ET+ = ET− 
 εL + εR + Um ≡
ε� .

The low-energy spectrum of the system can be obtained by
a Schrieffer-Wolf transformation Ĥ = e−SĤ eS correspond-
ing to “tracing out” the superconducting quasiparticles. Tak-
ing the same path as previous theoretical work on Cooper pair
splitters [34,35], we look for the appropriate S operator which
eliminates HS−DQD to first order, resulting in an effective
Hamiltonian to second order in the tunnel couplings ti of
the superconductor to the two dots. While this method is
well known, it had so far always been applied to the case of
two completely decoupled dots, namely, tb = 0. By including
a finite hopping tb between the left and the right dots, our
derivation yields results which are crucial to interpret our
experimental findings.

Projecting the effective Hamiltonian on the
subspace {|+〉, |−〉}, we get Ĥeff = (E+ + δE+)|+〉
〈+| + (E− + δE−)|−〉〈−| + δtb|+〉〈−| + δtb|−〉〈+|.

Below, we focus close to the degeneracy line between
(0,1)/(1,0) charge states but the (1,1)/(0,2) lines give rise
to similar expressions. After tedious but straightforward
calculations, the perturbative elements have the following
expressions:

δtb = (�SR − �SL)
tb√

ε2
δ + 4t2

b

{
4Ln

2h̄ωD

�
+ π

Um

�
+ Um

2 + ε�
2 + εδ

2 + 4tb
2

�2

}
− πt0

eh

ε�

�

εδ√
ε2
δ + 4t2

b

(
1 − 2

π

Um

�

)
, (1)

δE+ = (�SR − �SL)
εδ√

ε2
δ + 4t2

b

{
Ln

2h̄ωD

�
− π

2

U−
�

+ U 2
− + ε�

2

�2

}

− π

2

ε�

�
(�SR + �SL)

(
1 − 1

π

U−
�

)
+ πt0

eh

ε�

�

tb√
ε2
δ + 4t2

b

(
1 −

√
2|δr|
πξ0

U−
�

)
, (2)
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δE− = −(�SR − �SL)
εδ√

ε2
δ + 4t2

b

{
Ln

2h̄ωD

�
− π

2

U+
�

+ U 2
+ + ε�

2

�2

}

− π

2

ε�

�
(�SR + �SL)

(
1 + 1

π

U+
�

)
− πt0

eh

ε�

�

tb√
ε2
δ + 4t2

b

(
1 +

√
2|δr|
πξ0

U+
�

)
, (3)

where t0
eh is the Cooper pair splitting amplitude [see

Eq. (B8) in Appendix B], δr is the distance between tunnel
contacts from the superconductor to each dot, ξ0 is the
superconducting coherence length, and ωD is the Debye
frequency, used as a cutoff. The following notation was

introduced: U± = ±Um +
√

ε2
δ + 4t2

b . The eigenenergies

are Ẽ± = E++δE++E−+δE−±
√

(E++δE+−E−−δE− )2+δt2
b

2 which
leads to a transition energy of the form h̄ωS−DQD =√

(ε2
δ + 4t2

b )Z(εδ, ε� )2 + t (εδ, ε� )2, with Z(εδ, ε� ) =
1 + δE+−δE−

E+−E−
and t (εδ, ε� ) = δtb. It is important to notice

here the major modification induced by the superconductor:
the transition energy of the circuit does now also depend on
the sum of the two dot energies ε� , rather than only on their
difference εδ .

Before concluding this section, we would like to point
out that the calculation is essentially the same if there is an
additional quantum number (e.g., a valley quantum number)
ruling the states of the double quantum dot. This naturally
leads to a second transition similar to the one considered
above but with different parameters. This can account for the
two-transition structure which is used to understand quantita-
tively our experimental findings.

IV. ELECTRON-PHOTON COUPLING OF THE HYBRID
DOUBLE QUANTUM DOT

We now evaluate the effect of the superconductor on the
coupling to the cavity. The conventional coupling mechanism
of a double quantum dot to the cavity in the absence of the
superconductor takes the form

〈+| (gL n̂L+gR n̂R ) (â+â†) |−〉=uv(gL−gR )(â + â†),

(4)

where â is the annihilation operator of the photonic cavity
mode.

