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We study the coexistence of pair- (PDW) and charge-density-wave (CDW) states within the single-band t-J -U
and Hubbard models of d-wave superconductivity and discuss our results in the context of the experimental
observations for the copper-based compounds. In order to take the correlation effects into account with
proper precision, we use the approach based on the diagrammatic expansion of the Gutzwiller wave function
(DE-GWF), which goes beyond the renormalized mean-field theory in a systematic manner. According to our
analysis of the t-J -U model, the transition between the pure d-wave superconducting phase and the coexistent
CDW+PDW phase takes place at δ ≈ 0.18 (close to the optimal doping), with the modulated phase located in
the underdoped regime. The situation is different for the case of the Hubbard model, where a narrow stability
regime of a precursor nematic phase sets in preceding the formation of the modulated CDW+PDW state, with
decreasing hole doping. The results conclude our comprehensive discussion of the standard phase diagram for
high-TC superconducting compounds within the DE-GWF variational approach in the single narrow-band case
[see J. Spałek et al., Phys. Rev. B 95, 024506 (2017); M. Zegrodnik and Spałek, ibid. 95, 024507 (2017); 96,
054511 (2017); New J. Phys. 20, 063015 (2018)].
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I. INTRODUCTION

The charge-density-wave (CDW) state plays an important
role in the physics of underdoped copper-based high-TC su-
perconducting (SC) compounds. For yttrium- (yttrium barium
copper oxide, YBCO) and Bi- and Hg-based materials, the
incommensurate CDW modulation vectors Q lie in the copper
oxide plane and have the forms (0,Q)2π/a and (Q, 0)2π/a

(a is the Cu-O lattice constant) [1–5], with a weakly doping
dependent periodicity Q ≈ 0.25–0.3 [2,3,5–8]. It is still under
debate whether the proximity of the vector Q to the vectors
connecting neighboring hot spots at the Fermi surface is only
a coincidence or, in fact, the Fermi surface topology imposes
the CDW periodicity. Both the charge stripes with 90◦ rotated
domains and the checkerboard pattern are consistent with the
two simultaneously measured modulation vectors, and it is
not settled as yet which scenario is realized experimentally.
Nevertheless, some reports point to the charge stripes as the
actual form of the CDW state [9].

For the La-based cuprates, in which the charge order
was initially observed, it has been confirmed that uniaxial
stripe domains with a periodicity of ∼4a are formed [10–12].
However, in this case an arrangement of combined charge and
spin order is believed to appear simultaneously. Also, other
significant differences between the majority of the cuprate
family and the La-based cuprates appear when it comes to
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the discussion of the charge-ordered phase [9,13,14]. In our
considerations we refer mainly to the former systems.

Since both the high-temperature superconductivity and
CDW phase appear in the same doping range of the phase
diagram (the underdoped regime), a natural question concerns
the interplay between the two phases. The experimental data
clearly show the competition between the CDW and SC,
which is manifested by the plateau in the SC critical temper-
ature in the underdoped regime, as well as by the suppression
of the CDW intensity peak and correlation length below TC

[3–5,15,16]. Another issue which concerns the relationship
between the two phases is the possibility of spatially mod-
ulated Cooper-pair density, which could coexist with charge
ordering in the underdoped regime. Such a pair-density-wave
(PDW) state has some principal similarities to the Fulde-
Ferrell-Larkin-Ovchinnikov state, which has been proposed
in various systems [17–21]. Very recently, the PDW state
was reported experimentally in Bi2Sr2CaCu2O8+x (BSCCO)
[22], and it was found that the pair-density and charge-density
modulations are governed by very similar vectors, Q ≈
(0.25, 0)2π/a and Q ≈ (0, 0.25)2π/a. Such an observation
is consistent with the Ginzburg-Landau theory of a d-wave
superconductor coexisting with the d-symmetry form factor
charge density wave [23–25]. The coexistent CDW+PDW
state with QCDW = QPDW has also been studied theoretically
within the microscopic spin-fermion and Hubbard models
[25–27]. In the latter case, the variational cluster approxi-
mation has been used, and the stability of the PDW+CDW
state has been shown to appear at δ > 0.08 (the calculations
were carried out only for δ < 0.15; see Fig. 7 in Ref. [26]).
For the case of the spin-fermion model [25] it was argued
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that the PDW+CDW phase should appear in the underdoped
regime with a pure d-wave superconducting phase appearing
above the optimal doping, which is in accordance with the
experimental expectations. One should also note the recent ex-
perimental and theoretical results concerning the appearance
of the PDW and CDW coexistence within the vortex core halo,
which, however, do not correspond directly to the situation
presented here [28–33].

