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Spin-related phenomena in the two-dimensional hopping regime in magnetic field
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The spin relaxation time of localized charge carriers is a few orders of magnitude larger than that of free
electrons and holes. Therefore, mutual conversion of spin polarization, charge current, and spin current turns out
to be underlined in the hopping conductivity regime. We reveal different regimes of the coupled spin and charge
dynamics depending on the relation between the spin relaxation time and the characteristic hopping time. We
derive kinetic equations to describe electrical spin orientation, dc spin Hall effect, and spin-galvanic effect in
the transverse magnetic field. The generalized macroscopic conductivities describing these effects are calculated
using percolation theory supported by numerical simulation. The conductivities change the sign at least once as
functions of magnetic field for all values of the spin relaxation time.

DOI: 10.1103/PhysRevB.98.155304

I. INTRODUCTION

Spin is in the center of condensed-matter physics for al-
most two decades due to remarkable effects allowing for both
deeper understanding of fundamental physical processes and
some possible future applications [1]. One of the most inves-
tigated spin-related phenomena is the spin Hall effect (SHE)
which is a conversion of an electric current into spin cur-
rent [2–5]. There is also an inverse effect (inverse SHE) con-
sisting in the generation of the electric current under the spin
current flow [2,6–8]. The SHE is qualitatively similar to the
ordinary Hall effect: the electric current in the system is con-
verted into the spin current or spin-up and spin-down separa-
tion in the perpendicular direction. This means that the charge
carriers with opposite spins flow preferentially in opposite
directions. Microscopically, SHE arises due to spin-orbit in-
teraction, and it is symmetry allowed in any system. There
are some more subtle spin-dependent phenomena which take
place only in systems of low point symmetry. The first exam-
ple is the current-induced spin orientation (CISP) consisting
in the generation of a net spin polarization by electric current
[9–15]. The reciprocal phenomenon, the spin galvanic ef-
fect (SGE), is a generation of electrical current in the pro-
cess of nonequilibrium spin relaxation [16]. Both CISP and
SGE are symmetry allowed in gyrotropic (optically active)
systems. They have been investigated in gyrotropic bulk
semiconductors, for example, tellurium [9,10], strained zinc-
blende III-V crystals, and in various two-dimensional (2D)
heterostructures [17–20]. CISP and SGE can be viewed as
the consequences of SHE (or inverse SHE), so all three spin-
related phenomena are interconnected [21]. The microscopic
source for the conversion of the spin current into the net
spin polarization (CISP) and to electric current (SGE) is the
spin-momentum linear coupling caused by Rashba- and 2D
Dresselhaus spin-orbit interactions [22–25].

Aside from the spin-dependent effects related with the
electric current flow, there is a rich spin physics of carri-
ers localized at neutral dopants, interfaces of semiconductor
heterostructures, and in quantum dots. These systems attract
permanent interest due to long spin relaxation times which can

be by orders of magnitude larger than for free carriers and vary
in a broad range [26]. The reason for long spin lifetimes is
that the major mechanisms of spin relaxation related with free
carrier momentum scattering are absent for localized carriers,
and spin relaxation is determined by a weak hyperfine interac-
tion with host lattice nuclei [27,28]. Long spin memory allows
for fast spin manipulation by optical pulses [29–31], resonant
spin amplification [32,33], electron spin precession mode
locking [34–38], nuclei-induced frequency focusing [39–43],
and measurement of spin fluctuations [44–47].

The two groups of the above-described spin-dependent ef-
fects, related with the electrical current flow and with the long-
lived localized spins, meet in systems with hopping conduc-
tivity. Indeed, if the localized carriers can migrate between the
localization sites, then one can study SHE, CISP, and SGE in
systems with slow spin relaxation. Recently, it has been shown
that all three effects take place in 2D systems with hopping
conductivity and pronounced spin-orbit interaction [21,48].
Impression of SHE, for example, is shown in Fig. 1. In this
work, we investigate the spin-related phenomena for localized
carriers, as functions of the nuclei-induced spin relaxation
time and external perpendicular magnetic field.

The paper is organized as follows. In Sec. II we derive
and analyze kinetic equations for the coupled charge and spin
dynamics. In Sec. III we solve these equations using both
numerical simulation and percolation analysis. The obtained
results and their generalizations are discussed in Sec. IV and
are summarized in Sec. V.

II. GENERAL THEORY

A. Phenomenology

In two-dimensional systems CISP, SGE and SHE are intro-
duced by the following phenomenological expressions [21]:

s = σ̂ CISP E, j = σ̂ SGEs, J = σ̂ SHE E, (1)

where s is the average spin polarization, E is the applied elec-
tric field, j is the current density, and J is the component of
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FIG. 1. Impression of SHE. The hopping of electrons (frogs) in
one direction is accompanied by separation of electrons (frogs) with
spins (arrows) up and down in perpendicular direction.

the spin current associated with the spin-z component (normal
to the plane of the structure). The generalized conductivities
σ̂ CISP, σ̂ SGE, and σ̂ SHE depend on structure parameters and
external magnetic field B.

We consider a semiconductor zinc-blende heterostructure
grown along the [001] direction. In this case, it is useful to
introduce the coordinate frame as z ‖ [001], x ‖ [11̄0], and
y ‖ [110]. In this coordinate frame the Hamiltonian describing
spin-orbit interaction has the form [25]

HSO = σ̂ · β̂k = σ̂xβxyky + σ̂yβyxkx. (2)

Here, σ̂x,y are the Pauli matrices, k = −i∇, and βxy , βyx are
two spin-orbit constants caused by both bulk- and structure-
inversion asymmetry.

We assume that the external magnetic field is applied
perpendicular to the structure B = Bzez, where ez is the unit
vector along z direction. The asymmetric heterostructures are
described by C2v point symmetry group. In this case, the com-
ponents Ex and sy transform according to �2 representation,
Ey and sx belong to �4 representation, while Bz transforms
according to �3. Importantly, the symmetry analysis shows
the following:

(i) the diagonal components of all the generalized suscep-
tibilities are odd in Bz,

(ii) the off-diagonal components are even in Bz.
In the particular cases of structure-inversion asymmetry

dominance (C∞v symmetry) and bulk-inversion asymmetry
dominance (D2d symmetry), the components of the tensors
σ̂ CISP,SGE are related by

σ
xy

CISP,SGE = ∓σ
yx

CISP,SGE, σ xx
CISP,SGE = ±σ

yy

CISP,SGE, (3)

where the upper (lower) sign should be taken for C∞v (D2d )
point symmetry. For the spin Hall effect, the following relation
takes place in both cases:

σ
xy

SHE = −σ
yx

SHE, σ xx
SHE = σ

yy

SHE. (4)

The structures grown along crystallographic directions other
than [001] are briefly discussed in Sec. IV.

B. Derivation of the kinetic equation

In the hopping conductivity regime the electron ener-
gies are different for different localization sites. Therefore,
hopping between the sites involves emission or absorption
of phonons to ensure the energy conservation. The total
Hamiltonian of the system can be presented as

H = He + Hph + He-ph. (5)

Here, the term He describes the Hamiltonian of the electronic
system, Hph is the phonon Hamiltonian, and He-ph describes
the electron-phonon interaction.

The Hamiltonian describing the system of localized elec-
trons reads as

He =
∑
i,σ

εic
†
iσ ciσ +

∑
ij

∑
σσ ′

J σσ ′
ij c

†
iσ cjσ ′ + HZ. (6)

Here, c
†
iσ (ciσ ) are the creation (annihilation) operators of an

electron at the site i with the spin projection σ = ± 1
2 on the

normal to the 2D plane, z axis, and εi are the spin-independent
site energies. The second term in Eq. (6) describes the spin-
dependent hopping with the amplitudes J σσ ′

ij . HZ is the
Zeeman Hamiltonian. In this and the next section we neglect
the electron g factor for the sake of simplicity, thus assuming
HZ = 0. The modification of kinetic equations accounting for
the Zeeman splitting is discussed in Sec. IV.

