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Trapping of electrons in localized states strongly affects optoelectronic phenomena in disordered semicon-
ductors. In this paper, it is shown by numerical simulations and by analytical calculations that the release of the
trapped electrons into the conduction band can be substantially enhanced by hopping of electrons between the
traps. The effect strongly depends on several factors, such as the energy depth of the given trap, the concentration
of the assisting traps, and the magnitude of the applied electric field. Recipes are given for theoretical studies of
the effect by analytical equations and by kinetic Monte Carlo simulations.
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I. INTRODUCTION

The processes of trapping and detrapping of charge carriers
govern numerous optoelectronic phenomena in disordered
semiconductors with localized states in the mobility gap
[1–4]. For instance, charge transport, photoinduced light ab-
sorption, and thermostimulated luminescence belong to such
effects. The appropriate theoretical description of trapping
and detrapping processes is therefore of vital importance for
the theoretical interpretation of various optoelectronic phe-
nomena in disordered semiconductors.

In order to illustrate the importance of trapping and detrap-
ping processes, we consider in Fig. 1 the so-called multiple-
trapping (MT) mechanism of charge transport, which is inher-
ent in disordered inorganic semiconductors [1–4] and which
is often considered to be valid also in organic disordered
semiconductors [5–8]. In the MT process, a charge carrier
moves only via delocalized states with energies above the
mobility edge εc. This motion is interrupted by trapping of
carriers into localized states with a subsequent activation of
carriers into conducting states above the mobility edge. The
time which a carrier spends in the system, i.e., the time which
determines the carrier mobility, is controlled by the rates
of the carrier release from the traps into conducting states
above εc.

The standard approach to describe the trapping and detrap-
ping processes is as follows. Without the electric field, the
escape rate from a trap into the conduction band is assumed to
be equal to

νesc(ε) = ν0 exp
(
− ε

kT

)
, (1)

where ε is the energy of the trap counted positively down-
wards from the mobility edge and ν0 is the preexponential
factor determined by the interaction mechanism responsible
for the transition. If transitions are caused by interaction with
phonons, ν0 is usually assumed to be of the order of the

phonon frequency. Focusing on the effect of the electric field
F on the exponential factor, we will not consider the effect of
F on ν0.

The effect of the electric field on νesc(ε) was first studied
theoretically by Keldysh [9], who showed that the applied
electric field can diminish the activation barrier for the elec-
tron escape from a trap, as illustrated schematically in Fig. 2,
where the process of thermally assisted tunneling due to
the electron-phonon coupling is depicted. This is a thermal
equivalent of the well-known Franz-Keldysh effect. In this
scheme, the escape event consists of two processes: activation
with the energy deficit �ε, as compared to the trap depth ε,
and tunneling over the distance �x = �ε/(eF ) under the tri-
angle energy barrier. Ascribing to the preexponential factor a
universal value ν0 and introducing the variable z ≡ (�ε)/kT ,
one can represent the result of Keldysh in the form

νesc(ε) = ν0 exp
{
− ε

kT

}

×
[

1 +
∫ ε/kT

0
exp

{
z − 4

√
2m(zkT )3/2

3eh̄F

}
dz

]
,

(2)

where m is the effective mass.
Localized states in organic disordered semiconductors and

traps in the band tails of inorganic disordered materials are
considered electrically neutral in the absence of carriers and
charged if carriers are present on the traps [1–4]. The release
of carriers from the traps in our study is therefore in contrast
to the ionization of traps considered, for instance, by Frenkel
[10], who treated traps as neutral when occupied by electrons
and ionized (positively charged) when electrons were released
from the traps.

It was recently shown [11] that the combined effects of an
electric field F and temperature T on the release rate given by
Eq. (2) can be described by a single parameter, the so-called
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FIG. 1. Sketch of the multiple-trapping process.