Here, we analyze theoretically the PDW and CDW coexis-
tence within the single-band Hubbard and t-J -U models with
the inclusion of correlation effects by going beyond the renor-
malized mean-field theory (RMFT) approach in a systematic
manner. Namely, we use the diagrammatic expansion of the
Gutzwiller wave function (DE-GWF) method, which allows
us to obtain the full Gutzwiller wave function solution for
the modulated states and to study their stability as a function
of doping. It was shown previously that by accounting for
the electron correlations already at the level of RMFT one
can obtain the proper charge-ordering modulations with a
dominant d-form factor within the t-J -V model [34]. In these
considerations the intersite Coulomb interaction term (∼V )
is necessary to induce the charge-ordered phase. However,
a similar result can also be obtained within alternative ap-
proaches [35–38].

As we show below, by using the DE-GWF method, the
CDW modulation appears already within the Hubbard model
(with only intrasite repulsion), which is one of the canonical
one-band models used for the description of the Cu-O planes
in copper-based materials. Furthermore, we also study the
t-J -U model, for which we recently obtained very good
quantitative agreement between theory and experiment for the
selected principal observations of the d-wave superconducting
state in cuprates (the motivation for using such an extended
model is discussed in Ref. [39]). With this analysis, we extend
our previous considerations of pure d-wave superconductivity
to the description of both charge- and Cooper-pair-modulated
states. Within our study both the PDW and CDW states are
modulated according to a fixed single commensurate vector
Q = (1/3, 0)2π/a, which is close to the incommensurate one
measured in experiment [4,7,9]. Such an approach is justified
by the very weak measured doping dependence of Q [5]
and the close proximity of the PDW and CDW modulation
vectors reported in experiments [22]. In our calculations we
allow for both the site-centered (s-wave) and bond-centered
(d-wave, extended s-wave) CDWs. The former corresponds
to a situation in which the on-site electron concentration is
modulated, whereas for the latter the electron hopping value
is modulated.

We show that for the model with both a small but nonzero
number of double occupancies and the intersite exchange in-
teraction term included explicitly (t-J -U model), the stability
of the coexistent PDW+CDW modulated state is contained in
the underdoped regime, and the pure d-wave SC phase occurs
at and above the optimal doping on the phase diagram and thus
reproduces the experimental situation. However, the issue of
the modulation form factor still seems to remain problematic
since in our analysis the site-centered CDW contribution
appears to be significant, in contradiction to the experimental
data, where the nodal, d-wave-type modulation persists to the
lowest possible doping in the metallic phase.

The structure of the paper is as follows. In the next section
we present the theoretical model and its solution. Section III
contains detailed numerical results and a discussion of them.
The conclusions are contained in the last section.

II. THEORY

A. Model and wave function

The Hamiltonian considered here is [39–42]

Ĥ = t
∑

〈ij〉σ
ĉ
†
iσ ĉjσ + t ′

∑

〈〈ij〉〉σ
ĉ
†
iσ ĉjσ

+ J
∑

〈ij〉
Ŝi · Ŝj + U

∑

i

n̂i↑n̂i↓, (1)

where the first two terms correspond to the single-electron
hoppings, the third represents the antiferromagnetic superex-
change interaction, and the last refers to the intrasite Coulomb
repulsion. By 〈· · · 〉 and 〈〈· · · 〉〉 we denote the summations
over the nearest neighbors and next-nearest neighbors, re-
spectively. For J ≡ 0 we obtain the Hubbard model which
is also considered here, whereas for the case of U → ∞
(i.e., U 
 |t |) we reproduce the t-J model. Formally, this
model describes an interpolation between the Hubbard and
t-J model limits. Physically, it extends the concept of kinetic
exchange to the situation when U is not too large compared to
the bare bandwidth W .

This extended model was discussed in detail by us previ-
ously and applied to a quantitative analysis of selected univer-
sal properties of cuprate high-TC superconductors within our
original diagrammatic solution of the Gutzwiller wave func-
tion in two dimensions [39–41]. Also, the effect of nematicity
on the resulting phase diagram was discussed by us recently
[42]. In what follows we supplement our extensive analysis by
incorporating the CDW/PDW solution into the scheme.

In order to take into account interelectronic correlations
we use the DE-GWF approach to the Gutzwiller-type wave
function defined by

|�G〉 ≡ P̂G|�0〉, (2)

where |�0〉 is the noncorrelated wave function (which will be
defined later) and the correlation operator P̂G is

P̂G ≡
∏

i

P̂i =
∏

i

∑

�

λi,�|�〉ii〈�|, (3)

where λi,� ∈ {λi∅, λi↑, λi↓, λid} are the variational parame-
ters which correspond to four states from the local basis
|∅〉i , |↑〉i , |↓〉i , |↑↓〉i at site i, respectively.