The hopping amplitude is determined by the transfer inte-
gral

J σσ ′
ij ∼

∫
d r�∗

σ (r − r i )V (r )�σ ′ (r − rj ), (7)

where V (r ) is the potential energy including the attraction
potential of sites i and j . The localized electron wave function
has the asymptotic form [26]

�σ (r ) ∼ exp

{
i

h̄

∫ r

0

[
p(r ′) − e

c
Ã(r ′)

]
d r ′

}
χσ . (8)

Here, χσ is the basis spinor, p(r ) is the imaginary quasiclas-
sical momentum of electrons, and

Ã(r ) = A(r ) − cm

h̄e
σ̂ · β̂ (9)

is the modified vector potential. It includes the vector potential
of the applied magnetic field and the term corresponding to
spin-orbit interaction. This allows us to obtain [49–52]

Ĵij = Jij Ûij , (10a)

where

Jij = J0e
−rij /ab , Ûij = exp(−idij · σ̂ + iϕij ). (10b)

Here, we neglected power-law terms in Ĵij in comparison
to the exponential dependence e−rij /ab . The spin-orbit and
magnetic-field-induced phases are given by

dij = m

h̄2 β̂r ij , ϕij = eB
2h̄c

· (r i × rj ), (10c)

respectively, where m is the electron effective mass, r i are the
coordinates of the sites in the 2D plane, r ij = r i − rj , ab is
the localization length [53], and we have used the Coulomb
gauge. J0 is a real constant of the order of the binding energy.
In general case J0 and ab are even functions of the magnetic
field [53].

The phonon Hamiltonian has the form

Hph =
∑

q

h̄�qb
†
qbq, (11)

where h̄�q is the energy of the phonon with the wave vector
q, and bq (b†q ) is the corresponding annihilation (creation)
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operator. The Hamiltonian of the electron-phonon interaction
reads as

He-ph =
∑
i,σ,q

vq (eiq Ri bq + e−iq Ri b†q )c†iσ ciσ (12)

with vq being the electron-phonon interaction constants. The
spin dependence of electron-phonon interaction is negligible.

After the canonical transformation [54,55], the total Hamil-
tonian can be presented as

H =
∑
i,σ

εic
†
iσ ciσ +

∑
q

h̄�qb
†
qbq +

∑
i,j,σ,σ ′

V σσ ′
ij c

†
iσ cjσ ′ ,

(13)

where V σσ ′
ij = J σσ ′

ij Qij with

Qij = exp

{
−

∑
q

γq

[(
eiqr i − eiqrj

)
bq + H.c

]}
, (14)

γq = vq/(h̄�q ), and we have neglected the renormalization
of εi .

The aim of microscopic theory is to to derive the kinetic
equation. For the sake of simplicity, we limit ourselves to the
lowest orders of perturbation theory in the electron-phonon
and spin-orbit interactions. Provided the concentration of
charge carriers n is inferior by far than the concentration
of localization sites ns , one can neglect correlation effects.
Additionally, under assumption that the concentration of lo-
calization sites is much smaller than the inverse localization
length squared, ns � a−2

b , we will use the onsite spin density
matrices ρ̂i . The master equation can be presented as

dρ̂i

dt
=

∑
k

dρ̂
(k)
i

dt
, (15)

where the sum runs over the orders of perturbation theory in
the hopping amplitude.

The first nonvanishing term is the second-order
contribution

dρ̂
(2)
i

dt
=

∑
m

π

h̄
〈δ(En − Em)(2V̂nmρ̂j V̂mn

− ρ̂i V̂nmV̂mn − V̂nmV̂mnρ̂i )〉. (16)

Here, n and m denote the states of the electron-phonon
system where the given electron is localized at sites i and j ,
respectively, and the angular brackets denote averaging over
the phonon bath state. The contribution ρ̂

(2)
i describes hopping

and spin rotations. Since

V̂nmV̂mn = J 2
ij 1̂QijQji, (17)

where 1̂ denotes the 2 × 2 unit matrix, the outgoing term in the
second order is the same for all spin orientations. Accordingly,
the second-order contribution can be presented as

dρ̂
(2)
i

dt
=

∑
j

(
− ρ̂i

τji

+ Ûij ρ̂j Ûji

τij

)
, (18)

with Ûij being the unitary spin rotation operator (10) and τji

being the hopping time from the site i to j . In the lowest

(second) order in the electron-phonon interaction the hopping
time is given by

1

τji

= 2π

h̄
J 2

ij 2γ 2
qij

D(|εij |)[N|εij | + �(εij )], (19)

where εij = εi − εj , qij is the phonon wave vector cor-
responding to this energy, �(ε) is the Heaviside func-
tion, D(ε) stands for the phonon density of states, and
Nε = 1/[exp(ε/kBT ) − 1] is the occupation of the phonon
state with kB and T being the Boltzmann constant and temper-
ature, respectively. This result can be conveniently obtained
using the hopping diagrams introduced in Ref. [21]. The mul-
tiplier 2 reflects the fact that the phonon can be emitted either
at site i or j . Note that, due to the energy difference, τji �= τij .
As it is commonly accepted, we neglect simultaneous hops of
two and more electrons.

In what follows, we derive all the other terms of the
kinetic equation in the lowest nonvanishing order in spin-orbit
interaction. The effective frequency of spin precession during
the hop is accordingly given by �ij = 2dij /τij provided
|�ij τij | � 1.

The third-order contribution to the master equation has the
form

dρ̂
(3)
i

dt

= −4π

h̄

∑
m,l

〈
δ(En − Em)

{
π Im(V̂nmρ̂j V̂mlV̂ln)δ(En − El )

+ Re[ρ̂i Re(V̂nmV̂mlV̂ln) − V̂nmρ̂j V̂mlV̂ln]

En − El

}〉
, (20)

where we have introduced the notations Re O ≡ (O + O†)/2
and Im O ≡ (O − O†)/(2i). It can be rewritten in a form
similar to Eq. (18):

dρ̂
(3)
i

dt
=

∑
jk

{
Re

[
Ûij ρ̂j ÛjkÛki

τikj

− ρ̂i Re(Ûij ÛjkÛki )

τjki

]

− Im(Ûij ρ̂j ÛjkÛki )

τ ′
ikj

}
, (21)

where

1

τikj

= 1

τij

JikJkj

2Jij

(
1

εi − εk

+ 1

εj − εk

)
, (22a)

1

τ ′
ikj

= h̄

4

(
Jij

JkjJkiτikτkj

+ Jjk

Jij Jkiτkiτij

+ Jik

Jij Jkj τij τkj

)
.

(22b)

These expressions can be also directly obtained from the
diagrammatic approach [21]. We note that the rate 1/τikj

describes emission/absorption of one phonon. These rates
contribute to the interference mechanism of magnetoresis-
tance [56,57]. The rate 1/τ ′

ikj describes interaction with at
least two phonons. The corresponding processes lead to the
hopping Hall effect [49,58]. For our purposes, it is important

155304-3



A. V. SHUMILIN, D. S. SMIRNOV, AND L. E. GOLUB PHYSICAL REVIEW B 98, 155304 (2018)

to keep both contributions because they have different
symmetry.

It is convenient to present the onsite density matrix in the
form

ρ̂i = ni

2
1̂ + σ̂ · Si , (23)

where ni is the occupancy of site i, and Si is the corresponding
spin. Substitution of this expression into Eqs. (15), (18), and
(21) yields a system of coupled kinetic equations:

ṅi =
∑

j

Iij +
∑

j

(�ij · Sj − �ji · Si ), (24a)

Ṡi +
∑

j

Sj × �ij + Si

τs

=
∑

j

I s
ij +

∑
j

(Gij nj + Gjini ).