effective temperature Teff (T , F ). In the following calcula-
tions, we use Eq. (2), which accounts for the effect of the
electric field on the escape probability from an individual trap.
The major, exponential effect of the electric field on the escape
rate from a single trap is captured by Eq. (2). Besides this
major effect, the presence of the electric field can change the
conduction band wave functions and concomitantly change
the transition rate matrix elements, so that the factor ν0 in
Eq. (2) can also be field dependent. In the current study, we
will not address the field dependence of ν0 in Eq. (2) because
it should be only a weak correction to the main, exponential
field dependence that occurs due to the interplay between the
Boltzmann exponent and the tunneling exponent accounted
for by Eq. (2). Interested readers can find a thorough study of
the field dependence of the escape rate from a single trap in the
paper by Karpus and Perel [12]. That paper takes into account
all the effects of the electric field on the release rate from a
single trap. Not the straight release of a carrier from a single
trap to the conduction band is the topic of the current paper.
Therefore, we will avoid the elaborate mathematics of Karpus
and Perel [12] that is only necessary to treat the minor effects
of the electric filed on the escape probability for a single trap.
We instead adopt in the current study the more transparent
approach of Keldysh [9] and Vincent et al. [13], keeping ν0 in
Eq. (2) field independent.

In Eqs. (1) and (2), it is assumed that the rate of carrier
release from a given trap is not affected by the presence of
other traps. We verify this assumption in the current paper and
prove by analytical calculations and by numerical simulations
that hopping transitions between the traps can significantly

FIG. 2. Schematic picture of the field-enhanced escape from a
single trap.

enhance the exchange of electrons between the traps and
the conducting states above the mobility edge. In Sec. II,
we consider a single additional trap and analytically derive
the expression for the release rate of a carrier from a given
trap if hopping between the traps is taken into account. In
Sec. III, equations are derived for the case when electron
transitions between a given trap and several other traps can
contribute to the release rate. Results of the straightforward
Monte Carlo simulations, which take into account transitions
between several traps, are presented in Sec. IV. Concluding
remarks are gathered in Sec. V.

II. DETRAPPING ENHANCED BY A SINGLE EXTRA
TRAP: ANALYTICALLY SOLVABLE PROBLEM

Let us consider the simplest model illustrated in Fig. 3(a),
in which the hopping-assisted detrapping can take place. It
includes one electron, two localized states (trap 1 and trap 2),
and the conduction band, which is tilted due to the external
electric field. An electron initially resides on trap 1. Possible
electron transitions from trap 1 are the escape to the con-
duction band and the hop to trap 2, with rates �1 and �12,
respectively. Similarly, if the electron resides on trap 2, the
possible processes are the escape to the conduction band (with
rate �2) and a hop to trap 1 (with rate �21). We are interested in
the mean time t between the moment when an electron arrives
in trap 1 and the moment when it escapes to the conduction
band. The question is, can the value of t be considerably
smaller than the corresponding time 1/�1 in the absence of
trap 2? In other words, can the presence of the additional trap
significantly enhance the process of the electron escape from
a trap to the conduction band?

In order to calculate the mean time t exactly, it is conve-
nient to analyze a steady state with a continuous supply of
electrons into trap 1 with a constant rate γ0 that is infinitely
small compared to the rates of other processes. When an
electron reaches the conduction band, it disappears from
our consideration. In this setting, the mean escape time t is
expressed as

t = p1 + p2

γ0
, (3)

where p1 and p2 are the probabilities of finding the electron
in the steady state on trap 1 and on trap 2, respectively.
These probabilities can be calculated from a system of balance
equations for the two traps,

(�1 + �12) p1 = �21 p2 + γ0,

(�2 + �21) p2 = �12 p1. (4)

Equations (3) and (4) provide the solution in the form

t = �2 + �12 + �21

�1�2 + �12�2 + �21�1
. (5)

Let us consider a particular case of traps with equal
energies. Let the direction from trap 1 to trap 2 be against the
electric field, so that trap 2 is shallower than trap 1, as depicted
in Fig. 3(b). Since the traps are isoenergetic, the principle
of detailed balance implies that �12 = �21. The dependence
of the hopping rates on the distance d between the traps is
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(a) (b) (c)

FIG. 3. Two localized states under electric field F: (a) space-energy diagram for the general case, (b) specific case of isoenergetic traps,
and (c) specific case of F = 0.

governed by the localization length a for electron states on
single traps,

�12 = �21 = νh exp

(
−2d

a

)
. (6)

In a more general case of nonisoenergetic localized states
i and j , the rate �ij obeys the Miller-Abrahams expression
[14]:

�ij = νh exp

(
−2dij

a

){
1 if �ij < 0,

exp(−�ij /kT ) if �ij > 0,

where �ij is the difference between the energies of states j

and i. The expression for the preexponential factor νh in the
case of one-phonon transitions caused by deformation poten-
tial can be found in the monograph by Shklovskii and Efros
[15]. One can deduce from their Eqs. (4.2.6) and (4.2.18) that

