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Lamb mode-coupling constant in quantum-dot semiconductor lasers
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In 1964, W. E. Lamb introduced a mode-coupling constant C to characterize the stability of a dual-mode laser.
Considering quantum-dot semiconductor lasers, we calculate analytically C in the framework of a rate-equation
model, which includes both the homogeneous broadening of the quantum-dot emission and the dot-to-dot carrier
exchange due to wetting-layer-assisted lateral coupling. Although first established using fully symmetric laser
parameters for both modes, this result is then extended numerically to nonsymmetric parameters and shows that
C remains unchanged when the gain/losses are adjusted so that the two laser modes are brought to oscillate
simultaneously. Finally, C is shown to depend on two parameters only encompassing the pumping, the gain
material mainly through the homogeneous broadening and the dot-to-dot carrier exchange, and the cavity design.
Above laser threshold, the analytic result predicts a stable dual-mode behavior whatever the conditions but with
a margin that decreases drastically close to lasing threshold or at small beating frequencies.
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I. INTRODUCTION

Already used today in commercial products working at
gigahertz frequencies, photonics promises to become a major
technology in the field of terahertz communications [1]. The
growing interest in this field is fed by the existence of reliable
components already developed for optical telecommunica-
tions, mainly at 1.55 μm. However, such large frequencies
entail strong constraints on the components. In particular, THz
generation can be accomplished by superimposing two laser
fields on a photomixer [1], typically a low-temperature-grown
InGaAs photoconductor or a unitravelling carrier photodiode.
New photonic sources have to be developed that must be pow-
erful enough to yield a detectable THz power after conversion
and transmission and also have a very low phase noise in
the beatnote. Several technologies are being developed. For
instance, very efficient sources of millimeter-wave or THz
sources have been demonstrated using the beating of two
independent stabilized lasers [2].

To go further, compact or integrated sources operating at
1.55 μm would be ideal, especially if they do not require ac-
tive stabilization. Making the two laser fields oscillate within
the same device enhances the spectral purity of the generated
THz beatnote since the two fields will see the same sources
of noise, be it thermal, mechanical, or electrical. The phase
noises of the two modes will therefore be correlated and
cancel out to a great extent in the beating [3]. The phase noise
of the generated THz wave will then be reduced as compared
to that obtained through the beating of two independent lasers
of the same spectral width. It has already been demonstrated
that such a dual-mode laser with solid state active medium
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reduces the need of external feedback control of the beating
frequency [4] and can even easily accommodate a simple
feedback loop leading to a very high spectral purity [5].

Integrated dual-mode semiconductor lasers with quantum-
well (QW) active layer were built to satisfy such a need of
stable and compact sources [6,7]. Nevertheless, they have
to cope with mode competition that may kill any stable
dual-mode operation except if strategies like separate pump-
ing of two distinct gain regions are implemented [8–10],
which limit the efficiency of the noise reduction. In a pre-
vious paper [11], we addressed the question of the sta-
bility of the dual-mode regime in QW and quantum-dots
(QD) semiconductor lasers using rate equations. Within this
framework, it was proven that only QD lasers can operate
simultaneously on two distinct modes but the simultane-
ous action of dot-to-dot carrier exchange and homogeneous
broadening was ignored, although they have been considered
separately.

On one hand, it is well known that a stable simultane-
ous emission from the excited and ground states of QDs
is possible [12]. Rate-equations models have been proposed
that describe quite accurately this regime [13,14], but the
spectral splitting between the two modes is too high for mm-
wave or THz emission. A simultaneous emission between
closer modes interacting strongly within the homogeneous
broadening is needed for practical applications. On the other
hand, recent experimental studies [15,16] evidenced a sta-
ble dual-mode emission in QD lasers. Moreover, Ref. [16]
demonstrates the possible tuning over the wide frequency
range of 0.28–30 THz covering almost the whole inhomo-
geneous broadening. It is therefore useful to reconsider the
QD-laser mode stability in the unified framework of dual-
mode solid-state lasers, with aim to help for growth and laser
design.
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FIG. 1. Energy diagram representing some of the processes in-
cluded in Eq. (4); the others are straightforwardly derived by sym-
metry. κi : nonresonant pumping; ξi : spontaneous recombination; ki :
exchange of carriers between dots. The distribution of QD is reduced
to only two families, with resonance frequency separated by f , and
interacting with two optical modes also separated by f . Each dot
family interacts with its own resonant optical mode but also with the
other detuned optical mode through the Lorentzian lineshape ε.

