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We present quasiparticle (QP) energies from fully self-consistent GW (scGW ) calculations for a set of pro-
totypical semiconductors and insulators within the framework of the projector-augmented-wave methodology.
To obtain converged results, both finite basis-set corrections and k-point corrections are included, and a simple
procedure is suggested to deal with the singularity of the Coulomb kernel in the long-wavelength limit, the
so-called head correction. It is shown that the inclusion of the head corrections in the scGW calculations is
critical to obtain accurate QP energies with a reasonable k-point set. We first validate our implementation by
presenting detailed results for the selected case of diamond, and then we discuss the converged QP energies,
in particular the band gaps, for a set of gapped compounds and compare them to single-shot G0W0, QP
self-consistent GW , and previously available scGW results as well as experimental results.
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I. INTRODUCTION

Hedin’s equations [1,2] are in principle a rigorous and
exact way to calculate quasiparticle (QP) energies (electron
addition or removal energies). Nevertheless, in practice the
equations cannot be solved exactly due to the need to perform
the calculations self-consistently and difficulties in includ-
ing the vertex correction, which is defined as the functional
derivative of the self-energy with respect to the external po-
tential. Therefore, approximations are strictly required. One of
the most widely used approximations is the GW approxima-
tion [1], which neglects the vertex completely. Related to this,
it is furthermore common to start from orbitals determined
using density functional theory (DFT) and to perform so-
called single-shot G0W0 calculations [3–6]. This generally
gives good agreement with experiments for extended, mod-
erately correlated materials because of a cancellation of errors
originating from the lack of self-consistency and the absence
of vertex corrections. In order to go beyond G0W0, several
strategies such as the cumulant expansion [7–11], inclusion
of some approximate vertex [12–15], and quantum chemistry
methods like algebraic-diagrammatic construction (ADC) and
equation-of-motion coupled cluster [16] have been proposed.

A problem that most single-shot Green’s function based
methods have in common is that some conservation laws
such as energy and particle-number conservation [17,18] are
violated. Due to their perturbative nature, the results also
depend on the starting one-electron energies and orbitals,
which are usually obtained from the solution of the Kohn-
Sham (KS) equations or generalized KS schemes [19,20].
This issue can be avoided by performing the calculations self-
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consistently. Eigenvalue self-consistent GW [21–23], which
updates the eigenvalues either only in the Green’s functions
G (ev-GW0), or both in G and the screened interactions W

(ev-GW ), while the orbitals remain fixed, generally improves
the description of band gaps towards the experimental val-
ues as compared to G0W0. Quasiparticle self-consistent GW

(QPGW ) removes the starting-point dependence entirely by
determining an optimum effective nonlocal static exchange-
correlation potential [24–27]. However, it overestimates band
gaps in solids due to the underestimation of the dielectric
screening in the random phase approximation (RPA) [27,28].
Self-consistent GW (scGW ) avoids the quasiparticle approx-
imation, and the Dyson equation for the Green’s function and
W are solved fully self-consistently [12,13,29–34]. In addi-
tion, the self-consistent W is invariant under spatial and time
translations, so conservation laws (momentum, energy, and
particle-number conservation) [17,18] are satisfied in scGW .
Nevertheless, without vertex corrections, scGW shows a sig-
nificant overestimation of the bandwidth for metals and band
gaps for gapped systems. Recently, there have been attempts
to include the vertex in W and the self-energy for crystalline
materials [12–15], showing a substantial improvement on the
bandwidths, ionization potentials, and band gaps compared
to scGW . These approaches are computationally exceedingly
demanding and will not be considered in this work.

Although there are already some studies that are dedicated
to full scGW calculations [12,13,29–34], they are restricted to
few systems and reference results for a more extensive set of
materials are still missing. The main problems in obtaining
reference values for solids are threefold. First, full scGW

calculations are technically demanding. Second, the basis-
set convergence for the QP energies is very slow [35–37].
Third, there is a singularity problem associated with the long-
wavelength limit of the product of the Coulomb kernel and
the dielectric function. Within G0W0, this issue can be solved
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straightforwardly using k · p perturbation theory [38–40], but
this is intractable for scGW .

The goal of this paper is to obtain converged scGW QP
energies for a set of semiconductors and insulators within the
framework of the projector-augmented-wave (PAW) method-
ology. To establish reference values, we include finite basis-
set corrections, as well as k-point corrections. The singular-
ity problem in the product of the Coulomb kernel and the
dielectric matrix is overcome by an extrapolation from the
available results at finite q. In addition to scGW results,
we also report results for G0W0 and QPGW calculations.
It should be noted that in this work, vertex corrections are
not considered and therefore it is expected that our scGW

results will overestimate the band gaps as compared to the
experimental values.