νh = E2
1 |�ij |

πρs5h̄4 I 2
0

[
1 +

(
�ij a

2h̄s

)2
]−4

,

where E1 is a deformation potential constant, ρ is the mass
density, s is the sound velocity, and I0 is the preexponent in the
dependence of the energy overlap integral Iij on the distance
dij : Iij = I0 exp(−dij /a). For hydrogenlike impurities, the
expression for Iij is given by Eq. (4.2.6) of Shklovskii and
Efros [15].

The ratio of the escape rates �2/�1 is defined mainly by the
difference δε between their depths with respect to the mobility
edge,

�2

�1
� exp

(
δε

kT

)
= exp

(
eFd

kT

)
. (7)

Substituting �21 = �12 into Eq. (5) and taking into account
that �1 � �2, one obtains

t ≈ 1

�2

�2 + 2�12

�1 + �12
. (8)

In Fig. 4, we schematically plot the dependence t (d ) for a
given depth of trap 1. When the distance d is sufficiently
small, �12 is much larger than the other rates in Eq. (8).
Neglecting �1 and �2 compared to �12, one can conclude that

t (d ) ≈ 2

�2(d )
� 2

�1
exp

(
−eFd

kT

)
, (9)

where we have expressed �2 via �1 using Eq. (7). In this
regime [a decreasing part of the dependence t (d ) in Fig. 4], an
electron typically hops back and forth between the traps many

times, and only afterwards does it escape from the shallow
trap 2. Hence, the process of electron escape is controlled in
this regime by the rate �2.

With increasing distance d, the hopping rate �12 decreases
according to Eq. (6), and the escape rate �2 increases because
trap 2 becomes shallower with increasing d. At some “opti-
mal” distance dopt the two rates become equal to each other:

�12(dopt) = �2(dopt). (10)

Neglecting �1 in Eq. (8), one obtains the corresponding
optimal mean escape time topt = t (dopt),

topt ≈ 3

�2(dopt)
. (11)

At larger distances d, the hopping rate �12 is small com-
pared to �2, although still large compared to �1. According to
Eqs. (8) and (6), this yields

t (d ) ≈ 1

�12(d )
= ν−1

h exp

(
2d

a

)
. (12)

The corresponding regime is depicted by the increasing part
of the dependence t (d ) in Fig. 4. In this regime, an electron
typically resides on trap 1 until it hops to trap 2, which is
followed by a fast escape from trap 2 into the conduction
band. The dynamics of this process is mainly governed by the
hopping rate �12.

FIG. 4. Escape time t versus the distance d between the traps in
the model of the two isoenergy traps depicted in Fig. 3(b). The red
dashed line corresponds to an electric field two times smaller than
the field for the solid black line.
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Finally, at sufficiently large distances d, the hopping rate
�12 becomes smaller than both �1 and �2, and it therefore can
be neglected in Eq. (8). In this regime, the escape time does
not depend on d anymore:

t (d ) ≈ 1

�1
(13)

[the horizontal section of the dependence t (d ) in Fig. 4].
Indeed, if �12 � �1, the most probable scenario is that the
electron escapes to the conduction band directly from trap 1,
instead of visiting the additional trap 2 because trap 2 becomes
too remote from trap 1 to be involved in the escape process.

The overall dependence t (d ) (solid line in Fig. 4) consists,
therefore, of three regions corresponding to Eqs. (9), (12),
and (13). If the strength of the electric field is halved, the
dependence t (d ) is represented in Fig. 4 by the dashed line.
One can see that the additional trap enhances the process
of the electron release most efficiently when such a trap is
located at a distance dopt, which can be found via Eqs. (6), (7),
and (10),

dopt =
(

2

a
+ eF

kT

)−1

ln
νh

�1
. (14)

According to Eqs. (7), (11), and (14), the corresponding mean
escape time topt is equal to

topt ≈ 3

�1

(
�1

νh

)1/(1+2kT /eFa)

. (15)

At a moderate electric field, when eFa � kT , one can
simplify this expression by replacing the exponent 1/(1 +
2kT /eFa) with eFa/2kT and neglecting all contributions to
the ratio �1/νh except the Boltzmann factor,