This leads to the usual coupling mechanism of a double
quantum dot to a cavity mode which vanishes in case of a
symmetric coupling (gL = gR ), i.e., L and R orbitals couple
equally to the cavity electric field. However, the supercon-
ductor gives rise to a coupling mechanism which works
also in case of symmetric coupling. In order to evaluate it,
one can still rely on the Schrieffer-Wolf transformation by
including formally the operator (â + â†) into the derivation
and expanding in powers of gL + gR (since one assumes that
gL − gR � gL + gR). To first order, this adds a term of the

form

2
∂δtb

∂ε�

(gL + gR )(â + â†). (5)

It is important to note that although the above expression
is in principle perturbative, it can in fact be much larger
than the usual coupling term since in case of symmetric or
nearly symmetric coupling (gL − gR � gL + gR). One can
note that this “common-mode” coupling mechanism is in fact
not restricted to our situation but would hold for any double
quantum dot with a tunable barrier [25]. In our case, since
the energy scale ruling the barrier tunability is the super-
conducting gap which is smaller than the semiconducting
gaps of usual semiconducting materials, our tunability is very
efficient. Finally, the effective Hamiltonian of our device in
cavity, projected on the {|+〉, |−〉} states reads as Ĥeff,c =
Ĥeff + h̄ ωcav â† â + ĤBaths + h̄g̃(|+〉〈−| + |−〉〈+|)(â + â†)
with the following coupling strength:

g̃ ≈ (gL − gR )
2tb√

ε2
δ + 4t2

b

+ (gL + gR )
4tb√

ε2
δ + 4t2

b

�SR − �SL

�

ε�

�

− (gL + gR )π
t0
eh

�

2ε√
ε2
δ + 4t2

b

. (6)

The above equation contains three different terms: the
first is the usual coupling term between a double-quantum-
dot bonding/antibonding transition and a microwave cavity
which needs to have asymmetric gL and gR . The second term
corresponds to the fact that the superconductor renormalizes
the energy levels of each dot with a strength proportional to
each tunnel coupling �SL(R). It corresponds to an indirect
Cooper-pair-assisted tunneling modulation between the two
dots. The last term arises from the direct modulation of the
Cooper-pair-assisted tunneling between the two dots by the
cavity photons. The two last terms only exist in the presence
of a superconductor. In the next section, we will illustrate with
experimental values that the “common-mode” coupling mech-
anism can yield a sizable electron-photon coupling strength.

V. RESONANT INTERACTION BETWEEN THE HYBRID
DOUBLE QUANTUM DOT AND THE CAVITY

The interaction between our hybrid double quantum dot
and the cavity photons is conveniently probed by measur-
ing the microwave signal transmitted through the cavity.
Figures 3(a) and 3(b) [resp. 3(c) and 3(d)] display the phase
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(a) (b)

(c) (d)

FIG. 3. (a), (b) [resp. (c), (d)] Microwave phase contrasts (resp.
amplitude) maps at the bare resonator frequency fc for sample A
with two different tunings Aa and Ab as a function of the gate
voltages. The charge occupation (i,j) of the double dot is indicated in
(a). The sign changes demonstrate resonant interaction between the
hybrid double quantum dot and the cavity photons. The elongated
0-phase line demonstrates the dependence of hopping with ε� . The
black dashed lines were obtained from theoretical expressions for the
conditions ωcav = ωS−DQD and EN = EN+1 with parameters given in
the main text. In (d), the blue dot indicated by a green arrow is the
sign of photon gain.

(resp. amplitude) contrasts for sample A with two different
tunings (samples Aa and Ab). The avoided crossing lines
are characteristic of a double-dot stability diagram and cor-
respond to tunneling between the dots and the leads. We focus
now on the most striking features, which lie within the area
delimited by the avoided crossing. In Fig. 3(a), one observes
a “crescent”-shaped 0-phase contour line with a phase shift
spanning from −40◦ to +40◦. These features are similar for
sample Ab presented in Fig. 3(b) although the “crescent”
shape is cut by the electron lead transition lines. Similar
to what has already been observed in double-quantum-dot
setups [2,3,5,6], the sign change of the phase contrast signals
a resonant interaction between a transition involving one or
two electrons on the double dot and the cavity photons.
Specifically, the cavity provides a “cut” of the dispersion
relation of the circuit spectrum [6]. The contour line for 0◦
corresponds to the resonant condition ωcav ≈ ωS−DQD, where
ωcav is the cavity resonance frequency and ωS−DQD is the
hybrid double-quantum-dot resonance frequency. However, in
contrast with the standard double-quantum-dot response, the
resonance contour line is not along the zero-detuning line εδ =
0 between the left (L) and the right (R) dots, but is distorted
in the perpendicular direction. This means that the transition
frequency of our circuit does not only depend on εδ , but also
on the average energy of the two dots ε� = εL + εR + Um.
Qualitatively, this agrees with the theoretical expression for
the transition frequency which we derived in Sec. III from
a microscopic theory of our hybrid superconductor–double