The paper is organized as follows. In Sec. II we will detail
the methodology of our scGW implementation. Particular
emphasis is devoted to the extrapolation scheme that is used
to solve the singularity problem of the Coulomb operator.
Technical details and computational setups will be provided in
Sec. III. The results will be presented and discussed in Sec. IV
and summarized in Sec. V.

II. METHOD

A. Self-consistent GW

Our scGW scheme is based on our recent cubic-scaling
GW implementation [41], where the polarizability and self-
energy are calculated in the real-space and imaginary-time
domains [42,43]. Efficient temporal discrete Fourier transfor-
mations with only a few nonuniform optimized imaginary grid
points [44] and spatial fast Fourier transformations (FFT) [45]
allow for fast QP calculations with a scaling that is cubic
in the system size and linear in the number of k points that
are used to sample the Brillouin zone. The implementation
has been validated by successfully predicting QP energies
of typical semiconductors, insulators, and metals as well
as molecules [41,46,47]. Here, we go one step further and
introduce self-consistency both in G and W . It needs to be
mentioned that, for consistency, in this paper we follow almost
the same notations and definitions that were used in our
previous publication [41]. In the following, we present our
scGW implementation in detail.

Starting from the correlated self-energy �c(iω) obtained
from G0W0 [41], the new interacting Green’s function G(iω)
for the next iteration is calculated in the Hartree-Fock (HF)
canonical-orbital basis by the Dyson’s equation

G(iω) = [iω + μ − H HF − �c(iω)]−1, (1)

where μ is the Fermi energy and H HF = T + Vn−e + VH +
�x is the HF Hamiltonian, with T , Vn−e, VH , and �x being the
kinetic energy, the potential from the nuclei, the Hartree po-
tential, and the exact exchange, respectively. Note that in this
work, μ is always set to the Hartree-Fock Fermi energy, which
is located at midgap between the Hartree-Fock valence band
maximum (VBM) and conduction band minimum (CBM).
This does not introduce any approximation since in scGW one
can chose the Fermi level anywhere between the scGW VBM
and CBM, which are not broadened by lifetime effects. For the
materials considered in this work, this was always the case.

The interacting density matrix is then calculated in the
canonical HF basis by

�ij = 1

2π

∫ +∞

−∞
dω Gij (iω). (2)

However, this integral usually diverges. To address this issue,
G(iω) is split into two parts

G(iω) = GHF(iω) + Gc(iω). (3)

Here, GHF(iω) is the HF Green’s function

GHF(iω) = [iω + μ − H HF]−1, (4)

and Gc(iω) is the correlated part of the Green’s function. Due
to the splitting in Eq. (3), the density matrix includes two
contributions

�ij = �HF
ij + �c

ij , (5)

where the calculation of the HF density matrix �HF
ij is straight-

forward:

�HF
ij = θ

(
μ − εHF

i

)
δij . (6)

Here, θ is the Heaviside step function and εHF
i are the eigen-

values of the HF Hamiltonian [we note again that the matrices
are presented in the canonical HF basis, making H HF(iω)
and GHF(iω) diagonal]. Since �c(iω) decays as 1/(iω) [48],
Gc(iω) decays as 1/(iω)3. The correlated contribution �c

ij can
thus be calculated accurately by exploiting quadrature rules

�c
ij = 1

2π

∫ +∞

−∞
dω Gc

ij (iω) = 1

2π

N∑
k=1

γkRe
[
Gc

ij (iωk )
]
, (7)

where {iωk}Nk=1 and {γk}Nk=1 are precalculated imaginary
frequency grid points and corresponding weights, respec-
tively [44]. Knowing the density matrix, the particle number
is calculated by

Np = Tr[�], (8)

where the trace Tr involves the summation over bands, k

points, and spins. The particle number will be taken as an
indicator of the convergence in the self-consistency.

In order to calculate the polarizability χ and self-energy
� in real space and imaginary time, a Fourier transformation
(FT) of G from imaginary frequency to imaginary time is
needed. Again, direct FT of the interacting Green’s function
G(iω) is ill defined. Therefore, we follow the same strategy
that was used when determining the density matrix in Eq. (3).
Thus, G(iτ ) also comprises two parts,

G(iτ ) = GHF(iτ ) + Gc(iτ ). (9)

In addition, we have used the definitions of the occupied
(G) and unoccupied (G) Green’s functions as in Ref. [41],
which are evaluated for negative and positive imaginary time,
respectively. With G and G, G can be expressed as

G(iτ ) = θ (−τ ) G(iτ ) + θ (τ ) G(iτ ). (10)

The evaluation of GHF(iτ ) is straightforward since it is diago-
nal in the HF canonical-orbital basis:

GHF
ij (iτ ) = δij e−(εHF

i −μ)τ (i, j ∈ occ), (11)