�1

νh

� exp
(
− ε1

kT

)
, (16)

with ε1 being the depth of the trap 1. Herewith one obtains the
following estimate:

topt � �−1
1 exp

[
− ε1eFa

2(kT )2

]
. (17)

Aiming to reveal how efficiently the additional trap may
enhance the release of an electron into the conduction band, it
is convenient to consider the enhancement factor F , defined
as the ratio between the mean escape time from a single trap
�−1

1 and the escape time topt in the presence of an additional
trap at the optimal position,

F = �−1
1

topt
. (18)

With topt estimated in Eq. (17), the enhancement factor is

F � exp

[
ε1eFa

2(kT )2

]
. (19)

The factor F increases with an applied electric field, and it
reaches exponentially large values if the trap is sufficiently
deep (ε1 � kT ).

One can see in Eq. (19) that the carrier release process
is also enhanced with lowering the temperature T and with
increasing the depth ε1 of the trap for a given electric field

strength. The role of the trap depth will be clearer in Sec. IV B,
which gives a comparison between the simulation results for
trap depth ε1 = 0.3 eV and those for depth ε1 = 0.5 eV. In
order to understand the role of temperature, one can note
that the field F and the trap depth ε1 may appear in the di-
mensionless enhancement factor F only as the dimensionless
combinations F ∗ = eFa/kT and ε∗

1 = ε1/kT . Therefore, the
lowering of temperature results in the increase of both F ∗ and
ε∗

1 , which affects the enhancement factor in exactly the same
way as a simultaneous increase of the electric field and the
trap depth.

The increase of the enhancement factor with decreasing
temperature can also be seen directly from Eq. (5). Consider
for simplicity the case of the isoenergetic traps depicted in
Fig. 3(b). Substituting Eq. (5) into the enhancement factor
F = �−1

1 /t and taking into account that �12 = �21, one ob-
tains that

F = �12
�2/�1 − 1

�2 + 2�12
+ 1.

When the temperature decreases, the numerator �2/�1 − 1
increases because �2/�1 = exp(eFd/kT ) according to
Eq. (7). At the same time, the denominator �2 + 2�12 de-
creases since �2 ∝ exp(−ε2/kT ), while the hopping rate �12

between the isoenergetic sites remains the same (up to the
preexponential factor). As a consequence, the enhancement
factor increases with decreasing temperature at any distance
d between the traps. This increase is especially strong at the
optimal distance dopt where, according to Eqs. (11), (7), and
(18), F � �2(dopt)/�1 = exp(eFdopt/kT ). One can briefly
formulate the effect of temperature on the enhancement factor
as follows. The lower the temperature is, the faster the way
of escaping via site 2 is, compared to the direct escape from
site 1.

The obtained strong dependence of the enhancement factor
on the electric field is illustrated in Fig. 4, where we schemat-
ically plot the two dependences t (d ) for the two different
values of the electric field F . The decreasing part of the
dependence demonstrates a smaller slope at smaller F (red
dashed line) because ln(�2/�1) is proportional to F due to
Eq. (7). Therefore, the logarithm of the enhancement factor
is also approximately proportional to the field, in agreement
with Eq. (19). Furthermore, the transition rate �1 ≡ νesc(ε1)
depends on the electric field F : a smaller field efficiently
causes trap 1 to be at a larger energy depth relative to the con-
duction band, thereby decreasing �1. This effect is described
by Eq. (2) and is also schematically depicted in Fig. 4, where
the red dashed line (corresponding to smaller F ) in the limits
of small and large distances d demonstrates a larger value of
the escape time t ≈ 1/�1.

The enhancement of the detrapping efficiency has been
derived so far for the specific case of the additional trap
having the same energy as the first trap. In a more general
case, the enhancement can be even more pronounced. It is
worth emphasizing that the effect appears in the presence of
an external electric field. In contrast, the increase in the release
rate due to the presence of an additional trap without electric
field cannot exceed a factor of 2. In the case of F = 0 depicted
in Fig. 3(c), the ratio �21/�12 and the ratio �2/�1 are defined
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by the same Boltzmann factor exp[(ε1 − ε2)/kT ],

�21 = �12 exp

(
ε1 − ε2

kT

)
(20)

and

�2 = �1 exp

(
ε1 − ε2

kT

)
. (21)