(24b)

Here,

Iij = nj

τij

− ni

τji

(25)

is the particle flow between sites i and j . Assuming that spin
relaxation is mainly governed by the onsite hyperfine inter-
action, we phenomenologically introduced the spin relaxation
time τs . We note that the hopping time τij as well as the spin
relaxation time τs can be anisotropic, which is disregarded in
Eqs. (24). The spin current flowing from the site j to the site
i is a sum of two contributions

I s
ij = Sj

τij

− Si

τji

+ W ij nj − W jini . (26)

The first two terms describe spin diffusion, while the latter
terms arise due to a difference in spin-conserving tunneling
rates for electrons with spins oriented along (↑) and opposite
(↓) to the axis α: Wα

ij = (W↑↑ − W↓↓)/2. Similarly, Gα
ij =

(W↑↓ − W↓↑)/2 describes spin generation, where W↑↓ and
W↓↑ denote the tunneling rates with the spin flips between
the corresponding orientations. The spin-galvanic coefficient
can be presented as �α

ij =2(W↑↑ + W↓↑ − W↓↓ − W↑↓).
Therefore, we obtain a general relation

�ij = 4(W ij − Gij ). (27)

The kinetic coefficients Kij (K = �, G, W ) in Eq. (24)
are equal to sums over the auxiliary sites Kij = ∑

k Kijk , and
the relation (27) holds for Kijk as well. These expressions
demonstrate that CISP, SGE, and SHE arise only taking into
account hopping between three sites, i.e., triads should be
considered. From the ingoing contributions in Eq. (21) we
obtain that

�ikj ≡ Gikj + W ikj = αxyαyx

[
2

3
Aikj × α̂(r ij + r ik )

− Aikj

](
cos ϕikj

τ ′
ikj

+ sin ϕikj

τikj

)
, (28a)

�ikj = 4αxyαyx

[
2

3
Aikj × α̂(rjk + rji ) − Aikj

]

×
(

cos ϕikj

τ ′
ikj

+ sin ϕikj

τikj

)
, (28b)

where Aikj = rki × r ij /2 is the oriented area of the triad,
α̂ = mβ̂/h̄2, and

ϕikj = ϕij + ϕjk + ϕki = 2π
�ikj

�0
(29)

with �ikj = B · Aikj being the magnetic flux through the triad
(see inset in Fig. 5) and �0 = 2πh̄c/|e| being the magnetic
flux quantum. Using the relation (27) one finds

Gikj = αxyαyx Aikj × α̂r ij

(
cos ϕikj

τ ′
ikj

+ sin ϕikj

τikj

)
, (30a)

W ikj = αxyαyx

[
Aikj

3
× α̂(rjk + r ik ) − Aikj

]

×
(

cos ϕikj

τ ′
ikj

+ sin ϕikj

τikj

)
. (30b)

We see that the kinetic coefficients oscillate with magnetic
field, and the period of oscillations is determined by the triad
area Aikj .

We note that the phase related with the spin-orbit interac-
tion is equivalent to the dynamical phase factor:

σ̂ d ij = 1

h̄

∫
σ̂ β̂kij (t )dt, (31)

where the wave vector kij (t ) describes propagation of an elec-
tron from site j to i. In the same time, the Aharonov-Bohm
phase ϕij is known to be geometric or Berry phase [59,60].

C. General properties of kinetic equation

Summation of Eq. (24b) over all sites yields the total spin
generation rate in the form∑

i

Ṡi =
∑
ijk

′
ϒikj +

∑
ij

�ij × Sj −
∑

i

Si

τs

, (32)

where the prime denotes that each pair (j, k) should be taken
only once, and

ϒikj = �ikj nj + �ijknk − ni

4
(�jki + �kji ). (33)

Note that the terms with spin-conserving tunneling rates (W ij )
in �ij and �ij cancel each other, but we keep them for the
future convenience.

In thermal equilibrium the rate ϒikj vanishes, and the spin
polarization is absent. This can be explicitly shown with the
help of relations

nj

τij

= ni

τji

,
nj

τikj

= ni

τjki

,
nj

τ ′
ikj

= nk

τ ′
ijk

, τ ′
ikj = τ ′

kij .

(34)

The first of these relations follows from Eq. (19) and rep-
resents the detailed balance equation Iij = 0 in thermal
equilibrium, while the rest follow directly from Eqs. (22).
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These expressions along with the definitions Eq. (28) yield

�′
jki + �′

kji = 0, �′
ikj nj + �′

ijknk = 0,

�′′
ikj nj − 1

4
�′′

jkini = 0, �′′
ijknk − 1

4
�′′

kjini = 0, (35)

where one and two primes denote the even in Bz contributions
proportional to 1/τ ′

ikj and the odd in Bz ones proportional to
1/τikj , respectively [see Eqs. (28)]. Combining all together
one finds ϒikj = 0 in thermal equilibrium, as expected. In
close to equilibrium conditions we obtain

ϒikj = �′
ikj τkj Ikj + �′′

ikj τij Iij + �′′
ijkτikIik. (36)

This expression is similar to “Hall source” in the theory of
hopping Hall effect [58].

The average spin evolution follows from Eq. (32):

ṡ = 1

nA

∑
i

Ṡi = 1

nA

∑
ij

(2Gij nj + �ij × Sj ) − s
τs

, (37)

where A is the total area of the sample. This expression differs
from Eq. (32) by omission of spin-conserving tunneling terms.
It can be conveniently rewritten introducing the total spin
current

J = 1

2A

∑
ij

r ij I
s,z
ij (38)

as follows [6,21]:

ṡ = −2

n
ez × α̂J − s

τs

, (39)

with ez being a unit vector along the z axis. We remind
that we restrict ourselves only to the lowest (third) order in
spin-orbit interaction. Defined in this way the spin current
vanishes in thermodynamic equilibrium. One can separate two
qualitatively different contributions to the spin current: J diff

and J dr, as the two first and two latter terms in Eq. (26).
Provided the electric field is applied to the structure along x

direction the sum of the two contributions in the perpendicular
direction is related only to the spin relaxation:

Jy = 1

τsA

∑
i

yiS
z
i . (40)

The spin current in the longitudinal (x) direction can be
nonzero even without spin relaxation as a product of spin
polarization and electric current. We remind that, in accor-
dance with the symmetry analysis performed in Sec. II A, the
odd and even in Bz contributions to spin orientation and spin
current averaged over disorder are perpendicular to each other.

It follows from Eq. (37) in the steady state that the CISP
conductivity can be presented as

σ̂ CISP = [f (ns, τs ) + g(ns, τs )ez×] Tr(β̂
2
)β̂

TPτs. (41)

Here,

P =
(

mab

h̄2

)3 2h̄nsab

enJ0τ0ρ
, (42)

ρ is the resistivity, and τ0 is the characteristic time for the
distance ∼ab.1 The dimensionless functions f (ns, τs ) and
g(ns, τs ) are even and odd in Bz, respectively, as follows from
the symmetry analysis presented in Sec. II A.

The spin-galvanic current can be similarly obtained from
the kinetic equation (24a). The calculation yields the follow-
ing result for the SGE response:

σ̂ SGE = [f (ns, τs ) − g(ns, τs )ez×]4 Tr(β̂
2
)β̂

TPkBT n.

(43)

Here, the functions f and g coincide with those for CISP
[Eq. (41)] as follows from the Onsager relation [12,21,61].

The spin Hall conductivity can be deduced from Eqs. (39)
and (41):

σ̂ SHE = −[f (ns, τs ) + g(ns, τs )ez×]β̂
T

(ez × β̂ )
h̄2nP

m
.

(44)

We stress that, in the inhomogeneous system under study,
the drift and diffusion currents are always interconnected.
Therefore, the spin Hall conductivity describes the total spin
current induced by the applied electric field. The constant drift
spin current, leading to spin separation, can be found formally
from Eq. (44) in the limit τs → 0 when the diffusion spin
current vanishes.

III. DISORDER AVERAGING

The above analysis provides microscopic equations that
describe CISP, SGE, and SHE in the hopping regime. Ulti-
mately, we are interested in the macroscopic susceptibilities
introduced in Eqs. (1). However, in the disordered system
the link between microscopic expressions and macroscopic
parameters is not straightforward due to an exponential dis-
tribution of the hopping times.

Equations (41)–(44) express macroscopic susceptibilities
through the dimensionless functions f (ns, τs ) and g(ns, τs ).
In this section we study in detail the even in magnetic field
effects that are described by f (ns, τs ). In what follows, for
brevity we call the function f (ns, τs ) the spin susceptibility.
As it is shown in the previous section, the kinetic coeffi-
cients (28) and (30) oscillate with magnetic field. In this
section we demonstrate that these oscillations are strongly
modified in a macroscopic system due to the disorder.