An important step of the DE-GWF method is the applica-
tion of the condition [43,44]

P̂ 2
i ≡ 1 + xi d̂

HF
i , (4)

where xi is yet another variational parameter and d̂HF
i ≡

n̂HF
i↑ n̂HF

i↓ , n̂HF
iσ ≡ n̂iσ − n

(0)
iσ , with n

(0)
iσ ≡ 〈�0|n̂iσ |�0〉. One

should note that λi,� parameters for a given site i are functions
of xi , which means that there is a single variational parameter
per atomic site in such an approach. As has been shown in
Refs. [43,44], condition (4) leads to the rapid convergence
of the resulting diagrammatic expansion with the increasing
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order of the variational parameter xi . For the case of a spa-
tially homogeneous state one has xi ≡ x. The formulation
and discussion of the DE-GWF approach for the case of
homogeneous d-wave superconducting or paramagnetic states
are provided in Refs. [43–46]. For the case of the CDW/PDW
states the xi parameter follows the modulation which charac-
terizes those new ordered phases. In what follows we denote
the normalized expectation values in the correlated state by
〈· · · 〉G = 〈�G| · · · |�G〉/〈�G|�G〉, while the corresponding
expectation values in the noncorrelated state are denoted
〈· · · 〉0 = 〈�0| · · · |�0〉.

B. CDW and PDW states: A general characterization

In order to encompass both site- and bond-centered charge
orderings, as well as the PDW phase appearance, one has to
allow for a modulation of the hopping averages 〈ĉ†iσ ĉjσ 〉G,
electron concentration 〈n̂i〉G, and pairing averages 〈ĉ†i↑ĉ

†
j↓〉G

in the considered wave function. Assuming that all three types
of averages are modulated by a single vector, one can write

〈ĉ†iσ ĉjσ 〉G = P̄gij
+ δPgij

cos[Q(Rj + gij /2)], (5)

〈n̂iσ 〉G = n̄ + δnCDW cos[QRi], (6)

〈ĉ†i↑ĉ
†
j↓〉G = �̄gij

+ δ�gij
cos[Q(Rj + gij /2)], (7)

where gij = Ri − Rj and Q is the modulation vector. Note
that the reference values P̄gij

and �̄gij
and the modulation am-

plitudes δPgij
and δ�gij

depend only on the vector connecting
sites i and j . Equations (5) and (7) correspond to only i �= j

since we do not include the intrasite pairing in our approach.
As one can realize, in that situation the DE-GWF solution will
contain a number of self-consistent integral equations, and
thus, the computations are quite involved.

As already stated in the preceding section, here, we rep-
resent the modulation by a single commensurate vector in
the form Q = (1/3, 0)2π/a, which is close to the incommen-
surate one measured in experiments [4,7,9]. Such a choice
leads to a modulation along the x axis with a period of 3a

in real space. A schematic illustration of how the electron
concentration and hopping averages change in real space is
provided in Fig. 1. As we can see, there is a repeating pattern
of three consecutive atomic sites labeled by (0), (1), and (2)
[see Fig. 1(b)]. Atomic sites (1) and (2) have the same value
of 〈n̂iσ 〉, which differs from that on site (0). An analogous re-
peating pattern can be found for the hopping averages (marked
by the solid and dashed lines) and the pairing averages (not
shown for the sake of clarity).

In our diagrammatic approach we assume that the hop-
ping and pairing averages in the noncorrelated (|�0〉) and
correlated (|�G〉) states can have nonzero values up to the
fourth-nearest neighbor. This represents the real-space cutoff,
which will be discussed briefly in the next section when the
diagrammatic method is described. All the nonzero averages
taken into account are modulated according to Eqs. (5)–(7).
However, the dominant contribution to the wave function
comes from the nearest- and next-nearest-neighbor expecta-
tion values. Therefore, for the sake of clarity we focus here
on the analysis of the modulations of the on-site electron

FIG. 1. (a) Schematic illustration of charge modulation on a
square lattice with the vector Q = (1/3, 0)2π/a. Dots and lines with
different colors correspond to different values of 〈n̂iσ 〉 and 〈ĉ†iσ ĉjσ 〉
averages, respectively. The nearest-neighbor hopping averages are
marked by the solid lines, while the next-nearest-neighbor averages
are marked by the dashed lines. (b) The three atomic sites which
compose the repeating pattern and are enumerated by (0), (1), and
(2). Concentrations on sites (1) and (2) are equal and different from
that on site (0).

concentration 〈n̂iσ 〉G, the nearest- and next-nearest-neighbor
hopping averages 〈ĉ†iσ ĉjσ 〉G, and the nearest-neighbor pairing
averages 〈ĉ†i↑ĉ

†
j↓〉G (since the diagonal next-nearest-neighbor

pairing contribution is zero due to the d-wave symmetry of
the pairing).

