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Taming electronic decoherence in one-dimensional chiral ballistic quantum conductors
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Although interesting per se, decoherence and relaxation of single-electron excitations induced by strong
effective screened Coulomb interactions in Quantum Hall edge channels are an important challenge for the
applications of electron quantum optics in quantum information and quantum sensing. In this paper, we study
intrinsic single-electron decoherence within an ideal single-electron channel with long-range effective Coulomb
interactions to determine the influence of the material and sample properties. We find that weak-coupling
materials characterized by a high velocity of hot-electron excitations may offer interesting perspectives for
limiting intrinsic decoherence due to electron/electron interactions. We discuss quantitively how extrinsic
decoherence due to the coupling with the channel’s electromagnetic environment can be efficiently inhibited
in specifically designed samples at ν = 2 with one closed edge channel and we propose a realistic geometry for
testing decoherence control in a Hong-Ou-Mandel experiment.

DOI: 10.1103/PhysRevB.98.155302

I. INTRODUCTION

Over the last decade, a considerable effort has been devoted
to the development of quantum coherent nanoelectronics with
the aim of controlling electronic quantum transport down to
the single-particle level [1,2]. This has led to the emergence
of electron quantum optics [3–5], which aims at manipulating
electrons in a ballistic quantum conductor just as photons in
quantum optics setups. This perspective had initially risen
strong hopes for on-chip quantum information processing
using single electrons as quantum information carriers [6–8].

However, electron quantum optics differs from quantum
optics because electrons experience electronic decoherence
and relaxation induced by effective screened Coulomb in-
teractions. The weakness of these effects close to the Fermi
surface in normal 3D metals justifies building the Landau-
Fermi liquid theory [9] on the notion of electronic quasipar-
ticles [10]. By contrast, Coulomb interaction is expected to
completely destroy electronic quasiparticles in 1D systems
thus giving rise to the Luttinger liquid paradigm [11], which
is experimentally relevant for quantum wires [12,13].

More recently, the electronic quasiparticle destruction has
been evidenced in the ν = 2 quantum Hall edge channel
system by nonequilibrium distribution relaxation studies [14],
before being confirmed at the single-particle level by Hong-
Ou-Mandel (HOM) interferometry experiments [15,16].
Recent Mach-Zehnder interferometry (MZI) experiments [17]
have also shown the strong effect of Coulomb interactions
although the most commonly used model based on effective
screened short-range interactions [18] fails to reproduce the
observed saturation of electronic decoherence [19]. These
recent results suggest that our understanding of quantitative
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models of electronic decoherence in quantum Hall edge chan-
nels still needs to be sharpened.

Moreover, using single-electron excitation as carriers of
quantum information requires a high degree of control from
their generation to their detection, and during their propa-
gation. Several single-electron sources have been developed
over the years, from the mesoscopic capacitor [20] to single-
electron pumps [21,22] and more recently the Leviton source
[23]. Other systems aim at injecting electrons at very high
energies [24] using dynamically driven dots or at transporting
them using surface acoustic waves [25]. The maturation
of technology may lead to the development of controlled
sources able to emit specifically tailored electronic wave
packets [26–28].

On the detection side, a full quantum current analyzer
has been developed to extract the single-electron wave
functions present within a time-periodic electric current
[29,30]. Dynamical quantum dots are also envisioned to
probe single-electron coherence in a time-dependent and
energy-selective way [22,31].

But controlling the dynamics of propagating single to few
electron excitations is still a challenge, even though it is
crucial for the applications of electron quantum optics to
quantum information processing or to quantum metrology
of charge and electrical currents. For all these reasons, it is
thus time to ask to what extent electronic decoherence can be
tamed in experimentally relevant systems. In this paper, we
address this question within our recently developed nonper-
turbative framework for studying single-electron decoherence
in a chiral 1D conductor [32,33].

First of all, we show that the effective fine structure
constant within the material, which depends on its intrinsic
properties as well as its fabrication through gating, strongly
influence electronic decoherence. In particular, by discussing
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electronic decoherence within ideal ν = 1 edge channels,
we suggest that materials such as exfoliated graphene and
AlGaAs/GaAs respectively correspond to weak and strong
coupling materials, the former being more favorable for pre-
serving electronic decoherence than the latter.

Next, by performing an in-depth discussion of various
geometries which have been used in recent experiments
[34,35], we suggest that an efficient control of single-electron
decoherence could be achieved within edge channels of an
AlGaAs/GaAs 2D electron gas in the integer quantum Hall
regime at ν = 2. A new sample design is proposed for testing
our predictions in a HOM interferometer.

Finally, our work also points out to the possibility of
discriminating among various models of effective screened
electronic Coulomb interactions using HOM interferometry
experiments. We also show that samples based on passive
decoherence control offer interesting perspectives for single
edge-magnetoplasmon generation, thus connecting electron
quantum optics to quantum plasmonics and microwave
quantum optics.

This paper is structured as follows. In Sec. II, we briefly
review the basic concepts of electron quantum optics and
the physics of single-electron decoherence in quantum Hall
edge channels. Then, analytical models of screened Coulomb
interactions for the physical situations relevant for the
present paper will be introduced and the corresponding edge-
magnetoplasmon scattering will be discussed. Section III is
devoted to electronic decoherence. Decoherence at filling
fraction ν = 1 in the dissipationless case will enable us to
discuss the influence of the sample’s material. We will also
discuss to what extent an HOM experiment could help dis-
criminate between short and long-range effective interactions
in the ν = 2 system. Finally, Sec. IV is devoted to decoher-
ence control for single-electron excitations by sample design.

II. ELECTRON QUANTUM OPTICS AND
FINITE-FREQUENCY QUANTUM TRANSPORT

A. Electron quantum optics

1. Electronic coherence

The key concepts of electron quantum optics are elec-
tronic coherences defined by analogy with photon coher-
ences introduced by Glauber for photons [36]. The first-
order electronic coherence at position x [37–39] G (e)

ρ,x (t |t ′) =
Tr(ψ†(x, t )ρψ (x, t )), where ψ is the electronic annihilation
operator, contains all information on the single-electron wave
functions that can be extracted from the system at position x.
To simplify notation, because our detection setup is at a fixed
position x, we will drop it from all equations in the following.
Electronic coherence is most conveniently visualized using a
real valued time/frequency representation called the electronic
Wigner function, defined as [40]

W (e)
ρ (t, ω) =

∫
vFG (e)

ρ

(
t + τ

2
, t − τ

2

)
eiωτ dτ (1)

The electronic Wigner function is directly related to physi-
cally relevant quantities: first of all, integrating over ω leads to
the average time-dependent current and time averaging gives
the electronic distribution function.
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FIG. 1. (Left) Excess electronic Wigner function for a single
electronic state of the form ψ †(t = 0)|F 〉 measured at x = 0. (Right)
Excess electronic Wigner function for a quantum superposition
(ψ †(−τ/2) + ψ †(τ/2))|F 〉/√2 (τ = 3 on this specific example).
The interference contribution is clearly visible and overlaps with
each localized excitation contribution for ωτ � 1.

More generally, the electronic Wigner function contains all
the information on the single-particle states contained in the
system. These in particular include the reference state which
is the Fermi sea at zero temperature or the equilibrium state at
non zero temperature. In full generality, the excess electronic
Wigner function is defined by

W (e)
ρ (t, ω) = fμ,Tel (ω) + �W (e)

ρ (t, ω) (2)

where fμ,Tel (ω) is the Fermi-Dirac distribution function for
chemical potential μ and electronic temperature Tel which is
the electronic Wigner function at equilibrium corresponding
to the situation where all the sources are switched off.

Let us now briefly review the electronic Wigner function
associated with single-electron excitations on top of the Fermi
sea, that is at zero temperature. Generically, a single-electron
excitation with a normalized wave packet ϕe above the Fermi
sea,

|ϕe, F 〉 =
∫ +∞

−∞
ϕe(t )ψ†(t )|F 〉 dt, (3)

is a quantum superposition of excitations obtained by adding
a perfectly localized electronic excitation on top of the Fermi
sea. To understand how the excess electronic Wigner function
of the state |ϕe, F 〉 looks like in physically relevant examples,
let us start by considering the electronic Wigner function for
a perfectly localized excitation ψ†(0)|F 〉. It is, up to normal-
ization, depicted on the left panel of Fig. 1. As expected from
the Heisenberg uncertainty principle, such an excitation is not
limited in energy and, when injected at energy ε > 0 above
the Fermi level, the Wigner function tends to spread over
a time scale h̄/ε. Before discussing the general case, let us
consider the Wigner function of a quantum superposition of
two such excitations created at times t1 = τ/2 and t2 = −τ/2.
It contains a contribution for each of the excitations within the
superposition and an interference contribution located at time
t � (t1 + t2)/2 = 0 as depicted on the right panel of Fig. 1.

When considering an arbitrary electronic wave packet ϕe,
these interference contributions are responsible for cancella-
tions which, in the case of the Landau excitation emitted at en-
ergy h̄ω0 above the Fermi level, localize the main contribution
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FIG. 2. Numerical reconstruction of the excess Wigner function for a Landau excitation with emission energy h̄ω0 and duration τ0 with
ω0τ0 = 5. Each panel depicts the Wigner function associated with a finite sum

∑N

j=1 ϕe(tj )ψ †(tj )|F 〉, where the times tj are sampled randomly
using the probability distribution |ϕe(t )|2. From left to right, panels show the results corresponding to N = 2, 10, 25, 100, and N = 500.

to the excess electronic Wigner function close to the injection
energy ω0. The Landau wave packet, given by [37,40]

ϕ̃e(ω) = N0�(ω)

ω − ω0 − i/2τ0
, (4)

where τ0 denotes the excitation lifetime, will indeed be used
as our main example through this whole text because of its
experimental relevance for the mesoscopic capacitor in the
ideal single-electron source regime [20,41,42].

The emergence of the electronic Wigner function of a
Landau excitation through destructive interferences is de-
picted on Fig. 2: the full excess electronic Wigner function is
reconstructed from the excess Wigner function of a quantum
superposition of more and more localized electronic excita-
tions at times tj , each of them weighted by the value of the
electronic wave function ϕe(tj ). Each panel is obtained by
choosing randomly the times tj according to the probability
density for the wave packet ϕe and then computing the excess
single-electron coherence associated with the quantum super-
position

∑N
j=1 ϕe(tj )ψ†(tj )|F 〉. Increasing N shows, on this

example, how the specific form of the excess Wigner function
arises from quantum interferences between its different time-
localized contributions.

The other important example is the recently observed [23]
Leviton excitation introduced by Levitov, Lee, and Lesovik
[43] and whose wave packet is given by

ϕe(t ) =
√

τ0

2π

1

t + iτ0
. (5)

This excitation is quite special as it is the only monoelectronic
excitation that can be created by applying a carefully designed
classical voltage drive to an ohmic contact [44]. The excess
Wigner functions for both types of single-electronic excita-
tions used in this paper are depicted on Fig. 3.

2. Hong-Ou-Mandel interferometry

Various methods have been proposed to access single-
electron coherence. First of all, measurement of the electronic
distribution function via energy filtering [45] or of the average
electrical current in the time or frequency domain only recov-
ers a partial information on single-electron coherence [40].
As in optics, single-particle interferometry in an ideal Mach-
Zehnder interferometer could give access to single-electron
coherence by unbalancing the interferometer [38,39] but, un-
fortunately, Coulomb interactions prevent such a tomographic

reconstruction. Electronic dephasing limits single-particle in-
terferometry just as atmospheric turbulence limited astronomy
in the optical domain during most of the 20th century. Exactly
as in astronomy, a solution to circumvent difficulties related
to dephasing within the interferometers is then to go to the
electronic counterpart of intensity interferometry, that is to
perform two-particle interference [46] as in Hong-Ou-Mandel
and Hanbury Brown and Twiss interferometry. These intensity
interferometry techniques have now spread widely beyond the
field of optics [47,48].

In our framework, the low-frequency Hong-Ou-Mandel
(HOM) noise signal for two electronic sources is directly
proportional to the overlap of the excess Wigner functions of
the two sources [40], a fact directly exploited in electronic
tomography protocols [29,37,49] and recent studies of elec-
tronic decoherence [15,16].

More precisely, the outgoing low frequency excess current
noise in an HOM experiment is the sum of three contributions,
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FIG. 3. Density plot of the Wigner function of a Landau excita-
tion with parameters ω0τ0 = 5, left, and an n = 1 Leviton excitation,
right, as a function of t/τ0 and ωτ0. Marginals are also plotted, giving
access to the average current as a function of time (bottom of each
plot) and the excess occupation number as a function of energy (left
of each plot). These two excitations are single-electronic and are
respectively energy- and time-resolved, with a Lorentzian profile. In
the case of the Landau excitation, we obtain the form given by the
superposition depicted on the right panel of Fig. 2.
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the two first ones involving the excess current noise �S1in

and �S2in in the incoming channels and the third one Q that
contains two-particle interference effects [5,37]:

�S1out = R2�S1in + T 2�S2in + RT Q (6)

in which T and R = 1 − T denote the transmission and
reflection probabilities across the electronic beam splitter.
When the two sources are switched on, the two-particle inter-
ference contribution is the sum of three contributions [29,40]:
the first two ones are the partition excess noise obtained when
only one of the two sources is switched on and the other
one off. They arise from two-particle interferences between
excitations emitted by the on source and the ones present
within the Fermi sea. At zero temperature, it corresponds to
the total number of excitations (holes and electrons) emitted
by each of the source separately [50]. The last contribution
comes from two-particle interferences between the excitations
that are emitted when both sources are on. It is given by [40]

QHOM = −2e2
∫
R

�W (e)
1 (t, ω) �W (e)

2 (t, ω)
t dω

2π
, (7)

where �W (e)
a (t, ω) denotes the incoming excess electronic

Wigner function in channel a = 1, 2 and X(t )
t

denotes the
time average of X(t ).