Since the earliest theory of gas lasers [17], the stability of
the dual-mode regime is known to be governed by a simple
constant. Mode intensities, I1 and I2, follow the time evolution

dI1

dt
= (α1 − β1I1 − θ12I2)I1, (1a)

dI2

dt
= (α2 − β2I2 − θ21I1)I2, (1b)

where the αi are unsaturated gains and βi and θij are self-
saturation and cross-saturation coefficients. The stability anal-
ysis of this set of equations yields the expression of the Lamb
coupling constant

C = θ12θ21

β1β2
. (2)

The two modes oscillate simultaneously or not, depending
on whether this constant is lower or higher than 1. Starting
from the measurement technique of C proposed in Ref. [18],
we derive in the following an analytical formulation of the
coupling constant in the case of semiconductor QD lasers.

II. QD LASER MODEL

Unlike QW lasers where the optical gain of adjacent modes
share exactly the same material gain, QDs have little interac-
tion with each other once created. Moreover the total number
of active QDs in resonance with a given optical mode is
determined by the growth. To put them in an optically excited
state, QDs have to capture free carriers from the barrier via
the wetting layer (WL). Optical gain coupling between dots is
thus not direct, which seems favorable for a stable dual-mode
emission.

As a typical example of QD active layer, we will consider
double cap InAs/InP QDs on InP(311)B for 1.55 μm optical
emission [19]. QD dimensions are 30 nm in diameter and
3 nm in height above a one or two monolayers-thick InAs
WL. Two adjacent QDs of different sizes are represented
schematically in Fig. 1. In ascending energy order, above the
QD fundamental transition, a doubly degenerated excited state
has an energy about 50 meV higher, and another state may

be even less confined. At 100 meV above the fundamental
transition starts a 2D continuum (miniband) for the WL, and
roughly 100 meV above, states are delocalized in the InGaAsP
barrier. These values are typical but may change with the
exact growth conditions. In particular if QD density (QDD)
increases, the excited states start to be coupled with those of
neighboring QDs, leading to the delocalization of electronic
states [20].

Due to the distribution of their sizes, QDs have a large
inhomogeneous broadening of around 50 meV, i.e., 12 THz,
that can be controlled to some extent [21]. We are considering
the lasing of two optical modes, labeled 1 and 2, separated
by a frequency difference f . They will interact with dots of
different sizes. To keep our analysis simple, we consider only
two QD families, also labeled 1 and 2 in Fig. 1, each one being
resonant with its own optical mode. Therefore their center
energies will be separated by hf . The homogeneous optical
linewidth γ of a single QD is estimated between 12 meV and
20 meV FWHM at room temperature [22,23]. This provides
a first coupling mechanism between both modes that can be
accounted for using the parameter

ε = 1

1 + (2hf/γ )2
= 1

1 + 4F2
, (3)

which is derived from the Lorentzian lineshape of the ho-
mogeneous gain of each QD family. If for instance family 1
provides a gain g for mode 1, it will also provide a gain
ε g for mode 2, where ε is comprised between 0 and 1. ε

depends on the frequency splitting f of the two modes but
also on QD growth conditions and confinement energy which
influence the temperature and Auger broadening of the QD
levels [23]. In our model, ε is the only parameter that accounts
for the difference in frequency between modes. Although the
beatnote frequency f is expressed in Hz, it will be useful
and more practical to use the normalized frequency defined
by F = hf/γ , which scales according to the homogeneous
broadening.

Another coupling mechanism has to be introduced that
can operate in the absence of an optical cavity. Indeed, if
carriers are injected in an excited state of a particular QD
family, they will start to diffuse and thermalize with the other
sublevels until recombinations occur. Several mechanisms can
be considered, noted as dashed arrows in Fig. 1. The first one
is a direct coupling between both ground states through the
tunnel effect. For a typical in plane QD to QD separation of
a few tens of nanometers—corresponding to QDD in the 1010

