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Pairing and superconductivity in the flat band: Creutz lattice
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We use unbiased numerical methods to study the onset of pair superfluidity in a system that displays flat
bands in the noninteracting regime. This is achieved by using a known example of flat band systems, namely,
the Creutz lattice, where we investigate the role of local attractive interactions in the U < 0 Hubbard model.
Going beyond the standard approach used in these systems where weak interactions are considered, we map
the superfluid behavior for a wide range of interaction strengths and exhibit a crossover between BCS and
tightly bound bosonic fermion pairs. We further contrast these results with a standard two-leg fermionic ladder,
showing that the pair correlations, although displaying algebraic decay in both cases, are longer ranged in the
Creutz lattice, signifying the robustness of pairing in this system.
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I. INTRODUCTION

Systems exhibiting flat (dispersionless) bands come in
many varieties and manifest a wide range of interesting phe-
nomena such as exotic superfluid phases, edge states, topo-
logical insulator/superconductor phases, and bound Majorana
fermion edge states to name a few. For example, at half-
filling in the Lieb lattice (which belongs to a large family
of flat band models) [1–7], the fermionic Hubbard model
with repulsive contact interaction U has a ground state with
nonzero spin [8], while in the absence of Hubbard interaction,
a particle in the flat band is geometrically localized on four
sites due to quantum interference in the hopping terms [9].
On the other hand, the attractive Hubbard model on the same
lattice exhibits unusual charge and charge transfer signatures
within the flat band and reduced pairing order when either
the flat band starts to be occupied or when it is completely
filled [10]. It has also been argued that fermionic pairing
in flat bands would lead to more robust pairs and higher
critical temperatures [11]. Remarkable experiments have re-
cently shown [12] that graphene bilayers twisted by about 1.1◦
exhibit an ultraflat band at the charge neutrality point. This
leads to a correlated insulator which, when doped, becomes
superfluid.

Another very interesting class of systems has the lowest
band flat, e.g., sawtooth [13], kagome, Creutz [14], and many
others [15]. In the ground state of such systems, there is a
critical density below which each particle is geometrically
localized over a few sites (which depends on the lattice geom-
etry) and such that the localized particles do not interact. Ex-
ceeding the critical density causes the particle wave functions
to overlap and interaction ensues, thus destroying localization.
Such systems have been recently studied extensively both in

fermionic and bosonic models. In the latter case, it was shown
in a fully frustrated chain (diamond lattice, which has three
flat bands when threaded by a π flux) that when interactions
are included in such a way to reduce the original local U(1)
symmetry to a discrete local Z2 gauge symmetry, a new
exotic phase appears, namely a nematic superfluid where the
current is supported by bosons paired on different sites[16],
or using a fermionic language by the condensation of pairs
of Cooper pairs [17]; the same system was later studied
for spinless fermions [18]. In the sawtooth lattice, it was
found that doping above the critical density leads to a phase
where the peak of the momentum distribution is at nonzero
momentum [13], while doping the kagome lattice leads to a
supersolid phase [13]. Adding longer-range interactions be-
tween the bosons on the sawtooth lattice uncovers topological
effects such as the Haldane insulator phase and edge states
in open systems [19]. Bosons were also studied on the flat
band Creutz lattice (Fig. 1) leading to a rich phase diagram
exhibiting a condensate, a pair condensate, a supersolid and
phase separation phases [20,21].

Fermions in such systems, where the flat band is the lowest,
are very interesting for a variety of reasons. They have been
shown to exhibit a plethora of topological effects such as
edge states [14], which are robust to interactions when in the
presence of induced pairing terms [22]. A general treatment of
fermions with attractive interactions in nontrivial flat bands,
where the Chern number C �= 0, demonstrated [23] that such
systems are guaranteed to exhibit nonzero superfluid weight
Ds � |C|. In the case of quasi-one-dimensional systems, in
particular, the Creutz lattice, with C = 0, it was shown [24]
that the superfluid weight is Ds � |W|2, where W is the
winding number.
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FIG. 1. The Creutz lattice [14]. The (red) rectangle encloses a
unit cell, the (blue) square shows the geometry of the localized states
in the absence of interactions when the particle density is less than
the critical value 1/2. The arrows depict the sign of the hopping in
the intrachain bonds. In the interchain bonds, the hopping energies
have the same magnitude.