When considering classical voltage pulses or an ideal
single-electron source, or an ac source, the source’s excess
current noise vanishes in the limit of low frequencies. In
this case, measuring the excess current noises when the two
electronic sources are. respectively, (on,off), (off,on), and
(on,on) directly gives access to [5]

�q = Qon,on

Qon,off + Qoff,on
, (8)

which is called the HOM signal. The HOM curve is then
obtained by varying the time delay between the two elec-
tronic sources. In quantum signal processing terms, the HOM
interferometer encodes the overlap of two quantum signals
(the excess single-electron coherence) emitted by each source
into a measurable quantity (the low-frequency excess current
noise). It performs an on-chip overlapping analysis of quan-
tum signals [4].

In the case of two identical sources, the HOM curve is
a measure of the time-delayed self overlap of the source’s
excess Wigner function and as such, contains information
on single-particle states that are emitted. For instance, in
the absence of electronic decoherence, two identical sources
emitting exactly one single-electron excitation per period lead
to �q = 0 when they are synchronized whereas �q → 1
asymptotically when the two sources are maximally desyn-
chronized. More generally, a dip in the HOM curve is ob-
served close to perfect synchronization and its depth is a
measure of the indistinguishability between the excitations
emitted by both sources [5]. As we shall discuss more ex-
plicitly in the next section, by imprinting information on the
single-electron excitation in an external environment or by
transferring them into higher order correlations, interactions
lead to electronic decoherence and thus decrease the HOM
dip.

B. The physics of single-electron decoherence

In the original discussion of the decay of an electronic
quasiparticle by Landau [10], electronic decoherence arises
from electron/hole pair creation by the time and space depen-
dent electric potential generated by the bare charge injected
at a given energy above the Fermi sea. In this situation, the
single-particle excitation experiences decoherence whereas
the whole electronic fluid remains coherent. More than 50
years later, the discovery of dynamical Coulomb blockade
[51,52] showed us that electronic relaxation could also arise
from the emission of photons into the electromagnetic en-
vironment of the conductor. Our present understanding of
single-electron decoherence in quantum Hall edge channels
[32,33] appears as a combination of these two effects.

When the edge channel under consideration is coupled to
environmental degrees of freedom that can take energy away,
this coupling leads to entanglement between the electronic
fluid and its external environment. Consequently, the edge
channel experiences a many-body decoherence. For example,
this happens at ν = 2: interchannel Coulomb interactions
generically induce entanglement between the two edge chan-
nels. This is responsible for the fast relaxation of Landau
electronic excitations compared to the Levitov excitations
[33]. This striking difference between these two excitations
can be traced back to the fact that Levitov excitations, being
edge-magnetoplasmon coherent states, are pointer states [53]
with respect to Coulomb interaction. By contrast, other single-
electron excitations are quantum superpositions of edge-
magnetoplasmon coherent states, so that many-body decoher-
ence kills interferences between these coherent components.
This leads, for example, to a suppression of the interferences
which are responsible for localization of the Wigner function
of a Landau excitation around its emission energy (see Fig. 2).
As demonstrated by experimental decoherence studies at ν =
2 through HOM interferometry [15] as well as by Mach-
Zehnder interferometry [17], this is, so far, the dominant cause
of electronic decoherence in these experiments.

The second cause for single-electron decoherence is the
generation of electron/hole pairs in the same channel induced
by voltage fluctuations within the interacting region. This
is the only source of electronic decoherence when the edge
channel is not coupled to environmental channels. This purely
intrinsic process can be interpreted as the spreading of the
quantum information associated with the injected single elec-
tron towards higher-order coherences. Because of the Pauli
principle induced phase space limitations, we expect it to
be less stringent than excitation emission into the external
environment. The decoherence scenario is thus expected to
be significantly different and more favorable to decoherence
control than when the edge channel is capacitively coupled to
other conductors.

Inspired by this idea, we will therefore study electronic de-
coherence within an ideal ν = 1 quantum Hall edge channel.
It is solely influenced by the intrinsic properties of the edge
channel, that is the intrinsic and substrate material properties
as well as its gating, thus giving us new insight on the role of
the material in electronic decoherence.

Cutting off the possibility to generate excitations within
the electromagnetic environment is also the basic idea behind
passive decoherence protection by sample design at ν = 2.
The samples studied in Refs. [34,35] are based on blocking
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electronic relaxation and decoherence within one of the two
edge channels by closing the other one on itself.

As known from previous studies [32,33], quantitatively
studying the electronic decoherence scenarios in these dif-
ferent situations requires an understanding of the effect of
effective screened Coulomb interactions on the electronic
fluid. As we shall recall now, in the linear response regime,
it is completely encoded into the finite-frequency admittance
matrix of the system.

C. Interactions and edge-magnetoplasmon scattering

1. General method

During their propagation, electronic excitations experience
screened Coulomb interactions within the conductor and with
charges located in nearby conductors. However, in a regime
of linear response for all conductors involved, interaction
effects can be described within the edge-magnetoplasmon
scattering formalism, which describes how the bosonic edge-
magnetoplasmon modes are altered within the interaction
region. The key point is that, in one dimension, the bosoniza-
tion framework enables describing fermions with a linear
dispersion relation in terms of chiral bosons [54,55], which,
in the integer QHE are the edge magnetoplasmon modes
[56]. It is thus very well suited to describe electron quantum
optics experiments since the energy scale of the excitations
generated by single-electron sources which is the order of a
few tens of μeV is one to two order of magnitudes smaller
than the energy scale at which nonlinearities in the dispersion
relation strongly manifest themselves, such as the cyclotron
energy at a few tesla (typically a few meV in AlGaAs/GaAs).

Typical electron quantum optics excitations involve prop-
agation between a source and a detector (usually a QPC)
that delimitate a length l region of a quantum Hall edge
channel. Within this region, electrons experience intrachannel
Coulomb interactions as well as Coulomb interactions with
other edge channels [see Fig. 4(a)] or with an external gate
connected to an impedance [see Fig. 4(b)]. For the edge
channel under consideration, electronic degrees of freedom
are described by the bosonic field φ(x, t ) defined from the
excess charge density by

:(ψ†ψ ): (x, t ) = 1√
π

(∂xφ)(x, t ), (9)

1in 1out

2in 2out

(a)
1in 1out

2in 2out

Z(ω)

(b)

1in 1out

2in 2out

S(ω)

(c)

FIG. 4. The edge-magnetoplasmon scattering approach de-
scribes many situations, such as, for example, (a) two copropagating
edge channels capacitively coupled over a distance l, (b) a chiral edge
channel capacitively coupled to a linear external circuit described by
a frequency dependent impedance Z(ω). (c) Solving the equation
of motions leads to a frequency dependent scattering matrix S(ω)
between the channel’s edge-magnetoplasmon modes and the bosonic
modes of the other system.

where : (ψ†ψ ) : denotes the fermionic normal ordering with
respect to the reference Fermi level. Its equation of motion is
given by

(∂t + vF ∂x )φ(x, t ) = e
√

π

h
U (x, t ), (10)

where U (x, t ) denotes the potential along the edge channel.
Assuming we are in a linear screening regime within the
edge channel as well as for the external elements capacitively
coupled to it, the potential U (x, t ) is linear in terms of both
the bosonic fields associated with the other edge channels
and the bosonic dynamical variables describing other circuit
elements. In the case of a gate coupled to an external circuit,
these would be the bosonic modes associated with the trans-
mission line representation of the circuit’s impedance. In the
same way, the edge-magnetoplasmon modes of the current
channel appear within source terms for the linear equations
describing bosonic modes for the other edge channels and
circuit elements.

The interaction region being of finite length, solving the
equations of motion leads to an expression for the outgoing
fields in terms of the incoming fields. Note that because
the problem is time translation invariant, the solution can be
expressed in terms of an elastic scattering matrix S(ω) linking
the incoming and outgoing bosonic modes [see Fig. 4(c)].
With our definition of bosonic modes, energy conservation
implies that the scattering matrix is unitary.

The edge-magnetoplasmon scattering matrix is directly
related to the dimensionless finite-frequency admittance
gα,β (ω) = RKGα,β (ω) (RK = h/e2 being the quantum of re-
sistance) defined as the ratio of the derivative of total current
coming into the sample through the edge channel α with
respect to the voltage applied to the reservoir feeding the edge
channel β. Such a relation had been derived in the case of
quantum wires [57–59], which are nonchiral Luttinger liquids.
In the present case of chiral quantum Hall edge channel at
integer filling fractions, it takes the following form [60]:

gαβ (ω) = δα,β − Sαβ (ω). (11)

In particular, we shall denote g(ω) = 1 − S11(ω) the finite fre-
quency admittance of edge channel 1 in geometries depicted
on Fig. 4.

Relating the edge-magnetoplasmon transmission ampli-
tude t (ω) = S11(ω) to g(ω) also constrains it. The finite fre-
quency admittance g(ω) is the physical response function of a
passive electric dipole and, as such, admits an analytic contin-
uation to negative frequencies satisfying g(ω)∗ = g(−ω) thus
implying the same property for t (ω) = 1 − g(ω). Being the
response of a passive circuit, g(ω) obeys the positive reality
condition first proposed by Cauer [61] and then proven by
Brune [62]. With our convention, this means that for z =
σ + iω, z 	→ g(z) is analytic in the half plane 
(z) < 0 and


(g(z)) > 0 when σ < 0, (12a)

�(g(z)) = 0 when z ∈ R−. (12b)

The analyticity condition ensures causality of the current
response. The two other conditions express that, when
driven by a time-dependent voltage, the electric dipole
dissipates energy and does not produce it. As we shall see,
these conditions constrain the effective Coulomb interaction
models that can be used.
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Finally, since the edge-magnetoplasmon scattering matrix
depends on the precise form of the electric potential within
the wire U (x, t ), analytical models are often approximative
descriptions of the real physics of the sample in which elec-
trostatics plays an important role [63–65]. A more quanti-
tative description would rely on a microscopic modeling of
the system using first-principles modeling and taking into
account interactions through, for example, a self-consistent
Hartree treatment of the problem as in Ref. [66]. However,
Eq. (11) shows that edge-magnetoplasmon scattering ampli-
tudes can also be accessed using finite-frequency admittance
measurements. This has indeed been done in the case of the
ν = 2 quantum Hall edge channel system [67]. Here, we
will consider an ideal ν = 1 edge channel with finite range
intrachannel interactions as well as specific geometries of two
interacting edge channels (ν = 2) in which one of the edge
channels is closed. Let us now discuss edge-magnetoplasmon
scattering models relevant for these cases.

2. The ν = 1 case

For a single edge channel with Coulomb intrachannel
interactions, the edge-magnetoplasmon scattering matrix re-
duces to a frequency dependent transmission coefficient t (ω),
which, in the absence of dissipation, satisfies |t (ω)| = 1.

Short-range effective screened Coulomb interactions cor-
respond to a renormalization of the edge-magnetoplasmon
velocity and therefore to a linear dependence of the phase
of t (ω) in ω, t (ω) = eiωτ (l), where τ (l) is the renormalized
time of flight. By contrast, finite range interactions lead to a
nonlinear frequency dependence of the phase of t (ω). We shall
write t (ω) = eiωτ (l,ω) where the time of flight now depends
on ω through a frequency dependent velocity for the edge
magnetoplasmons, τ (l, ω) = l/v(ω). Since t (ω)∗ = t (−ω),
v(ω) can be extended analytically to negative frequencies by
v(−ω) = v(ω).

A simple model of a ν = 1 edge channel with an
interaction region of length l, capacitance C and bare Fermi
velocity vF is presented in Appendix B. This model depends
on the dimensionless ratio α = (e2/C)/(h̄vF / l) of the
Coulomb energy for the interaction region to the associated
kinetic energy. Let us note that C being the capacitance of
the interaction region that is roughly similar to a 1D wire, for
large enough l to neglect boundary effects, C � 2πε0εr l up
to a geometrical factor. Consequently, α does not depend on
l but behaves as [68]

α � αqed

πεr

× c

vF

× (geometrical factor), (13)

where αqed denotes the fine-structure constant, εr the relative
permittivity of the material, and vF the bare Fermi velocity.
Consequently, α can be interpreted as the renormalized
dimensionless effective fine structure constant within the
material.

As expected, the edge-magnetoplasmon transmission am-
plitude t (ω) = eiωl/v(ω) exhibits a nonlinear dependence of the
phase:

t (ω) = eiωl/vF
1 + A(ω, l)e−iωl/(2vF )

1 + A(ω, l)eiωl/(2vF )
, (14)

α=1/20

α=1/5

α=3/4

α=1

0 2 4 6 8 10

lω

vF

1

2

3

4

5

v(ω)

vF

FIG. 5. Velocity v(ω)/vF corresponding to exp (iωl/v(ω)) given
by Eq. (14) in terms of ωl/vF for α = 1/20 (graphene), α = 1/5,
α = 3/4 (AlGaAs/GaAs), and α = 1.

where

A(ω, l) = 4α sinc

(
ωl

2vF

)
. (15)

The edge-magnetoplasmon velocity v(ω) decreases from
v0 = (1 + 4α)vF to its asymptotic value v∞ = vF showing
some mild oscillations (see Fig. 5) arising from the sharp po-
sition dependence of the interaction potential at the boundary
of the interaction region.

Realistic estimates for the coupling constant α are detailed
in Appendix B. In AlGaAs/GaAs, α � 0.75 for vF � 105 m/s
thus leading to a ratio v0/vF = 4. By comparison, a similar
estimate for exfoliated graphene on a silicon oxide surface
[69] leads to α � 0.05 assuming vF � 106 m/s, and thus to
v0/vF � 1.2. Provided it has such a high Fermi velocity, this
form of graphene may thus correspond to a weak coupling
whereas AlGaAs/GaAs leads to strong coupling. A small
coupling constant has drastic consequences on electronic
decoherence as will be discussed in Sec. III C. Therefore
studying single-electron decoherence in the edge channels of
graphene at ν = 1 may be a way to test whether or not it is a
weak or a strong coupling material.