FIG. 4. (a) Diagram of the transition map of the hybrid double
quantum dot intersecting with the cavity resonance frequency. This
results in the phase contrast maps of Figs. 3(a) and 3(b). The axis
are the orbital detuning εδ and the average orbital energy ε� of the
double dot. (b) Bloch sphere diagram depicting the active states of
our hybrid double quantum dot and the tunable hopping strength.
This symmetric coupling scheme is crucial for the strong electron-
photon coupling.

quantum dot:

h̄ωS−DQD =
√(

ε2
δ + 4t2

b

)
Z(εδ, ε� )2 + t (εδ, ε� )2. (7)

The crescent shape of the transition line can be recast from the
dependence of the functions Z and t on εδ and ε� . As shown
in Fig. 4(a), the transition frequency map expected from the
theory as a function of εδ and ε� , displayed in light brown,
is cut by the blue plane at the cavity frequency. This results
naturally in a crescent-shaped transition frequency contour
line.

All these experimental signatures can be captured more
quantitatively by an input-output formalism of the coupled
equations of the cavity field in the semiclassical limit and
the electronic degrees of freedom [1,17]. Specifically, the
transmission t through the cavity reads as

t =
√

κLκR

ω − ωcav − iκ/2 + g2χdot-dot (ω) + gc
2χdot-lead(ω)

, (8)

where κL (resp. κR) is the photon loss rate through the left
(resp. right) coupling ports of the resonator and κ is the
total cavity photon loss rate. The bare cavity transition is
modified by χdot-dot (ω), which is the charge susceptibility for
the internal transitions of the device and χdot-lead(ω), which
is the charge susceptibility involving electronic transitions
from the dot to the leads (and vice versa). In our case, these
susceptibilities read as

χdot-dot (ω) = 1

ω − ωS−DQD − i�/2
, (9)

χdot-lead(ω) = 1

1 − iω/γ

h̄

4kBT cosh
(

EN −EN+1

2kBT

) , (10)

where � is the decoherence rate of the internal transition of the
DQD and EN is the energy of the DQD for N charges in total.
The χdot-dot (ω) susceptibility can give the strong electron-
photon coupling if g > �, κ . This susceptibility yields a
resonance in the transmission t when ωcav = ωS-DQD and
allows to map the dispersion relation of our hybrid DQD. The
χdot-lead(ω) susceptibility is resonant when EN = EN+1 and
allows to map the stability diagram of the DQD. We display
in Figs. 3(a) and 3(b) the theory for the lines ωcav = ωS-DQD

and EN = EN+1 in black dashed lines, using the following
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parameters: aside from the measured value �/h = 37.5 GHz
[see Fig. 2(a)], we have for sample Aa tb/h = 6.3 GHz,
�SR/h = 400 MHz, �SL/h = 900 MHz, t0

eh/h = 400 MHz,
UL/h = 29 GHz, UR/h = 71 GHz, Um/h = 16 GHz, and
for sample Ab, we have tb/h = 5.5 GHz, �SR/h = 330 MHz,
�SL/h = 900 MHz, t0

eh/h = 350 MHz, UL/h = 32 GHz,
UR/h = 42 GHz, Um/h = 24 GHz. The quantitative agree-
ment with the ωcav = ωS–DQD (internal) transition lines vali-
dates the low-energy spectrum of our device and is a direct
observation of Cooper pair assisted tunneling between two
quantum dots.

Noticeably, the renormalization of the hopping between the
two dots is related to the Cooper pair splitting amplitude t0

eh

(see Sec. IV). Therefore, we can extract a value for t0
eh/h =

400 MHz even without direct observation of Cooper pair
splitting. Our measurement demonstrates that cavity photons
can be used to probe very small energy scales, inaccessible
to transport, related to superconducting proximity effect in
quantum dots. Such a scheme could be generalized to super-
conducting hybrid structures with topological properties.

Additionally, it is important to notice that the dependence
of t (εδ, ε� ) upon ε� yields a light-matter coupling term for
our device as shown in the previous section. This follows the
original Loss and DiVincenzo proposal [25–28] and recent
cavity-double-quantum-dot coupling proposals [36–38]. Our
work provides an example of this common-mode coupling to
a microwave cavity. Indeed, in the Bloch sphere representation
of Fig. 4(b), the north and south poles are more along the de-
tuning axis εδ and the light-matter coupling indicated by a red
arrow is mainly along the tunnel coupling axis, in stark con-
trast with the usual case for double quantum dots [2,3,5–8],
where it is along εδ . The electron-photon coupling strength
is controlled by the sum gL + gR which can easily be of the
order of 2π × 100 MHz, as shown for example in Ref. [17],
which is a large magnitude. Using expression (6) of Sec. IV
with the circuit parameters of sample Aa given above, we get
along the crescent contour a g̃ between 2π × 1 MHz (ε ≈ 0,
ε� ≈ �/2) and 2π × 4.7 MHz (ε ≈ 2tb, ε� ≈ 0). This shows
that the “common-mode” coupling mechanism can yield a
sizable electron-photon coupling strength, even if it originates
from second-order tunneling through the superconductor.