For the selected modulation vector it is convenient to use
the following site-dependent hopping and pairing parameters
representing the considered symmetries:

P
d,s ′,x
i = 1

4

∑

〈j (i)〉
γ

d,s ′,x
ij 〈ĉ†jσ ĉiσ 〉G,

P
s ′′,x ′
i = 1

4

∑

〈〈j (i)〉〉
γ

s ′′,x ′
ij 〈ĉ†jσ ĉiσ 〉G, (8)

�
d,s ′,x
i = 1

4

∑

〈j (i)〉
γ

d,s,x
ij 〈ĉ†j↑ĉ

†
i↓〉G,

where 〈j (i)〉 [〈〈j (i)〉〉] denotes the summation over the near-
est (next-nearest) neighbors of atomic site i. The symmetry
factors are defined as

γ d
ij = (δgij −x̂ + δgij +x̂ − δgij −ŷ − δgij +ŷ ),

γ s ′
ij = (δgij −x̂ + δgij +x̂ + δgij −ŷ + δgij +ŷ ),

γ x
ij = (δgij −x̂ − δgij +x̂ ), (9)

γ s ′′
ij = (δgij −x̂−ŷ + δgij +x̂+ŷ + δgij +x̂−ŷ + δgij +x̂+ŷ ),

γ x ′
ij = (δgij −x̂−ŷ − δgij +x̂+ŷ − δgij +x̂−ŷ + δgij −x̂+ŷ ),

with δv being the appropriate Kronecker delta. The parameters
P d

i (�d
i ), P s ′

i (�s ′
i ), and P s ′′

i correspond to the d-wave and
extended s-wave hopping (pairing) contributions to the wave
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function, respectively. Note also that the nonzero values of
both P d

i (�d
i ) and P s ′

i (�s ′
i ) lead to breaking of the C4

symmetry, which still does not imply the presence of charge
ordering, as such a condition can be fulfilled also in the homo-
geneous nematic (coexistent nematic-superconducting) state.
The CDW (PDW) phase appears only when P

d,s ′,s ′′
i (�d,s ′

i )
becomes site dependent according to the modulation Q. In
such a situation the hopping (pairing) averages from atomic
sites (1) and (2) to the left-hand neighbor can be different from
the corresponding right-hand hopping (pairing), which leads
to nonzero values of P x

i (�x
i ; see Fig. 1). The latter rule also

applies to the next-nearest neighbors, which results in nonzero
values of P x ′

i . The pairing parameters analogical to P s ′′
i and

P x ′
i do not appear since the pairing in the diagonal direction is

zero.
Using Eqs. (5)–(8), we can write

P
d,s ′,s ′′
i = P̄ d,s ′,s ′′ + δP

d,s ′,s ′′
CDW cos[QRi], (10)

�
d,s ′
i = �̄d,s ′ + δ�

d,s ′
PDW cos[QRi], (11)

P
x,x ′
i = δP

x,x ′
CDW sin[QRi], (12)

�x
i = δ�x

PDW sin[QRi], (13)

where P̄ d,s ′,s ′′
and �̄d,s ′

are the site-independent reference val-
ues and δP

d,s ′,s ′′,x,x ′
CDW and δ�

d,s ′,x
PDW are the symmetry-resolved

modulation amplitudes. The amplitudes appearing in Eqs. (5)
and (7) can be expressed by δP

d,s ′,s ′′,x,x ′
CDW and δ�

d,s ′,x
PDW in the

following manner:

δPgij
= δP d

CDW γ d
ij + δP s ′

CDW γ s ′
ij + 2δP x

CDW γ x
ij

+ δP s ′′
CDW γ s ′′

ij + δP x ′
CDW γ x ′

ij , (14)

δ�gij
= δ�d

PDW γ d
ij + δ�s ′

PDW γ s ′
ij + 2δ�x

PDW γ x
ij , (15)

from which we can see the resulting modulation can be
expressed as a mixture of the considered symmetry contribu-
tions. The same applies to the reference values P̄

d,s ′,s ′′,x,x ′
CDW and

�̄
d,s ′,x
PDW .
The nonzero value of δP

d,s ′,s ′′,x,x ′′
CDW in Eq. (14) corresponds

to the bond-centered CDW, while the nonzero value of δnCDW

in Eq. (6) is responsible for the site-centered CDW. The re-
maining modulation amplitudes δ�

d,s ′,x
PDW in Eq. (15) introduce

the PDW phase. All those modulation amplitudes play the
role of order-parameter components of the CDW and/or PDW
states.

C. Solution methodology

For the correlated wave function |�G〉 with the selected
modulation, the expectation value from any two local opera-
tors, ôi and ô′

j appearing in the initial Hamiltonian (1), can be
expressed in the form (cf. Refs. [40,45])

〈�G|ôi ô
′
j |�G〉 =

∞∑

k=0

1

k!