to 1011 cm−2 range—no ground state splitting due to lateral
coupling of QDs has been predicted [20]. QD separation has
to be in the range of few nanometers to create electronic
coupling as evidenced in very close vertically coupled QD
layers [24]. This effect on the ground state is thus expected to
be weak and will not be considered in the following. The most
probable path is, however, a thermionic excitation toward
the first excited state followed by quantum tunneling to an
adjacent QD. Under laser conditions, with high carrier density
and ambient temperature, Auger scattering is well known to
promote carrier redistribution and accelerate gain recovery in
active QD devices [25]. Waiting times from and to the first
excited state then fall in the ps range [26]. A tunneling redis-
tribution via the WL assisted inter-QD coupling mechanism
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was already evidenced in this system [20,27]. Its effectiveness
obviously depends on the QDD that dictates the average
distance between dots. The last mechanism corresponds to
a complete thermionic emission to the wetting layer with
a subsequent capture by the other QD family. This is not
the dominant mechanism because of the energy difference
between QD and WL levels, although the excited state may
act as a relay.

Starting from multimode rate equations for semiconductor
lasers [28] and QD lasers [13] we thus construct the following
set of rate equations to encompass all these specific properties
of a well above threshold QD dual-mode laser [11]

dN1

dt
= κ1 + k1N2P1 − k2N1P2 − ξ1N1

−A1(N1 − P1)(S1 + εS2), (4a)

dN2

dt
= κ2 + k2N1P2 − k1N2P1 − ξ2N2

−A2(N2 − P2)(S2 + εS1), (4b)

dS1

dt
= −α1S1 + (A1(N1 − P1) + εA2(N2 − P2))S1, (4c)

dS2

dt
= −α2S2 + (A2(N2 − P2) + εA1(N1 − P1))S2, (4d)

with Bi = Ni + Pi the total number of QD addressing mode
i = 1, 2, Ni the number of excited dots, Pi the number of
unexcited dots, and κi the pumping per QD family. Ai , ξi ,
and αi account for the modal gains, carrier leakage rates in
the excited state, and linear optical losses per mode, including
internal losses and external emission. The ε parameter already
discussed takes into account the optical coupling between
modes via Lorentzian gains. On the carrier side, coupling is
obtained by the ki’s that are constants accounting for the ex-
change rate of the excited states between the two QD families.
Formally it is equivalent to adding another carrier equation
for the wetting layer [13,29], but it is more convenient to
manage and be consistent with the physical demonstration
of direct coupling between QD families [20,27]. Practical
numerical values for the ki’s for a given fabrication process
are still missing and surely depend on growth fabrication
conditions like QDD. Nevertheless ki values straightforwardly
bind the two carrier population just like an action mass law.
If moreover the optical gains differ significantly, the first
population that reaches the laser threshold will progressively
clamp all excited QD densities so that the other mode grows
up with difficulty. This phenomenon causes the narrowing of
the electroluminescence observed in Ref. [27] when QDD
increases. As a result, the power balance between the two
modes selected for beating may get lost. In the following
we will assume close values for all laser parameters so as
to preserve the dual-mode regime with nearly balance power
between modes. It is worthwhile mentioning that this model
assumes isotropic light-matter interaction. In the peculiar case
where the two modes under consideration are orthogonally
polarized, any gain anisotropy might lead to a polarization
dependent coupling constant. This dependence was observed
in a (100)-cut Nd:YAG laser where the active atoms cross
sections are oriented according to the crystallographic axis
[30]. This was also discussed in the VCSELs and modelled

with rate equations resembling Eq. (4) [31]. Here, irrespective
of the polarization nature of the two modes, we shall consider
that the light interaction with the QDs is quasi-isotropic in
agreement with the fact that their random distribution yields a
quasi-isotropic photoluminescence. Moreover, the short time
scale of electronic spin coherence at room temperature is
expected to randomize polarization dependent interactions
[32,33].

The above model allows estimating straightforwardly the
steady-state solutions for Sss

1 and Sss
2 using mathematical

software [34]. Multiple solutions are obtained when solving
for steady state [35]. The relative complexity of our rate-
equation set (4) leads to seven roots [36]. Two of them are
for the nonlasing regime (S1 = S2 = 0) within which only
one is physically sound with positive quantum-dot numbers
(Ni > 0). Besides, two solutions correspond to one lasing
mode only, the valid root in each case corresponding to a
positive number of photons. Finally only one solution yields
simultaneously S1 > 0 and S2 > 0. This solution is selected
for further analysis of the dual-mode regime. It must be noted
that within this solution the simultaneous oscillation of the
two modes has to be assessed by stability analysis [17,35].