Substituting Eqs. (20) and (21) into Eq. (5), one can express
the enhancement factor F in the absence of an electric field as

F = �−1
1

t
= �1 + 2�12

�1 + [1 + e−(ε1−ε2 )/kT ]�12
. (22)

Apparently, F cannot exceed 2 because, in any case, the
numerator on the right-hand side is smaller than twice the
denominator. The largest possible value of F ≈ 2 can be
reached if exp[−(ε1 − ε2)/kT ] � 1 (i.e., the additional trap 2
is higher in energy than trap 1 by at least several kT ) and,
simultaneously, �12 � �1, which can be fulfilled if the traps
are sufficiently close to each other. In such a case, the ad-
ditional trap just provides another channel for the electron
escape, which is as fast as the direct escape from the first trap.
At the same time, the additional trap provides a channel for
the electron capture from the conduction band to trap 1. The
capture efficiency and the release efficiency are enhanced in
the same ratio, as prescribed by the detailed balance in the
absence of an electric field.

Therefore, it is shown using the simplest model that the
electron release from a trap to the conduction band can be sub-
stantially enhanced by the presence of an additional, shallower
trap. In the absence of the external electric field, the factor of
enhancement F is not larger than 2. In the presence of the
external electric field F , the factor of enhancement depends on
F exponentially, in agreement with Eq. (19). Thus, the release
rate can be enhanced by several orders of magnitude.

III. DETRAPPING ENHANCED BY SEVERAL EXTRA
TRAPS: NUMERICALLY SOLVABLE PROBLEM

Let us generalize the model considered in Sec. II, taking
into account several additional traps. An electron is placed
initially on trap 1, and the dynamics is governed by the rates
�mn of electron hopping between the traps and by the rates
�n of electron escape from trap n to the conduction band, as
illustrated in Fig. 5. In this model with several traps, Eq. (4)
turns into the following system of balance equations (one
equation per a trap):⎛

⎝�1 +
∑
n
=1

�1n

⎞
⎠p1 =

∑
n
=1

�n1 pn + γ0,

⎛
⎝�2 +

∑
n
=2

�2n

⎞
⎠p2 =

∑
n
=2

�n2 pn,

· · ·⎛
⎝�m +

∑
n
=m

�mn

⎞
⎠pm =

∑
n
=m

�nm pn,

· · · , (23)

FIG. 5. A model with several traps. Dashed arrows show hopping
transitions that are present in the complete model [Eqs. (23) and (24)]
but absent in the reduced “bush” model [Eqs. (25)–(29)].

where p1, p2, . . . are the probabilities of finding an electron
on the corresponding traps. The mean time t which an elec-
tron spends in the system of traps before escaping into the
conduction band is equal to

t =
∑

n pn

γ0
, (24)

which is a direct generalization of Eq. (3).
Equations (23) and (24) permit us to calculate the escape

time t by methods of linear algebra, provided the set of
hopping rates {�mn} and the set of escape rates {�n} are given.

The solution for t can be considerably simplified and repre-
sented in a closed form if one neglects the hops between traps
other than the hops from/to trap 1. In such a reduced “bush”
model, the rates for transitions illustrated by the dashed arrows
in Fig. 5 are “switched off,” and the hopping rate �mn is
nonzero only if m = 1 or n = 1. In such a simplified model,
the balance equations (23) are reduced to⎛

⎝�1 +
∑
n
=1

�1n

⎞
⎠p1 =

∑
n
=1

�n1 pn + γ0,

(�2 + �21)p2 = �12 p1,

· · ·
(�m + �m1)pm = �1m p1,

· · · . (25)

This system of equations can be solved by the elimination of
p2 (p3, etc.) using the second (third, etc.) equation. As a result,
the expression for the mean escape time t acquires the closed
form

t =
1 + ∑

n
=1
�1n

�n+�n1

�1 + ∑
n
=1

�1n�n

�n+�n1

. (26)

In the case of a single assisting trap, Eq. (26) takes on the form
of Eq. (5) obtained in Sec. II.