We consider the system with dominant spatial disorder.
So, we assume that the energy disorder |εi − εj | is small or
comparable to the temperature. In this case, we can neglect the
dependence of hopping times τij on energies in comparison
to the strong dependence on site positions. Also we limit
ourselves to Ohmic regime. In the analysis of the magnetic-
field dependence of the spin susceptibility we neglect for
simplicity the dependencies of τ0 and ab on Bz as well as
magnetoresistance.

1Here we define P as a value two times larger than in Ref. [21].
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FIG. 2. The spin susceptibility f (ns, τs ) calculated numerically
for nsa

2
b = 0.01 (black curve) and its analytical approximation (56)

(white dashed curve) with the parameters γ = 1 and D = 0.5 ×
10−8a2

b/τ0. The background colors distinguish the four regimes (A),
(B), (C), and (D) discussed in the text. Yellow and green curves
show the two contributions (58) and (66) to the spin current in the
percolation model. The inset shows the same black solid curve and
the spin susceptibility calculated for nsa

2
b = 0.3 (red dashed curve)

and 0.1 (blue dotted curve).

A. Numerical simulation

We have performed a numerical simulation of coupled
charge and spin dynamics described by Eqs. (24). As it is
mentioned above, we have assumed that the spatial disorder
dominates over energy disorder. In this case, the hopping time
in each pair (ij ) has the form

τij = τji = τ0e
2rij /ab (45)

with τ0 being a constant. The conductivity of the system
was analyzed using Miller-Abrahams random resistor network
where each pair is replaced by a resistor with the resistivity
Rij = nkBT τij /(e2ns ) [53]. In this model, a numerical solu-
tion of a set of Kirchhoff equations yielded the particle flows
Iij for each pair of sites. In the next step, the spin generation
rates ϒijk were calculated using Eqs. (36). Then, the steady-
state spin density was found from Eqs. (24b). At this step we
neglected spin generation rate Gij and spin precession �ij

because they are proportional to the third power of spin-orbit
constants. And, finally, the spin current was calculated using
Eq. (40). Comparison of the result with Eq. (44) yielded the
spin susceptibility f (ns, τs ). We have performed numerical
simulations for Ns = 512 × 103 localization sites with the
Poisson distribution, and we have checked that the differ-
ence between the three realizations of the disorder was less
than 1%.

The dependence of the spin susceptibility on the spin
relaxation time at zero magnetic field is shown in Fig. 2
by the black line for nsa

2
b = 0.01. One can distinguish four

regimes in the dependence of the spin susceptibility on the
spin relaxation time which are shown by different background
colors in Fig. 2. For small τs we find that f tends to 1 [cyan
region, regime (A)]. When τs increases, in the blue region,
the spin susceptibility decays approximately as 1/

√
τs [regime

(B)]. This decrease stops at a certain value, and in the magenta
region of τs the spin susceptibility hardly changes [regime

(C)]. Finally, for large enough spin relaxation time, f decays
as 1/τs [red region, regime (D)]. As it is shown in the inset,
the second (blue) region narrows down with increase of the
concentration ns .

We show the numerically calculated distribution of gener-
ated spin in Fig. 3. Here the color scale is arbitrary. It can be
seen that in the regime (A) all the generated spin is localized
at close pairs with small separations. In the regime (B), the
spin is still localized on rare sites but the separation of the up
and down spins is larger. In the regime (C), the generated spin
covers entire regions of the sample indicating spin diffusion
with a finite length ls . Finally, in the regime (D) the spin
polarization is distributed over the whole sample due to the
large spin diffusion length ls > L, with L = √

Ns/ns being
the sample size.

Figure 4 demonstrates the magnetic-field dependence of
the normalized spin susceptibility as a function of two param-
eters τs/τ0 and Bz/B0, where B0 = �0/(2πa2

b ). One can see
that the dependence f (Bz) can have either one or multiple
changes of sign depending on the relation between the spin
relaxation and the hopping times.

B. Percolation analysis

In this section we develop an analytical theory to describe
the dependence of the spin susceptibility on the spin relaxation
time and magnetic field. This is possible in the limit of
strong disorder nsa

2
b � 1, when the percolation theory can be

applied [53]. The presented results are qualitative, but they are
in a good agreement with numerical simulations.

First, let us briefly summarize the main facts of percolation
theory for system conductivity [53]. As mentioned in the
previous subsection, the ensemble of localization sites can be
mapped onto the Miller-Abrahams network of resistors with
the resistivities

Rij ∝ τij . (46)

Due to the exponentially broad distribution of the hopping
times, the current mainly flows in a percolation cluster. It
includes only resistors with

Rij � Rperc = kBT nτ0

nse2
exp(2rc/ab ), (47)

where rc = 2
√

ηc/πn
−1/2
s is the percolation distance. For the

2D system under study, the percolation threshold is ηc ≈
1.128 [62]. We note that the system resistivity can be esti-
mated as ρ ∼ Rperc. Despite the strong disorder, the system
can be considered as a homogeneous one with a usual diffu-
sive conductivity on the length scale exceeding the correlation
length

Lcor = n−1/2
s (rc/ab )ν, (48)

with the critical exponent ν ≈ 1.3 [62].
Now, we turn to the analysis of the spin susceptibility.

Similarly to the numerical simulation discussed above, its
calculation consists of two steps. In the first step, a distribution
of electric currents in the system is determined. In the second
step, one can analyze the spin-related phenomena on the basis
of Eqs. (24b) and (36) with the known particle fluxes Iij .
The analysis of the spin susceptibility can be conveniently
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(a) (b) (c) (d)

FIG. 3. Spatial distribution of Si,z for different spin relaxation times in zero magnetic field. The four panels (a)–(d) correspond to the
regimes (A)–(D). The red color corresponds to Si,z > 0 and blue color to Si,z < 0. The color scale is arbitrary. The black lines show the particle
fluxes between the sites: the thicker is the line, the larger is the flux. Parameters of the calculation are nsa

2
b = 0.1 and Ns = 104.

done considering SHE, so we again reduce the kinetic equa-
tions (24) to the second order in spin-orbit interaction. The
corresponding equations for spin dynamics have the form

Ṡi + Si

τs

+
∑

j

Si − Sj

τij

= αxyαyx

∑
jk

′
Aikj

τjk cos ϕikj

τ ′
ikj

Ijk,

(49)

where the prime after the sum indicates that each pair (jk)
should be taken only once. Note that only the z component
of these equations is nonzero, which corresponds to SHE
effect under study. Here, we have neglected the odd in Bz

terms in the right-hand side because we are aimed only at the
description of the even in magnetic-field spin susceptibility
f (ns, τs ).

The inhomogeneous part of Eqs. (49) is related to the
triads of sites along the percolation cluster where the par-
ticle flux is nonzero. Since Eqs. (49) are linear, the triads
can be considered separately. Let us discuss one of these
triads (ijk). We separate the contributions to the total spin
current [Eq. (40)] from this particular triad, and from all the
others, which we model by a diffusive medium as S̃ (ijk)(r ).
It is assumed that the spin polarization can escape the triad
with the rate 1/τd , and the income of spin polarization from
the diffusive medium to the triad under consideration is

FIG. 4. Dependence of the normalized spin susceptibility on τs

and Bz for nsa
2
b = 0.01.

negligible. The corresponding steady-state spins at the sites
satisfy the equations

S̃
(ijk)
i

τ ′
s

− S̃
(ijk)
k − S̃

(ijk)
i

τik

− S̃
(ijk)
j − S̃

(ijk)
i

τij

= Ikj τkj�
(0)
ijk,

S̃
(ijk)
j

τ ′
s

− S̃
(ijk)
k − S̃

(ijk)
j

τjk

− S̃
(ijk)
i − S̃

(ijk)
j

τij

= Iikτik�
(0)
ijk,

S̃
(ijk)
k

τ ′
s

− S̃
(ijk)
i − S̃

(ijk)
k

τik

− S̃
(ijk)
j − S̃

(ijk)
k

τjk

= −Iij τij�
(0)
ijk,

(50)

where �
(0)
ijk = αxyαyxA

z
ijk cos ϕikj /τ

′
ijk ,

1

τ ′
s

= 1

τs

+ 1

τd

.