Finally, we briefly comment on an interesting feature of
our light-matter interface which appears on Fig. 3(d). The am-
plitude map displays a “bright” spot, in blue, corresponding
to photon gain (of about 1.3). Microwave photon emission
from quantum-dot circuits was recently investigated in dou-
ble quantum dots [39–42] and hybrid superconductor single
quantum dot [17]. It is interesting to see that it also appears in
our hybrid double-quantum-dot circuit, although we did not
study this effect quantitatively. Qualitatively, it is consistent
with having a coherent interface. In the next session, we show
an even more striking consequence of the high cooperativity
of our device, namely, the vacuum Rabi splitting of the cavity
when it is brought into resonance with the DQD transition
properly tuned.

VI. STRONG COUPLING

In the previous section, we have focused on characterizing
our hybrid double-dot circuit, using the microwave resonator
as a spectroscopic probe. However, looking at the large phase
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FIG. 5. (a) Top panel: vacuum Rabi splitting for sample B with
n ∼ 1 photon. Bottom panel: saturation of the mode splitting for a
large number of photons. The open blue circles are the data points
and the black solid line is the theory. (b) Level structures explaining
the strong coupling and its power dependence. The K , K ′ labels
indicate the valley degree of freedom arising from the band structure
of carbon nanotubes. (c) Power dependence of the mode splitting
showing the gradual saturation of the coherent transition. Each cut
can be fitted using the fully quantum light-matter interaction theory
(QUTIP).

and amplitude contrasts measured in Fig. 3, one can wonder
what happens to the cavity spectrum when the cavity is reso-
nant with the DQD circuit transition. We tune the double-dot
gate voltages to the point of maximum phase contrast and
there, we measure the resonator transmission at a function
of frequency (supplementary data in Appendix A). The top
panel of Fig. 5(a) shows the result of the measurement for
sample B, for which we measured the strongest effect. We
observe a splitting of the order of 10 MHz in the cavity
resonance for an average number of photons n of about 1.
This observation persists down to the lowest input power
which corresponds to n � 1. This is the hallmark of a vacuum
Rabi splitting which indicates the strong coupling between
our hybrid double quantum dot and the microwave cavity
photons. The fact that we observe this splitting implies that
the coupling strength g between the circuit transition and
the cavity is larger than half the linewidth of the cavity κ/2
and half the linewidth of the double-quantum-dot transition
involved �/2. The intrinsic linewidth of the cavity can be
directly measured from the transmission spectrum when the
double dot is detuned and is κ/2π = 0.5 MHz. Therefore, the
linewidth of the double-dot transition can be inferred from
the linewidth of each peak observed in Fig. 5(a), of about
3 MHz. For the simplest case of a single transition [9], the
linewidth is equal to (�/2π + κ/2π )/2. This would lead to
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TABLE I. Summary of parameters used in the two-transition modeling. κ and fc are, respectively, the decay rate and the resonance
frequency of the cavity. gi , fi , �ϕ,i , and γi are, respectively, the coupling strength, the frequency, the dephasing rate, and the decay rate of
transition i ∈ {K,K ′}.

κ/2π fc gK/2π fK �ϕ,K/2π γK/2π gK ′/2π fK ′ �ϕ,K ′/2π γK ′/2π

(MHz) (GHz) (MHz) (GHz) (MHz) (MHz) (MHz) (GHz) (MHz) (MHz)

Fig. 5(a) 0.57 6.6364 4.6 6.6405 0 2 16.8 6.586 0 100
Fig. 5(c) 0.42 6.6362 1.4 6.6378 0.4 0.8 4.2 6.636 5 6