We expect a more realistic model of intrachannel interac-
tions to lead to a qualitatively similar but smoother behavior of
v(ω). Key features are the two different asymptotic velocities
v0 and v∞ in the limits ω → 0 and ω → +∞. The infrared ve-
locity v0 is the velocity of low energy edge-magnetoplasmon
modes and should therefore be called the plasmon velocity.
Due to Coulomb interactions, it is expected to be higher than
the velocity of high-energy excitations which do not experi-
ence interactions for a long time. Reasonable phenomenologi-
cal models for v(ω) should thus interpolate between v0 and v∞
with v0 > v∞. However, as explained in Appendix D, the real
positivity constraint [see Eq. (12)] on g(ω) = 1 − eiωl/v(ω)

rules out simple phenomenological expressions for the edge-
magnetoplasmon velocity v(ω). Therefore we shall discuss
the ideal ν = 1 case using the long-range model presented in
Appendix B.
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Short range interaction

l

Long range interaction

l

Closed inner channel (a)

l

L

Closed inner channel (b)

FIG. 6. Schematic view of the main types of interaction dis-
cussed at ν = 2. Short-range interaction corresponds to a capacitive
coupling between charge densities at the same position in the two
channels, and no coupling between different positions. Long-range
interaction describes a situation where the system behaves as one big
capacitor. We are also interested in situations where the inner channel
is closed on itself and interacts with the outer channel either along its
whole length (a) or only on a small portion of the closed loop (b). In
either of these cases, interactions can be short or long range.

3. The ν = 2 case

The ν = 2 edge channel system is the simplest and ex-
perimentally most relevant case involving more than one
channel. In this case, two copropagating edge channels sep-
arated by approximately 100 nm experience strong intra and
inter-channel screened Coulomb interactions. Several models
have been developed to describe this situation and are briefly
reviewed here.

a. Co-propagating channels with short-range interaction..
In the presence of nearby metallic side gates, Coulomb inter-
actions are screened and the charge density in one channel is
capacitively coupled to the charge density at the same point
in the other channel [18]. More precisely, charge density in
channel i at position x and energy ω ρi (x, ω) is coupled to
the local electrostatic potential U through distributed capac-
itances: ρi (x, ω) = CijUj (x, ω). This model, schematically
depicted on Fig. 6, is known to give a good description of
interactions in experimental systems at small energies, a fact
that has been directly probed in the frequency [67] and time
[70] domains and indirectly confirmed in Ref. [71]. Within
the interaction region, edge-magnetoplasmon eigenmodes are
delocalized over the two channels and propagate at different
velocities. This leads to the following edge-magnetoplasmon
scattering matrix [60]

S(ω) =
(

p+eiωτ+ + p−eiωτ− q(eiωτ− − eiωτ+ )
q(eiωτ− − eiωτ+ ) p+eiωτ− + p−eiωτ+

)
, (16)

where

p± = 1 ± cos(θ )

2
, q = sin(θ )

2
, (17a)

τ+ = l

v+
, τ− = l

v−
. (17b)

In these equations, θ corresponds to the coupling strength,
v+ to the velocity of the slowest mode and v− to the one
of the fastest mode. In the strong-coupling regime, θ = π/2,
the corresponding modes are a fast charge mode, which is
symmetric across both channels and an antisymmetric slow
neutral mode [18]. The edge magnetoplasmon transmission
coefficient t (ω) is equal to S11(ω).

b. Co-propagating channels with long-range interaction..
The second model for interacting co-propagating channels
assumes that local potentials U are uniform on the whole
length of the interaction region. The interaction region is a
capacitor (see Fig. 6) and can be discussed in the spirit of
the discrete element circuit models introduced by Büttiker
et al. for quantum conductors [72] and quantum Hall edge
channels [73]. This approach leads to the following edge-
magnetoplasmon scattering matrix [68]

S(ω) =
(

p+T+(ω) + p−T−(ω) q(T−(ω) − T+(ω))
q(T−(ω) − T+(ω)) p+T−(ω) + p−T+(ω)

)
,

(18)

where p± and q are given by Eq. (17) and other parameters
are given in terms of the dimensionless parameter x = ωl/vF

by

T±(ω) = eix − 1 + iα±xeix

eix − 1 + iα±x
(19)

with α± being linked to the eigenvalues of the capacitance
matrix C± by α± = RKC±vF /l. Here also, t (ω) = S11(ω)
where this time, S(ω) is given by (18) and (19).

4. The ν = 2 case with a loop

Figure 6(a) also depicts another situation that can be built
with two copropagating edge channels, where the inner one
is closed on itself over the length l where interaction takes
place [34]. In the geometry depicted on Fig. 6(b), the same
idea of a closed inner channel is used, but the copropagating
distance over which interaction takes place is only a part
of the total length of the loop. Such a geometry has been
used for mitigating decoherence in electronic Mach-Zehnder
interferometers [35]. Both geometries impose a periodicity
condition on the field for the inner channel:

φ2(0, ω) = φ2(l, ω)eiωτL, (20)

where τL = L/v+ is the time it takes for an excitation to cover
the noninteracting length L of the loop. The transmission
coefficient is then obtained in full generality as

t (ω) = S11(ω) + S12(ω)S21(ω)

e−iωτL − S22(ω)
, (21)

where S(ω) is the scattering matrix describing the region of
the loop over which the two channels interact with each other.
As expected, in the absence of dissipation, we have a unitary
S matrix and this transmission coefficient has a modulus of 1.
In the case of short-range interaction, the scattering matrix is
given by Eq. (18) and the last equation specializes to

t (ω) = −eiω(τ++τ−−τL )

(
eiωτL − p+e−iωτ+ − p−e−iωτ−

e−iωτL − p+eiωτ+ − p−eiωτ−

)
.

(22)

Of course, the special case (a) is recovered for τL = 0.
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III. ELECTRONIC DECOHERENCE

Let us now explain how to obtain the outgoing electronic
coherences assuming a single-electron excitation is injected
into the interaction region. Let us stress that this computa-
tion relies on the bosonization formalism that assumes an
electronic linear dispersion relation, a valid approximation
so far for electron quantum optics experiments. We will first
review the main steps and the essential points of the general
method developed for comparing the electronic decoherence
of Landau and Levitov quasiparticles [33]. Then, we will
discuss in details decoherence within a dissipationless single
edge channel (ν = 1) and then in the ν = 2 edge channel
system. Our computations are performed at zero temperature
to enlighten the underlying physics of electronic decoherence.
Moreover, in experiments performed on Landau excitations,
temperature effects have been shown to be quite small [15].

A. General results

The key point is that the fermionic operators can be ex-
pressed in terms of the bosonic operators by [74,75]

ψα (x, t ) = Uα√
2πa

exp (i
√

4πφα (x, t )), (23)

where α the channel index, a an ultraviolet cutoff that gives
the length scale below which bosonization is not valid and Uα

(respectively, U†
α) is the Klein operator suppressing (respec-

tively, adding) one electron from the reference vacuum into
edge channel α.

In the bosonization framework, the interaction region
is a frequency dependent beam splitter for the edge-
magnetoplasmon modes. An incoming coherent state for these
modes is scattered exactly as a classical electromagnetic wave
on an optical beam splitter [68]. More precisely, an incoming
coherent edge magnetoplasmon of the form |�1〉 ⊗ |�2〉 is
transformed into an outgoing state |�′

1〉 ⊗ |�′
2〉 where for all

ω > 0, �′
α (ω) = ∑

β Sαβ (ω)�β (ω). Because Eq. (23) shows
that single-electron states are described as quantum super-
position of coherent edge-magnetoplasmon states, an exact
description of the outgoing state after the interaction region
can be obtained.

More precisely, a single-electron state injected in
edge channel 1 corresponds, with the notations given in
Appendix A, to

|ϕe, F 〉1 ⊗ |F 〉2 =
∫ +∞

−∞
ϕe(t )

U†
1√

2πa⊗
ω>0

(|�ω(t )〉1 ⊗ |0ω〉2) dt (24)

and comes out of the interaction region as∫
ϕe(t )

U†
1√

2πa

⊗
ω>0

(|t (ω)�ω(t )〉1 ⊗ |r (ω)�ω(t )〉2) dt. (25)

In this equation, we adopt the convention used in the remain-
ing of this text that S11(ω) = t (ω) and S21(ω) = r (ω), other
coefficients of S being irrelevant as no injection is made in
channel 2. Tracing on the second edge channel degrees of
freedom leads to the reduced outgoing many-body density

operator for the injection edge channel [32]:

ρ1 =
∫

ϕe(t )ϕ∗
e (t ′)Dext(t − t ′)ψ†

1 (t )|g1(t )〉

× 〈g1(t ′)|ψ1(t ′)dtdt ′, (26)

where Dext(t − t ′) = 〈E2(t ′)|E2(t )〉 is the extrinsic decoher-
ence coefficient corresponding to the overlap of imprints

|E2(t )〉 =
⊗
ω>0

|r (ω)�ω(t )〉 (27)

left in the second edge channel by localized electrons injected
in the first edge channel at times t and t ′. It is given by [32]

Dext(τ ) = exp

(∫ +∞

0
|r (ω)|2(eiωτ − 1)

dω

ω

)
. (28)

The coherent edge-magnetoplasmon state |g1(t )〉 in Eq. (26)
corresponds to the cloud of electron/hole pairs generated by
Coulomb interactions when a localized electron ψ†(t )|F 〉
goes through the interaction region:

|g1(t )〉 =
⊗
ω>0

|(1 − t (ω))�ω(t )〉. (29)

In the same way, in the ν = 2 case, the reduced density
operator for the inner edge channel can be obtained by tracing
out over the outer edge channel. This leads to

ρ2 =
∫

ϕe(t )ϕe(t ′)Dinj(t − t ′) |E2(t )〉〈E2(t ′)| dtdt ′, (30)

in which the state |E2(t )〉 is defined by Eq. (27) and in which
the decoherence coefficient

Dinj(τ ) = exp

(∫ +∞

0
|t (ω)|2(eiωτ − 1)

dω

ω

)
, (31)

where “inj” stands for injection channel, is equal to the over-
lap 〈E1(t )|E1(t + τ )〉 of the outgoing states of the injection
edge channel corresponding to two different electron injection
times:

|E1(t )〉 =
⊗
ω>0

|t (ω)�ω(t )〉. (32)

This many-body description then gives access to all electronic
coherence functions after the interaction region.

B. Computing single-electron coherences

Let us now turn to first-order coherences in the outer
and inner channels after interaction, denoted, respectively, by
G (e)

out,1(t |t ′) and G (e)
out,2(t |t ′).

1. Outer channel coherence

When computing G (e)
out,1(t |t ′), the final results appear as a

sum of two terms. The first one corresponds to a modification
of the Fermi sea which, under the right condition, can be
seen as the contribution of electron-hole pairs generated by
Coulomb interaction vacuum state (namely the Fermi sea).
This one is called the modified vacuum. The second contribu-
tion comes from the incoming excitation elastically scattered
or after interaction induced relaxation. This one is called the
wave packet contribution. Generically, these two contributions
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overlap in the Wigner function representation and thus cannot
be accessed separately. However, as explained in Ref. [32],
when the coupling to the environment is sufficiently weak and
the incoming electronic excitation is injected as sufficiently
high energy so that it does not relax down to the Fermi
sea, these two contributions do not overlap since the first
one contributes around the Fermi level whereas the latter
one contributes only within a limited bandwidth below the
injection energy. In this dynamical Coulomb blockade-like
regime discussed in Appendix E, low-energy electron/hole ex-
citations are part of the electromagnetic effective environment
seen by the incoming single-electron excitation.

In full generality, these two contributions can be written as
[33]

G (e)
MV,1(t |t ′) =

∫
ϕe(t+)ϕ∗

e (t−)D(t, t ′, t+, t−)

× 〈ψ†(t ′)ψ (t )〉F 〈ψ (t−)ψ†(t+)〉F dt+dt−,

(33a)

G (e)
WP,1(t |t ′) =

∫
ϕe(t+)ϕ∗

e (t−)D(t, t ′, t+, t−)

× 〈ψ (t )ψ†(t+)〉F 〈ψ (t−)ψ†(t ′)〉F dt+dt−,

(33b)

where

D(t, t ′, t+, t−) = γ+(t+ − t ′)γ−(t+ − t )

× γ ∗
+(t− − t )γ ∗

−(t− − t ′) (34)

is the effective single-particle decoherence coefficient, which
takes into account both the action of environmental degrees
of freedom and of electron-hole pairs cloud created in the
injection channel. It is determined by the two functions

γ±(t ) = exp

(
±

∫ ∞

0

dω

ω
(1 − t (ω))(eiωt − 1)

)
. (35)

Explicit expressions for the two contributions (33a) and (33b)
in the frequency domain are given in Ref. [[33], Supplemen-
tary Material] and form the starting point of the numerical
evaluation of the outgoing electronic coherence in the fre-
quency domain (see Sec. III B 3).

A physically important quantity is the elastic scattering
amplitude Z (ω) for an incoming single-electron excitation at
energy h̄ω > 0. It determines the inelastic scattering probabil-
ity σin(ω) = 1 − |Z (ω)|2 for an electron flying across the in-
teraction region. This quantity is crucial for discussing the fate
of a single electronic quasiparticle. Considering an incoming
single-electron coherence injected at a given quasienergy
ε > 0 above the Fermi level, the behavior of σin(ε/h̄, l) as
a function of the length of the interaction region l tells us
how much of the original quasiparticle has survived after
propagation over a distance l. If for l � l∗(ε), σin(ε/h̄, l) is
close to unity, meaning that the injected quasiparticle has
experienced inelastic scattering, then τϕ (ε) = l∗(ε)/vF can be
interpreted as the lifetime of the quasiparticle injected at ε > 0
above the Fermi level. This enables discussing the Fermi or
non-Fermi liquid behavior of quantum Hall edge channels
with respect to the fate of a single-electron excitation. For a
Fermi liquid, it is expected that, at low energies compared

V (t)

CL

Rq

Cµ

V (t)

FIG. 7. (Left) Effective dipole associated with the interaction
region. (Right) Equivalent effective ZC circuit at low-frequency. The
resistive part of Z(ω) is the relaxation resistance Rq = RK/2 and its
imaginary part comes from an LC circuit.

to the Fermi energy, τϕ (ε) scales as 1/ε2 thus making the
electronic quasiparticle more and more well defined as ε → 0.
On the other hand, a 1/ε scaling would be the sign of the
breakdown of a well defined electronic quasiparticle close to
the Fermi level.