III. LAMB CONSTANT

The experimental procedure used to extract the Lamb con-
stant C involves a modulation of optical losses for each mode
sequentially while recording the intensity evolution of the
two modes [18]. Within the framework of our rate-equation
model, optical intensities are proportional to Sss

i and the losses
are given by αi . The intensity variation of mode 1 while
modulating the losses of mode 2 is thus given by dSss

1 /dα2

and should be divided by the modulated intensity of mode 2
in the same condition dSss

2 /dα2. The converse applies when
modulating the linear gain of mode 1. With the notations of
Ref. [18], it yields

C ≡ K12K21, (5)

with

Kij ≡ −dSss
i

dαj

(
dSss

j

dαj

)−1

. (6)

A. Perfect symmetry between the two modes

We consider here closely separated modes of similar in-
tensities. Moreover, we choose similar material and optical
parameters for almost all variables except the losses αi that
must be kept different to evaluate C. This eventually arises
when choosing two modes symmetrically located with respect
to the inhomogeneous gain maximum. It yields ki = k, κi =
κ/2, Ai = A, Bi = B, and ξi = ξ . The steady-state number of
excited quantum dots in each set i simply becomes

N ss
i = B

2
+ αi − αjε

2A(1 − ε2)
, (7)

with j �= i. In spite of the large number of simplifications
brought by this complete symmetric case, the expressions for
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the resulting Sss
i remain quite complex [36]. For instance

Sss
1 = κ − Bξ

2
f− − kB(α1 − α2)

2A(1 − ε)
f+ − ξ

2A(1 + ε)
, (8)

where f+ and f− are functions of α1 and α2:

f±(α1, α2) = 1

α1 − εα2
± ε

α2 − εα1
. (9)

The intensity of the second mode Sss
2 can be recovered by

exchanging the indexes 1 ↔ 2.
We then expand the derivatives in (6) using the previous

expressions of Sss
i . Once analytically evaluated, further sim-

plifications can be obtained by assuming at that point identical
losses, αi = α. Equations are made completely symmetric and
yield simpler expressions, for instance the common value for
the mode intensities becomes

Sss
1 = Sss

2 = 1

2

[
κ − Bξ

α
− ξ

A(1 + ε)

]
, (10)

with the lasing threshold κth = Bξ + αξ/A(1 + ε), and both
K constants become equals: K12 = K21 = K . Although vio-
lent in some sense, such an approximation is usually proposed
and was proven to be compliant with experimental results. It
was, for instance, shown experimentally in Er,Yb:glass as well
as Nd:YAG lasers that the relevant parameter for dual-mode
oscillation is C independently of K12 and K21 which can
evolve with respect to wavelength but in opposite directions so
that their product remains constant [37]. This approximation
was also proposed in Ref. [38] to extract the value of the
coupling constant C from spectral noise measurements in
optically pumped Er:Yb:glass microchip lasers. It was also
used in Ref. [30] to quantify polarization mode-coupling in
Nd:YAG. After some manipulations [36] we end up with
exactly the same equation as in Ref. [38]

C =
[

1 − (�L/�R )2

1 + (�L/�R )2

]2

, (11)

where

�L

�R

= 1 − ε

1 + ε

√
a

2 + a
,

and with the parameter a = A(1 + ε)(κ − Bξ )/(kBα) that
can be recast in the simpler form a = ξg0/(kBα), by intro-
ducing the unsaturated gain g0.

This result is surprisingly simple as compared to the
lengthy steady-state forms (8), (9) extracted from rate equa-
tions. Furthermore, two key parameters only are needed to
define the Lamb C constant; the first one is the homogeneous
lineshape ε and the second is a. In the expression of a,
ξ , and kB are rates related to the material, and g0 and α

are related to the laser design and operating point. For the
material-related rates, 2kB is the rate at which the population
difference N1 − N2 is null. Indeed, going back to Eqs. (4) and
dropping the gain terms: S1 = S2 = 0; it can be shown that an
initial difference N1 − N2 will evolve as exp(−2kBt ), while
N1 + N2 evolves as exp(−ξ t ).