G
HF
ij (iτ ) = −δij e−(εHF

i −μ)τ (i, j ∈ unocc). (12)
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The correlated Gc(iτ ) can be efficiently calculated by inverse
discrete cosine and sine transformations [44]

Gc
ij (iτm) =

N∑
n=1

ξmn cos(τmωn) Re
[
Gc

ij (iωn)
]

−
N∑

n=1

ζmn sin(τmωn) Im
[
Gc

ij (iωn)
]
, (13)

G
c

ij (iτm) =
N∑

n=1

ξmn cos(τmωn) Re
[
Gc

ij (iωn)
]

+
N∑

n=1

ζmn sin(τmωn) Im
[
Gc

ij (iωn)
]
. (14)

Here, {iτm}Nm=1 are optimized imaginary-time grid points and
the coefficients ξ and ζ are precalculated and stored [41,44].

After the matrices Gij (iτ ) and Gij (iτ ) in the HF canonical-
orbital basis have been obtained, they are transformed to the
natural-orbital basis using the unitary matrix U that diagonal-
izes the interacting density matrix � in Eq. (2):

Gmn(iτ ) =
∑
ij

[U †]mi Gij (iτ ) Ujn. (15)

Moreover, the HF canonical orbitals |ψHF
jk 〉 are rotated to the

natural orbitals as well,

|ψmk〉 =
∑

j

Ujm

∣∣ψHF
jk

〉
, (16)

since it is more convenient to evaluate the charge density and
the new HF Hamiltonian H HF in the basis that diagonalizes
the interacting density matrix, that is, in the natural-orbital
basis.

Within the PAW method [49,50], Gmn(iτ ) are then trans-
formed from the natural-orbital basis to the plane-wave (PW)
basis by

G
(1)
k (g, G′, iτ ) =

∑
m,n

〈g|ψ̃mk〉Gmn(iτ ) 〈ψ̃nk|G′〉, (17)

G
(2)
k (ν, G′, iτ ) =

∑
m,n

〈p̃ν |ψ̃mk〉Gmn(iτ ) 〈ψ̃nk|G′〉, (18)

G
(3)
k (g, α′, iτ ) =

∑
m,n

〈g|ψ̃mk〉Gmn(iτ ) 〈ψ̃nk|p̃′
α〉, (19)

G
(4)
k (ν, α′, iτ ) =

∑
m,n

〈p̃ν |ψ̃mk〉Gmn(iτ ) 〈ψ̃nk|p̃′
α〉, (20)

where ψ̃nk are pseudo natural orbitals and p̃μ are projectors,
which are dual to the pseudo partial waves φ̃μ within the
augmentation sphere [49,50].

Knowing G(iτ ) in imaginary time, the polarizability χ (iτ )
is obtained by contraction over G and G in real space and
imaginary time

χ (iτ ) = G(iτ ) G(−iτ ) (τ > 0), (21)

which is immediately transformed to χ (iω) in imaginary
frequency by the cosine transformations [41,44], where the
calculations of the correlated screened interactions Wc are

conveniently done using the RPA:

Wc(iω) = ε−1(iω)V − V. (22)

Here, V is the bare Coulomb interaction kernel and the inverse
of the dielectric function is calculated by

ε−1(iω) = 1 + V χ red(iω), (23)

with the reducible polarizability χ red given by

χ red(iω) = [1 − χ (iω)V ]−1χ (iω). (24)

The Wc(iω) is then transformed to Wc(iτ ) by the inverse
of cosine transformations [41,44]. Finally, the new correlated
self-energy �c is evaluated by the contraction of G and Wc in
real space and imaginary time:

�c(iτ ) = −G(iτ )Wc(iτ ). (25)

For the calculations of χ (iτ ) and �c(iτ ) within the PAW
method, we refer the reader to our previous publication [41].
�c(iτ ) is then transformed to �c(iω) in the imaginary fre-
quency domain by the cosine and sine transformations [41].
With the new �c(iω) and H HF, the self-consistency loop of
scGW is closed. This procedure is repeated until convergence
is achieved.

It should be noted that in the second iteration and beyond,
the correlated self-energy �c(iω) is always first evaluated
in the natural-orbital basis and then transformed to the HF
canonical-orbital basis, where an analytic continuation is per-
formed via a Padé fit [51] to obtain the QP energies and
spectral functions.