The diffusion equation in the medium has the form

S̃ (ijk)(r )

τs

− D�S̃ (ijk)(r )

= 1

τd

[
S̃

(ijk)
i δ(r i ) + S̃

(ijk)
j δ(rj ) + S̃

(ijk)
k δ(rk )

]
(51)

with D being the spin diffusion coefficient. We note that

S̃
(ijk)
i + S̃

(ijk)
j + S̃

(ijk)
k = 0 (52)

since we limit ourselves to the study of spin separation and
neglect CISP here. The total contribution of the given triad to
the total spin current has the form

Jijk = J triad
ijk + J med

ijk , (53)

where

J triad
ijk = 1

τs

(
yiS̃

(ijk)
i + yj S̃

(ijk)
j + ykS̃

(ijk)
k

)
(54)

and

J med
ijk = 1

τs

∫
d r y S̃ (ijk)(r ). (55)

The net spin current is presented as

Jy = 1

A

∑
ijk

′
Jijk, (56)
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where the prime after the sum indicates that each triad (ijk)
should be taken only once. These equations allow one to
describe the dependence of the spin susceptibility on the spin
relaxation time and magnetic field shown in Figs. 2 and 4.

1. Zero magnetic field

First, we analyze the spin susceptibility at zero magnetic
field. The particle flux in each branch of the percolation cluster
has the same order of magnitude Iperc. In a 2D system it can
be estimated as Iperc ∼ jLcor/e, where we remind that j is
the current density. In a given triad, Iperc is divided between
the current in pairs Iij , Ijk , and Iki in accordance with the
resistivities (46). This defines the right-hand side in Eqs. (50).
The solution of these equations yields the contribution (54) of
the triad to the total spin current. It turns out that it has a very
strong dependence on the geometry of the triangle formed
by the three sites under study. The maximum value of this
contribution dominates the spin Hall effect.

At very short spin relaxation times τs < τ0, in the regime
(A), the maximum is reached in the smallest triangles. In this
regime J diff can be neglected. Therefore, J = J dr, and the
spin susceptibility is independent of τs in this case.

For longer spin relaxation times τs > τ0, regimes (B)–(D),
the maximum is reached when the sites i, j , and k form an
equilateral triangle (see Appendix A). The contribution of the
triangle with rij = rik = rjk = r to the spin current can be
expressed as follows:

J0(r ) = −Iperc
3h̄αxyαyxr

3τ ′
s

16J0τ0τs

er/ab

e2r/ab + 3τ ′
s/τ0

. (57)

The side of triangle r is arbitrary in Eq. (57). The triad
contribution to the total spin current can be written in the form

J triad =
∫ rc

0
dr p(r )J0(r ), (58)

where p(r ) is proportional to the distribution function of the
triangles of the size r along the percolation cluster. We assume
that it has the form

p(r ) ∝ 1/rγ , (59)

where γ is a constant. This dependence with γ > 0 reflects
the fact that the probability to find an equilateral triangle with
a side r � rc belonging to the percolation cluster drops with
r .

For moderately long spin relaxation times τs > τ0 [regime
(B)], the maximum of Eq. (57) is reached at the optimal value
r = ropt:

ropt (τs ) = ab

2
ln

3τs

τ0
, (60)

where we neglect the contribution ∝r3 in Eq. (57) in compar-
ison with the fast exponents. The optimal side ropt is a result
of the interplay of two factors. On one hand, for very large
triangles the spin generation efficiency �

(0)
ijk decreases expo-

nentially. On the other hand, for small triangles the diffusion
and the drift spin currents exponentially well compensate each
other [21]. In other words, the spin polarization in different
directions at different sites “recombines” due to fast hopping.
As a result, there is an exponentially sharp maximum for

optimal triangles: J triad ≈ J0(ropt ), and the exact value of γ is
not very important in comparison with the strong exponential
dependence J0(r ).

The time τd corresponding to start of diffusion is related to
hopping on the critical distance rc:

τd ≈ τ0 exp(2rc/ab ).

The larger is the spin relaxation time τs , the larger is the
optimal triangle ropt. Provided ropt < rc, the diffusive medium
in our model does not play an essential role because the gen-
erated spin relaxes faster than τd . Therefore, the contribution
J med can be neglected, and the total spin current J ≈ J triad.
As a result, we obtain for regime (B)

Jy ∝ J0[ropt (τs )] ∝ 1/
√

τs. (61)

In the regimes (C) and (D), the size of the optimal triangle
ropt (τs ) is larger than the critical distance rc. In this case, the
main contribution to J triad is given by the largest triads along
the percolation cluster. At the same time, the spin polarization
is partially transferred to the diffusive medium. It follows from
Eq. (51) that the contribution to the spin current from the
diffusive medium has the form

J med
ijk = S̃

(ijk)
i F (yi ) + S̃

(ijk)
j F (yj ) + S̃

(ijk)
k F (yk ), (62)

where

F (y) = 1

τsτd

∫ L/2

−L/2
K (y ′, y)y ′dy ′ (63)

with

K (y ′, y) = τs

ls

ch
(

L−|y−y ′ |
ls

) + ch
(

y+y ′
ls

)
2 sh (L/ls )

(64)

being the Green’s function of the diffusion equation. Here,
|y| < L/2 with L being the sample length, and ls = √

Dτs is
the spin diffusion length. Substitution of this expression into
Eq. (63) yields

F (y) = 1

τd

[
y − ls

sh(y/ls )

ch(L/2ls )

]
. (65)

The sizes of triangles (ikj ) are much smaller than ls in
regimes (C) and (D). This allows us to relate the contribution
J med

ijk to J triad
ijk : J med

ijk = τsJ triad
ijk dF/dy, where we have taken

into account Eq. (52). The contribution J med from all the
triads is

J med = J triad τs

τd

[
1 − 2ls

L
th

(
L

2ls

)]
. (66)

Here, the multiplier τs/τd describes the ratio of the times spent
by the spin inside the triad and outside of it. In the regime
(C) one has τs � L2/D (ls � L), so the mesoscopic effects
do not take place. In this case, the second terms in Eqs. (65)
and (66) can be neglected, and Jy ≈ J med is independent
of τs . However, in the regime (D) the spin separation in the
sample is suppressed due to diffusion of spin polarization
from one boundary of the sample to the opposite one (Fig. 3).
In this regime for ls � L we obtain

Jy ≈ J med ∝ 1/τs. (67)
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Vanishing of the spin current in the limit τs → ∞ has the
same origin as in the two-dimensional disordered systems
with spin-orbit interaction only [63].

2. Nonzero magnetic field

Now, we proceed to the analysis of the spin susceptibility
as a function of an external magnetic field. This dependence
is related to the factor cos ϕikj in Eq. (49) which means
that the spin separation and spin generation rates in each
triad of sites oscillate as functions of Bz. Hence, one can
expect the oscillations of the spin susceptibility similar to
Aharonov-Bohm oscillations. Numerical calculation indeed
demonstrates this effect, as shown in Fig. 4. The decay of
oscillations is determined by the spread of oscillations period
in optimal triads. If the spread of triad areas is much smaller
than the mean area, then the period of Aharonov-Bohm os-
cillations in a macroscopic system is well defined. Otherwise,
the oscillations are efficiently smeared.

In the regime (A) the optimal triads are the isosceles trian-
gles with one small side ra ∼ ab (see Appendix A). The long
sides of the triangle rside can be arbitrarily large. However,
we assume that these long sides participate in the percolation
cluster rside < rc. The contribution of such a triangle to the
spin current Jijk in the regime (A) is

Jiso = 3h̄αxyαyxIperc

16J0τ0
rsider

2
a cos θe−ra/ab

× cos

(
2π

Bzrsidera

2�0

)
. (68)

Here, θ is an angle between the long sides of the triangle and
the x axis and we have taken into account that ra � rside. This
contribution exponentially drops with ra , therefore, the area
of the optimal triangle can be arbitrarily small. According to
Eq. (56), this expression should be averaged over different
optimal triangles to obtain the magnetic-field dependence of
spin susceptibility. Averaging over θ yields a factor on order
of unity. The distribution of the short sides ra is related
to the probability to find a third site k participating in the
percolation cluster near one of the sites i or j . The third
site k should form an approximately isosceles triangle with
sites i and j , |rij − rjk| � ab. The probability to find this site
can be estimated as nsabdra . Integration of Eq. (68) with this
probability yields the contribution to the spin current of the
isosceles triangles averaged over ra in the form

〈Jiso〉ra
∼ h̄αxyαyxIpercnsa

4
brside

J0τ0

× 1 − 3(πBzabrside/�0)2

[1 + (πBzabrside/�0)2]3
. (69)

The total spin current in the regime (A) is given by averaging
of this expression over rside. The distribution of distances
rside between sites in the percolation cluster is not uniform.
When rside � n

−1/2
s it can be estimated as pA(rside ) = p0rside

where p0 is a constant. This distribution reflects the fact
that the probability to find a small triangle with rside � rc in
the percolation cluster raises with rside. We extrapolate this
distribution up to the largest possible rside = rc. It leads to the

following expression for the spin current in the regime (A):

f (Bz) = f (0)
3

x3

[
x + 2x3

(1 + x2)2
− arctan x

]
, (70)

where x = Bzrc/(2B0ab ). The function (70) does not oscillate
but it contains one change of sign.