As a > 0 above threshold and 0 � ε � 1 the stability
condition C < 1 is always fulfilled except when the two
modes have exactly the same frequency (f = 0, or ε = 1,
will always give C = 1). This confirms our previous proof

of unconditional stability of QD dual-mode lasers that was
however restricted to the nonsimultaneous consideration of
homogeneous broadening and carrier exchange [11]. In more
detail, as K12 and K21 are exactly the fraction within the
brackets in (11), they are therefore always positive. It agrees
with the out-of-phase evolution of the intensities experimen-
tally observed when one modulates the losses of one mode
[18]. In the framework of our model, the positive value of Kij

can be understood by the mode competition addressing the
same QD population within the homogeneous broadening.

Although C < 1 theoretically leads to a possible dual-
frequency operation, in practice a security margin must be
applied to ensure its robust operation whatever the experimen-
tal variations that may arise because of thermal variations or
mechanical instabilities. A more suitable maximum value for
C is thus probably 0.95 for practical reasons since a stable
dual-mode regime was already observed at this C level [18].
The value of C is always strictly decreasing with a, going
from C = 1 for a → 0 to C = [2ε/(1 + ε2)]2 for a → +∞.
In order for the coupling constant to remain under a given
value C, one should therefore take a → +∞ and ε < εmax =
[1 − √

1 − C]/
√

C. Taking C = 0.95 as a limit yields εmax =
0.80 or F > 0.253. Therefore, even if a dual-frequency oper-
ation is theoretically possible as soon as F �= 0, it should be
quite difficult to achieve a beatnote at a frequency difference
below one quarter of the homogeneous linewidth without
artificially uncoupling the two modes.

Figure 2(a) shows the evolution of C as a function of F , the
beatnote frequency normalized to the homogeneous linewidth,
and of the parameter a described above. The most favorable
situation for robust dual-mode operation is when both a and
F are large. Looking at the contour curve corresponding to
C = 0.95, it can be noticed that the minimum F available
barely increases when a is lowered from +∞ down to a =
0.5. Below this value, only well separated modes are predicted
to oscillate in a robust manner.

Figure 2(b) details the evolution of C with frequency
over a wide range of normalized frequency corresponding to
6THz when the homogeneous broadening is 10 meV. Four
values of a are considered and the evolution of C looks like
a Lorentzian profile on top of a constant, which is easily
estimated at 1/(1 + a)2. Increasing a is therefore of great
importance. As the ratio g0/α enters the definition of a,
increasing the pumping power seems in principle an easy solu-
tion. However, care should be taken because the homogeneous
linewidth is also expected to increase linearly with pumping
power due to Auger broadening [23]. To contain this effect,
the temperature should be lowered as it has an effect both on
the phonon—predominant at low carrier densities—and on the
Auger—predominant at large carrier densities—broadening
of the levels [23].

Additionally, lowering the temperature will limit the ex-
change of carriers between dot families given by the rate kB.
This parameter is the least well known in the expression of
a. Although the interdot exchange of carriers was reported
in some references dealing with QD laser equations [14],
the value is often not given explicitly, or it is given in the
framework of a continuous distribution of QD not amenable to
analytic expressions. To give some hints, let’s suppose that we
want a � 0.5 at threshold (g0 = α). This will be possible even
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FIG. 2. (a) Values of the coupling constant C of a semiconductor
QD laser in the (a, F) plane as well as the particular contour line
corresponding to C = 0.95 (white dashed curve). (b) Calculated
Lamb constant C as a function of F . Four a values are considered:
a = 0.1, solid line; a = 0.5, dashed line; a = 1, dotted line; a = 2,
dash-dotted line.

if the transfer rate kB is as large as 2ξ , or if a carrier present
in a particular QD has twice more chances to be transferred
to an empty QD from the other family than to recombine
within the QD. To reduce the impact of carrier exchange, the
barrier height should be made as large as possible and the
QDD lowered. Alternatively, it may be possible to separate
the layers, introducing a barrier between the layer of the larger
dots and that of the smaller dots.

B. No symmetry between the two modes

Previous considerations have focused on the very singular
case of perfect symmetry between modes for both gains and
losses. This leads to simplifications for steady-state values,
which enable analytical calculus and thus to draw some trends
for the coupling constant value. It is important to show here,
by numerical calculations, that the C consistency shown for
Er,Yb:glass as well as Nd:YAG lasers is still valid for QD
lasers. This will thus reinforce the generality of Eq. (11).