Here, we study numerically the Creutz model with an
attractive Hubbard interaction, U < 0, using the density ma-
trix renormalization group (DMRG) and exact diagonalization
(ED). We calculate the superfluid weight, the Drude weight
Ds in one dimension, for various fillings as a function of
|U | and show that for small |U | the predictions of Ref. [24]
are accurate, i.e., the superfluid weight grows linearly with
the strength of the interactions for densities away from half-
filling. Going beyond the small |U | regime, the model is
shown to map onto a hardcore bosonic model for large
enough |U |. As a measure of the robustness of superfluidity,
we calculate the one- and two-particle gaps, and the decay
exponents of the pair correlation functions for the Creutz flat
band model and compare with the normal two-leg model. We
find that pair correlations decay algebraically with distance,
whereas single-particle ones decay exponentially, for finite
values of the interactions. Furthermore, we find that for all the
parameters we studied, the power-law decay is slower, often
much slower, in the Creutz lattice than in the normal two-leg
model.

II. MODEL

We study the attractive Hubbard model on the Creutz
lattice [14] (see Fig. 1), governed by the Hamiltonian

H = −it
∑

j,σ

(
c
A†
j,σ cA

j+1,σ − c
B†
j,σ cB

j+1,σ + H.c.
)

− t
∑

j,σ

(
c
A†
j,σ cB

j+1,σ + c
B†
j,σ cA

j+1,σ + H.c.
)

+U
∑

j,α

nα
j,↑nα

j,↓, (1)

where the onsite interaction, U , is negative; A and B label the
two chains, t connects both inter- and intrachain sites j and
j + 1 and the sum over j spans L unit cells. The fermion
spin is labeled by σ = ↑, ↓ and α = A,B is the chain index.
This Hamiltonian governs a balanced population of up and
down spins making inter- and intrachain hops and interacting
attractively when on the same site.

It is worth noting that applying a local gauge transfor-
mation, cA

j,σ → exp(−iπj/2)cA
j,σ and cB

j,σ → exp(−iπ (j −
1)/2)cB

j,σ , renders all the hopping terms real. The intrachain
hopping parameter on chain A (B) becomes t (−t); interchain

hopping between site j on chain A (B) and site j + 1 on
chain B (A) is given by −t (t). When applied to a lattice
with periodic boundary conditions, the number of unit cells
must be a multiple of four for this transformation to apply,
whereas for the case of open boundary conditions, it works for
any system size. This proved to be very useful in some of our
DMRG calculations on large lattices, as one has to deal with a
purely real Hamiltonian. One must note that, in general, local
gauge transformations do not change the topological class of
the system as long as the relevant symmetries are consistently
modified when changing gauge [25].

For U = 0, H can be diagonalized [14,20,21] revealing
two flat bands, E± = ±2t . Consequently, when a particle is
placed in the lattice, it will be localized on four sites, shown
by the blue square in Fig. 1. The localized ground states are
given by

∣∣� loc
j,σ

〉 = − 1
2 [cB†

j,σ + icB†
j+1,σ + icA†

j,σ + c
A†
j+1,σ ]|0〉. (2)

For U � 0, i.e., repulsive interactions, all states are thus
localized as long as the filling is less than half, ρ ≡ (N↑ +
N↓)/Ns � 1/2, where Nσ is the total number of fermions
with spin σ and Ns = 2L is the number of sites. The ground-
state energy is then trivially given by E(ρ � 1/2) = −2tNsρ,
and the chemical potential is constant, μ = −2t resulting in
infinite compressibility. When U < 0, the fermions can lower
their energy further by pairing and, consequently, they are no
longer geometrically localized. This is the situation we shall
study here. We note that this model is different from that
treated in Ref. [22], where the spin of the fermion changes
when it performs interchain hops but it does not change for
intrachain hops.

Our system is like that considered in Ref. [24], where
hopping does not induce spin change, and where it is shown
that the Bardeen-Cooper-Schrieffer (BCS) wave function is
an exact eigenstate of an effective Hamiltonian, valid at low
energies. In this regime, one obtains that the system is in-
finitely compressible and the eventual coupling to the upper
band results in a finite compressibility, accompanied by an
algebraic decay of the pair Green function.