The escape time t should be averaged over the possible ran-
dom realizations of the distribution of traps around the given
trap 1. It is possible, however, to obtain a reasonable estimate
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for the averaged t (order of magnitude) without dealing with
the random realizations. For that purpose, one can just average
the numerator and the denominator in Eq. (26) separately (the
angle brackets denote the averaging over realizations):

〈t〉 �
〈
1 + ∑

n
=1
�1n

�n+�n1

〉
〈
�1 + ∑

n
=1
�1n�n

�n+�n1

〉 . (27)

This procedure is justified for estimating the average 〈t〉 if the
denominator does not vary in an exponentially broad range.
Summations in the averaging can be replaced by integrations∑

n

→
∫

drn

∫
dεn g(εn), (28)

where g(ε) is the density of states of the traps. This yields an
analytical estimate for the average escape time in the form

〈t〉 �
1 + ∫

drn

∫
dεn g(εn) �1n(rn,εn )

�n(εn )+�n1(rn,εn )

�1 + ∫
drn

∫
dεn g(εn) �1n(rn,εn ) �n(εn )

�n(εn )+�n1(rn,εn )

. (29)

All the rates contributing to Eq. (29) should be found while
taking the external electric field into account. The range of the
integration over dεn starts at the energy of the given trap 1 and
extends towards the conduction band edge.

Hence, there are three methods of calculating the mean
escape time from a given trap: (i) by solving the system of
equations (23) and (24); (ii) by Eq. (26) in the bush model,
which neglects the hopping transitions if the given trap 1 is not
involved; and (iii) by the approximate analytical formula (29).
The first and second methods assume the averaging over
realizations of the traps around the given trap 1, while in the
third method, this averaging is incorporated by the integration.

Alternatively to solving the system of balance equations,
one can use a kinetic Monte Carlo (KMC) method to simulate
the carrier escape from a given trap due to hopping transitions
to the surrounding traps accompanied by electron activation
from those traps into the conduction band. If the number of
involved traps is large, the KMC approach can be favored as a
less elaborate one than the solution of the balance equations.
In Sec. IV, we provide the KMC algorithm for studying the
role of the hopping transitions in the detrapping process and
highlight the results of simulations.

IV. MONTE CARLO SIMULATIONS OF THE ELECTRON
ESCAPE ASSISTED BY SEVERAL TRAPS

In this section, we present the results of the numerical study
of the hopping-assisted detrapping using the KMC approach.
In Sec. IV A, the algorithm is described in detail, while in
Sec. IV B, the obtained results are discussed.

A. Simulation details

The simulation algorithm consists of the following steps.
(1) First, a set of N0 traps, also called sites, is generated.

The sites are distributed exponentially in energy with a char-
acteristic energy E0. The sites are distributed randomly in
space with concentration N determined by a given value of
the dimensionless parameter Na3, where a is the localization
length of a single trap.

(2) A trap with energy Ei is placed at the origin of the
coordinate system (0,0,0), and the escape of a charge carrier
from this trap is simulated. Since the detrapping from the
localized states with energies in the vicinity of the Fermi level
dominates all the transport phenomena, we assume that Ei

corresponds to the Fermi level. The traps with energies below
Ei are therefore assumed to be occupied by carriers, while
sites with energies above Ei are assumed to be empty.

(3) The rates of all possible events are calculated. The rate
of the straight release of a charge carrier from a trap into the
conduction band is described by Eq. (2). The hopping rates are
assumed to be described by the Miller-Abrahams expression
[14]. For each pair of sites (i, j ), the transition rate νij is
determined by the separation between sites, rij ≡ rj − ri , and
the energy difference εj − εi ,

νij = ν0 exp

(
−2|rij |

a

)
γ (εj − εi + eF · rij ), (30)

with

γ (�ε) =
{

exp(−�ε/kT ) if �ε > 0,
1 otherwise. (31)

(4) The cumulative event rate �i = νesc + ∑
i 
=j νij is cal-

culated, and the time until the next event is determined
as �τi = �−1

i Ri , where Ri = − ln(xi ) includes the random
number xi uniformly distributed in the range [0,1].

(5) In order to determine the particular event that happens
with the charge carrier, the rates of all possible events were
normalized via the cumulative event rate �i , and another
random number p ∈ [0, 1] was used in order to choose the
event in agreement with its rate.

(6) If the chosen event is a release of the carrier to the
conduction band, the simulation with the given charge carrier
was finished by updating the cumulative time. If the chosen
event is a hopping transition, the carrier is moved, the cu-
mulative time which the carrier spends in the localized states
τ = τ + �τi is updated, and the algorithm returns to step 3.