�/2π ∼ 5.5 MHz. In order to account quantitatively for the
observed transmission spectrum (and in particular for the very
low transmission maximum), we can rely on a two-transition
scheme (one very coherent, one less coherent). Using a
modeling based on two independent transitions depicted in
Fig. 5(b), we are able to fit the data using a fully quantum
numerical code (QUTIP, see Appendix C for details). The use
of two transitions anticipates on the existence of a K/K ′
valley degree of freedom commonly observed in nanotubes.
We use the following parameters: gK = 2π × 4.6 MHz, �K =
2π × 2 MHz, gK ′ = 2π × 16.8 MHz, �K ′ = 2π × 100 MHz
(see Table I for all the parameters). It is important to note here
that the K/K ′ valleys are in general coupled by weak disorder
in carbon nanotubes [43]. Therefore, the K/K ′ eigenstates
correspond to linear combinations of the original (degenerate)
valley states. Their coupling to the field and decoherence rates
is therefore different in general. As one can see in Table I, a
low coupling strength is accompanied by a low decoherence
rate (“K” mode) whereas a large coupling strength is accom-
panied by a large decoherence rate (“K”’ mode).

As expected for a few-level system, we are able to saturate
the transitions and to recover the bare transmission of the
cavity by injecting a large number of photons inside the cavity.
In the present case, this saturation occurs for n ≈ 100. As
shown in Fig. 5(c), there is a continuous evolution from the
vacuum Rabi splitting to a single off-centered Lorentzian peak
from n ≈ 0.1 to n ≈ 300. Such a peculiar saturation is well
reproduced by the QUTIP numerical simulation and arises from
the two-transition structure mentioned above. Note that the
splitting at low power is slightly smaller (about 6 MHz) in
Fig. 5(c) than in Fig. 5(a) because this measurement was done
for a different working point of our device.

Reaching the strong coupling regime with an excitation
which is primarily chargelike is nontrivial and has been the
main challenge of the mesoscopic cQED community for years
until recently. The main limitation of all the charge-qubit-like
setups in cavity is the linewidth of the double-dot transition
which is typically reported to be at least in the few 100 MHz
range [2,3,5]. One important decoherence source explaining
such a large linewidth is the background charge noise. One
can think of several strategies to overcome this difficulty. One
possible path is to reduce the charge noise in the material.
Recently, this idea was successfully implemented by Mi et al.
in a SiGe-based two-dimensional electron gas double quan-
tum dot [8], with a linewidth �/2π = 2.6 MHz lower than
the coupling g/2π = 13.4 MHz. An alternative strategy to
reach the strong coupling regime despite the presence of large
charge noise was demonstrated by Stockklauser et al. [7]: by
using a squid array resonator, the electron-photon coupling
was increased to g/2π = 238 MHz, which exceeds the DQD

charge-qubit linewidth �/2π = 93 MHz. Our ability to reach
the strong coupling regime relies on a third approach, namely,
reducing our qubit linewidth by reducing the device sensitivity
to charge noise. In this scheme, our specific common-mode
coupling mechanism plays a crucial role to keep a sufficient
coupling strength. Now, we successively detail each of these
two key ingredients.

In presence of the noise spectral density S(f ) = 〈δn2〉/f ,
where f is the frequency, the dephasing rate �ϕ of the double
dot can be expressed as

�ϕ ≈ ∂ω

∂ε
EC

√
〈δn2〉 + 1

2

∂2ω

∂ε2 EC
2〈δn2〉 + · · · (11)

which is strongly influenced by the charging energy EC ∼
e2/C� , where C� is the total capacitance of the device [5,44–
46]. The expression of �ϕ takes the above simple form only
if the transition frequency ω depends on a single parameter ε.
This is the case for the standard double-quantum-dot charge-
qubit transition ωDQD, which dispersion relation is governed
by εδ . In our case, the expression of �ϕ is more complex since
it involves all the derivatives of the transition ωS–DQD, with
respect to its control parameters εδ and ε� . Nevertheless, its
dependence as a function of the total charging energy and
the transition frequency derivatives remains qualitatively the
same. The points where all the first-order derivatives vanish
are called sweet spots [36–38] because the double dot is
insensitive at first order to charge noise. The usual method
to reduce �ϕ is therefore to operate the system close to a
sweet spot which implies that only the second-order terms are
present in the expression of �ϕ . To reduce the second-order
term at constant noise density and without engineering the
dispersion relation [47], it is a priori very efficient to go
towards small charging energy, in analogy with the transmon
qubit [45]. The charging energy of samples A and B can
simply be read off from the transport stability diagram which
is shown in Fig. 2(a) for sample A. Due to the fork-shaped top
gates that increase the capacitance to the ground, our charging
energy is 2 meV, about 10 times smaller than what we find
typically for similar devices with a conventional top-gate
setting [5,6]. Since �ϕ/2π ≈ 400 MHz in those conventional
settings, a reduction of 10 of EC is expected to reduce �ϕ by a
factor of 100, i.e., �ϕ/2π ≈ 4 MHz, which is consistent with
the order of magnitude of �/2π ∼ few MHz inferred from the
cavity spectroscopy of Fig. 5(a).