III. METHODOLOGY AND RESULTS

We employed complementary approaches to study pairing
in this attractive model at different filling fractions. If the
attractive interaction induces up and down fermions to form
pairs, the resulting composite bosons (not necessarily local)
may delocalize, yielding a superfluid/superconducting phase.
Such behavior would be signaled by power-law decay of the
pair correlation function, G

αβ
p (r ), and exponential decay of

the single-particle Green function, Gαβ
σ (r ) [26,27],

Gαβ
p (r ) = 〈

�
α†
j+r�

β

j

〉
, (3)

Gαβ
σ (r ) = 〈

c
α†
j+r,σ c

β

j,σ

〉
, (4)

�α
j ≡ cα

j,↑cα
j,↓, (5)

where �α
j is a pair annihilation operator at site j on chain

α, and α = A,B and β = A,B label the chains. We mostly
focus on the case where α = β, i.e., intrachain correlators. As
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detailed below, we study these correlation functions by means
of DMRG [28,29] on large lattices (up to L = 192) with open
boundary conditions. The remaining quantities are obtained
with periodic boundary conditions, as we describe below.

Another important physical quantity characterizing trans-
port is the superfluid weight Ds given, in one dimension
by [30–35]

Ds = πL
∂2E0(�)

∂�2

∣∣∣∣
�=0

. (6)

Here, E0(�) is the ground-state energy in the presence of a
phase twist � applied via the replacement cα

j → eiφj cα
j , where

φ = �/L is the phase gradient. This endows the hopping
terms with a phase exp(iφ) (or its complex conjugate).1

As explained in Ref. [34], taking the thermodynamic limit,
L → ∞, and computing the curvature are noncommuting
operations in two and three dimensions. The Drude weight,
D, is obtained by computing the curvature for finite lattices,
and extrapolating it to the thermodynamic limit. On the other
hand, the superfluid weight, Ds , is obtained by computing first
the ground-state energy E0(L,�) for lattice size L, extrap-
olating to the thermodynaimc limit and then calculating the
curvature. However, in one dimension [34], the two operations
do commute: the curvature of the ground state is essentially
related to the Drude weight. One, therefore, needs further
diagnostics to identify the superfluid phase. For bosonic sys-
tems, world line algorithms allow direct computation of the
superfluid density [36]. However, for the Creutz lattice, the
localization of the states due to the flat bands leads to a
vanishing Drude weight for the noninteracting system and
therefore the superfluid weight, Ds , and the Drude weight, D,
are essentially equivalent and given by Eq. (6). For the regular
two-leg ladder, we will see below that this is not so. Even
for |U | → 0, the right-hand side of Eq. (6) does not vanish
and actually corresponds to the noninteracting Drude weight.
However, this does not mean that the system is superfluid at
|U | = 0. To determine if the system is superconducting, we
examine the single-particle and the pairing Green functions.
We identify a superconducting phase by the exponential decay
of the former and power-law decay of the latter. With this
caveat in mind, we use the notation Ds to which we refer
equivalently as the Drude or superfluid weight.

A. Superfluid weight: Creutz lattice

We focused on four different fillings: ρf = 1, 3/4, 1/2,
and 1/4, using a combination of exact diagonalization (ED)
for smaller lattice sizes and DMRG for the larger ones, with
periodic boundary conditions (PBC) in both cases. In the
former, we were restricted to lattices that are commensu-
rate with those fillings, and such that the reduced Hilbert

1We emphasize that if using open boundary conditions, a local
gauge transformation can be applied to remove the phases φ in the
hopping terms. Likewise, in the case of periodic boundary condi-
tions, a similar transformation relates the two equivalent cases: when
the phase � is spread over the bonds and when they are accumulated
at the boundaries, such that only one bond has a twist cα

L → ei�cα
1 .