The results were averaged over a large number of real-
izations between 104 and 105. The number of traps in the
simulations was N0 = 103. The characteristic energy of the
exponential DOS was set to E0 = 5 × 10−2 eV. The values
of the parameter Na3 were varied from 10−3 to 10−1, and the
strength of the electric field F was varied from 0 to 1 MV/cm.
Simulations were carried out at room temperature T = 300 K.

B. Simulation results

Using the algorithm described above, the hopping-assisted
release of charge carriers from deep traps with energies 0.3
and 0.5 eV was simulated for different values of the parameter
Na3 that determines the efficiency of the hopping exchange
of carriers between the traps. In Figs. 6 and 7 the simulation
results are given for a trap with an energy depth of 0.3 eV,
while the results for a trap with an energy depth of 0.5 eV are
presented in Figs. 8 and 9.

The red dotted lines in Figs. 6 and 8 correspond to the case
of a single trap. These results were obtained in agreement with
Eq. (2). The value of the effective mass in these calculations
was taken to be equal to the free-electron mass m0. The
green dotted lines in Fig. 6 and the blue dotted lines in
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FIG. 6. Release time versus field F for the trap with energy Ei =
0.3 eV. The red dotted line corresponds to the straight release from
the trap into the conduction band given by Eq. (2); green dotted lines
correspond to the release assisted by hopping for different values
of Na3.

Fig. 8 correspond to the hopping-assisted release for different
concentrations of traps in the range between Na3 = 10−3 and
10−1. It is apparent that the release time (rate) from the given
trap significantly decreases (increases) due to the hopping
exchange of carriers between the traps. The effect depends on
the value of the parameter Na3. At high fields, the effect for
Na3 = 10−1 achieves several orders of magnitude. In order
to illustrate the effect of the release enhancement due to the
hopping exchange between the traps, we plot in Figs. 7 and 9
the ratio between the release time in the case of the hopping
exchange and the release time given by Eq. (2). The release
enhancement for the trap with a depth of 0.5 eV achieves
three orders of magnitude at Na3 = 10−1, F = 1 MV/cm. At
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FIG. 7. Release time normalized by the value given by Eq. (2)
versus field F for the trap with energy Ei = 0.3 eV.
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FIG. 8. Release time versus field F for the trap with energy Ei =
0.5 eV. The red dotted line corresponds to the straight release from
the trap into the conduction band given by Eq. (2); blue dotted lines
correspond to the release assisted by hopping for different values
of Na3.

a low concentration of traps Na3 = 10−3, the effect is less
significant.

It is seen in Figs. 6, 7, 8, and 9 that the release rate
νesc(ε) = t−1(ε) from a given trap is enhanced in the presence
of other traps compared to the case of a single trap already
at F = 0 V/cm. This effect is accompanied by the equal
enhancement of the trapping rate νtrap(ε) in a given trap due
to the assistance of the surrounding traps. The dependence
of such an enhancement on Na3 is shown in Fig. 10. This
enhancement of νesc(ε) does not, however, affect the equilib-
rium concentration of carriers in the conducting states above
the mobility edge because of the validity of the detailed
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FIG. 9. Release time normalized by the value given by Eq. (2)
versus field F for the trap with energy Ei = 0.5 eV.
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FIG. 10. Relative release times versus Na3 for traps with ener-
gies of 0.3 and 0.5 eV.

balance,

νesc(ε)/νtrap(ε) = exp (−ε/kT ). (32)

Not the escape rate itself, but the ratio between the trapping
and the escape rates governs the equilibrium concentration
of carriers. Because of the detailed balance at F = 0, this
ratio depends only on the energy of a given trap, and it is not
influenced by the presence of other traps. The enhancement
of the release rate at F = 0 can, however, affect phenomena
which are determined solely by the escape rate νesc(ε), such
as the thermally stimulated luminescence. In contrast to the
thermally stimulated conductivity, which is governed by the
interplay between the trapping and detrapping processes [16],
the thermally stimulated luminescence is often claimed to be
determined solely by a single event of the carrier release from
a trap into the conduction band [17,18].

On the contrary, in the presence of an electric field, hopping
processes affect the release rate more efficiently than the
capture rate. This enhances the concentration of carriers in the
conduction band in the presence of an applied electric field F .