′∑
l1···lk

x
k0
0 x

k1
1 x

k2
2 〈�0|õi õ

′
j d̂HF

l1···lk |�0〉,

(16)

where õi ≡ P̂i ôi P̂i , õ′
j ≡ P̂j ô

′
j P̂j , d̂HF

l1···lk ≡ d̂HF
l1

· · · d̂HF
lk

, and

d̂HF
∅

≡ 1. The primed summation has the following restric-
tions: lp �= lp′ , lp �= i, j for all p and p′. The variational
parameters x0, x1, and x2 correspond to the three atomic
positions from the repeating pattern depicted in Fig. 1. Since
atomic sites (1) and (2) are equivalent, one can take x1 ≡ x2.
For a given term of the summation over l1 · · · lk , the powers
k0, k1, and k2 represent how many times in the set l1 · · · lk the
indices corresponding to (0), (1), and (2) appear, respectively.
They fulfill the relation k0 + k1 + k2 = k. It has been shown
[45,47] that the desired convergence can be achieved by taking
the first four to six terms of the summation over k appearing in
Eq. (16). The results presented in the subsequent section were
obtained by including terms up to third order in k.

The averages in the noncorrelated state |�〉0 on the right-
hand side of Eq. (16) can be decomposed with the use of
Wick’s theorem and expressed in terms of the correlation
functions P

(0)
ijσ ≡ 〈ĉ†iσ ĉjσ 〉0 and �

(0)
ij ≡ 〈ĉ†i↑ĉ

†
j↓〉0. Such a pro-

cedure allows us to express the ground-state energy 〈Ĥ〉G ≡
〈�G|Ĥ|�G〉/〈�G|�G〉 as a function of P

(0)
ijσ , �

(0)
ij , n

(0)
iσ , and

xm. In practice, it is necessary to introduce the real-space
cutoff for the P

(0)
ijσ and �

(0)
ij parameters. Here, in order to

carry out the calculations in a reasonable time, the maximum
distance has been taken to be R2

max = 5a2, which means that
we include the hopping and pairing averages up to the fourth
nearest neighbor.

Having an explicit formula for the energy expectation
values in different phases, one can derive the effective
Schrödinger equation and the set of self-consistent equations
for the parameters P

(0)
ijσ and �

(0)
ij , in a manner similar to that

in Refs. [40,45]. The set of equations is solved in conjunction
with the minimization of the energy with respect to x0 and
x1 ≡ x2. Having the values of P

(0)
ijσ , �

(0)
ij , x0, x1, x2, and n

(0)
iσ ,

one can calculate the correlated pairing averages 〈ĉ†i↑ĉ
†
j↓〉G

and the correlated hopping averages 〈ĉ†iσ ĉjσ 〉G. The latter val-
ues are, in turn, used to obtain the site-independent reference
values P̄

d,s,s ′,x,x ′
CDW and �̄

d,s,x
PDW and the modulation amplitudes

δP
d,s,s ′,x,x ′
CDW , δ�

d,s,x
PDW , and δnCDW in the correlated state |�〉G.

One should note that when it comes to the modulated
states, we assume that the hopping and pairing averages can
be expressed by Eqs. (5) and (7) with Q = (1/3, 0)2π and that
there is no spontaneous current created. Also, since the PDW
phase emerges from the pure d-wave paired phase, we set the
diagonal pairing averages to zero. We calculate all the listed
symmetry factors with no further restrictions. Therefore, the
relative balance between the particular symmetry contribu-
tions results explicitly from the calculations. The following
phases appear to be stable within the analyzed approach and
are discussed in the subsequent section:

For the paramagnetic phase (PM), P s ′
i ≡ P̄ s ′ �= 0,

P s ′′
i ≡ P̄ s ′′ �= 0, P

d,x,x ′
i = 0, �

d,s ′,x
i = 0, δP

d,s ′,s ′′,x,x ′
CDW =

δ�
d,s ′,x
PDW = 0.
For the pure d-wave superconducting phase (SC),

P s ′
i ≡ P̄ s ′ �= 0, P s ′′

i ≡ P̄ s ′′ �= 0, �d
i ≡ �̄d �= 0, P

d,x,x ′
i = 0,

�
s ′,x
i = 0, δP

d,s ′,s ′′,x,x ′
CDW = δ�

d,s ′,x
PDW = 0.

For the coexistent superconducting-nematic phase
(SC+N), P s ′

i ≡ P̄ s ′ �= 0, P s ′′
i ≡ P̄ s ′′ �= 0, P d

i ≡ P̄ d �= 0,
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�d
i ≡ �̄d �= 0, �s ′

i ≡ �̄s ′ �= 0, P
x,x ′
i ≡ 0, �x

i ≡ 0,
δP

d,s ′,x
CDW = δ�

d,s ′,x
PDW ≡ 0.

For the coexistent pair-density-wave and charge-density-
wave phase (PDW+CDW), P̄ d,s ′,s ′′,x,x ′ �= 0, �̄d,s ′,x �= 0,
δP

d,s ′,s ′′,x,x ′
CDW �= 0, δ�

d,s ′,x
PDW �= 0.

III. RESULTS AND DISCUSSION

First, we analyze the appearance of all the previously
defined phases (PM, SC, SC+N, CDW+PDW) for the case of
the Hubbard model, and subsequently, we discuss the effect of
adding the exchange interaction term ∼J , which leads to the
t-J -U model. In that formulation the t-J model is recovered
as U → ∞ (U 
 t) limit.