In the regimes (B)–(D), as discussed above, the opti-
mal triads form equilateral triangles (see also Appendix A).
An exponentially sharp maximum exists in the dependence
J0(r ) meaning that the dominant contribution to SHE comes
from the triangles with the same area. With account for the
Aharonov-Bohm phase

cos

(
πBzr

2
√

3

2�0

)
, (71)

we evaluate the integral (58) by the stationary-phase method
and obtain the magnetic-field dependence of the spin suscep-
tibility in the form

f (Bz) = f (0) cos

(
Bz

Bopt

)
exp

(
− 2B2

z

BoptB0

)
. (72)

Here, the period of the oscillations is determined by the area
of the optimal triangle:

Bopt = 4h̄c√
3|e|r2

opt

, (73)

and the rate of oscillations decay is related to the decrease of
the triad contribution to the spin current when its size deviates
from the optimal one. Qualitatively, the number of oscillations
is of the order of

√
B0/Bopt.

IV. DISCUSSION

The results of the previous section indicate that the depen-
dence of the spin susceptibility on τs as well as its oscillations
as a function of the magnetic field are closely related to the
spin transport in strongly disordered sample.

The sum of two contributions, Eqs. (58) and (66), describe
the total spin current in the framework of the percolation
analysis at zero magnetic field for any τs . The corresponding
calculation of the spin susceptibility f (τs, ns ) is shown by
the white line in Fig. 2. Reasonably good agreement of the
percolation analysis with the results of numerical calculations
is evident for all the regimes. Moreover, the analytical depen-
dencies 1/

√
τs for regime (B) [Eq. (61)] and 1/τs for regime

(D) [Eq. (67)] as well as constants for regimes (A) and (C)
describe the numerical simulations with high accuracy. The
contributions to the spin current from triads and from the
diffusive media are shown in Fig. 2 by yellow and green lines,
respectively. Figure 2 demonstrates that the triads’ contribu-
tion dominates in the regimes (A) and (B). In contrast, triads
serve only as sources of the spin current in the regimes (C)
and (D) where the diffusive media contribution is the largest.

We note, however, that the diffusion coefficient D =
0.5 × 10−8a2

b/τ0 used in the analytical calculation in Fig. 2
is different from the charge diffusion coefficient, ob-
tained from the numerical simulation of system conductivity
5.6 × 10−5a2

b/τ0, and from the estimation L2
cor/τd ≈ 2.9 ×
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0.0 0.1 0.2 0.3 0.4 0.5

– 0.5

0.0

0.5

1.0

FIG. 5. Magnetic-field dependencies of the normalized spin sus-
ceptibility for τs/τ0 = 10−3 (cyan curve), 3 × 107 (blue dashed
curve), and 4 × 1014 (red dashed curve). Parameters of the cal-
culation are the same as in Fig. 2. The numerical results for the
susceptibility are compared with Eq. (70) (dashed black curve) and
with Eq. (72) (solid blue and red curves). The inset illustrates the
magnetic flux through a triad of localization sites responsible for
Aharonov-Bohm-type oscillations.

10−6a2
b/τ0. This is most probably an artifact of our oversim-

plified model.
Figure 5 demonstrates the magnetic-field dependence of

the spin susceptibility for the regimes (A)–(D). The colors of
the curves correspond to the background colors in Fig. 2. We
note that the magenta curve in the figure is absent because it
coincides with the red one. The dependence (70) is shown by
the black dashed curve in Fig. 5. The very good agreement
between Eq. (70) and numerical simulation results in the
regime (A) is clearly seen. The numerical results for the
regimes (B)–(D) agree qualitatively with Eq. (72) as shown by
solid blue and red curves in Fig. 5. Moreover, the analytical
expression (73) for the oscillation period is in quantitative
agreement with numerical results in the regime (B). In the
regimes (C) and (D), the agreement is slightly less perfect: for
τs/τ0 = 4 × 1014 the numerical result for the period exceeds
the analytical estimate (73) by ∼18%.

Because of suppression of spin polarization with increase
of magnetic field, we focused mainly on the even in magnetic
field effects which are described by the spin susceptibility
f (ns, τs ). The odd in Bz kinetic coefficients contain energy
differences between initial and intermediate states [Eq. (22a)].
Therefore, they can not be analyzed neglecting energy
disorder, as it is done in Sec. III. We note, however, that these
terms can vanish due to this averaging, which deserves a
separate study.

We note that the definitions of macroscopic susceptibilities
[Eqs. (41)–(44)] are valid for the particular form of spin-
orbit interaction [Eq. (2)], which is realized in zinc-blende
heterostructures grown along [001] direction. Nevertheless,
the presented results can be applied to a wider class of
systems, where one can choose the reference frame in the
spin space formally coinciding with Eq. (2). This can be
done, in particular, for asymmetric structures grown along
the [110] direction. Moreover, despite all three effects in
(001) heterostructures are related with the in-plane spin com-

FIG. 6. The dependencies f (τs/τ0 ) (black solid curve) and
f [1/(δ2τcτ0 )] (red dashed curve) calculated in the models with a
single spin relaxation time [Eq. (56)] and in the model of nuclei-
induced spin relaxation, Appendix B, respectively. The parameters
of the calculation are the same, as in Fig. 2, and T1 = ∞. The inset
shows the dependence of f (T1) in the regime (A) (T1δ = 104), where
f = 1 in the model with a single spin relaxation time.

ponents, in (110) quantum wells the electric current orients
the spin component normal to the 2D plane. If the (110)
system is structure asymmetric, then its point symmetry group
is Cs with a reflection in the (yz) plane being only one
nontrivial symmetry element. Here, z ‖ [110] is the normal
direction, and x ‖ [1̄10], y ‖ [001] are the in-plane axes [25].
The symmetry analysis shows that the following even in Bz

components are nonzero:

σ
xy,yx

CISP,SGE,SHE, σ zx
CISP, σ xz

SGE, (74)

as well as the following odd in Bz ones:

σ
xx,yy

CISP,SGE,SHE, σ
zy

CISP, σ
yz

SGE. (75)

Due to low symmetry, all these components are linearly
independent.

In this paper, we neglected Zeeman effect, which does not
affect the spin current. However, external magnetic field can
significantly suppress the in-plane spin polarization due to
Hanle effect as 1/[1 + (gμBBzτs/h̄)2] with g being effective
electron g factor and μB being Bohr magneton. Interestingly,
in the structures of crystallographic orientations other than
(110), the Hanle effect can manifest itself as only partial
suppression of spin polarization. Detailed analysis of these
effects is beyond the scope of this paper.

For localized charge carriers, the main source of spin
relaxation is the hyperfine interaction with the host lattice nu-
clei [27,28,64–68]. Since the spin relaxation time of nuclei is
very long, the electron spin relaxation is non-Markovian [66].
Generally, the spin relaxation can not be described by a single
time τs , as it is assumed in our simplified model. Therefore,
we also study the generalized susceptibility in a more realistic
model of nuclei-induced spin relaxation. Details of the model
are given in Appendix B. The result is shown by a red dashed
line in Fig. 6 along with the dependence f (τs/τ0) calculated
in the simplified model after Eq. (56) (black solid line).
The nuclei-induced spin relaxation rate is determined by the
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typical value of the fluctuation of the Overhauser field at the
localization site δ [Eq. (B4)].