B. Head of the dielectric function

In the long-wavelength limit (q → 0), a special treatment
needs to be done for the head of ε−1

G,G′ (q, iω) (corresponding
to G = G′ = 0) due to the singularity of the bare Coulomb
interaction. Within G0W0, this issue can be tackled through
a Taylor expansion of KS one-electron energies and orbitals
around q = 0 [38–40]. It can be shown [38–40] that the KS
polarizability χKS

0,0 (q, iω) at small q for gapped systems has
the behavior [52]

χKS
0,0 (q, iω) = aq2 + bq4 + O(q6), (26)

where a and b are q-independent constants that can be evalu-
ated explicitly [38–40]. This leads to the disappearance of the
divergence in limq→0 ε−1

0,0(q, iω) because of the cancellation
of the 1/q2 terms in the bare Coulomb interaction. However,
this expansion is not possible in subsequent iterations of a
scGW calculation and thus a different solution is needed.

Assuming Eq. (26) holds true for the general polarizability
χ0,0(q, iω), the head of ε−1 has the form

ε−1
00 (q, iω) = A + Bq2 + O(q4). (27)

The parameters A and B are obtained from a linear least-
square fit on the data from finite q. The resulting fit is then
extrapolated to q = 0 to estimate the head of ε−1

G,G′ (q, iω)
in the long-wavelength limit. We note that, in principle,
limq→0 ε−1

0,0(q, iω) is a tensor depending on the direction from
which q approaches zero, but unfortunately our proposed
strategy can only approximately yield the average of diagonal
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FIG. 1. k-point convergence of ε−1
0,0(q, iω) in the long-

wavelength limit. The data were obtained from scGW calculations
for diamond.

elements of the tensor. However, this makes it suitable for the
cubic systems considered in this work.

In order to check this extrapolation scheme, we compared
the extrapolated limq→0 ε−1

0,0(q, iω) to the results from G0W0

calculations, where limq→0 ε−1
0,0(q, iω) is available from the

above-mentioned k · p perturbation theory. It was found that
the extrapolated limq→0 ε−1

0,0(q, iω) for diamond using a 6 ×
6 × 6 k-point grid are almost identical to the ones from
perturbation theory. This justifies our extrapolation scheme
and we can thus apply it to the scGW calculations.

The accuracy of the extrapolation scheme also depends on
the k-point sampling used because higher k-point densities
yield more data points in the region of small finite q. As an il-
lustration, Fig. 1 shows the convergence of limq→0 ε−1

0,0(q, iω)
of diamond with respect to k-point sampling. It can be seen
that a 2 × 2 × 2 k-point mesh is far from sufficient to obtain
the converged head. Results from 3 × 3 × 3 are improved,
but still not satisfactory. Convergence seems to be achieved
at 4 × 4 × 4 k points and the results from 6 × 6 × 6 k points
are almost unchanged compared to 4 × 4 × 4.

We point out here that the inclusion of the head corrections
in the scGW calculations is important to obtain the precise QP
energies and spectral functions as compared to calculations
without head corrections (see the results in Sec. IV).

III. TECHNICAL DETAILS

The scGW method has been implemented in the Vienna
ab initio simulation package (VASP) [53,54]. All calcula-
tions were performed using approximately norm-conserving
(NC) GW PAW potentials, the details of which are given in
Table I of Ref. [36]. Table I lists all the 15 semiconductors
and insulators considered in this work with their respective
crystal structures, lattice constants at low temperature (if

TABLE I. Crystal structures, lattice constants a, and plane-wave
energy cutoffs E

pw
cut for all the materials considered.

Crystal structure a (Å) E
pw
cut (eV)

BN zinc blende 3.61 700.00
C diamond 3.56 741.69
SiC zinc blende 4.35 741.69
MgO rock salt 4.21 821.52
GaN zinc blende 4.53 801.99
ZnO zinc blende 4.58 802.27
Si diamond 5.43 609.83
AlP zinc blende 5.46 616.62
AlAs zinc blende 5.66 613.91
InP zinc blende 5.86 616.62
AlSb zinc blende 6.13 571.80
CdS zinc blende 5.81 657.51
ZnS zinc blende 5.40 802.27
GaP zinc blende 5.45 801.99
InSb zinc blende 6.47 561.76

available, otherwise at room temperature), and plane-wave
energy cutoffs of the potentials, which were chosen to be
the maximum of all elements in the considered material. The
energy cutoff for the response function was chosen to be half
of the PW cutoff. The number of bands was set to be the
maximum number of PWs compatible to a given PW cutoff
energy. To sample the Brillouin zone, 6 × 6 × 6 k-point grids
centered at the � point were used, unless explicitly stated
otherwise. The number of imaginary-time/frequency points
was set to 24 for all materials. Five scGW iterations were
performed, which was found to be sufficient to converge the
QP energies to within 0.01 eV. For comparison, independent
QPGW calculations [27] were also performed with 128 real
frequency points and a maximum of six iterations.