In Fig. 2 we display the correlated superconducting gaps
(reference values �̄ and amplitudes δ�PDW ), correlated hop-
pings (reference values P̄ and amplitudes δPCDW ), the am-
plitude of particle number modulations in real space δnCDW ,
and the double occupancies, all as a function of hole doping
for the case of the Hubbard model with U = 18 [J ≡ 0 in
Hamiltonian (1)]. In the upper part of the figure we mark
the stability regimes of particular phases. By going from the
high-doping side we first encounter the PM phase with a van-
ishing superconducting gap, no charge ordering, and the C4

symmetry conserved. For the dopings below δ ≈ 0.35 a pure
d-wave SC phase is stable (�̄d �= 0). After passing the value
δ ≈ 0.28, the s-wave component of the SC gap �̄s and the
d-wave correlated hopping component P̄d become nonzero,
which signals the appearance of SC+N. An extensive analysis
of the coexisting nematic-superconducting phase within the
Hubbard and t-J -U models is provided in Ref. [42]. The
transition from the SC to SC+N phase is of second order.
One can see that in the SC+N phase the d-wave component

of the SC gap is reduced with respect to the case of the pure
d-wave superconductivity, which is marked by the red dashed
line in Fig. 2(a). In the nematic phase the C4 symmetry is
spontaneously broken, and the (1,0) and (0,1) directions are no
longer equivalent in the electronic wave function, even though
the underlying crystal lattice has no distortion (is still square).
Moreover, in such a phase the translational symmetry is
conserved, which means that no charge or SC gap modulation
appears as yet (δPCDW = δnCDW = δ�PDW = 0).

The SC+N phase can be understood to be a precursor
of the PDW+CDW phase (for which the C4 symmetry is
also broken), which appears below the doping δ ≈ 0.2, at
which a first-order transition takes place. In the PDW+CDW
phase the SC gap, the average number of electrons, and the
hopping averages are all modulated along the x axis with
the modulation vector Q = (1/3, 0)2π . In this phase the pair-
density wave coexists with both the site-centered and bond-
centered charge orderings, and all the modulation amplitudes
have nonzero values [δPCDW �= 0, δnCDW �= 0, δ�PDW �= 0;
see Figs. 2(a), 2(b) and 2(c)]. For the sake of completeness,
in Fig. 2(d) we plot the double occupancies corresponding
to the three sublattices, which compose the pattern along the
x direction.

The results for the case of the t-J -U model are presented
in Fig. 3. As has already been reported in Ref. [42], the
exchange term has a negative effect on the nematicity but a
positive one on the superconductivity. The same can be seen
here: for the J value representative of cuprates (J ≈ 0.3) the
nematic phase is completely suppressed, while the stability
of the superconducting phase is extended to higher doping
values with respect to the Hubbard model case (see Fig. 2).
As a result, the pure d-wave SC phase is stable down to
the optimal doping value δ ≈ 0.18 at which a second-order
phase transition appears to the PDW+CDW state without the

FIG. 2. Phase diagram for the case of the Hubbard model (J ≡ 0) for U = 18. (a) The d-wave and extended s-wave correlated gap
reference values �̄d and �̄s′

, as well as the modulation amplitudes δ�d
PDW , δ�s′

PDW , and δ�x
PDW [see Eqs. (11) and (13)], all as functions

of doping. Nonzero values of both �̄d and �̄s′
signal the appearance of C4 symmetry breaking, while δ�PDW �= 0 is evidence of SC gap

modulation in real space, which in turn leads to the pair-density-wave state appearance. (b) and (c) Extended s-wave and d-wave hopping base
values P̄ s′

, P̄ s′′
and P̄ d , respectively, as well as the modulation amplitudes δP d

CDW , δP s′
CDW , δP s′′

CDW , δP x
CDW , and δP x′

CDW [see Eqs. (10) and
(12)] all as functions of doping. Nonzero values of both P̄ d and P̄ s′

also signal the appearance of C4 symmetry breaking, while δPCDW �= 0 is
evidence of the average hopping modulations in real space, which in turn lead to the bond-centered charge-density-wave state. Additionally,
for δnCDW �= 0 the site-centered charge-density-wave appears. (d) Double occupancies in the correlated state corresponding to the atomic sites
labeled (0), (1), and (2) (see Fig. 1).
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FIG. 3. Phase diagram for the case of the t-J -U model with J = 0.3 and U = 18. (a) The d-wave and extended s-wave correlated gaps
reference values �̄d and �̄s′

, as well as the modulation amplitudes δ�d
PDW , δ�s′

PDW , and δ�x
PDW [see Eqs. (11) and (13)], all as functions

of doping. δ�PDW �= 0 is evidence of SC gap modulation in real space, which in turn leads to the pair-density-wave state appearance.
(b) and (c) Extended s-wave and d-wave hopping reference values P̄ s′