By returning to the general solutions calculated in §II
and considering more specifically the steady-state dual-mode
solution, we estimated the limits where either of the SSS

i

vanishes with the only assumption that the two modes are

0.0 0.5 1.0 1.5 2.0 2.5
0

1

2

3

4

5

0 2 4 6 8 10

1

2

3

4

5

0.5 1.0 1.5 2.0 2.5
0.0
0.2
0.4
0.6
0.8

(a)

(b)

FIG. 3. Common parameters are F = 1, a = 2, and kB/ξ = 0.2.
(a) Limiting curves of steady-state dual mode as a function of the nor-
malized frequency and rα = α1/α2, the ratio of optical mode losses.
The area between the curves is the allowed region, here obtained at
high pumping level, and the circle figures the F > 0.253 introduced
for C � 0.95. (b) Up: Power intensity ratio between modes, S2/S1,
as a function of rα and rA = A2/A1, the gain ratio of the two modes.
The rα span extends over the allowed area defined in (a) for F = 1.
The dashed white line figures the solution S = S1 = S2 of perfect
balance between mode intensities while white areas correspond to
(rα, rA) pairs where the dual-mode regime vanishes. Down: Example
of the common normalized intensity of the two modes S calculated
along the white dashed curve; other parameters are here A = 10 ns−1,
B = 104, ξ = 0.1 ns−1, and α = 0.01 ns−1.

pumped identically (κ1 = κ2 = κ/2). For convenience, the
parameter rα = α1/α2 is introduced. If we assume a large
pumping level, mathematically if it tends towards infinity, the
range allowed for rα is radically simplified [36]

2ε

1 + ε2
< rα <

1 + ε2

2ε
. (12)

Outside this domain, at least one of the SSS
i is negative so the

first required condition for dual-mode operation is excluded.
Figure 3(a) gives a representation of that domain in the (F , rα )
plane together with the position of the previously discussed
limit C = 0.95 in the fully symmetric case. Although the
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possible asymmetry between the losses of the two modes
is negligible at low frequency, the range of rα values opens
quickly at high frequency, which facilitates dual-mode opera-
tion. The C � 0.95 limit given above appears as the reference
value at which the very restrictive condition of very close
losses in both modes is relaxed.

In practice, proper dual-mode operation is obtained
by counterbalancing possible gain anisotropy with loss
anisotropy so that the two mode intensities are equal. The
operator tries to equalize SSS

1 and SSS
2 either by pumping the

two modes differently or by adjusting the losses. In QD lasers
shifting the two modes in frequency beyond the homogeneous
broadening width might be an attractive alternative.

By introducing the ratio between the differential gains
rA = A2/A1, it is then possible to solve for SSS

1 = SSS
2 = S

in the steady state and to preserve the equality between mode
intensities. We do so assuming that ki = k, κi = κ/2, ξi = ξ ,
Bi = B but α = α1 = rαα2 and A = A1 = A2/rA. Because of
these definitions, rα decreases if the operator adds losses on
mode 2 with respect to mode 1 and obviously rA must also
decrease in order to balance the emission between the two
modes. The upper part of Fig. 3(b) plots the power intensity
ratio rS = SSS

2 /SSS
1 in the (rα, rA) plane for the allowed rα

values defined by (12). The area allowed for an actual positive
ratio is limited in space and includes the condition rS = 1 as a
white dotted line. This illustration uses numerical solutions
that also require a known value of the ratio between the
carrier’s exchange rate, kB, and the nonradiative spontaneous
recombination rate ξ . Here we chose kB/ξ = 0.2. Numerical
solutions predict rS ratios that increase dramatically as we
approach the lower edge of the allowed area; we have limited
its value to rS � 10 in the graph. Obviously, the perfect
symmetry rα = rA = 1 belongs to the rS = 1 curve.

The laser pumping being constant, when the gain and
losses are adjusted the intensities on both modes are subject
to change. The lower part of Fig. 3(b) illustrates this change
when located on the white dotted line rS = 1. Although the
vertical scale is subject to change depending on the actual
laser parameters, the steady decrease of S from high values
at low rα to zero at its upper limit is a reproducible behavior.
Therefore, even if each pair (rα, rA) on the white dotted line
balances the intensities, the total power emitted by the laser is
likely to change.