Within our framework, the elastic scattering amplitude
Z (ω) is obtained as [32]

Z (ω) = 1 −
∫ ω

0
B−(ω′) dω′, (36)

where B− is defined as the regular part of the Fourier trans-
form of γ− and therefore satisfies the integral equation

ωB−(ω) = t (ω) − 1 +
∫ ω

0
B−(ω′)(t (ω − ω′) − 1) dω′

(37)

with initial condition B−(0+) = − dt
dω

(ω = 0+). Equations
(36) and (37) pave the way towards a perturbative expansion
of Z (ω) as a sum of convolutions of (1 − t (ω))/ω, which
is well suited to the low-frequency expansion of the finite
frequency admittance g(ω) = 1 − t (ω). At second order in
ωRKCμ,

g(ω) � −iCμRKω + Rq

RK

(ωRKCμ)2, (38)

where Cμ and Rq , respectively, denote the electrochemical
capacitance and the relaxation resistance of the interaction
region in the discrete circuit element representation depicted
on the right panel of Fig. 7. Substituting this expansion into
Eqs. (36) and (37) then leads to the lowest nontrivial order
[76]:

σin(ω) �
(

Rq

RK

− 1

2

)
(ωRKCμ)2. (39)

This is dominant contribution to the inelastic scattering prob-
ability when Rq > RK2, that is when the edge channel under
contribution is coupled to environmental edge channels whose
dissipation adds up to the single edge channel relaxation resis-
tance RK/2. As we shall see in Sec. III C, for a single-electron
excitation injected into a single dissipationless edge channel,
the inelastic scattering probability scales as (ωRKCμ)6. Con-
sequently, at fixed l, the electronic quasiparticle does survive
flying across a finite length interaction region, an expected
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result since in the limit ε → 0 at a fixed l, the dominant
physics is the one imposed by the reservoir, i.e., the Fermi
liquid physics. As we shall see in a forthcoming section,
taking the limit in the reverse order (increasing l at fixed
ε > 0) does not lead to the same conclusion.

2. Inner channel coherence

Using the reduced density matrix ρ2 for the inner channel,
any coherence function we are interested in can be computed.
The main result is strikingly simple: G (e)

out,2(t |t ′) is of the same

exact form as G (e)
MV,1(t |t ′) if we replace the function t (ω) in

the decoherence coefficient with 1 + r (ω). The fact that there
is no wave packet term emphasizes that no electron has been
injected into the inner channel: only a cloud of electron/hole
pairs is created.

3. Numerical method

As shown in Ref. [[33], Supplementary Material], the
numerical evaluation consists in evaluating multiple integrals
of factors. The implementation is quite straightforward, even
though the main difficulty comes from the number of nested
integrals (four for each point of the electronic coherence). For
this, we use a frequency representation of the coherence. We
discretize the input coherence on a grid using two directions,
ω and δω. ω is the conjugate of t − t ′ and thus encodes
the frequency dependence in the Wigner function. δω is
the conjugate of (t + t ′)/2, and thus gives access to time
dependance in the Wigner function. When there are n points
in the input coherence in each direction ω and δω, a naive
implementation would require an O(n6) computation time.
However, by exploiting the structure of the expressions, we
have been able to lower the total complexity to O(m × n4)
where n denotes the number of points in the direction ω and m

the number of points in the direction δω. This structure allows
us to decouple the two directions and, as such, we can have a
better numerical evaluation by lowering the discretization step
in the direction ω, without touching to the direction δω, as
long as we have enough information about the time evolution
of the Wigner function. With these refinements and using the
OpenMP parallel framework, a post-interaction coherence is
computed within five to ten minutes on a 64 cores computer.

Discretization steps are chosen by looking at errors. The
trace of the excess single-electron coherence is the total
charge injected and should not change. If this already very
sensitive indicator is not enough, we compute the average
outgoing electric current from the outgoing excess single-
electron coherence and compare it to its value obtained by
applying edge-magnetoplasmon scattering to the incoming
average current. All graphs presented in the following exhibit
errors smaller than 5% for those tests.

C. Decoherence at ν = 1

1. General picture

Let us first discuss electronic decoherence by using a crude
physical picture for a single edge channel in which we have
a low-frequency edge-magnetoplasmon velocity v0 greater
than the high-frequency velocity v∞. Let us denote by ωc the
crossover frequency between these two velocity regimes. In

the model presented in Sec. II C 2, ωc � 2πvF /l as can be
seen from Fig. 5.

At low energies ω � ωc, electronic decoherence arises
from the ω dependence of the edge-magnetoplasmon velocity
or, equivalently of the finite frequency admittance g(ω). At
low enough frequencies, the interaction region of the ideal
single channel can also be described in terms of discrete cir-
cuit elements such as its electrochemical capacitance Cμ, its
relaxation resistance is equal to [72] Rq = RK/2 and RKCμ is
the time of flight l/v0 of the low-frequency edge magnetoplas-
mons. Understanding electronic decoherence thus requires
describing the extra-reactance part of g(ω), the simplest de-
scription of which is an LC oscillator as on Fig. 7. The circuit
parameters L and C can then be expressed in terms of the
parameters of the effective model used to describe the ν = 1
ideal edge channel (see Appendix C):

L/RK

RKCμ

= 1 + 4α

12
, (40a)

C

Cμ

= 1 + 4α

5
. (40b)

Then, as explained in Appendix F, the inelastic scattering
probability can be expanded into powers of ωRKCμ. This
results in the dominant behavior for the inelastic scattering
probability when Rq = RK/2:

σin(ω) � 11

180

(
L/RK

RKCμ

− 1

12

)3

(ωRKCμ)6, (41)

in terms of the discrete element circuit description of Fig. 7. In
the specific model used here, L and C are given by Eqs. (40).
As expected, since no energy can be emitted within external
environmental channels, the inelastic scattering probability
scales much more rapidly towards zero in the limit ωRKCμ →
0 than when external dissipation is present [see Eq. (39) where
Rq > RK/2].

Let us now turn to electrons injected at high energy. Since,
for ω � ωc, edge magnetoplasmons travel at a velocity close
to v∞, decoherence mostly arises from the effective edge-
magnetoplasmon scattering phase t̃ (ω) = t (ω)e−iωτ∞ , which
is roughly 1 for ω � ωc and e−iω�τ for ω � ωc, where �τ =
τ∞ − τ0 denotes the difference of time of flights between
high- and low-energy edge magnetoplasmons. As interactions
have an effective bandwidth ∼ ωc, we expect the creation of
electron/hole pair excitations to happen within one to a few
ωc around the Fermi level. Consequently, for electronic ex-
citations injected at a much higher energy, the corresponding
low-energy edge-magnetoplasmon modes can be viewed as an
effective distinct environment for the high-energy electronic
excitations [32].

In this dynamical Coulomb blockade like regime, dis-
cussed more precisely in Appendix E, the incoming electron
looses energy through electron/hole pair creation within a few
h̄ωc of the Fermi sea. The low-energy electron/hole pairs will
then propagate along at the low-energy edge-magnetoplasmon
velocity. In a first approximation, the physical picture for
the decoherence and relaxation of single-electron excitations
injected at high energy thus involves the incoming electron
and its relaxation tail [described by Eq. (E6)] propagating
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FIG. 8. Elastic scattering probability for a single-electron exci-
tation as a function of ωl/vF for the long-range interaction model
given by Eq. (B5), for different values of the coupling constant α.

at the high-energy velocity v∞ and the corresponding low-
energy electron/hole pairs propagating at the low-energy
edge-magnetoplasmon velocity v0. This simple picture justi-
fies interpreting v∞ as the velocity of hot electrons whereas
v0 is viewed as a plasmon velocity.

The important question is then to determine what part of
the initial quasiparticle survives in the large l limit. The an-
swer, derived in Appendix E is the elastic scattering probabil-
ity for an electron injected at very high energy, or equivalently
the large l limit of |Z (ω)|2 for ωl/vF � 2π for fixed ω > 0:

Z∞ = exp

(
−

∫ +∞

0
|1 − t̃ (ω)|2 dω

ω

)
. (42)

This quantity which, in the long-range model of Sec. II C 2
only depends on the effective coupling constant α, represents
the survival probability of the single-electron excitation in-
jected at energy ε > 0 above the Fermi level once it has
propagated over a distance larger than l∗(ε) = hvF /ε.

2. Numerical results at ν = 1

Let us now illustrate this discussion by using an ω-
dependent unit modulus transmission t (ω) given by the long-
range interaction model for ν = 1. We will discuss both the
case of a strong-coupling material (α = 0.75) and of a weak-
coupling material (α � 0.05).

Figure 8 presents the elastic scattering probability |Z (ω)|2
as a function of ωRKCμ = ωl/v0 for these two values of the
coupling constant as well as for intermediate values α = 1/10
and α = 1/4. At strong coupling, the low-energy almost flat
plateau close to unity is followed by a very strong decay of
|Z (ω)|2 when ωRKCμ � 2π towards a very small value. The
low-coupling case also leads to a decay of the elastic scat-
tering probability when ωRKCμ � 2π but towards a higher
value, Z∞ � 0.9.

Figure 9 depicts the asymptotic value Z∞ of the elastic
scattering probability |Z (ω)|2 at high energy as a function
of the coupling constant α in the model of Sec. II C 2. We
clearly see the difference between weak and strong coupling
on electronic decoherence of high-energy excitations; for α =
0.05, Z∞ � 0.91, whereas for α = 0.75, Z∞ � 0.015.
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FIG. 9. Asymptotic elastic scattering probability for high energy
electrons Z∞(α) given by Eq. (42) as a function of the coupling
constant α for the model introduced in Sec. II C 2.

Let us now turn to the low-energy regime: Fig. 10 depicts
the ratio of the full inelastic scattering probability to the
perturbative expression as a function of ω. It shows that
the perturbative result is only valid at low energies, that is
significantly before the drop of the elastic scattering proba-
bility, when the inelastic scattering probability is still very
close to unity. Understanding the full behavior of the elastic
scattering probability indeed requires a full non perturbative
approach even at weak coupling because, at higher injection
energies, multiple low-energy electron/hole pair emissions
coexist with the emission of single electron/hole pair of higher
energy. Properly accounting for all these processes requires
the full knowledge of the frequency dependance of g(ω) for
which the simplest discrete element circuit descriptions are
not sufficient.

Figure 11 presents the electronic decoherence of an in-
coming wave packet injected at energy ω0RKCμ = 15. In
the weak coupling case (lower panel), we clearly see the
separation in energy between the elastically scattered elec-
tronic excitation together with its relaxation tail at high energy
and the resulting electron/hole pairs close to the Fermi level.
This is expected since the elastic scattering probability is
quite high at the injection energy. The temporal separation
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FIG. 10. Ratio of inelastic scattering probabilities for the full
model to its perturbative circuit expansion (F1) at low energy.
Numerical errors at small ωl/vF are due to the rapid decay of the
dominant (ωl/vF )6 asymptotic behavior of the inelastic scattering
probability at very low energies.
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FIG. 11. Wigner distribution function of an incoming wave
packet injected at energy ω0RKCμ = 15. Top panel: outgoing single-
electron coherence for α = 0.75. (Bottom) Outgoing single-electron
coherence for α = 0.05. t = 0 corresponds to the expected time of
reception for a free propagation at the low-energy velocity v0.

which is a result of the difference between the hot-electron
velocity v∞ and the plasmon velocity v0 is also clearly visible
on the average electric current 〈i(t )〉: the sharp rise of the
current corresponds to the arrival of the elastically scattered
quasiparticle and t = 0 corresponds to propagation at the
fastest velocity v0.

By contrast, in the strong-coupling case (upper panel),
electronic decoherence is much stronger. The relaxation tail
of the incoming excitation is visible as a sharp rise of the
current which arrives later than the beginning of the neutral
electron/hole pair cloud. As expected the difference between
the plasmon and high-energy electron velocities is also more
important than in the weak-coupling case but we also see
that the weight of the electron/hole cloud contribution in the
average electrical current is much more important that at weak
coupling.

These results can be compared to the ones depicted on
Fig. 12 presenting the electronic decoherence of an incom-
ing wave packet injected at ω0RKCμ � 3, an energy lower
than the previously discussed threshold. Most of its spec-
tral weight is below the threshold. The Landau quasiparticle
propagates without experiencing much decoherence in both
cases. We also see that it propagates at the low-energy edge-
magnetoplasmon velocity v0. As expected, the incoming ex-
citation seems less altered at weak coupling (α = 0.05, lower
panel) than at strong coupling (α = 0.75, upper panel).
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FIG. 12. Wigner distribution function of an incoming wave
packet injected at energy ωeRKCμ = 3. Top panel: outgoing single-
electron coherence for α = 0.75. (Bottom) Outgoing single-electron
coherence for α = 0.05. t = 0 is the expected time of reception for a
free propagation at the low-energy velocity v0.

The bottom line of this discussion is that, at strong cou-
pling, the injected single-electron quasiparticle at a given
energy above the Fermi level gets destroyed with a very
high probability (Z∞ � 1) after propagating over a distance
that scales as 1/ε. By contrast, at weak coupling, Z∞ is
close to unity and the quasiparticle still makes sense in the
thermodynamic limit (l → +∞ and ε > 0 fixed). Therefore,
by looking at the quasiparticle decay in this limit, we see
that increasing the effective coupling α brings us closer to a
non-Fermi liquid behavior in which we expect Z∞ = 0 in the
large l limit l � l∗(ε) ∼ 1/ε.