Figure 6 demonstrates that the dependencies of f on τs/τ0

in a simple model and on 1/(δ2τcτ0), where τc = τ0e
2rc/ab

are similar: they both consist of the four distinct regimes.
Therefore, we conclude that our main model qualitatively
describes the spin-related phenomena even in the case of
nuclei-induced spin relaxation. The two models coincide in
the regimes (C) and (D) because in this case the electron spins
make many hops before relaxation, and one can introduce an
effective spin relaxation time (see, however, Refs. [67,68]). In
the regime (B), the dominant contribution to the generalized
spin susceptibility is given by equilateral triads, as discussed
in Sec. III B 1. The spin relaxation in the triads is determined
by the fluctuations of the Overhauser field at these three sites,
and to obtain the value of f one should average the diffusive
spin current over the distribution of the nuclear fields. Figure 6
shows that the total spin current in this case is smaller than
in the model with a single spin relaxation time τs (details of
calculations are described in Appendix B). This explains the
quantitative difference between the two models in the regime
(B). With an increase of hyperfine interaction strength [in
the regime (A)] the generalized spin susceptibility saturates
at a value smaller than 1. This is related with the fact that,
on average, only 2

3 of the generated spin polarization decays
due to static nuclear spin fluctuations at a given site [27].
Therefore, we introduce an additional phenomenological slow
spin relaxation time T1 unrelated with the hyperfine interac-
tion which leads to complete relaxation of spin polarization
in the limit of very long hopping time. In the regime (A),
the generalized spin susceptibility depends on T1 at T1 � τ0.
The dependence f (T1/τ0) is shown in the inset in Fig. 6.
One can see, that in the limit T1 � τ0, the generalized spin
susceptibility equals to 1 and agrees with the result of the
single spin relaxation time model.

V. CONCLUSION

Based on the derived kinetic equations describing the cou-
pled spin-charge dynamics, we have identified four regimes
of hopping spin transport where SHE, CISP, and SGE have
different behavior. The numerical simulation shows the map
of the spin distribution in the sample in all four regimes. The
spin susceptibility is shown to be governed by the ratio of the
spin relaxation and hopping times. The percolation analysis
being in a very good agreement with the numerical simula-
tions demonstrates how the contributions to the spin effects
from each triad in the percolation cluster average over disorder
realizations. Application of the perpendicular magnetic field
results in damped oscillations of the spin susceptibility where
the number of sign changes is also determined by the spin
relaxation time.
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FIG. 7. A part of the percolation cluster. The noncritical resistors
participating in the cluster are shown with blue color. The critical
resistors are shown with red color. The area of the optimal triangles in
different regimes is filled in accordance with the background colors
in Fig. 2.

APPENDIX A: OPTIMAL TRIADS

In our percolation analysis we discussed that the contribu-
tions of different triads of sites to SHE have an exponentially
broad distribution. The effect is dominated by the optimal
triads of sites ikj that are defined by optimal geometry of
the corresponding triangle (ikj ). However, this geometry is
different in different regimes. Here, we discuss in details the
optimal geometry in all the regimes (A)–(D).

In the regime (A) all the hopping terms can be neglected in
Eqs. (50). It allows to write the solution explicitly:

S̃
(ikj )
i = τ ′

sIkj τkj�
(0)
ijk ∝ Ikj exp

(
rkj − rij − rik

ab

)
. (A1)

The similar expressions can be derived for S̃
(ikj )
j and S̃

(ikj )
k .

The exponential part of Eq. (A1) disappears in the isosceles
triangle with

rij = rkj , rik ∼ ab. (A2)

The long sides rij and rkj are assumed to belong to the
percolation cluster (see a cyan triangle in Fig. 7). When
the geometry of the triangle deviates from the discussed
one, S̃

(ikj )
j exponentially decreases. It is clear from Eq. (A1)

that it decreases with increasing rik as exp(−rik/ab ). When
the triangle ikj deviates from Eq. (A2), the generated spin
decreases due to the redistribution of the currents. Let the
side rkj be larger than rij . The current Ikj in this case can
be estimated as Ikj = Iperc exp [−2(rkj − rij )/ab]. It leads to
the additional exponentially small term exp(−|rkj − rij |/ab )
in the expression for the generated spin. When rij > rkj the
current Ikj is equal to Iperc, but the term exp(−|rkj − rij |/ab )
appears in Eq. (A1) directly.

The optimal triangle in the regime (B) is the equilateral
triangle with a side ropt given by Eq. (60) (see a blue triangle
in Fig. 7). The triangle should participate in the percolation
cluster. As mentioned in the main text, the discussed geom-
etry is actually the optimal one. To prove this, we consider
the triangle with yi = yj = 0. The side ij of the triangle
is assumed to be included into the percolation cluster. Its
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contribution to spin current is directly related to S̃
(ikj )
k as

J (triad)
ikj = S̃

(ikj )
k yk/τs . We remind that in the regime (B), τ ′

s ≈
τs � τd , and the contribution J (med)

ikj can be neglected.
We start with the comparison of the contributions to the

spin current of equilateral triangles with different length r

of the side. In this case, τik = τij = τjk = τ0e
2r/ab , τ ′

ikj =
τ ′

0e
3r/ab , τ ′

0 = (4/3h̄)J0τ
2
0 . The system of equations (50) in

this case can be analytically solved:

S̃
(ikj )
k = 2

3
Iperc

τsτ0

τ ′
0

αxyαyxA
z
ijke

r/ab

e2r/ab + 3τs/τ0
. (A3)

In our analysis we neglect the power-law dependence Az
ijk (r )

in comparison to exponential dependence ∼er/ab of the right-
hand side of Eq. (A3). This expression has a maximum at
r = ropt:

S̃
(opt)
k = αxyαyxAoptIpercτ

3/2
0 τ

1/2
s

3
√

3τ ′
0

, (A4)

where Aopt = (
√

3/4)r2
opt.

Now, we should compare a contribution of nonequilateral
triangles with expression (A4). In this procedure we consider
rij = ropt and displace the site k from its position correspond-
ing to the equilateral triangle. If we move the site along the x

axis, one of the sides rik and rjk becomes larger than another.
Let us consider rik < rjk . In the limit nsa

2
b � 1, it means

that τik � τij � τjk . However, at least for relatively small
displacements we can still consider τ ′

ikj = τ ′
0e

3ropt/ab . Also,
the spin relaxation rate is comparable with τij because rij is
still equal to ropt: τs = τij /3. In this case, we can neglect the
term τs/τkj in the equation for Sj and disregard spin diffusion
between sites j and k. Also, the spin generation at the site
j is exponentially smaller than at sites i and k and can be
neglected. It leads to the relation between the polarizations on
sites i and j : S̃

(ikj )
j = S̃

(ikj )
i /4. With Eq. (52) it allows us to

give an explicit expression for S̃
(ikj )
k :

S̃
(ikj )
k = 5

3

IpercτsτikαxyαyxAoptτik

τ ′
0e

3ropt/a

∼ S̃
(opt)
k e2(rik−rij )/ab � S̃

(opt)
k . (A5)

Now, we consider the displacement of the site k along the
y axis. For this displacement the triangle ikj stays isosceles.
Therefore, the relation of the spins S̃

(ikj )
i , S̃

(ikj )
j , and S̃

(ikj )
k is

the same as in the case of equilateral triangle S̃
(ikj )
i = S̃

(ikj )
j =

−S̃
(ikj )
k /2. It leads to the explicit expression for S̃

(ikj )
k :

S̃
(ikj )
k = Iij τij

αxyαyxA
z
ikj

τ ′
0

τsτside

τside + 3τs

× exp

(
− rij + 2rside

ab

)
. (A6)

Here, rik = rjk = rside and τside = τ0 exp(2rside/ab ). When
rside = rij , the current Iij = 2Iperc/3, and Eq. (A6) is reduced
to Eq. (A3). When rside is larger than rij , the last term in
Eq. (A6) exponentially decreases, leading to the exponentially

small spin polarization S̃
(ikj )
k . When rside < rij the current Iij

becomes small, Iij ∼ Iperc exp [−2(rij − rside )/ab], because
the resistor Rij is shunted by the resistors Rik and Rkj . It again
leads to the exponentially small spin generation S̃

(ikj )
k .