FIG. 2. Mapping a system with periodic boundary condition to a
ladderlike structure. The ring shape structure of the system with PBC
is folded to ladderlike structure with OBC and vanishing couplings
between the two legs of the ladder for all sites but the first and the
last.

space sizes, at different momentum sectors of the translation-
invariant Eq. (1), are �108. For example, in the fillings ρf =
1/2 and 1/4, the largest system sizes tackled using ED had
L = 10 and 16, respectively. Nonetheless, the DMRG results
complemented these for larger lattices, where we have kept up
to 1200 states in the truncation process and checked that the
results were unchanged when more states are kept. It is well
known that imposing PBC strongly degrades the efficiency of
DMRG. One of the reasons is that PBC results in an effective
long-range coupling between the first and last sites. On the
other hand, as displayed in Fig. 2, one can fold the system
with PBC to a ladderlike structure with OBC and vanishing
couplings between the two legs of the ladder for all sites but
the first and last two ones. Of course, this amounts to doubling
the size of the local Hilbert space, i.e., for each rung, which,
in turn, would require a larger bond dimension. Still, we have
checked that for usual 1D chains (bosons or fermions), the
DMRG convergence is much better than with the standard
way of implementing PBC.

We start by reporting on Figs. 3(a)–3(c), the ground-state
energy E0 in Eq. (1) with |U |/t = 8, as a function of �f

[hereafter, � = �f , for the fermionic Hamiltonian (1)], for
different system sizes and fillings. When we subtract the zero
gauge contribution, E0(�f ) = 0, and rescale by the system
size, we notice that, at half filling, the curvature decreases
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FIG. 3. Dependence of the ground-state energy on the applied
flux � that threads the lattice, for the fermionic Hamiltonian (1) [(a)–
(c)], and for the effective hard-core boson Hamiltonian (8) [(d)–(f)].
In the former, we use |U |/t = 8 and in the latter, J = V = 2t2/8.
The densities in (a)[(d)], (b)[(e)], and (c)[(f)] are ρf = 1 (ρhcb =
1/2), ρf = 1/2 (ρhcb = 1/4), and ρf = 1/4 (ρhcb = 1/8). The filled
(empty) symbols depict the DMRG (ED) results.

as the system size increases. This is in stark contrast with
the cases with densities ρf < 1 [Figs. 3(b) and 3(c)], where
they are rather insensitive to L. This is the first indication that
superfluidity is manifest only away from half-filling.

Finite size scaling of the curvatures is displayed in Fig. 4,
to probe the results when approaching the thermodynamic
limit; it shows clearly that Ds (L → ∞) is finite for U < 0
and ρf < 1. At half-filling [inset in Fig. 4(b)], the system
displays a vanishing superfluid weight, for a large range of
interactions. Moreover, Ds has a nonmonotonic dependence
on U away from half-filling. It grows as the strength of the
attractive interactions grows until |U |/t ≈ 8, where it starts
to decrease in the strongly interacting regime.

Finally, by compiling the values of Ds extrapolated to the
thermodynamic limit, we construct in Fig. 5 the dependence
of the superfluidity on the interactions for different densities,
where the nonmonotonic behavior is evident. Essentially, the
interactions induce a crossover betwen two regimes, at small
and large values of |U |/t . As mentioned in Introduction, and
explained in detail in Ref. [23], the superfluid weight (Drude
weight in 1D) for a multiband system, computed within a
mean-field BCS approach, is the sum of three different terms.
One of the terms is the usual single-band BCS term and
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D
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L
)

(a) ρf = 1/2

|U |/t = 1
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|U |/t = 32

0.0 0.1 0.2
1/L

(b) ρf = 1/4

0.0 0.1 0.2
1/L

−2

−1

0

1

D
s(

L
)

ρf = 1

FIG. 4. Extrapolation of Ds to the thermodynamic limit for three
different fermionic densities: (a) ρf = 1/2, (b) 1/4, and (inset) 1,
with different values of interactions U . The open (full) symbols were
obtained with ED (DMRG); lines in the main panels are linear fits
for the larger systems sizes. In the inset, we use an exponential fit
and notice a typical even and odd effect related to the formation of
closed shells, also seen in other contexts as, for example, in the Drude
weight for the 1d Hubbard model [33]. It is seen that the two methods
yield consistent results and give finite extrapolations for Ds when
L → ∞, for densities other than ρf = 1.

vanishes for a flat band, whereas the other two terms have
a topological origin, i.e., related to the fact that the band
structure has a nontrivial Berry curvature in two dimensions
or a nonzero winding number in one. In the present situation,
neglecting the contribution from the upper band, i.e., in the
limit U � t , one has [24]