On the other hand, the ground-state electronic Green’s
function is left unaltered in the infrared limit, thus leaving
intact the jump in the electronic distribution function at the
Fermi energy. This is to be contrasted with the Luttinger liquid
[11], where an algebraic singularity is expected.

As reviewed in Sec. II A 2, a convenient tool for testing
robustness to decoherence in electron quantum optics is the
Hong-Ou-Mandel experiment [77,78]. One expects strong
and weak coupling regimes to lead to quantitatively different
results in this experiment. We have thus computed the HOM
signal �q defined by Eq. (8) in both cases. Results are shown
in Fig. 13 for both injection energies and both coupling
values. As discussed on the Wigner functions, theses curves
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FIG. 13. Theoretical results of an Hong-Ou-Mandel interferom-
etry experiment obtained from the Wigner functions displayed in
Figs. 11 and 12. As expected from the Wigner functions themselves,
low-energy excitations (ω0τ0 = 3) present a high-contrast HOM dip.
The results for high-energy excitations (ω0τ0 = 15) show the dif-
ference between a weak coupling (α = 0.05) and a strong coupling
(α = 0.75) material.

confirm that weak coupling materials would lead to a stronger
protection against decoherence.

3. Commenting on AlGaAs/GaAs vs graphene.

As mentioned in Sec. II C 2, exfoliated graphene on a
silicon oxide surface may correspond to a weak coupling
value of α and thus to a much lower electronic decoherence.
Moreover, provided velocities in graphene are much higher
than in AlGaAs/GaAs, the crossover energy between the low-
and high-energy regimes should be much higher for fixed
device dimensions. For example, a l = 20 μm propagation
distance corresponds to ω/2π = vF /l � 500 GHz for vF =
106 m s−1 and to 50 GHz for vF = 105 m s−1.

The single-electron source based on the mesoscopic ca-
pacitor [20] that has been developed in AlGaAs generates
single-electron excitations at an energy comparable to this
crossover scale. With our estimated parameters, strong elec-
tronic decoherence is expected for a propagation above 30 μm
when injecting at an energy of the order of 40 μeV.1 Although
no single-electron source has been developed yet for graphene
in the quantum Hall regime, the ratio of estimated high-energy
velocities in the two materials suggests a propagation distance
of the order of 200 μm in a ν = 1 ideal channel before any
significant step in the inelastic scattering probability manifests
itself in graphene. Moreover, as discussed in the previous
section, even for such long propagation distances, electronic
decoherence would be much lower in a weak coupling mate-
rial compared to the case of a strong coupling material (see
Fig. 9).

1These figures correspond to the ideal ν = 1 case, which is not
the case that has been experimentally studied. In the experiments,
extrinsic decoherence induced by the second edge channel leads to
much shorter coherent propagation distance for such energy resolved
excitations.

Of course, this discussion has been made within the
framework of our model for electronic propagation within
an ideal ν = 1 edge channel. In practice, it is known that
edge magnetoplasmons propagating along quantum Hall edge
channels experience dissipation [67,69,79–81]. This is one of
the possible causes for the missing energy in electronic relax-
ation experiments [60]. Investigating edge-magnetoplasmon
dissipation effects on single-electron decoherence is certainly
very important but this would go beyond the scope of the
present paper. Nevertheless, we think that the effect of the
Fermi velocity difference on the coupling constant and on
the length to time scale conversion may lead to important
differences between strong and weak-coupling materials con-
cerning single-electron decoherence. As suggested by Fig. 13,
HOM experiments may offer clear discriminating signatures
of weak versus strong coupling materials but this would re-
quire the experimental development of single electron sources
for Landau quasiparticles injection in graphene quantum Hall
edge channels.

Finally, let us mention that a Mach-Zehnder interferometer
has recently been demonstrated with encapsulated monolayer
graphene sheet embedded within hexagonal boron nitride
[82]. The beam splitters exploit same-spin intervalley scat-
tering at a pn junction and the interferometer’s geometry is
controlled by Coulomb exchange interactions. Surprisingly, a
contrast of 90% has been observed at low bias in a parameter
regime where one arms consists of one carrier edge channel
and the other or two and for an arm length of 1.2 μm. Such
a high contrast remains up to a bias voltage larger than
200 μV. Although decoherence mechanisms have not been
yet studied in great detail for this device, we think that such
a surprisingly high contrast together with our discussion of
coupling constant and high-energy velocity effects calls for
intensive studies of single-electron decoherence in a material
such as graphene.

D. Decoherence at ν = 2

Let us now turn to the ν = 2 case, which has already
been studied in relation with experiments [33,83]. In the
present case, we shall briefly recall the results obtained using
the dispersionless model for edge-magnetoplasmon scattering
between two strongly coupled copropagating edge channels
(short-range interactions in Sec. II C 3) before discussing the
influence of the finite range of interactions in an Hong-Ou-
Mandel experiment.

1. Short-range interactions

Numerical results for both outer and inner channel coher-
ences in the specific case of short-range interaction at strong
coupling are presented in Fig. 14 for the Leviton source and in
Fig. 15 for a Landau excitation. Two distinct behaviours can
be seen on these results. In the case of the Leviton source, the
emitted state is a coherent state of plasmons created by the
application of a classical voltage drive to an Ohmic contact.
Its evolution is dominated by fractionalization: we observe a
simple separation of the incoming packet into two modes, one
symmetric over the two channels and the other antisymmetric
(see Fig. 14). In the outer channel, we recover exactly a
fractionalization of the incoming excitation into two Levitons
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FIG. 14. Wigner function for the outer (top) and inner (bottom)
channels for a Levitov excitation of width τ0. We use short-range
interaction with parameters θ = π/2, τ+ = 6τ0 and τ− = τ+/20.
Since we inject a coherent state of plasmons, it fractionalizes into
half-excitations and exhibits the behavior of spin-charge separation,
with the apparition of a fast symmetric mode over the two channels
mode and a slow antisymmetric one.

with charges −e/2, as was predicted in various theoretical
works [68,84] and demonstrated experimentally [16,67,85].

As recalled in Sec. II B, a Landau type excitation illus-
trates a different scenario: before fractionalization takes place,
many-body decoherence leads to a fast energy relaxation with
a strong decay of the weight around the injection energy, as
can be seen on the upper panel of Fig. 15. This theoreti-
cal scenario and the corresponding quantitative predictions
[33,83] have recently been confirmed by experiments [15].
The lower panel of Fig. 15 shows the electronic coherence
in the inner channel. Although most excitations are created
close to the Fermi level, we also see excitations created around
the injection energy (for electrons) and close to the opposite
(for the holes), which are the inner channel equivalent of the
elastically scattered part still present in the outer channel.

Before moving on to the long-range interaction model, let
us stress that, here Z∞ is exactly zero as can be seen from
many references [18,19,32,33]. An electronic quasiparticle
injected at energy ε > 0 above the Fermi level will not sur-
vive propagating in the thermodynamic limit. The inelastic
scattering probability σin(ε) is close to unity as soon as l �
l∗(ε) = hvs/ε. As noticed in Ref. [14], a chiral edge channel
propagating along a second one to which it is capacitively
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FIG. 15. Wigner function for the outer (top) and inner (bottom)
channels for a Landau excitation with parameters ω0τ0 = 10. Interac-
tion parameters are θ = π/2, τ+ = τ0, and τ− = τ+/20. In that case,
the incoming state is a superposition of coherent plasmonic states.
Interactions lead to the destruction of coherences between those
states, and the end result is therefore a statistical mixture of coherent
plasmonic states, whose energy content is no more resolved around
ω0. In the time domain, since all bosonic states exhibit spin-charge
separation when they pass through the interaction region, we recover
once again this type of separation for the electric current.

coupled by an effective short-range interaction is not a Fermi
liquid with respect to the fate of the electronic quasiparticle
whose lifetime scales as 1/ε. Nevertheless, note that, as for
the ν = 1 case and contrary to the Luttinger liquid, there is no
algebraic singularity in the electronic occupation number of
the ground state at the Fermi level.

2. Long-range interactions

At ν = 2, a long-range interaction model can be studied
(see Sec. II C 3) and may be experimentally relevant at higher
energies [67]. The outgoing Wigner functions for excitations
crossing a long-range interaction region are shown on Fig. 16.
Several qualitative differences with the short-range case can
be observed. First, we see nonvanishing coherence and current
at negative times, the reference being given by the time taken
for a free excitation to cross this interaction region. This is
due to the long-range characteristics of interactions: as soon
as the incoming excitation enters the interaction region, it
influences the whole interaction region and the contribution of
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FIG. 16. Wigner function of the outer channel for a Landau
excitation with ω0τ0 = 10 going out of a long-range interaction zone
in the strong interaction regime (θ = π/2), with parameters l/vF =
1.5τ0, α+ = 1/2, and α− = 1/59. The finite-frequency admittance
of this interaction region has the same low-energy limit than a short-
range interaction region with parameters τ+ = τ0/2, τ− = τ+/20.
Differences between the long and short-range cases are the apparition
of excitations at earlier times, three main peaks in the current instead
of two, and a more complex pattern at low energies.

the resulting low-energy electron/hole pairs can be seen near
its ends. This means that a first current peak should begin at
a time τ = l/vF before the arrival of the “real” excitation as
can be seen on the figure. Speaking of current, the bottom
panel shows that the outgoing current has three main peaks,
compared to the two obtained in a short-range setting.

It is then natural to ask wether or not these differences can
be detected by an HOM experiment. To answer this question,
the top panel of Fig. 17 displays our prediction for both the
short and long-range interaction models assuming interaction
regions of the same length and the same incoming excitations.
As seen from this figure, these two interaction models lead
to qualitatively different HOM curves: the long-range one
shows a wider dip, as expected of the wider time spreading
of the outgoing excitation and more “secondary dips” than the
short-range model. This last feature can be traced back to the
three main peaks in the outgoing Wigner function computed
using the long-range model compared to the two peaks of
short-range interactions.

To comment on the experimental state of the art [15,16],
the bottom panel of Fig. 17 presents the HOM predictions
for parameters corresponding to the recently published exper-
imental results in Ref. [15]. Unfortunately, the side lobes that
would enable us to differentiate between the two interaction
models occur for a time shift comparable or greater than
300 ps. In practice, probing time shifts larger than 200 ps
brings us to values too close to the half-period of the drive
which is typically 1 ns. In such situations, it is not possible
anymore to forget about the excitation emitted in the other
half period: we cannot rely on a single-electron decoherence
computation for a quantitative theory/experiment comparison.
Probing such large time shifts while comparing to our present
theoretical predictions would therefore require lowering the
drive frequency f thus deteriorating the signal to noise ratio
of the low-frequency current noise measurements.
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FIG. 17. (Top) Predicted results of an Hong-Ou-Mandel experi-
ment after an interaction region in the short- and long-range cases, at
ν = 2. The interaction parameters are the ones given in the caption of
Fig. 16 and corresponds to interaction region of the same lengths and
with the same low-energy behavior in terms of velocities. The main
difference between the predictions of the two models are the depth
of HOM dip at �τ = 0 and the secondary dips at �τ = ±1.5τ0 in
the long-range case, which are due to low-energy side excitations
seen on Fig. 16. The wider time spreading of the outgoing coherence
also leads to a wider HOM dip. (Bottom) Plot of the HOM curves
for the long (full lines) and short-range (dotted lines) models with
parameters corresponding to the experiment [15].

In our opinion, this calls for complementary investiga-
tions and/or experimental developments in order to determine
which interaction model for the ν = 2 edge channel system
would be the best at reproducing the full HOM curves in
detail. By contrast, samples specifically designed for blocking
relaxation processes are likely to give much stronger exper-
imental signatures as will be discussed in the forthcoming
section.

IV. DECOHERENCE CONTROL

In this section, we consider passive decoherence control by
sample design in the ν = 2 edge channel system. The idea is
to combine the efficient screening of the edge channel used
to propagate the injected electronic excitation to the blocking
of energy transfers by closing the other edge channel. In a
first experiment [34], electronic relaxation in the outer edge
channel has been partially blocked by letting the outer channel
propagate along a closed inner edge channel as depicted
on Fig. 6(a). In a more recent Mach-Zehnder interferometry
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FIG. 18. Outgoing current for an incoming leviton excitation of
width τ0/4 after an interaction with a closed loop. Parameters τ− =
τ0, τ+ = 3τ0, and τL = 7τ0, while not experimentally reasonable,
allow a good visualization of the physical properties of this current.
The first two peaks corresponding to standard fractionalization when
crossing the interaction region are followed by a series of three peaks
corresponding to excitations having crossed twice the interaction
region and going round the loop once (first corresponds to two
crossings in the symmetric mode, then one antisymmetric and one
symmetric, third one is two crossings in antisymmetric mode), and
so on. (Top) As given by the analytical computation presented in
this section. (Bottom) As recovered when integrating the numerically
obtained outgoing Wigner function over all energies.

experiment, electronic decoherence has been partially blocked
by bordering the propagating edge channel by closed loops
[35] as depicted on Fig. 6(b).

We shall now discuss electronic decoherence within both
types of samples. We will first discuss what happens to
Levitons by looking at edge-magnetoplasmon scattering in the
time domain. Understanding this scattering in the frequency
domain will then enable us to discuss electronic decoher-
ence of a Landau excitation injected at various energies in
Sec. IV B. Finally, a realistic possible sample design for prob-
ing the blocking of single-electron decoherence with HOM
interferometry will be discussed in Sec. IV C.