, P̄ s′′
and P̄ d , respectively, as well as the modulation amplitudes δP d

CDW ,
δP s′

CDW , δP s′′
CDW , δP x

CDW , and δP x′
CDW [see Eqs. (10) and (12)] all as functions of doping. For dopings for which δPCDW �= 0 (δnCDW �= 0) the

bond-centered (site-centered) charge-density-wave state sets in. (d) Double occupancies in the correlated state corresponding to the atomic
sites labeled (0), (1), and (2) (see Fig. 1).

appearance of the precursor nematic phase in between the
SC and PDW+CDW stability regimes. The red dashed line
in Fig. 3(a) marks the continuation of the d-wave SC gap
for the case when the PDW+CDW stability is not included
in the calculations. In such a case the value δ ≈ 0.18 cor-
responds to the maximal correlated gap and hence the max-
imal critical temperature. The stability of the PDW+CDW
phase in the underdoped regime obtained in our calculations
reflects the experimental findings for the cuprates, where the
charge-ordered phase is observed in a similar doping range
[5,7,13]. The SC gap parameters’ modulation amplitudes in
the PDW+CDW phase are shown in Fig. 3(a) and have a
domelike shape contained in the underdoped regime with a
maximum value at δ ≈ 0.13. On the other hand, the ampli-
tudes of electron hopping modulation (δPCDW ) and electron
concentration modulation (δnCDW ) are increasing with the
decreasing doping, which is in agreement with the measured
doping dependence of the CDW critical temperature [4,5].
One should note that the parameter set corresponding to Fig. 3
is close to the one for which good agreement between theory
and experiment has been obtained with respect to selected
universal properties of the pure superconducting phase in
cuprates [39].

As can be seen from Figs. 2 and 3, the s-wave (δnCDW ),
extended s-wave (δP s ′

CDW , δ�s ′
PDW ), and d-wave (δP d

CDW ,
δ�d

PDW ) contributions to the pairing and hopping modulations
have nonzero values in the obtained CDW+PDW phase.
According to the experimental analysis in the large group of
copper-based compounds, the dominant d-wave form factor
is believed to appear. Our calculations show that the d-
wave form factor amplitudes are significantly larger than the
extended s-wave correspondents. However, the site-centered
s-wave contribution to the CDW δnCDW is still quite signif-
icant within our analysis [see Figs. 2(a) and 2(b), as well
as Figs. 3(a) and 3(b)]. Also, we obtain the δ�x

PDW and
δP x

CDW form factors, which reflect the inequivalence between
the hopping/pairing to the left- and right-hand neighbors of

atomic sites (1) and (2). Such a description is necessary in
order to obtain the considered periodicity of the hopping and
pairing averages.

IV. OUTLOOK

The present paper concludes our construction of a fairly
complete phase diagram for the high-TC cuprate supercon-
ductors as obtained within a single-band model of correlated
electrons with the use of the consistent DE-GWF scheme
[39–42]. Namely, we have analyzed the coexistence of the
pair- and charge-density-wave phases within the Hubbard and
t-J -U models by using the DE-GWF method. The calcula-
tions have been carried out for the fixed modulation vector
Q = (2π/3, 0), which specifies both the pair- and the charge-
density-wave periodicities (as reported in Ref. [22]) and is
close to that measured experimentally.

Our results obtained for the t-J -U model confirm the
stability of a pure d-wave superconducting phase down to the
hole doping δ ≈ 0.18, which corresponds to the maximal cor-
related gap and therefore is identified as the optimal doping.
Below that value, a coexistent PDW+CDW phase sets in for
which both the C4 and translational symmetries are sponta-
neously broken. The d-wave SC gap parameter is reduced in
the PDW+CDW stability regime, and the PDW pairing mod-
ulation amplitudes form a domelike shape confined within the
underdoped regime. On the other hand, the CDW hopping and
electron concentration modulation amplitudes increase with
decreasing doping, which is reminiscent of the TCDW doping
dependence determined by the x-ray diffraction experiments
[4]. Also, the facts that the modulated phase appears in the
underdoped regime and that the d-wave symmetry modulation
form factor is significantly larger than that of the extended s

wave agree with the experimental observations. Nevertheless,
our approach also leads to a significant contribution of the
site-centered CDW ordering, which means that the zero-gap
state in the nodal direction is lost.
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For the case of the Hubbard model a narrow stability range
of the coexistent superconducting-nematic phase appears in
between the pure SC and PDW+CDW phases. In the SC+N
phase the rotational symmetry is broken; however, the transla-
tional symmetry is conserved. Such a phase can be considered
a precursor state for the formation of the CDW+PDW phase
with decreasing doping. The absence of the SC+N state for
the case of the t-J -U model is due to the negative influence of
the exchange term ∼J on the nematic phase stability, which
was reported recently [42,46].