In all cases except InSb, standard KS-DFT calcula-
tions employing the Perdew-Burke-Ernzerhof (PBE) func-
tional [55,56] were used as starting points for the scGW

and QPGW calculations. For InSb, however, the hybrid-
functional HSE06 [57,58] was used instead because in this
case PBE yields an even qualitatively wrong (negative) band
gap. It needs to be mentioned that the starting point (PBE
or HSE06 functional) is only relevant to G0W0 results due
to its first-order perturbative nature, whereas for scGW and
QPGW calculations the results are independent of the starting
functional.

Since the convergence of the QP energies with respect to
the basis set is slow, we have exploited a basis-set correction
scheme [36,37,46] using the fact that the basis-set incomplete-
ness error EQP(∞) − EQP(Npw) decays as 1/Npw, where Npw

is the number of PWs. Specifically, the PW energy cutoff
E

pw
cut is increased by a factor of 1.25 and 1.587, leading to

an increase in Npw by a factor of 1.4 and 2.0, respectively.
The obtained results are fitted as a linear function of 1/Npw

and then extrapolated to 1/Npw = 0 to get the final basis-set
corrected QP energies. This was done for both scGW and
QPGW calculations. Because the scGW and QPGW cal-
culations are rather demanding and the basis-set corrections
depend only weakly on the number of k points [36,37], the
basis-set corrections were performed with 3 × 3 × 3 k points.
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TABLE II. Comparison of calculated scGW QP energies of
diamond with and without head corrections for the dielectric function
using 6 × 6 × 6 k points. Note that the basis-set and k-point set
corrections are not included here. �IP is the absolute shift of the
VBM at the � point compared to PBE calculations. Since the
changes in the density and the electrostatic potential are small from
PBE to scGW , �IP is expected to be fairly pseudo/PAW potential
independent. The other columns represent the relative position of the
valence band minimum at the � point (�VBmin), the VBM at the L

and X points (Lv and Xv), and the CBM at the �, L, and X points
(�c, Lc, and Xc) relative to the VBM at �. All values are given in eV.

�IP �VBmin �c Lv Lc Xv Xc

Without head −2.47 −23.88 10.64 −3.13 13.75 −7.07 9.29
With head −1.37 −24.55 8.46 −3.08 11.59 −6.98 7.10

The basis-set corrected QP energies at 6 × 6 × 6 k points are
then obtained by

E6×6×6
∞ = E6×6×6

red + E3×3×3
∞ − E3×3×3

red , (28)

where E6×6×6
red and E3×3×3

red are the QP energies calculated
using default energy cutoffs shown in Table I for 6 × 6 × 6
and 3 × 3 × 3 k points, respectively, and E3×3×3

∞ is the basis-
set corrected QP energy. It was found that the basis-set correc-
tions are generally small (<100 meV), except in a few cases
such as ZnO where they can be as large as a few hundred
meV [36,59,60].

A similar extrapolation scheme was used to correct the
errors introduced by the k-point sampling under the assump-
tion that the k-point set error behaves as 1/Nk with Nk being
the total number of k points used. To this end, additional
calculations were performed using a 4 × 4 × 4 k-point mesh.
The final converged QP energies including both basis-set and
k-point set corrections were obtained by

E∞
∞ = E6×6×6

∞ + E∞
red − E6×6×6

red , (29)

where the k-point corrections E∞
red − E6×6×6

red were calculated
with the reduced basis set corresponding to the default PW

cutoff energy, based on the observation that the k-point cor-
rections depend only weakly on the basis set [37]. Typically,
the k-point corrections were found to be on the same order of
magnitude as the basis-set corrections.

IV. RESULTS

We present our scGW results first for the selected case of
diamond to show the effects of the inclusion of the head of
the dielectric function obtained from the extrapolation scheme
described in Sec. II B and of the self-consistency on particle
number, QP energies, and spectral functions. Then, we extend
our discussions to all other materials.

Table II shows a comparison of the calculated scGW QP
energies for diamond at selected k points with and without the
head of the dielectric function. It can be seen that inclusion
of the head corrections changes the QP energies substantially,
especially for deep states (see �VBmin) and unoccupied states
(see �c, Lc, and Xc). Without the head corrections, the band
gap is significantly overestimated as compared to the case
with the head corrections. This is more obviously seen from
Fig. 2(a), where the comparison of the scGW QP band struc-
tures with and without head corrections is shown. In addition,
it is found that with head corrections, the convergence of
the particle number is faster than without head corrections
(not shown). These findings indicate that the inclusion of the
head of the dielectric function is crucial to obtain accurate
and converged QP energies in scGW calculations with a
reasonable k-point set.