Importantly, this reduction of EC also implies a decrease of
the lever arm between the orbital energies εL, εR of the dots
and the cavity potentials. The coupling of photons through
the variable εδ used in former experiments [2,3,5,6] thus
becomes too small to be exploited. However, our hopping
t (εδ, ε� ) is tunable with the parameter ε� , which is naturally
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more strongly coupled to the cavity potential than εδ . This
compensates the decrease of EC and gives us a large charge-
photon coupling strength of about 2π × 10 MHz which allows
us to reach the strong coupling regime.

VII. CONCLUSION

We have presented an experimental study of a hybrid
superconductor–double quantum dot in a microwave cavity.
The resonant interaction between cavity photons and a charge-
qubit-like transition of our circuit reveals a peculiar dispersion
map as a function of the dot gate voltages. We are able to inter-
pret our data by theoretically deriving the device energy level
structure, which is dressed by cotunneling processes between
the left and the right dots induced by the superconductor. This
is a direct observation of Cooper-pair-assisted cotunneling
in a double quantum dot. Due to its relation to the Cooper
pair splitting, we are able to extract a value for t0

eh/h ∼
400 MHz, which is inaccessible to transport measurements.
A natural perspective of our work is to use the theoretical
and experimental tools developed here to study the same type
of device with a more transparent superconducting contact,
i.e. with larger t0

eh. In principle, such a regime would allow
to study the physics of Cooper pair splitting more directly
[18,19]. The same methods could also be instrumental to the
study of Majorana bound states through microwave cavities
[48,49].

Importantly, our qubit design demonstrates a way of reach-
ing the strong electron-photon coupling based on a tunable
hopping barrier and a low charging energy. These ingredients
are very generic and could be used in many other setups
[36–38]. In our case, the tunable hopping is due to the use
of a hybrid superconductor double-quantum-dot setup, thanks
to superconductor-induced cotunneling processes. However,
using local gates, one could also engineer a direct electrostatic
control over the hopping strength. Our findings open the
path for entanglement of individual electron states [50] and
teleportation of electronic entanglement over macroscopic
distances.

A preliminary version of this work was communicated at
the conference ICPS (August 2016) in Beijing [51].
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APPENDIX A: EXPERIMENTAL DETAILS

1. Sample fabrication and measurement setup

The sample fabrication process is the following. A
150-nm-thick Nb film is first evaporated on a thermal silicon
oxide (500 nm)/high resistivity (10 k� cm) silicon substrate
at rate of 1 nm/s and a pressure of 10−9 mbar. The cavity
is made subsequently using photolithography combined with

FIG. 6. Large-scale characterization of sample A in the V L-V R

plane. Current (a) and phase contrast (b) color maps as a function
of the two side gate voltages V L and V R for sample A. The black
rectangle indicates the area Aa under study in the main text. The blue
axis show the relative orientation of the V�−Vδ frame, which was
used to measure all data presented in this paper for sample A. Note
that for clarity the frame origin chosen at (V L= 20 V ;VR = 20 V)
is shifted on the figure.

reactive ion etching (SF6 process). Carbon nanotubes are
grown with chemical vapor deposition technique (CVD) at
about 900 ◦C using a methane process on a separate quartz
substrate and stamped inside the cavity. The nanotubes are
then localized. The fork top gate oxide is made using three
evaporation steps of Al (2 nm) followed each by an oxidation
of 10 min under an O2 pressure of 1 mbar. The Alox is covered
by a Al(40 nm)/Pd(20 nm) layer. The nanotube is contacted
with a central Pd(4 nm)/Al(80 nm) finger and two Pd(70 nm)
outer electrodes.

The dc measurements are carried out using standard lock-
in detection techniques with a modulation frequency of
137 Hz and an amplitude of 10 μV. The base temperature of
the experiment is 18 mK. The microwave measurements are
carried out using room-temperature microwave amplifiers and
a cryogenic amplifier (noise temperature about 5 K) with a
total gain of about 90 dB. We measure both quadratures of
the transmitted microwave signal using an I-Q mixer and low
frequency modulation at 2.7 kHz.