A. Magnetoplasmon scattering

1. Time domain

Let us start by analyzing what happens to a percussionnal
voltage pulse V (t ) = V0δ(t − t0) sent across the interaction
region. The outgoing voltage pulse can be obtained from the
inverse Fourier transform of t (ω) which, using equation (21),
can be rewritten as

t (ω) = S11(ω) (43a)

+ eiωτLS12(ω)S21(ω)
∞∑

n=0

einωτLS22(ω)n. (43b)

This expression has a clear physical meaning since all ex-
citations recovered in channel 1 after the interaction region
of size l correspond to one of the following paths: term
(43a) correspond to incoming excitations directly crossing
the region in channel 1, whereas terms (43b) corresponds to
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FIG. 19. Phase of the transmission coefficient (top) and the as-
sociated dwelling time τWS(ω) (lower) for a short-range interaction
with weak coupling (θ = π/10) and parameters τ− = τ+/20, for
four different geometries for the loop. We see that the phase jumps
each time ω(τ+ + τL) � 2nπ , with a stronger jump when ωτ+ = 2π .
These jumps are the signature of a quasibound state (scattering
resonance) at corresponding energy inside the loop.

incoming excitations generating excitations in channel 2 (S21),
which go round the closed loop and create excitations back in
channel 1 (S12). This can either happen after one lap round
the loop (eiωτL ) or after n + 1 laps, in which case we need to
take into account the fact that excitations in channel 2 crossed
the interaction region in the second channel n times (Sn

22) and
made n more laps (einωτL ).

In the case of short-range interactions, t (ω) can be rewrit-
ten as a sum of complex exponentials:

t (ω) = p+eiωτ+ + p−eiωτ−

+
∞∑

n=0

n+2∑
k=0

wn,keiω((n+1)τL+kτ++(n+2−k)τ− ), (44)

where the weights wn,k are given by2

wn,k = q2

[(
n

k

)
pn−k

+ pk
− +

(
n

k − 2

)
pn+2−k

+ pk−2
−

−2

(
n

k − 1

)
pn+1−k

+ pk−1
−

]
. (45)

This equation shows that the outgoing voltage for a localized
excitation of charge −e created at time t0 corresponds to the
generation of a percussional current pulse with charge −ep+
emitted at time t0 + τ+, another one with charge −ep− at time

2In this equation, we adopt the convention that
(
n

k

) = 0 if k > n or
k < 0.

155302-16



TAMING ELECTRONIC DECOHERENCE IN ONE- … PHYSICAL REVIEW B 98, 155302 (2018)

0

2π

4π

6π

8π

10π
0 π

2
2π
3 π 4π

3
3π
2 2π 5π

2

0

5

10

15

0 π
2

2π
3 π 4π

3
3π
2 2π 5π

2

ar
g(

t e
ff
(ω

))
ωτ+

τL = 0
τL = τ+
τL = 2τ+
τL = 3τ+

τ W
S
(ω

)

ωτ+

FIG. 20. Phase of the transmission coefficient (top) and associ-
ated dwelling time in the closed inner channel (lower) for a short-
range interaction with strong coupling (θ = π/2) and the same four
different geometries for the loop as the low-coupling case. We see
that the phase does not go from one plateau to another, but still
exhibits jumps at values close to the ones seen before, the jump
at ωτ+ = 2π being once again the strongest. The corresponding
quasibound states inside the loop are therefore broadened in energy.

t0 + τ−, and an infinity of others at times t0 + (n + 1)τL +
kτ+ + (n + 2 − k)τ− with charges −ewn,k . The total current
is conserved, since p+ + p− = 1 and ∀n,

∑n+2
k=0 wn,k = 0.

For the Leviton source, with the exact same reasoning, the
outgoing state is a sum of time-shifted Leviton excitations
with suitable charges. Figure 18 shows the outgoing current
for this type of environment computed in two different ways.
The top panel of Fig. 18 corresponds to an analytical compu-
tation of the expected current in the way we just exposed. The
bottom panel is obtained from the numerical computation of
the resulting excess Wigner distribution function by integrat-
ing over the energy. The very good agreement between the
two results illustrates the validity of our numerical approach.

2. Frequency domain

Let us now turn to the transmission coefficient as a function
of energy. As stated before, since |t (ω)|2 = 1, this system
behaves as an effective ν = 1 system but it has a much richer
texture than the model presented in Sec. II C 2. First of all,
let us consider short-range interactions at weak coupling. The
closed inner channel can be seen as a Fabry-Pérot interferom-
eter with low transparency on one side and totally reflecting
on the other part. The interaction region can then be viewed
as a cavity which is connected to a transmission line. As in
optics, the phase of its reflexion coefficient, which is here
the edge-magnetoplasmon transmission t (ω), exhibits sharp
resonances. They can arise from quasibound scattering states
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FIG. 21. Outgoing Wigner function for an incoming Landau
excitation of duration τ0 = 0.8τ+. Interaction parameters are θ =
π/2 and τ− = τ+/10. (Top) Short-range interaction with a closed
environment of type (a) (τL = 0). (Bottom) Co-propagation along an
open channel on the same distance with same interaction parameters.
For both graphs, the incoming excitation is at an energy ω0τ+ = π

below the energy resonances of the loop. When interacting with a
closed channel (upper), relaxation is highly suppressed compared to
co-propagation along an open channel (lower). Because the injection
energy is below closed channel resonances, the outgoing occupation
number remains close to the incoming one. Electron/hole pair cre-
ation is responsible of the spikes that appear on the average electric
current, which are characteristic of the closed channel geometry.

within the interaction region seen as a cavity, which appear as
peaks in the Wigner-Smith time delay

τWS(ω) = 1

2π i

d ln (t (ω))

dω
, (46)

which represents a dwelling time within the cavity. These
resonances are sharply visible in the weak-coupling regime
presented on Fig. 19. The top panel depicts the phase of
teff(ω) = e−iωτ− t (ω), and displays strong jumps of 2π every
time ω(τ+ + τL) � 2nπ . These jumps lead to strong reso-
nances in the Wigner-Smith time delay as seen on the lower
panel.

Let us now turn to the strong-coupling case (θ = π/2). As
is expected from the comparison with a Fabry-Pérot interfer-
ometer with higher transparency, the quasibound states inside
the loop are broadened in energy, as can be seen on Fig. 20.
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FIG. 22. Same as Fig. 21, but for an incoming excitation above
the resonance energy, ω0τ+ = 5π/2. Energy relaxation involves the
emission of electron/hole pairs at the resonance energy, leading to a
second peak in the energy distribution.

B. Electronic decoherence

We now discuss electronic relaxation and decoherence of
Landau excitations at strong coupling in the closed channel
geometry depicted on Fig. 6(a) (τL = 0). Numerical results
for the Wigner function of an electron emitted below the
energy of the first resonance of the closed resonator and one
emitted between the first and the second resonances are shown
on the upper panels of Figs. 21 and 22. These results are
compared, on the bottom panel of each figure, to a situation
where the interaction region is of the same length but the
inner channel is not closed onto itself. The geometry with a
closed channel exhibit much less electronic decoherence in
comparison with the open channel geometry.

In the first situation depicted in Fig. 21, electron/hole pair
generation is inhibited because the electronic energy is off
resonance with the cavity and therefore, relaxation is blocked.
As a result, no decoherence happens and the excitation leaves
the interaction region pretty much unchanged.

When the Landau excitation is injected above the first
resonance (see upper panel of Fig. 22), it relaxes by emitting
electron/hole pairs precisely at the energy given by the first
resonance. This relaxation leads to a peak in the electronic
distribution at the final energy of the electron, which is its
injection energy minus the resonance energy. The character-
istic features of the interaction-generated electron/hole pair

0
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0.6
0.8

1

−4 −2 0 2 4

Δ
q

Δτ/τ0
Closed env., ω0τ+ = π
Open env., ω0τ+ = π
Closed env., ω0τ+ = 5π/2
Open env., ω0τ+ = 5π/2

FIG. 23. Results of an Hong-Ou-Mandel experiment for the four
Wigner distributions presented in this section. The bigger depth
of the HOM dip for the loop environment proves that closing the
environment on itself provides a net advantage compared to the open
case. Specifically, in the case where the excitation is emitted below
the first level in the loop (ωτ+ = π ), we see a dip going nearly all
the way down to 0, which denotes a quasicomplete protection from
decoherence.

cloud are the temporal oscillations of �W (e)(t, ω) for ω

below the peak associated with the relaxed electron. HOM
interferometry can then be used to check whether or not we
are protected against decoherence. As shown on Fig. 23, the
HOM dip for wave packets propagating along a closed inner
channel should be bigger that their opened counterpart, going
even down close to zero for an excitation emitted below the
first resonance.

C. A realistic sample proposal

In this section, we discuss a possible geometry in which
Landau excitations such as the one emitted by the mesoscopic
capacitor [20] would be protected against decoherence. One
may naively think that loops smaller than the size of dots
used to emit the excitation would be needed, which seems
unreasonable experimentally. Luckily, previous experimental
studies [86] have shown that the speed of electronic excita-
tions in top-gated regions of the 2DEG are smaller than the
“free” velocity, a fact that can be checked using available
experimental data on the energies of the quantum dot. The
energy h̄ω0 of Landau particles emitted by the dot used in
Ref. [15] is around 60 μeV, the size of the dot being 2 μm,
leading to a relevant velocity in gated region of the 2DEG
vgate ∼ 5.8 × 104 m s−1. The dwelling time of excitations in
the dot is τ0 � 100 ps, leading to a typical width in energy
of about 1/10th of the injection energy. Consequently, a safe
limit for blocking decoherence would be to have a loop such
that ω0(τ+ + τL) < 3π/2. The edge-magnetoplasmon modes
populated within the incoming electronic excitations have
their energies below the resonance, even when considering the
resonance width.

A sample design with a loop of total size 4 μm is sketched
on Fig. 24. We predict protection against decoherence for
the single-electron excitations we are interested in. Of
course, by tuning the dot parameters for emitting excitations
at lower energies, decoherence protection would still be
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FIG. 24. (Top) Possible experimental design for testing deco-
herence control on a Landau excitation. Here, the 2DEG (in light
gray) defines a cavity delimited by a top gate shifting the electron
density so that only the outer edge channel can pass through. This
creates a region with a closed inner channel. The single-electron
source as well as the QPC of the HOM probe should be located
close to the loop. The loop corresponds to τ+ = (w + 2d )/vchem.

+ and
τL = w/v

gate
F , where vchem.

+ denotes the speed of the slow mode in
chemically defined edge channels, whereas v

gate
F is the Fermi velocity

in an edge channel propagating along a metallic gate. (Middle)
Outgoing Wigner function when w = 1.5 μm, h = 0.5 μm for an in-
coming excitation with parameters ω0τ0 = 10 and τ0 = 100 ps. The
velocities are vchem.

+ = 1 × 105 m s−1 and v
gate
F = 5.8 × 104 m s−1.

(Bottom) Wigner function in the case where the gate closing the loop
is used to either let both channels through or none (times of flight
are equivalent in those two cases). Decoherence would be far more
important in such cases where the inner channel is not closed on
itself.

possible even with two times larger loops (see Appendix G,
Fig. 27). The design presented here would allow a test
of decoherence protection for single-electron excitations
emitted by the mesoscopic capacitor driven by square pulses.
Electronic decoherence and relaxation of energy resolved

single-electron excitations being stronger than for an out of
equilibrium distribution generated by a biased QPC, such an
experiment would provide a stronger test of the potential of
sample design for decoherence protection.

Finally, as was presented on Fig. 22, larger loops with
2π � ω0(τ+ + τL) � 4π give access to the physics of elec-
tronic excitations accompanied by a single plasmon around an
energy given by the first scattering resonance of the loop. This
allows the probing of new hybrid quantum single-electron and
single-plasmon excitations and calls for new measurement
protocols to fully characterize these excitations.

V. CONCLUSION AND PERSPECTIVES

To conclude, we have addressed the question of decoher-
ence control for single-electron excitation propagating within
chiral edge channels through the properties of the material
itself and sample design. Using a semirealistic model for long-
range interactions within a single ideal chiral channel, we have
found that a high bare Fermi velocity may be significantly
more promising for limiting decoherence for two reasons:
first, it leads to a lower effective QED coupling constant, a
point that has indeed been overlooked, and next it amplifies
the distance covered within a given time of flight. The conju-
gation of these two effects could lead to a drastic decrease of
electronic decoherence over distances of 10 to 100 μm as long
as dissipative effects could be neglected. We think that this
calls for more thorough experimental studies to explore the
potential of different materials for electron quantum optics.
Moreover, our analysis once again stresses the importance
of performing electronic decoherence experiments in setups
where finite-frequency ac transport could also be measured.

We have also shown that passive decoherence protection
through sample design could be tested for excitations emitted
by the mesoscopic capacitor in the single-electron regime
using, for example, an HOM experiment. We have proposed
a realistic design for demonstrating this effect. Moreover, our
study suggests that such samples could be used for emitting
single edge magnetoplasmons thus opening the way to hybrid
electron-and-photon quantum optics.

These predictions being obtained within the framework of
bosonization that assumes as a starting point a linear spectrum
for bare fermions, it is natural to ask how our results are af-
fected when the nonlinearity of the electron’s dispersion rela-
tion cannot be neglected. This is not a purely theoretical ques-
tion since experiments [24,87] performing single-electron in-
jection at much higher energies than the mesoscopic capacitor
are certainly beyond the validity range of our computations.
Motivated by cold atom experiments, 1D quantum wires and
1D quantum spins systems, a considerable amount of work,
extensively reviewed by Imambekov et al. [88], has been
devoted to explore 1D quantum fermionic liquids beyond the
Luttinger liquid paradigm. As pointed out by these authors,
attempts at treating electronic dispersion perturbatively within
the standard bosonization framework are doomed by the
strong degeneracy of the original bosonic spectrum.

A recently developed alternative bosonization scheme [89]
offers interesting perspective to extend our work to this case.
In this formalism, the dictionary between localized electronic
excitations and bosonic modes is still relatively simple but the
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relation between charge density and bosonic modes is no more
linear. Consequently, the main challenge would be to deal
with a nonquadratic Hamiltonian within the interaction region
but there might be interaction regimes in which the effect of
interactions could be approximately described by an elastic
scattering with a reasonable accuracy. Although very chal-
lenging, this is certainly a line of research worth exploring.