Next, we turn to discuss the effects of self-consistency.
Figure 3 shows the calculated scGW band gap and total parti-
cle number of diamond as a function of the iterations. First, it
can be seen that convergence has already been achieved at the
fourth iteration. The converged particle number is calculated
to be 8 to an accuracy of 10−4, evidencing that scGW satisfies
the conservation of particle number from a numerical point
of view [17,18,31]. As the number of iterations increases, the
band gap increases and finally reaches the converged value of
6.41 eV up to a precision of 10 meV. We note in passing that

FIG. 2. (a) Comparison of the scGW QP band structure of diamond with and without head corrections in the dielectric function for
6 × 6 × 6 k points. (b) scGW QP band structure with head corrections versus G0W0 QP band structure. The data shown here do not include
basis-set corrections and k-point corrections. The VBM at the � point has been aligned to zero. The smooth lines were obtained using a
cubic-spline interpolation.
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FIG. 3. Calculated (a) band gap and (b) total particle number of
diamond from scGW calculations as a function of the number of
iterations. The particle number was obtained from the interacting
density matrix [Eq. (8)] after each iteration.

our calculated band gap is about 0.26 eV larger than the scGW

result of Kutepov [13]. The discrepancy might arise from
different implementation and setup details, such as potentials,
basis sets, and k-point grid used. Also, it is not clear how the
head of the dielectric function was dealt with in Ref. [13].
Second, one can see that the scGW band gap is significantly
enlarged compared to G0W0. This is more clearly seen from
the QP band structure comparison between scGW and G0W0

in Fig. 2(b). This is expected because our full scGW does
not take into account vertex corrections. Indeed, inclusion of
vertex corrections in scGW will reduce the gap towards the
experimental value [13,14], but this is beyond the scope of
this work.

Figure 4 shows the scGW spectral functions of diamond
for selected bands at the � point along with G0W0 spectral
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FIG. 4. Comparison of scGW (solid lines) and G0W0 (dashed
lines) spectral functions of diamond for selected bands at �. Note
that the signs of the spectral functions for unoccupied states such as
�15 and �2′ are intentionally reversed for clarity.

TABLE III. The renormalization factor Z of the QP peaks of
diamond for selected bands at � predicted by G0W0 and scGW .

�1 �25′ �15 �2′

G0W0 0.753 0.827 0.828 0.771
scGW 0.885 0.884 0.897 0.903

functions. One can observe that, compared to G0W0, the
QP peaks of the spectral functions from scGW at the �

point are broadened and dramatically shifted up and down
for unoccupied and occupied bands, respectively, leading to
a significant enhancement of the direct band gap. This is
consistent with the QP band structures shown in Fig. 2(b).
In addition, we find that the satellite structures (plasmonic
polarons) appearing far below or above the QP peaks in G0W0

are washed out in scGW , in accordance with the increased
renormalization factor Z of QP peaks predicted by scGW (see
Table III). It is known that these satellites are to some extent
artifacts of the G0W0 approximation, although similar features
are observed in x-ray photoemission experiments [8,10]. In
the experiment the features are interpreted as replicas of the
QP peak shifted by the typical plasmon frequency. The com-
plete absence of these features in the scGW is troublesome
and clearly suggests that one needs to go beyond the GW

approximation, for example, by the cumulant expansion of
the Green’s function [7–11] or by including an approximate
vertex.

Having validated our scGW implementation for the se-
lected case of diamond, we now extend our discussion to
all other considered materials. The calculated scGW QP
energies are compiled in Table IV. For comparison, the QP
energies obtained from G0W0 and QPGW calculations are
also given in Tables V and VI, respectively. We first note that
our G0W0 QP energies agree very well with the results in
Ref. [36] with deviations less than 50 meV for all the materials

TABLE IV. QP energies and fundamental band gaps (�gap)
(in eV) from scGW calculations. The meaning of each column is
the same as in Table II. Note that for InSb, �IP is calculated with
respect to HSE06 calculations.

�IP �VBmin �c Lv Lc Xv Xc �gap

BN −2.02 −23.42 12.86 −2.07 13.81 −5.27 7.67 7.67
SiC −1.28 −17.96 8.69 −1.18 7.85 −3.56 3.29 3.29
C −1.37 −24.76 8.33 −3.06 11.47 −6.95 6.97 6.41
Si −1.09 −15.58 4.71 −1.43 3.34 −3.48 2.29 2.18
AlP −1.10 −13.03 5.01 −0.82 4.52 −2.26 3.20 3.20
AlAs −1.09 −13.37 3.73 −0.87 3.75 −2.31 2.98 2.98
AlSb −0.93 −12.74 3.18 −1.02 2.78 −2.47 2.61 2.61
InP −0.92 −13.52 1.97 −1.04 2.89 −2.50 3.04 1.97
InSb −0.50 −11.46 0.79 −1.00 1.40 −2.26 2.13 0.79
GaN −1.55 −18.92 3.94 −1.01 7.19 −2.83 5.57 3.94
GaP −0.83 −14.12 3.17 −1.11 2.96 −2.82 2.77 2.77
ZnO −3.04 −20.06 4.92 −0.82 10.40 −2.23 9.52 4.92
ZnS −1.72 −14.43 4.68 −0.86 6.02 −2.24 5.70 4.68
CdS −1.60 −14.60 3.46 −0.84 5.65 −2.09 5.88 3.46
MgO −3.27 −20.08 9.53 −0.80 12.83 −1.65 13.80 9.53
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TABLE V. Same as Table IV, but for G0W0 results.