2. Supplementary data: Double-dot stability diagram

Figure 6 shows current (a) and phase contrast (b) color
maps as a function of the two side gate voltages V L and
V R for sample A. For this measurement, the two normal
electrodes were biased with equal voltages with respect to the
superconducting electrode, where the current was measured.
The zone labeled Aa in the paper is enclosed in a black
rectangle. The lines avoided crossing in the current and the
sign change of the phase contrast are indicative of a local
double-dot behavior, where an internal transition is resonant
with the cavity. To better resolve the features of this area
in a shorter time, further measurements were carried out
using the orthonormal frame V�−Vδ , which results from a
42◦ clockwise rotation of the original frame VL−VR and a
translation of the origin to (V L= 20 V ;VR = 20 V).

Such a resolved characterization of sample Aa resonant
area is presented on Figs. 3(a), 3(c), and 7 showing the simul-
taneously measured transmitted cavity signal phase and am-
plitude and differential conductances, respectively. Figure 7
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FIG. 7. Double-dot stability diagram in transport measurement
for sample A. Right (a) and left (b) differential conductance maps
in the rotated gate-gate frame V�-Vδ with a bias voltage VS =
−0.16 mV applied to the superconducting electrode. This mea-
surement is simultaneous with the cavity transmission measurement
presented in Fig. 3(a) for the phase and 3(c) for the amplitude.

shows a clear avoided crossing in transport measurements,
which means that sample A locally behaves as a double
quantum dot. The transport characterization of sample B
does not show any measurable currents above our noise level
∼1 pA.

3. Supplementary data: Hybridization of cavity-dot system

Figure 8 illustrates how the photonic and electronic de-
grees of freedom hybridize when the gates of the devices are
tuned into the strong coupling region. Figure 8(b) [resp. 8(d)]
displays for sample A (resp. sample B) the amplitude of the
microwave transmitted signal as a function of the detuning
f -fc between probe frequency f and cavity bare resonance
frequency fc and the gate voltage Vδ (resp. VL). The lat-
ter parameter range together with the constant value of V�

(resp. VR) where the measurement is performed are indicated

(a) (c)

(b) (d)

FIG. 8. Phase map as a function of Vδ and V� for sample A. The
black dotted line indicates for which parameters the cavity spectra are
shown on (b). (b) Cavity spectrum as a function Vδ for sample A. (c)
Phase map as a function of VL and V� for sample B. The black dotted
line indicates for which parameters the cavity spectra are shown on
(d). (d) Cavity spectrum as a function VL for sample B. The orange
vertical dotted line shows the cut along which the spectrum showing
the Rabi splitting on the left has been taken.

by a black dashed line on Fig. 8(a) [resp. 8(b)]. Changing
the dot gate voltage tunes the quantum-dot circuit transition
frequency in and out of resonance with the cavity: the res-
onance condition is accompanied by large distortions in the
cavity transmission demonstrating a strong coupling between
photonic and electronic degrees of freedom.

APPENDIX B: THEORY OF THE LOW-ENERGY
SPECTRUM OF A COOPER SPLITTER

This appendix is a more detailed version of the derivation
of the low-energy spectrum of a hybrid superconductor double
quantum dot given in Sec. III of the main text. The Hamil-
tonian of a double dot with a central superconducting lead
can be written as H = H0 + HS-DQD, where H0 = HDQD +
HS is the sum of the individual Hamiltonians and HS-DQD

describes the coupling between them. Let us recall the explicit
expressions for each term:

HDQD = εL n̂L + εR n̂R + tb(c†L↑cR↑ + c
†
L↓cR↓) + H.c.

+Umn̂Ln̂R + 1
2ULn̂L(n̂L − 1) + 1

2URn̂R (n̂R − 1),

(B1)

HS =
∑
kσ

Ekγ
†
kσ γkσ , (B2)

HS–DQD =
∑

kσ,i∈{L,R}
t∗i Ai

kσ c
†
jσ + H.c., (B3)

where ti ≡ √
�Si and Aj

kσ = ∑
kσ,j∈{L,R} eik.rj ukγkσ +

σe−ik.rj v−kγ
†
kσ with uk and vk as conventionally defined in

the BCS theory.
The main step of the derivation is to write an effective

Hamiltonian to second order in the tunnel couplings ti of the
superconductor to the two dots using a Schrieffer-Wolf trans-
formation, also called adiabatic elimination in atomic physics
[12,35]. The idea is to find a unitary transformation which
cancels the tunneling term up to second order in tunneling.
The effective Hamiltonian reads as

Ĥeff = e−SĤ eS ≈ Ĥ − [S, Ĥ ] + 1
2 [S, [S, Ĥ ]] + · · · .

If S is constructed such that [S, Ĥ0] = ĤS–DQD, the effective
Hamiltonian becomes

Ĥeff ≈ Ĥ0 − 1
2 [S, ĤS–DQD].