Using the full steady-state expressions of SSS
i discussed

in §II and the definitions of (5) and (6), we are now able to
numerically calculate C,K12, and K21 assuming the balanced
condition is met, i.e., assuming for each set of parameters a
pair (rα, rA) located on the white dashed line of Fig. 3(b),
knowing that the latter must be recalculated each time the
laser parameters are modified. Such a procedure is intended
to reproduce what an experimenter does when trying to adjust
the losses and gains of his laser as in Ref. [18] to preserve the
dual-mode regime. The results are given in Fig. 4 with four
examples corresponding to various parameters F , a, kB/ξ .
They are all plotted over a range of rα which corresponds
exactly to the allowed area previously defined in Fig. 3(a).

For all laser conditions, C remains below the stability limit
of unity while the Kij have opposite evolutions and cross at
the symmetric conditions rα = 1. It is worth noting that C

has negligible amplitude variations as compared to those of
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FIG. 4. Lamb constant C (solid line), K12 (dashed line), and K21

(dotted line) as a function of rα while ensuring at each point that
mode intensities remains balanced by a proper adjustment of rA =
A2/A1. Parameters are (a) F = 0.5, a = 1, kB/ξ = 0.5, (b) F = 1,
a = 2, kB/ξ = 0.2, (c) F = 2, a = 0.1, kB/ξ = 2, (d) F = 3, a =
0.5, kB/ξ = 1. The thin continuous line is an eye guide @ C = 1.

K12 and K21. This is especially true at higher frequencies
where the range of rα is large [Figs. 4(c) and 4(d)], which
gives a difference between Kij that can become important
while C remains fairly constant. As discussed in Fig. 3(b),
the intensities of the two modes are analytically related and
depend on both rα and rA, with the consequence that the total
laser power at both ends of the rα range is not identical to
that obtained for example for fully symmetrical conditions,
and even ends up going to zero at one of the extremes of
this variation. The consequence appears with changes on
C appearing mainly at these extremes, which we do not
consider significant since the initial dual-mode laser has been
modified too much. Therefore, Fig. 4 compares the values
of C for lasers with two similar modes but with different
total emitted power, especially in the (c) and (d) cases. Note
that case (b) corresponds to that of Fig. 3(b), which gives
an idea of the amplitude of variation of the total intensity in
relation to rα . Trying to solve the system simultaneously for
balanced intensities and constant laser power would also have
required a change in the pump intensity κ and the introduction
of many more parameters, making any parametric analysis
tremendously complicated.

Based on the results of Fig. 4 and on the experimen-
tal knowledge acquired on microchip lasers and VECSEL
[18,39], we postulate that C is almost a constant for a given
dual-mode configuration and comparable intensities, regard-
less of a slight change in losses on either mode. On the
contrary, the Kij , which are the ratio between cross- and
self-saturation of the two modes, are highly dependent on this
change. Under such conditions, the relation (11) for C seems
to be much more general than the very specific conditions
used for its demonstration. In its microchip laser version, the
same equation was successfully applied “as is” to extract the
C Lamb constant of dual-mode lasers in two experiments
[30,38]. As soon as QD semiconductor VECSELs are built,
the same characterization will be possible and its validation,
for example, thanks to the measurement of �L and �R , is
expected.
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IV. CONCLUSION

We have analytically calculated the Lamb constant C of
dual-mode semiconductor QD lasers. It is found to depend
only on two parameters and is always less than one, the
theoretical limit for unconditional dual-mode stability. Nev-
ertheless, in practice the operation of such a laser may not be
envisioned if C becomes too close of unity. The robustness
of the dual-mode operation can be evaluated through the
parameters governing the analytical form of C.

The first parameter a is a combination of material and of
laser design parameters reflecting the fact that QD families
are coupled both directly and through the cavity. It should be
made as large as possible, typically larger than 0.5, to limit
the coupling between the modes. The second parameter is
quite directly the homogeneous broadening of QD emission,
leading to gain overlap between adjacent modes.

The homogeneous broadening has the strongest influence
when modes are very close in frequency and it is a true

limitation for microwave sources. Sources working at a beat-
note frequency below 1THz will need a careful design of the
homogeneous linewidth, which is in favor of using QD active
media. Its influence can be mitigated by maximizing the a

parameter.
At THz frequencies, less difficulties are expected because

the optical gains of the two modes are sufficiently separated
to effectively decouple the modes. Therefore, more integrated
structures can be envisaged without the need of applying a
spatial separation between the two modes and could even be
hybridized with the photoconductive THz antenna in a very
compact way.
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