�IP �VBmin �c Lv Lc Xv Xc �gap

BN −1.51 −20.89 11.33 −2.07 12.29 −5.17 6.39 6.39
SiC −1.03 −15.51 7.35 −1.09 6.63 −3.29 2.42 2.42
C −1.22 −21.98 7.44 −2.94 10.39 −6.59 6.24 5.69
Si −0.71 −12.00 3.24 −1.21 2.10 −2.85 1.26 1.15
AlP −0.94 −11.28 4.20 −0.78 3.77 −2.13 2.47 2.47
AlAs −1.01 −11.71 2.97 −0.83 3.07 −2.17 2.30 2.30
AlSb −0.84 −10.64 2.38 −0.91 2.06 −2.21 1.86 1.86
InP −0.79 −11.15 1.26 −0.98 2.10 −2.39 2.32 1.26
InSb −0.58 −10.88 0.57 −1.19 1.23 −2.37 1.98 0.57
GaN −1.19 −15.31 2.87 −0.98 5.95 −2.72 4.54 2.87
GaP −0.85 −12.28 2.62 −1.14 2.45 −2.72 2.31 2.31
ZnO −1.77 −18.19 2.55 −0.83 7.55 −2.20 7.08 2.55
ZnS −1.31 −11.96 3.43 −0.85 4.77 −2.20 4.66 3.43
CdS −1.12 −11.40 2.16 −0.78 4.22 −2.01 4.59 2.16
MgO −2.10 −17.82 7.49 −0.73 10.76 −1.48 11.78 7.49

considered except for ZnO and InSb. The deviations arise
from the different implementations and setups. Specifically,
our G0W0 QP energies were obtained from the analytic con-
tinuation of the self-energy in imaginary frequency, whereas
the results of Ref. [36] were computed from the self-energy
evaluated along the real frequency axis. Both methods can
result in errors: the analytic continuation is known to be ill
conditioned, although band gaps are usually very accurate.
On the other hand, calculations along the real frequency axis
are prone to discretization errors. In addition, to calculate
the derivative of the cell-periodic part of the KS orbitals
with respect to k, |∇kunk〉, which is needed to deal with
the long-wavelength limit of the dielectric function [39], the
finite-difference method by the perturbation expansion after
discretization (PEAD) method [61] was used in this work,
while in Ref. [36] |∇kunk〉 was obtained by linear response
theory [39]. Although both methods strictly converge to the
same values when the number of k points is sufficiently large,
the dielectric function converges from below and above for the
PEAD and linear response, respectively. This means that the

TABLE VI. Same as Table IV, but for QPGW results.

�IP �VBmin �c Lv Lc Xv Xc �gap

BN −2.25 −21.61 12.55 −2.33 13.48 −5.34 7.50 7.50
SiC −1.35 −16.22 7.82 −1.19 7.14 −3.43 2.88 2.88
C −1.81 −22.73 8.03 −3.08 11.20 −6.71 6.97 6.43
Si −1.01 −12.15 3.65 −1.23 2.47 −2.93 1.60 1.49
AlP −1.28 −11.80 4.74 −0.81 4.29 −2.23 2.94 2.94
AlAs −1.43 −12.23 3.58 −0.85 3.62 −2.25 2.84 2.84
AlSb −1.13 −11.02 2.78 −0.94 2.43 −2.28 2.22 2.22
InP −1.13 −11.73 1.64 −1.01 2.53 −2.43 2.71 1.64
InSb −0.77 −10.98 0.61 −1.05 1.31 −2.36 2.05 0.61
GaN −1.74 −16.38 3.78 −1.02 6.91 −2.81 5.39 3.78
GaP −1.12 −12.78 3.05 −1.18 2.86 −2.82 2.67 2.67
ZnO −2.85 −19.02 4.29 −0.83 9.46 −2.29 8.86 4.29
ZnS −1.80 −13.32 4.27 −0.89 5.66 −2.30 5.42 4.27
CdS −1.65 −12.61 2.89 −0.81 4.98 −2.01 5.31 2.89
MgO −3.42 −18.32 9.58 −0.52 12.71 −1.36 13.75 9.58
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FIG. 5. Comparison of band gaps obtained from different theo-
retical methods and experiments for the whole set of materials con-
sidered here. The scGW results of Kutepov are taken from Ref. [13].
Experimental values are taken from Ref. [14] and references therein.
Note that the HSE06 calculated band gap is shown for InSb.

band gaps converge from above and below for the PEAD and
linear response, respectively. This explains the larger band gap
of ZnO in our G0W0 calculations as compared to Ref. [36].
For the small 6 × 6 × 6 k mesh used here, the PEAD method
is found to be more accurate since the calculated dielectric
functions are already very close to the converged values. The
larger deviation for InSb is understood because our G0W0 cal-
culations for InSb were done on top of the HSE06 functional
instead of the PBE calculations used in Ref. [36].