Ds = π |U |ρ(1 − ρ). (7)

0 5 10 15 20 25 30
|U |/t

0

1

2

3

4

D
s

ρf = 1/2

ρf = 1/4

ρhcb = 1/4

ρhcb = 1/8

FIG. 5. Ds , for L → ∞, vs |U |/t , highlighting the nonmono-
tonic behavior of the superfluidity. For small interactions, Ds in-
creases linearly with slope πρ(1 − ρ ) (see text). At large |U |/t ,
the decay can be explained by an effective Hamiltonian of repulsive
hardcore bosons in a Creutz geometry, Eq. (8). These are represented
by the dashed-dotted lines.
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This linear dependence on |U |/t is plotted in Fig. 5 for
ρ = 1/2, 1/4, as dashed lines, and is seen to be in excellent
agreement with our exact numerical values for small |U |/t .

On the other hand, at large |U |/t , the ↑ and ↓ fermions
form strongly bound pairs being approximately described by a
local bosonic particle. Given the constraints on the occupancy
for each site, one can show that in this case, the fermionic
Hamiltonian (1) can then be mapped onto a Hamiltonian of
repulsive hardcore bosons whose hopping and near-neighbor
repulsion have the same energy scale [37], and the density of
particles is ρhcb = ρf/2. The effective Hamiltonian then reads

Heff = − 2t2

|U |
∑

j,α,β

(
b

α†
j b

β

j+1 + H.c.
)

+ 2t2

|U |
∑

j,α,β

(
nα

j n
β

j+1 + n
β

j+1n
α
j

)
, (8)

where nα
j = b

α†
j bα

j , and b
α†
j (bα

j ) is a hardcore boson creation
(annihilation) operator on site j and chain α = A, B. They
satisfy {bα

j , b
α†
j } = 1, and [bα

j , b
β†
r ] = 0 for j �= r or α �= β.

We note that this effective model is defined on the Creutz
lattice, Fig. 1, but is not governed by a Creutz Hamiltonian as
in Eq. (1), i.e., the hopping bonds are preserved but in this case
they all have the same hopping energy. Thus the Hamiltonian
(8) is not flat: it describes hardcore bosons on a quasi-one-
dimensional lattice with a nonflat dispersion relation and
which are expected to be superfluid.

Analogously to what we have done with the fermionic
Hamiltonian, we numerically studied the effect of a phase gra-
dient on the hopping terms, implemented via the replacement
bα

j → eiφj bα
j [φ/L ≡ �hcb], in order to probe the superfluid

properties of this effective model. The dependence of the
ground-state energy on the flux �hcb is shown in Figs. 3(d)–
3(f), using ED for different system sizes. First, we notice
the curvatures display a similar qualitative behavior. At half-
filling, the curvature of E0(�)·L decreases for increasing sys-
tem sizes while it is independent of L for densities away from
it. Second, the periodicity of the E0(�) curve in the bosonic
case is twice as large as in the fermionic one. This is an
expected result based on considerations of flux quantization
of superconducting rings [38,39]. A magnetic flux enclosed by
such a ring is related to a vector potential manifested along the
direction of the lattice as �A = (ϕ/L)x̂. This, in turn, results in
a twist of the boundary conditions along the same direction of
the form exp{i2πϕ/ϕ0}, where ϕ0 is the flux quantum hc/e.
Byers and Yang [38] have shown that the energies are periodic
functions of ϕ, whose period is ϕ0/n, where n is the total
charge of the basic group. For instance, for superconductors
with carriers of charge 2e, n = 2. In our units, the period
� of the ground-state energy in the fermionic problem is π ,
which correcting the 2π factor, results in periods ϕ = ϕ0/2,
i.e., Cooper pairing superconductivity, as expected. On the
other hand, for the case of effective hardcore boson model, the
period of the ground-state energy with � is 2π , that results in
periods ϕ = ϕ0/1, i.e., the charge of the superfluid carrier is
one, a hardcore boson itself.