Note that in related analysis the intersite Coulomb interac-
tion was included in order to induce the charge-ordered state
[34,47–50]. Within that approach the appearance of CDW
can be grasped in a straightforward manner. Namely, in the
simplest case of a site-centered checkerboard pattern, the role
of nonlocal electron repulsion (∼V ) is minimal at the cost of
the increasing local interaction energy (∼U ). In such a case
the charge ordering appears after reaching the critical V value
[47–50]. For the case of more sophisticated charge orderings,
including the bond order, the situation is not so intuitively
clear, especially when an additional pair-density-wave mod-
ulation comes into play. From our present analysis it follows
that the intrasite Coulomb interaction is sufficient to induce
both the pure d-wave SC and the charge/pair modulated states;
hence, the presence of the V term is not required in our ap-
proach. However, the stability of the mentioned phases could
not be reproduced within our zeroth-order diagrammatic ex-
pansion (16), which is equivalent to RMFT. This means that
the higher-order terms of the DE-GWF are instrumental for
the spontaneous symmetry breaking, here expressed in terms
of the formation of SC and PDW/CDW states. The appearance
of the bond-ordered state coexisting with d-wave SC induced
purely by local Coulomb repulsion was also reported recently
in Ref. [26], but the results are different from ours.

The principal conclusion from the two models (Hubbard
and t-J -U ) studied here is that the t-J -U model provides
results which more closely correspond to the experimental
data for the CDW+PDW modulated state of the cuprates.
In our very recent paper we showed that this model also
leads to a good quantitative agreement between theory and
experiment for the selected universal characteristics of the
pure d-wave superconducting state [39]. The parameter
set taken in that analysis [39] is close to that taken here.
Nevertheless, a proper balance between the symmetry form
factors of the CDW+PDW phase is still lacking within the
single-band DE-GWF description. The dominant d-wave
bond-ordered phase, which is believed to appear in many
copper-based compounds, can be ascribed to a modulating
charge located on the oxygen 2p orbitals of the Cu-O plane
[9,14]. To incorporate explicitly such a scenario one has to
consider a more realistic three-band d-p model. However,
the application of the DE-GWF method to such a situation
introduces a degree of complexity difficult to handle at the
present time. We should see progress along this line in the
near future, as only then we can reliably estimate the limits of
applicability of the one-band effective models.

It should be noted that the appearance of the PDW pattern
with the same modulation as that for the CDW phase, as

analyzed here, is expected on the symmetry grounds and is
in agreement with the Ginzburg-Landau theory. However, it
seems reasonable to ask which modulation should be consid-
ered as the primary one, CDW or PDW. Within our approach
a pure PDW phase (without the charge modulation) has not
been found. On the other hand, if we disregard superconduc-
tivity in our analysis, a pure CDW pattern (without PDW)
appears, and its stability regime is slightly wider than that for
the case of the PDW+CDW state. Namely, the upper critical
doping for the CDW phase is δ ≈ 0.2 for the case of the t-J -U
model instead of δ = 0.18, as it is for the PDW+CDW with
the superconducting state included in the calculations. Since
the charge modulation can appear without the pairing modu-
lation, we conclude that the CDW phase appears in the under-
doped regime as the primary phase, and the modulations of
the Cooper-pair condensate are a consequence of the existing
charge-density-wave pattern. Nevertheless, the appearance of
the pure d-wave SC phase pushes the modulated states to
lower dopings.

Recently, a more complex interplay between the CDW
and PDW orderings has drawn attention [29–31]. Namely, it
has been argued that when the PDW state with a modulation
vector QPDW coexists with uniform d-wave superconductiv-
ity, it should be related to a two-modulation-vector CDW
phase with Q(1)

CDW = QPDW and Q(2)
CDW = 2QPDW . Such a

coexistent phase is expected to appear in the situation in which
the d-wave SC and PDW order parameters are of comparable
magnitude. Very recently, it was claimed that such a PDW
phase appears in BSCCO in the vortex-core halo induced
by the magnetic field, where the pure d-wave SC phase is
suppressed [28], fulfilling the latter condition. This result is
in agreement with the theoretical considerations presented
in Ref. [31], which showed that the mentioned type of the
PDW/CDW coexistence could appear for substantial magnetic
fields (see Fig. 7 of that paper). The two simultaneous periods
of the coexistent CDW phase have been measured to be 8a

and 4a, which means that the PDW modulation would have
a periodicity of 8a. In order to analyze such a scenario
within our approach, one would have to consider modulations
with a period of 6a, which in turn introduces a significant
complication to our DE-GWF scheme. Carrying out such an
analysis to the higher orders of the diagrammatic expansion is
beyond our present computational capabilities. Nevertheless,
our theoretical study refers mainly to the experimental veri-
fication of PDW with much smaller periodicity (4a), which
is very close to the CDW pattern periodicity and has been
reported in zero magnetic field [22].
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