More generally, investigating electronic decoherence in-
duced by other systems than a standard harmonic environmen-
tal channels with regular spectral functions at low energy is
important for future experimental developments. As a first ex-
ample, understanding the effect of a highly nonlinear system
such as a double dot capacitively coupled to an edge channel
on single to few electron excitations is certainly an interesting
perspective. It would open the way for probing the correlated
states of electrons close a quantum impurity (Kondo cloud)
using electronic excitations. Coherent transport of levitons
through a Kondo impurity has been recently studied using
perturbative electronic diagramatics [90], a framework that
captures the low-temperature Fermi-liquid behavior. How-
ever, it would be interesting to analyze beyond this regime and
in a more general way what insight can be obtained from prob-
ing quantum impurities and their surroundings using electron
quantum optics sources. Beyond electron quantum optics,
investigating this problem is certainly relevant for microwave
quantum optics since suitable circuit QED systems simulate
the spin boson problem [91] and, as a long term perspective,
for Kondo systems simulated by alkaline-earth atoms in an
optical lattice [92], a platform that might give access to the
real time formation and evolution of the Kondo cloud.

Another relevant question is the effect of the ubiquitous
1/f noise present in solid state devices [93]. Such a noise
could effectively been generated by a suitable distributions of
weakly coupled two level systems. It has been proposed that
1/f noise could lead to strong renormalization in tunneling
experiments performed on quantum Hall edge channels, lead-
ing to a change of exponents in dc tunneling experiments [94].
As of now, low frequency noise has been shown to be neg-
ligeable in experiments [96] above 20 KHz, much lower than
any of the typical frequency scales associated with the time
scales involved in the experiment (typically, close to or above
the GHz). Moreover, its amplitude is small enough to view it
as a slowly varying classical noise on the reference chemical
potential whose amplitude should not alter our conclusions.
Nevertheless, it would be interesting to study the effect of
a harmonic environment with a much stronger 1/f spectral
density on electronic decoherence in the spirit of Ref. [95].
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APPENDIX A: BOSONIZATION

Bosonization provides a description of a 1D chiral rela-
tivistic gas of fermions in terms of bosonic degrees of freedom

corresponding to charge density waves [75]. It has been ex-
tensively used to describe quantum systems in one dimension
[74] such as the nonchiral Luttinger liquid [11] and quantum
Hall edge channels [56].

In the present case of a 1D chiral relativistic channel at a
given chemical potential μ, the excess charge density n(x, t )
is the normal ordered product :(ψ†ψ ): (x) with respect to
the corresponding Fermi energy. It is expressed in terms of
a quantum bosonic field φ

:(ψ†ψ ): (x, t ) = 1√
π

(∂xφ)(x, t ) (A1)

whose mode decomposition can be written in terms of cre-
ation b†(ω) and destruction operators b(ω) called edge-
magnetoplasmon modes:

φ(x, t ) = −i√
4π

∫ +∞

0
(b(ω)eiω(x/vF −t ) − H.c.)

dω√
ω

, (A2)

where vF denotes the Fermi velocity of fermionic excitations
in this chiral channel. The edge-magnetoplasmon modes can
be expressed in terms of the fermionic mode operators c(ω)
and c†(ω) defined by

ψ (x, t ) =
∫ +∞

−∞
c(ω) eiω(x/vF −t ) dω√

2πvF

(A3)

through

b†(ω) = 1√
ω

∫ +∞

−∞
c†(ω + ω′)c(ω′) dω′. (A4)

This immediately shows that b†(ω) creates a coherent su-
perposition of electron/hole pairs with energy h̄ω. Using
Eq. (9), the finite-frequency modes of the excess electronic
current i(x, t ) = −evF n(x, t ) are directly proportional to the
edge-magnetoplasmon modes, i(ω > 0) = −e

√
ωb(ω). The

electronic operator can be expressed in terms of these bosonic
modes through

ψ (x, t ) = U√
2πa

exp (i
√

4πφ(x, t )), (A5)

where a is an ultraviolet cutoff that gives the length scale
below which bosonization is not valid and U (respectively,
U†) is the ladder operator suppressing (respectively, adding)
one electron from the reference vacuum.

The fermionic operator ψ†(x, t ) thus performs two things:
it shifts the vacuum state to add one electronic charge
−e to it and then it acts as a displacement operator on
the edge-magnetoplasmon modes with parameter �ω(x, t ) =
e−iω(x/vF −t )/

√
ω:

D[�(x, t )] = exp

(∫ +∞

0
(�ω(x, t )b†(ω) − H.c.)dω

)
.

(A6)

As discussed in Ref. [68], a classical time-dependent volt-
age drive V (t ) generates an edge-magnetoplasmon coherent
state with parameter �ω[V (t )] = −eṼ (ω)/h

√
ω. The co-

herent state of parameter �ω(x, t ) thus corresponds to the
single-electron state generated by a voltage pulse V (t ) =
−(h/e)δ(t − x/vF ) generating a percussional current pulse
carrying a single-electron charge.
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APPENDIX B: A LONG-RANGE MODEL FOR ν = 1

In this section, we derive an exact expression for the
edge-magnetoplasmon transmission coefficient in the ν = 1
case using a simple model of Coulomb interaction based
on discrete elements in the spirit of Büttiker’s treatment of
high-frequency quantum transport [72]. Electrons within the
interaction region see the electric potential U (x, t ) given by a
capacitive coupling inside a finite length region of size l:

U (x, t ) =
{

0 if x /∈ [− l
2 , l

2

]
1
C

∫ l
2

− l
2
n(y, t )dy otherwise

, (B1)

where the excess density of charges n is itself linked to the
bosonic field φ through equation (9). Equation (10) can be
recast as a closed equation on φ expressed in the frequency
domain as

(−iω + vF ∂x )φ(x, ω) = e2

hC

(
φ

(
− l

2
, ω

)
− φ

(
l

2
, ω

))
.

(B2)
Expressing φ(x, ω) as eiωx/vF ϕω(x) leads to

∂xϕω(x) = e2

vF hC
e−iωx/vF

×
(

e−iωl/(2vF )ϕω

(
− l

2

)
− eiωl/(2vF )ϕω

(
l

2

))
,

(B3)

which can be integrated over the whole interaction region to
give us a relation between ϕω(− l

2 ) and ϕω( l
2 ). Finally, the

solution reads

φ

(
l

2
, ω

)
= t (ω)φ

(
− l

2
, ω

)
, (B4)

where

t (ω) = eiωl/vF
1 + A(ω, l)e−iωl/(2vF )

1 + A(ω, l)eiωl/(2vF )
, (B5a)

A(ω, l) = 4e2/C

hvF /l
sinc

(
ωl

2vF

)
, (B5b)

in which we recognize the kinetic energy scale hvF /l as well
as the dimensionless ratio α = e2l/ChvF of the electrostatic
energy e2/C to this kinetic energy scale, which quantifies
the strength of Coulomb interactions in this system. Note
that, at least for sufficiently long edge channels, this coupling
constant does not depend on the length l since C also scales
as l.

As expected, the transmission coefficient t (ω) is of modu-
lus 1 because no energy can be lost in a ν = 1 setup without
any dynamical environment. The quantity of interest is there-
fore the phase of t (ω).

In the limit where Coulomb interaction effects can be
neglected (α → 0), t (ω) = eiωl/vF showing that the bare
Fermi velocity is recovered. The opposite limit of ultrastrong
Coulomb interactions (α → ∞) leads to t (ω) = 1, that is,
an infinite edge-magnetoplasmon velocity. However, at fixed
coupling α, the edge-magnetoplasmon velocity tends to v∞ =
vF when ωl/vF � 1. At low frequency, we find that the

time of flight of edge magnetoplasmons is renormalized thus
leading to an increased renormalized plasmon velocity

v0

v∞
= 1 + 4e2/C

hv∞/l
(B6)

compared to the velocity at high frequency, which is the bare
Fermi velocity vF .

To estimate an order of magnitude of this ratio, let us
remind that C being the capacitance of the interaction region
that is roughly similar to a 1D wire, C � 2πε0εr l up to a
geometrical factor for large l, that is when boundary effects
are small. Consequently, α does not depend on l but behaves
as [68]

α � αqed

πεr

× c

vF

× (geometrical factor), (B7)

where αqed denotes the fine-structure constant, εr the relative
permittivity of the material and vF the bare Fermi velocity.

For AlGaAs/GaAs, one usually estimates vF � 105 m/s
and εr � 10 thus leading to

α � 0.75 × (geometrical factor). (B8)

Assuming a geometrical factor of order 1, this gives a ve-
locity for low-energy magnetoplasmons of the order of v0 ∼
4 × 105 m/s, which is compatible to what is observed in
ν = 2 edge channel systems [97]. Let us remind that the
edge-magnetoplasmon velocity depends on the details of the
electric potential seen by electrons near the edge of the 2DEG
and therefore of the conception of the sample. This is precisely
used in the above reference to modulate it by polarising gates.

In the case of graphene, a common estimation for the Fermi
velocity is of the order of vF � 1 × 106 m/s and εr � 14
[69,98] thus leading to

α � 0.054 (B9)

when using a geometrical factor equal to unity. The coupling
constant is much lower and therefore v0/vF � 1.2. Let us
stress that, as far as we know, no direct measurement of
vF in quantum Hall edge channels of graphene have been
performed but if this commonly discussed value is confirmed,
this would put graphene in a totally different coupling range
than AlGaAs/GaAs.

For intermediate values of the coupling constant α, as
shown on Fig. 5, the edge-magnetoplasmon velocity deduced
from t (ω) presents a decay from v0 to a regime with small
oscillations above the asymptotic value of vF .

Expanding the phase of t (ω) in powers of ωτ0 leads to

φ(ω) = ωτ0 + α

3
(ωτ0)3 + 8α

90
(α2 + 2α − 1/8)(ωτ0)5

+O((ωτ0)7), (B10)

which, as explained Appendix F, gives us the low-energy
expansion of the inelastic scattering probability.

APPENDIX C: DISCRETE ELEMENT
CIRCUIT DESCRIPTION

In this appendix, we discuss the circuit synthesis for the
edge-magnetoplasmon transmission amplitude in the case of
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an ideal ν = 1 edge channel and we obtain its first non
trivial Cauer form. We then connect the discrete circuit ele-
ment parameters to the parameters of the model presented in
Appendix B.

1. Circuit synthesis for an ideal ν = 1 edge channel

Using the relation t (ω) = 1 − RKG(ω) where G(ω) is the
finite-frequency admittance of the discrete element circuit of
Fig. 7, the transmission amplitude t (ω) can be expressed in
terms of the impedance Z(ω) as

t (ω) = 1 + ωCμ�(Z(ω)) + iωCμ[RK − 
(Z(ω))]

1 + ωCμ�(Z(ω)) − iωCμ
(Z(ω))
. (C1)

Consequently, t (ω) is a pure phase if and only if 
(Z(ω)) =
RK/2 at all frequencies. We can then write

t (ω) = 1 + iβ(ω)

1 − iβ(ω)
= exp [2i arctan (β(ω))], (C2)

where

β(ω) = ωRKCμ

2

1

1 + ωCμ�(Z(ω))
. (C3)

With our conventions, the reactance �(Z(ω)) is a strictly
decreasing function of ω [99]. Since, by definition, the elec-
trochemical capacitance Cμ contains the low-frequency diver-
gence of the ZC circuit, it is expected to be regular at low
frequency, starting with a zero at ω = 0 and then alternating
poles and zeros. A suitable low-frequency expansion of t (ω)
can then be obtained using a Cauer form of circuit synthesis
which leads to a continuous fraction expansion of the finite-
frequency admittance.

The simplest case corresponds to the circuit depicted on the
right panel of Fig. 7. It leads to

β(ω) = ωRKCμ

2

1 − ω2LC

1 − ω2L(C + Cμ)
. (C4)

Expanding 2 arctan (β(ω)) in powers of ωRKCμ then leads
to the low-frequency finite-frequency admittance up to order
(ωRKCμ)6:

g(ω) = −iωRKCμ + 1

2
(ωRKCμ)2 (C5a)

− i

[
L/RK

RKCμ

− 1

4

]
(ωRKCμ)3 (C5b)

+
[

L/RK

RKCμ

− 1

8

]
(ωRKCμ)4 (C5c)

− i

[(
1 + C

Cμ

)[
L/RK

RKCμ

]2

+ 1

16
− 3

4

L/RK

RKCμ

]
× (ωRKCμ)5, (C5d)

which then leads to Eq. (F2).
Being described by two parameters (L and C) besides Cμ

and Rq = RK/2, this circuit provides an expansion of φ(ω)
up to order (ωRKCμ)5. In order to capture the low-frequency
behavior of φ(ω) to the next non trivial orders (7 and 9), we
need to go one step further in the Cauer form of the circuit.
This would correspond to adding another LC impedance in

series with the capacitor C. This process can then be iterated
to reconstruct the full ω dependence of �(Z(ω)).

2. Extracting the discrete element parameters

Let us now derive the discrete element circuit parameters
for the interaction model at ν = 1 considered in Appendix B.
Expanding the admittance at low frequency and identifying
this expansion with (C5) leads to

RKCμ = τ0 = l/v0, (C6a)

L/RK

RKCμ

= 1 + 4α

12
, (C6b)

C

Cμ

= 1 + 4α

5
. (C6c)

The inductance L as well as the capacitance C increase when
increasing the effective Coulomb interaction strength. This
is expected since increasing Coulomb interactions tend to
increase the velocity ratio v0/v∞. In this model the ratio of
L/C to R2

K remains constant and equal to 5/12.

APPENDIX D: PHENOMENOLOGICAL MODELS
FOR PLASMON VELOCITY

Let us discuss problems that arise for some phenomeno-
logical expressions for the edge magnetoplasmons in the ideal
ν = 1 case. We first consider the phenomenological expres-
sion

v(ω)

v0
= 1 + v∞

v0
(ω/ωc )2

1 + (ω/ωc )2
, (D1)

which interpolates between v0 at low frequency and v∞ at
high frequency, the crossover scale being ωc. We shall de-
note by τ0 = l/v0. The finite-frequency admittance only de-
pends on the dimensionless variable ωτ0 and parameters 0 <

v∞/v0 � 1 and ωcτ0 > 0. Compared to the long-range inter-
action model detailed in Appendix B, this phenomenological
expression avoids oscillations in the edge-magnetoplasmon
velocity and it depends on one more parameter than just l/v0

and the coupling constant. However, as we will see now, is it
not physically acceptable!