The results of the simulations presented in Figs. 6, 7, 8, 9,
and 10 were obtained for the case of an exponential density
of states (DOS) with the characteristic energy scale E0 =
5 × 10−2 eV. This estimate for the energy scale E0 of the DOS
was reported in the literature for organic [8] and inorganic [2]
disordered materials. The choice of E0 is, however, significant
for the phenomenon of the hopping-assisted release from the
traps studied in this paper. In order to reveal the effect of
E0 on the hopping-assisted release, we have simulated the
release processes at different ratios Ei/E0 between the depth
of the trap Ei and E0. In Fig. 11, the simulated data for
the release time in the hopping-assisted process normalized
by the release time given by Eq. (2) are plotted for different
values of the ratio Ei/E0. The simulations were carried out
for Ei = 0.5 eV at a fixed value of Na3 = 0.1, at which the
effect of the hopping-enhanced release is most pronounced.
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FIG. 11. Dependence of the electron relative release time on the
relation between the trap depth Ei and the scale of the DOS E0 for
Na3 = 0.1.

It is seen that a pronounced enhancement for the hopping-
assisted release is observed only in the case of the relatively
small E0 at Ei/E0 > 4. Such an effect is to be expected. At
small values of E0/Ei , there are many localized states with
energies above the energy of the given trap, which can help in
the release of carriers from the given trap. On the contrary, at
large E0, the energies of the traps, which are spatially close
to the given trap, are remote from the band edge. The carrier
hopping to such traps can even suppress the efficiency of the
release from a given trap, as seen in Fig. 11 for small values
of Ei/E0 < 2.

In Fig. 12 we show a comparison between the results of
the Monte Carlo simulations and the results obtained with
Eq. (26) and with Eq. (29). In order to solve the problem
numerically in agreement with Eq. (26), the positions and
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FIG. 12. Comparison between the results of the Monte Carlo
simulations with those of Eqs. (26) and (29).
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FIG. 13. The ratio of the release times for the hopping-assisted
process at two different values of the effective mass, m = m0 and
m = m0/2.

energies of traps were generated via the procedure described
in Sec. IV A with averaging the result over 105 realizations.
One can see that the results of Eq. (26) are in good agreement
with those of the Monte Carlo simulations. Equation (29),
in contrast to Eq. (26), does not imply any averaging over
different realizations, being a purely analytical formula which
can easily be solved by the routine algorithms of numerical
integration. The data in Fig. 12 show that Eq. (29) can be used
for the description of the hopping-assisted release from the
traps only at high values of the parameter Na3 > 0.05, i.e., at
high concentrations of localized states.

The rate of a straight release of a charge carrier from a
trap into the conduction band described by Eq. (2) depends
on the value of the effective mass m. In the calculations
described above, the value of the free-electron mass m =
m0 was used to be definite. The effective mass governs the
tunneling probability of the carrier under the triangle barrier
illustrated in Fig. 2. The smaller m is, the easier the tunneling
is, and the larger the rate of the straightforward release of

carriers from the traps is. In Fig. 13, the ratio of the release
times for the hopping-assisted process at two different values
of the effective mass, m = m0 and m = m0/2, is plotted as a
function of the parameter Na3. The larger the parameter Na3

is, i.e., the larger the concentration of localized states N is, the
less important the effect of the effective mass on the release of
carriers from the traps assisted by hopping processes is.

V. CONCLUSIONS

Analytical calculations and Monte Carlo simulations ev-
idence that hopping transitions of charge carriers between
localized states in the band tails can substantially enhance
the process of the field-induced carrier release from the traps
into the conducting states above the band edges. The strength
of the effect depends on the concentration of the localized
states, on their energy distribution, on the localization length
of carriers in the localized states, on the carrier effective mass,
on the depth of the given trap at which a carrier is initially
placed, on temperature, and on the strength of the applied
electric field. At the values of material parameters used for
numerical studies in this paper, the effect can achieve several
orders of magnitude.

A simulation algorithm to study the hopping-assisted re-
lease of charge carriers from the traps was formulated and
applied for several sets of material parameters. Furthermore,
a recipe was suggested for studying the effect numerically
without straightforward simulations. The recipe is based on
the solution of a set of algebraic equations. Moreover, a
closed-form analytical expression was derived which was
shown by the numerical solution of the algebraic equations
and by the straightforward Monte Carlo simulations to be
sufficiently accurate at high concentrations of the localized
band tail states.
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