The above arguments prove that, in the regime (B), the
dominant contribution to the spin Hall effect comes from
the equilateral triangles with sides ropt. ropt increases with
τs and becomes larger than rc at τs � τ0 exp(2rc/ab ). This
spin relaxation time corresponds to the transition from regime
(B) to regime (C). In the above analysis we assumed that the
triangle ikj is included into the percolation cluster. It is not
possible when rij > rc, leading to the upper boundary for the
side of the optimal triangle. Therefore, in the regimes (C) and
(D) the dominant triangles have sides ∼rc.

The spin generation in the regimes (C) and (D) is controlled
not only by the processes inside the triangle ikj , but also by
the transition of the spin to the surrounding medium. It leads
to the additional restrictions for the position of the triangle
ikj . All the three sites of the triangle should be parts of
the percolation cluster, otherwise the effective transition of
spin from the triangle to the medium is impossible. However,
they should be included in different branches of the cluster,
otherwise the resistors of the triangle will be shunted by
the noncritical resistors of the cluster. The optimal triangle
in regimes (C) and (D) is shown in Fig. 7. It lies at the
intersection of three branches of the percolation cluster.

In the limit τs → ∞, our theory of SHE can be mapped on
the theory of the ordinary hopping Hall effect. The optimal
triangles for the Hall effect are discussed in Ref. [55]. Our
predictions for the optimal triangles in regimes (C) and (D)
agree with this work.

APPENDIX B: HYPERFINE-INTERACTION-INDUCED
SPIN RELAXATION

The results of the main text were obtained in the framework
of the simplified model where spin relaxation is described by a
single time τs . When the dominant spin relaxation mechanism
is the hyperfine interaction with the host lattice nuclei, the
physics of the spin relaxation is more complicated. Although
the detailed analysis of the interplay of the realistic spin
relaxation and spin-orbit interaction is out of the framework
of this study, we show here that our main result, the existence
of the four fundamental regimes (A)–(D), is relevant for the
hyperfine-interaction-induced spin relaxation mechanism.

In the regimes (C) and (D), electrons make many hops
before the spin relaxes. In this case, the spin density decays
in time exponentially, and the spin relaxation time τs can
be introduced. Our results for these regimes are valid for
the hyperfine-interaction-induced spin relaxation mechanism.
However, it should be noted that the spin relaxation time de-
pends on both the spin precession frequency and the hopping
time.

In contrast, in the regimes (A) and (B), all important
processes take place inside the triads, and the Overhauser field
induced spin dynamics cannot be reduced to a single spin
relaxation time. However, the system of rate equations for the
electron spin with the spin precession can be readily solved
numerically. The results then are averaged over the hyperfine
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fields and the triads. We make these numerical calculations in
the following subsections. The provided results show that the
four above-discussed regimes are relevant when the realistic
spin dynamics in the hyperfine fields is considered despite that
the physics is different, especially in the regime (B).

1. Regimes (B), (C), and (D)

In the regimes (B), (C), and (D) we restrict ourselves with
the equilateral triangles that are known to control the effects
in the single τs model. The spin dynamics inside the triangle
can be described by the equations [cf. Eqs. (50)]

S̃
(ijk)
i × ωi + S̃

(ijk)
i

τd

+ 2S̃
(ijk)
i − S̃

(ijk)
j − S̃

(ijk)
k

τ
= 1

3
Ipercτ�

(0)
ijkez, (B1)

S̃
(ijk)
j × ωj + S̃

(ijk)
j

τd

+ 2S̃
(ijk)
j − S̃

(ijk)
i − S̃

(ijk)
k

τ
= 1

3
Ipercτ�

(0)
ijkez, (B2)

S̃
(ijk)
k × ωk + S̃

(ijk)
k

τd

+ 2S̃
(ijk)
k − S̃

(ijk)
i − S̃

(ijk)
j

τ
= −2

3
Ipercτ�

(0)
ijkez. (B3)

Here, S̃
(ijk)
i stands for the vector of the spin polarization at the

site i of the triangle (ijk), τ = τij = τik = τjk is the hopping
time between the sites of the triangle, τd is the time of the spin
transition to the medium, and ωi , ωj , ωk are the frequencies
of the spin precession at the sites of the triangle. The vectors
ωi,j,k are assumed to be independent and have the Gaussian
distribution characterized by a parameter δ:

F (ω) = 1

(
√

πδ)3
exp (−ω2/δ2). (B4)

The triangle is assumed to be connected to the percolation
cluster as it is shown in Fig. 7. This defines the right-hand side
of the equations. The spin generation rate is multiplied by ez to
reflect the fact that the spin is generated along the z axis in the
lowest (second) order in the spin-orbit interaction. We assume
that only the z component of spin exists in the medium. Its
dynamics is described by Eq. (51) of the main text where the
spin relaxation time in the medium is introduced according to

τs = 1/(δ2τc ), (B5)

where τc = τ0e
2rc/ab is the characteristic time of the spin

diffusion.
In Fig. 6, we compare the results of the above-discussed

model with the results of the single spin relaxation time
model. In the regimes (C) and (D), the results coincide. In the
regime (B), the results are similar: both models demonstrate a
decrease of the spin susceptibility with the increase of the spin
relaxation rate.

2. Regime (A)

When δτ0 � 1, the spin precession is fast as compared
with the hopping rate and the system is in the regime (A).
Although the spin can not relax completely due to the regular
precession in the hyperfine fields (only 2

3 of the spin polariza-
tion decays on average [27]), the partial relaxation breaks the
detailed balance between the drift and diffusion spin currents.
As a result, in the limit δτ0 � 1 the spin susceptibility tends
to a constant of the order of unity.

In the single spin relaxation time model, the spin current
in the regime (A) is associated only with the spin generation
(drift current). The dominant role is played by the isosceles
triangles with one short side rik ∼ a (Fig. 7). Spin generation

in the other triangles is exponentially smaller. Let us recon-
sider these triangles with the model of realistic spin dynamics
(spin precession in the local fields).

The spin generation in the triangle with rik ∼ a, rij , rjk �
a is most efficient at the sites i and k. The spin polarization at
the site j can be neglected. This leads to the following system
of equations:

S̃
(ijk)
i × ωi − S̃

(ijk)
k − S̃

(ijk)
i

τik

+ S̃
(ijk)
i

T1
= gijk,

S̃
(ijk)
k × ωk − S̃

(ijk)
i − S̃

(ijk)
k

τik

+ S̃
(ijk)
k

T1
= −gijk, (B6)

where gijk ‖ z, gijk = Ipercτij�
(0)
ijk/2. Here, we introduced a

long phenomenological spin relaxation time T1 unrelated with
the hyperfine interaction in order to describe the relaxation
of spin component parallel to ωi,k without hopping. Micro-
scopically, it can be caused by the two-phonon processes [69].
The z component of the spin current is expressed according
to Eqs. (26) and (38) of the main text. We note that the spin
current is equal to zero when ωj = ωk = 0 and T1 → ∞.

We solve these equations in the limit |ωi,k|τ0 � 1. In this

case, it is useful to divide S̃
(ijk)
i,k into the components oriented

along the local field ωi,k and perpendicular to it. The per-
pendicular component experiences fast precession. Its average
value is proportional to 1/|ωi,k|, so it can be neglected. It
allows us to solve Eqs. (B6) and obtain the following result
in the limit of fast spin precession and T1 → ∞:

fijk = 1 − cos2 θiz − 2 cos θiz cos θik cos θkz + cos2 θkz

1 − cos2 θik

.

(B7)

Here, fijk is the spin susceptibility for the given orientations
of the vectors ωi,k with θiz,kz being the angles between ωi,k

and the z axis, and θik being the angle between ωi and ωk .
Averaging fijk over these angles yields

f (|ωi,k| → ∞) = 1/3. (B8)

The results of calculations for the regime (A) are shown in the
inset in Fig. 6. A transition from f = 1 to 1

3 given by Eq. (B8)
takes place when T1 becomes longer than τ0.
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