A first hint of a problem comes from the low-energy
expansion using a discrete element circuit description that
reproduces the same t (ω) dependance up to order 5. Then,
under this condition, the electrochemical capacitance Cμ, the
inductance L and the capacitance C of the first ladder in the
Cauer expansion are given by

RKCμ = τ0, (D2a)

L/RK

RKCμ

= 1

12
+

(
1 − v∞

v0

)
1

(ωcτ0)2
, (D2b)

C

Cμ

=
1

720 + (
1 − v∞

v0

)[
1

60(ωcτ0 )2 − 1
(ωcτ0 )4

]
( 1− v∞

v0
(ωcτ0 )2 + 1

12

)2
. (D2c)

As expected, the eigenfrequency 1/
√

LCμ corresponds, up
to renormalization, to ωc. Since v∞ � v0 these expressions
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give a physical value for the inductance L but C/Cμ some-
times becomes negative! This is a serious hint that Eq. (D1)
is not a physically meaningful ω-dependance for the edge-
magnetoplasmon velocity. This can be seen by considering the
analytical continuation of 
(1 − t (ω)) to the complex plane
s = σ + iω, which must be positive for σ < 0: it exhibits
singularities (and thus negativities) on the negative real axis
(σ < 0 and ω = 0).

In the same way, a phenomenological edge-
magnetoplasmon velocity with a sharper high-energy
stabilization towards v∞ such as [100,101]

v(ω)

v∞
= 1 + v0 − v∞

v∞
e−(ωτc )2

(D3)

is not physical within our framework because the analytical
continuation of 
(1 − eiωl/v(ω) ) also presents singularities in
the half plane σ + iω for σ < 0.

APPENDIX E: HIGH-ENERGY DECOHERENCE
AND RELAXATION

1. General results

For a single-electron excitation injected at high energy, the
contribution to electronic coherence ϕe(t ) ϕ∗

e (t ′) picks up an
effective decoherence coefficient D(t − t ′) so that [32]

�G (e)
WP(t |t ′) � ϕe(t ) ϕ∗

e (t ′)D(t − t ′), (E1)

which, at ν = 1, is equal to the overlap 〈g(t ′)|g(t )〉 of the
electron/hole pair clouds generated by Coulomb interactions:

D(τ ) = exp

(∫ +∞

0
|1 − t̃ (ω)|2(eiωτ − 1)

dω

ω

)
. (E2)

an expression analogous to the one appearing in the weak-
coupling description of dynamical Coulomb blockade across
a tunnel junction [102]. The relaxation kernel

D̃(ω′) =
∫ +∞

−∞
e−iωτD(τ ) dτ. (E3)

can then be decomposed into an elastic and an inelastic part:
D̃(ω′) = 2π (Z∞δ(ω′) + d(ω′)), where

Z∞ = exp

(
−

∫ +∞

0
|1 − t̃ (ω)|2 dω

ω

)
(E4)

is nothing but the high-energy limit of the elastic scattering
probability |Z (ω)|2. The inelastic part d(ω) describes elec-
tronic relaxation: it represents the probability that the electron
has lost energy ω. It is determined by the integral equation

ω d(ω) = |1 − t̃ (ω)|2 +
∫ ω

0
|1 − t̃ (ω′)|2d(ω − ω′) dω′,

(E5a)

which can readily be solved on a computer using the ini-
tial condition that d(ω → 0+) → limω→0+ (|1 − t̃ (ω)|2/ω). It
can also be expressed as a formal series corresponding to
the various processes involving the emission of an increasing
number of pairs of electron/hole excitations, exactly the same
structure than in the dynamical Coulomb blockade theory
[102]. With these notations, the elastic part of the outgoing

Wigner function is well separated from the inelastic part:

�W (e)
WP(t, ω) = Z∞Wϕe (t, ω) (E6a)

+
∫ ω

0
d(ω′)Wϕe (t, ω + ω′) dω′, (E6b)

where Wϕe (t, ω) denotes the Wigner function associated to
the incoming wave packet ϕe.

2. Energy dissipation at ν = 1

Let us discuss energy dissipation through the creation of
electron/hole pairs in the ν = 1 ideal edge channel in the
regime discussed above. We shall thus assume that the spectral
weight of the incoming electron as well as of the contribution
G (e)

WP,1 to the outgoing coherence are well above the vicinity of
the Fermi level.

The incoming average energy comes from the injected
electron and is equal to

Ein = h̄

∫ +∞

0
|ϕ̃e(ω)|2ω dω

2πvF

, (E7)

using the convention

ϕ̃e(ω) = vF

∫ +∞

−∞
ϕe(−vF t ) eiωt dt (E8)

for defining the electronic wave packet in the frequency
domain from the original wavefunctiuon ϕe in the spatial
domain.

The outgoing average energy then consists of two parts: the
energy carried by the injected electron which has flown across
the interaction region either elastically or inelastically, and
the energy of electron/hole excitations created by its passing
through. The first contribution is

E
(e)
out = Z∞Ein (E9a)

+ h̄

∫
(R+ )2

|ϕe(ω)|2(ω − ω′)d(ω′) dω′ dω

2πvF

. (E9b)

The first line corresponds to elastic scattering and the second
line to inelastic processes in which the electron has fallen
down from h̄ω to h̄(ω − ω′). There, the integrals are extended
to +∞ safely because of our working hypothesis: the re-
laxation tail is well above the Fermi level. We then use that∫ +∞

0 d(ω′) dω′ = 1 − Z∞ and the normalization condition of
the wave packet to rewrite this as

E
(e)
out = Ein − h̄

∫ +∞

0
ω′d(ω′) dω′. (E10)

Energy conservation, which is true on average, shows that the
dissipated energy in electron/hole pair creation is equal to

E
(diss)
out = h̄

∫ +∞

0
ωd (ω) dω. (E11)

Recognizing that
∫ +∞

0 ωd (ω)dω corresponds to the derivative
of the decoherence coefficient D(τ ) when τ → 0+ leads to

E
(diss)
out = h̄

∫ +∞

0
|1 − t̃ (ω)|2 dω. (E12)

155302-23



C. CABART, B. ROUSSEL, G. FÈVE, AND P. DEGIOVANNI PHYSICAL REVIEW B 98, 155302 (2018)

FIG. 25. Dependence on the coupling constant α of
E

(diss)
out (α, hvF /l) in units of hv0/l, where E

(diss)
out (α, hvF /l)

denotes the average energy dissipated by a hot electron given by
Eq. (E13) corresponding to the model discussed in Appendix B.

Using the transmission coefficient given by Eq. (B5), the
dissipated energy is given by

E
(diss)
out = hvF

π l

∫ +∞

0

64α2 sin4(u) du

(u+ 2α sin(2u))2 + 16α2 sin2(u)
. (E13)

which converges both in the UV and the IR.
Figure 25 presents the numerical evaluation of the dissi-

pated energy in units of hv0/l, where v0 = (1 + 4α)vF is the
low-energy edge-magnetoplasmon velocity in this model. We
observe that it saturates to 1 at large coupling. The finiteness
of the dissipated energy validates a posteriori that the high-
energy description of electronic decoherence is valid as long
as the average energy of the incoming excitation is large
compared to αhv0/l.

As a final check, one can rederive Eq. (E12) by considering
the reduced density operator for the low-energy electron/hole
pair excitations. When assuming that even after relaxation, the
wave packet remains well separated from the Fermi sea, one
can assume that 〈ψ (t−)ψ†(t+)〉F � v−1

F δ(t+ − t−) in (33a)
and therefore G (e)

MV,1(t |t ′) can be approximated by an expres-
sion which corresponds to the statistical mixture of states
|g(t )〉 ponderated by |ϕe(t )|2. This naturally comes from the
physical image of the incident electron emerging from the
interaction in a quantum superposition of the coherent elec-
tron/hole pair clouds |g(t )〉 attached to the electron being at
position vF t . Two different positions vF t and vF t ′ of the elec-
tron being perfectly distinguishable, what comes out is the sta-
tistical mixture of coherent electron/home pair clouds for the
low-energy edge-magnetoplasmon modes. Computing the av-
erage energy stored in this statistical mixture precisely leads to
(E12) since all the states |g(t )〉 carry the same average energy.

APPENDIX F: LOW-ENERGY DECOHERENCE
AND RELAXATION

At low frequency, the effective dipole associated with
the interaction region does not respond to a dc bias and
can thus be described in terms of a frequency dependent
admittance G(ω) in series with a capacitor Cμ (see Fig. 7).
As explained in Appendix C, the corresponding transmission
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FIG. 26. Parameters are w = 1 μm, d = 0.4 μm, and ω0τ0 =
10. The energy of the particle is 60 μeV, the resonance energy is
at 120 μeV.

coeffficient t (ω) = 1 − g(ω) has modulus one if and only
if 
(1/G(ω)) = RK/2 meaning that the circuit involves the
relaxation resistance Rq = RK/2 in series with a purely re-
active impedance. The simplest model for this pure reactance
consists of an LC circuit depicted on the left panel of Fig. 7.
The RC-time τ0 = RKCμ of the circuit corresponds to the
time of flight of low-energy edge magnetoplasmons across the
interaction region. Deviations from this behavior will lead to
single-electron decoherence.

At low energy, since t (ω) is close to unity, perturbative
expansion of B−(ω) in convolution powers of (1 − t (ω))/ω
can be performed. Expanding also t (ω) in powers of ωτO

then leads to expressions of the low-energy elastic scattering
amplitude in terms of the discrete element circuit parameters
τ0, L, and C. The inelastic scattering probability across the
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FIG. 27. Parameters are w = 3 μm, d = 0.5 μm, and ω0τ0 = 5.
The energy of the particle is at 30 μeV, the resonance energy at
45 μeV. We see that sending a smaller energy excitation allows for
larger loops.

interaction region is then given by

σ
(pert)
in (ω) = 11α2

3
180 (ωτ0)6 + 5α3α5

42 (ωτ0)8 + O((ωτ0)9), (F1)

where the inductance L is directly related to the α3 coefficient
and the capacitance C only contributes to the next order:

τ0 = RKCμ, (F2a)

α3 = L/RK

RKCμ

− 1

12
, (F2b)

α5 = 1

80
− 1

4

L/RK

RKCμ

+
(

L/RK

RKCμ

)2(
1 + C

Cμ

)
. (F2c)

This connects the inelastic scattering probability for an in-
coming electron to the low-frequency discrete element circuit
description for the interaction region.
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FIG. 28. Parameters are w = 3 μm, d = 0.5 μm, and ω0τ0 =
10. The energy of the particle is at 60 μeV, the resonance energy
at 45 μeV. In that case, the loops does not allow protection from
decoherence, and a plasmon state is emitted along with the electron.

A complementary understanding can be obtained by relat-
ing the finite-frequency admittance to the edge magnetoplas-
mon’s effective velocity v(ω) within the interaction region us-
ing t (ω) = exp (iωl/v(ω)) = 1 − g(ω). The effective circuit
of Fig. 7 corresponds to a low-frequency expansion of v(ω)
of the form

v(ω)

v0
= 1 +

(
1

12
− L/RK

RKCμ

)
(RKCμω)2 (F3a)

−
[

C

Cμ

(
L/RK

RKCμ

)2

− 1

12

L/RK

RKCμ

+ 1

180

]
(RKCμω)4

(F3b)

+O((ωRKCμ)6), (F3c)
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where RKCμ is the low-frequency time of flight l/v0. This
expansion directly connects the discrete circuit element pa-
rameters L and C to the low-frequency behavior of v(ω).
The value L = CμR2

K/12 corresponds to a frequency depen-
dency v(ω) = v0 + O((RKCμω)4). For 0 � L < CμR2

K/12,
the velocity of edge magnetoplasmons starts first to increase
quadratically at low-frequency, whereas v(ω) directly starts
decreasing for L > CμR2

K/12. Note that a higher inductance
contributes to a stronger slow-down of the edge magnetoplas-
mons with increasing frequency, as expected for an inductive
effect. The order 4 term given by Eq. (F3b) describes the
behavior of the plasmon velocity beyond this first order and
contributes to its decrease with increasing frequency.

Coming back to the electronic inelastic scattering proba-
bility given by Eq. (F1), the case where L = R2

KCμ/12 min-
imizes its growth: the first nonzero term is at order (ωτ0)10.
This reflects the fact that for L = R2

KCμ/12, the distorsion of
a percussional current pulse is minimal at low-frequencies.

Finally, let us remark that the expansion of Z (ω) up to
order (ωτ0)8 only involves up to the second convolution
power of (1 − t (ω))/ω, thus corresponding to the emission
of at most two edge-magnetoplasmons. Processes with higher
multiplasmon emission only contribute to higher powers in
Z (ω)’s expansion. Keeping only the first convolution power

in the expansion would lead to

σ
(1)
in (ω) = α2

3

18
(ωτ0)6 − 7α3α5

60
(ωτ0)8 + O((ωτ0)9), (F4)

which is the inelastic scattering probability arising from single
edge-magnetoplasmon emission.

APPENDIX G: MORE EXPERIMENTALLY RELEVANT
WIGNER FUNCTIONS

In this appendix, we show some more Wigner functions
for loops built as in Fig. 24 of different sizes, and excitations
of different energies ( see Figs. 26–28). Velocities parameters
are the same as in the main text, and Landau excitations have
a typical time τ0 = 100 ps. All other parameters are shown
below the corresponding Wigner functions. On all figures, the
top panel shows a closed loop, whereas middle panel shows
the case where both edge channels would stay outside of the
loop and experience standard interaction along a length w.
The bottom panel then displays the expected results of an
HOM experiment for both cases. Using these figures, we can
gain a more quantitative understanding of how changing the
loop size or the injection energy impacts the experimentally
accessible quantities.
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