One seeks for the operator S in the following form:

S =
∑
kσ

j ∈ {L,R}

γkσX
j

kσ − H.c.

The constraints for the operator S can be fulfilled if X
j

kσ

has the following matrix elements:

〈l| X
j

kσ | m〉

= −tj σ eik·rj v∗
−k〈l| djσ |m〉 + t∗j eik.rj uk〈l|d†

jσ |m〉
Ek + Em − El

.

(B4)
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This allows us to calculate explicit expressions of the double-
quantum-dot effective Hamiltonian by using the ground state
of the superconductor in the initial and final states and states

in which one quasiparticle is excited in the superconductor
as intermediate states. In the bonding/antibonding basis, we
get, setting δr = rL − rR the distance between tunneling to
left and right dots:

〈+| [S, ĤS–DQD]| −〉 =
∑

k

|uk|2
(

1

Ek − E+
+ 1

Ek − E−

)
{−uv(|tL|2 − |tR|2) + t∗LtReik·δru2 − t∗RtLe−ik·δrv2}

− |v−k|2
(

1

Ek − E+ + ε�

+ 1

Ek − E− + ε�

)
{uv(|tL|2 − |tR|2) + t∗LtRe−ik·δru2 − t∗RtLeik·δrv2}. (B5)

We get similar expressions for 〈+| [S, ĤS–DQD] |+〉 and 〈−| [S, ĤS–DQD] |−〉. In order to obtain useful analytical expressions,
we use the following identities, taking the 1D limit similarly to Ref. [52], assuming the tunnel coupling t i is real and setting
ti = √

�Si , to second order in ε
�

where ε is the energy of the state:

ti tj
∑

k

ukv−k

eik·δr

Ek + ε

⎧⎨
⎩

= √
�Si�Sj

(
π − 2ε

�
+ π

2
ε2

�2 + · · · ) for δr = 0,

= π
√

�Si�Sj coskF δr e−δr/ξ0

(
1 −

√
2|δr|
πξ0

ε
�

+ |δr|
2ξ0

ε2

�2 + · · ·
)

for δr � ξ 0,
(B6)

ti tj
∑

k

|uk|2 eik·δr

Ek + ε

⎧⎨
⎩

= √
�Si�Sj

(
Ln 2h̄ωD

�
− π

2
ε
�

+ ε2

�2 + · · · ) for δr = 0,

= π
√

�Si�Sj coskF δr e−δr/ξ0
(√

πξ0

2|δr| − π
2

ε
�

+
√

π |δr|
2ξ0

ε2

�2 + · · · ) for δr � ξ 0,
(B7)

where ωD is the Debye angular frequency used as a cutoff and � is the superconducting gap. It is interesting to note
that

√
�SL�SRcoskF δr e−δr/ξ0 is the Cooper pair splitting amplitude which appears both here in the renormalization of the

bonding/antibonding states as well as in the hybridization between the |S〉 and the |0, 0〉. We note

t0
eh =

√
�SL�SRcoskF δr e−δr/ξ0 . (B8)

Projecting the effective Hamiltonian on the {|+〉, |−〉}, we get

Ĥeff = (E+ + δE+) |+〉〈+|+(E− + δE−) |−〉〈−| + δtb |+〉〈−| + δtb |−〉〈+|, (B9)

where the expressions for the perturbative elements close
to the degeneracy line between (0,1)/(1,0) charge states are
given in the main text.

APPENDIX C: VACUUM RABI SPLITTING POWER
DEPENDENCE MODELING

In this appendix we present the modeling of the vacuum
Rabi splittings shown in Figs. 5(a) and 5(c) of the main text.
In both figures, a misalignment is visible between the center
of the Rabi splitting peaks and the recovered coherent state
at high power, whereas the spectral weight of the two peaks
at low power remains the same. Such a misalignment can
be accounted for by a two-transition structure depicted in
Fig. 5(b). This contrasts with the case of a single electronic

transition involved, where this shift would automatically be
accompanied by asymmetric spectral weights on the two
peaks.

We can account for this asymmetric splitting with respect
to the coherent state peak at the cavity frequency recovered
at high power, while keeping similar spectral weight on each
peak, with the two-transition scheme depicted in Fig. 5(b). As
an example, we give three different transmission spectra with
their theoretical fit in Fig. 5(c). The sets of parameters used to
reproduce all the transmission spectra are given in Table I. The
photon number used in the model is 7 dB lower than the esti-
mated experimental photon number used as x axis in Fig. 5(c).

In the Supplemental Material [53] we give the python code
(using the QUTIP package) that calculates the reduced density
matrix and the cavity transmission.
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