We now turn to the scGW and QPGW results. scGW and
QPGW raise the unoccupied states, but lower the occupied
states, in particular the deep states (see �VBmin in the tables
for instance), with the shifts being more apparent in scGW .
Figure 5 furthermore shows the band gaps calculated from
various theoretical methods at different levels against exper-
imental results. In addition, the scGW results for a subset of
materials from Kutepov [13] are also shown for comparison.
One can see that, as expected, PBE underestimates the band
gaps due to neglected integer discontinuity. Inclusion of the
nonlocal dynamical self-energy in the G0W0 approximation
improves the band gaps towards the experimental values. Nev-
ertheless, from a fundamental point, G0W0 is always some-
what unsatisfactory since the good agreement arises almost
certainly from the aforementioned cancellation of errors due
to the lack of self-consistency and vertex corrections. Intro-
ducing self-consistency only, however, deteriorates the results,
leading to a significant increase of the scGW and QPGW

band gaps as compared to G0W0 and experiment. The over-
estimation is generally larger in scGW than QPGW , which is
due to the smaller values in the dielectric functions predicted
by scGW . This shows that the RPA is not sufficiently accurate
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when used on top of scGW or QPGW calculations. This was
to be expected since Hedin’s equations clearly imply that the
interaction kernel must be set to the functional derivative of
the self-energy (here � = GW ) with respect to the Green’s
function G. Neglecting the variation of W with respect to
G, this implies that even at the simplest level of theory, one
needs to include a screened exchange interaction W via the
Bethe-Salpeter equation in the irreducible polarizability.

Our calculated scGW band gaps are, in general, consistent
with the results of Kutepov [13] for the given materials, but are
a bit larger, typically by up to 0.4 eV. The possible reasons for
the deviations have already been discussed before. We want to
reiterate here that our scGW band gaps have been corrected
for the finite basis-set errors as well as errors introduced
by the finite k-point sampling. Also, the singularity problem
associated with the long-wavelength limit of the dielectric
function has been carefully dealt with by the extrapolation
scheme.

V. CONCLUSIONS

To summarize, we have presented converged QP ener-
gies for 15 semiconductors and insulators from a fully self-
consistent GW implementation within the PAW method. Con-
verged band gaps have been obtained by including both finite
basis-set corrections and k-point corrections, as well as using
accurate (norm-conserving) GW PAW potentials. Further-
more, a simple extrapolation scheme has been used to deter-
mine the dielectric matrix in the long-wavelength limit. All
implementation details were given and particular emphasis
was put on the extrapolation scheme. Our implementation was
tested, first by investigating the selected case of diamond and
then for the entire set of compounds. The calculated scGW

band gaps were compared to G0W0, QPGW , and, where
available, scGW band gaps as well as experimental results.
It was found that for the scGW calculations the inclusion of

the head corrections in the dielectric function is important to
obtain reasonably fast convergence of the QP energies.

From a physical point of view, our results can be sum-
marized as follows. The scGW method yields mostly unsat-
isfactory results compared to experiment. Notably, the band
gaps are significantly overestimated compared to experiment,
and plasmonic satellites are entirely missing in the spectral
function (see Fig. 4). As we have explained in the previous
section, this is related to the absence of vertex corrections,
which Hedin’s equations dictate to be the derivative of the
GW self-energy with respect to the external potential. As
already discussed by Kutepov [12,13], including a consistent
vertex is a formidable task: even in the simplest approxima-
tion, one would need to include a vertex W via the Bethe-
Salpether equation [15], which increases the compute cost by
at least an order of magnitude. Worse, if one would continue
self-consistency, the derivative of the self-energy [then � =
GW� (using a very simple �)] with respect to the Green’s
function G would create even more diagrams, increasing the
complexity of the vertex further. So, one is necessarily faced
with the dilemma at which level of theory one terminates the
cycle. This choice will be mandated by the computational
requirements and the implementational complexity. Without
question, scGW is unsatisfactory. Nevertheless, our calcu-
lations establish accurate reference values for scGW , upon
which one can now try to improve, for instance, by including
the simplest possible vertex W .
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