Beyond the qualitative description of the mapping be-
tween the two models, we show that the agreement is also

0.0 0.2 0.4 0.6 0.8 1.0
ρf

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

D
s

|U |/t = 1

|U |/t = 8

|U |/t = 32

FIG. 6. Dependence of the superfluid weight on the total
fermionic density, for different interaction strengths: With small in-
teractions (|U |/t = 1), where the description of the projected Hamil-
tonian is suitable, at large interactions (|U |/t = 32) and around the
peak of Ds for the intermediate fillings (|U |/t = 8).

quantitative for large interactions. Computing the superfluid
weight via Eq. (6) and extrapolating to the thermodynamic
limit (not shown), we obtain Ds for the hardcore boson
effective model [Eq. (8)], which we display as dashed-dotted
lines in Fig. 5. For large values of |U |/t , the fermionic super-
fluid weight asymptotically approaches the one for hardcore
bosons, further confirming the local nature of the pairs in this
regime and its superfluid character for densities away from
half-filling.

Turning back to the fermionic problem, Fig. 6 displays the
dependence of the superfluid weight on the total density ρf

for different interaction strengths. In the noninteracting case,
due to the dispersionless nature of the bands, the superfluid
weight is zero regardless of the density investigated. When
the interactions are finite but small, such that the ground state
can still be described by a BCS wave function, the superfluid
weight follows a form predicted by Eq. (7), symmetric in the
densities around ρf = 1/2. Away from this regime, increasing
the interactions, causes Ds to become asymmetric, with its
peak moving to higher filling.

B. Excitation gaps

We further characterize the transport properties of the
system by studying the nature of particle excitations. In par-
ticular, we study the fate of one- and two-particle excitations
on the Creutz Hubbard Hamiltonian to understand better the
superfluid behavior. The m-particle excitation energy, i.e., the
energy gap per particle to promote such excitation, can be
defined as [40,41]

δm ≡ 1

m
[E0(N + m) + E0(N − m) − 2E0(N )], (9)

where m is the number of doped particles in a system with N

particles; E0 is the corresponding ground state at those fill-
ings. We first describe the single particle (m = 1) excitations
in Fig. 7, for the densities ρf = 1, 1/2, and 1/4, as functions
of |U |/t . They show that the gap to add one particle has small
finite size corrections; furthermore, in the regime of strong
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FIG. 7. The one-particle gap energies for ρ = 1/4, 1/2, and
1 as functions of the coupling |U |/t . The dotted lines have the
form δ1 ∝ |U |/t and are guides to the eye. For ρ = 1 [(c)], the
dashed line at δ1 = 4t indicates the range of validity of the projected
Hamiltonian, where excitations are gapped by the noninteracting
Creutz bandwidth. The inset displays in detail the departure from this
regime, starting at interactions |U |/t � 4. As in previous figures, ED
(DMRG) results are given by empty (filled) symbols.

interactions, the gaps are proportional to |U |/t , indicating
tighter binding. At small interaction strengths, the behavior
of δ1 is markedly different for different densities. While
for ρf < 1, the single particle gap is finite and proportional
to |U |/t , at half-filling, δ1 � 4t , suggesting that the single-
particle picture, with two flat bands separated by a gap of
this same energy, is still applicable. For that density, the lower
band is completely filled and the cost in energy to add an extra
particle is then 4t .

Figure 8 shows that the two-particle gaps suffer appreciable
finite size effects. Away from half-filling, the dependence of
δ2 on |U |/t suggests that this quantity peaks at interactions
corresponding to the maximum of the superfluid weight,
|U |/t ≈ 8. However, finite size scaling analysis [insets in
Figs. 8(a) and 8(b)] shows that this pair excitation is gapless,
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FIG. 8. Similar to Fig. 7, but for two-particle excitations. The
dashed line at δ2 = 4t in (c) indicates the range of validity of the
projected Hamiltonian. As in previous figures, ED (DMRG) results
are given by empty (filled) symbol. The insets in (a) and (b) display
the finite size scaling of δ2 for three values of the interactions at
densities ρf = 1/4 and 1/2, respectively.
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FIG. 9. Single-particle gap for the effective hard core boson
model (8), δhcb

1 , and two-particle gap for the original fermionic
model (1), δf

2, as functions of 2t2/|U |. The extrapolation to the
thermodynamic limit of δhcb

1 is given by the dashed line, whereas
δf

2 is presented for different system sizes. As in previous figures, ED
(DMRG) results are given by empty (filled) symbols.

as one would expect for a system displaying finite superfluid
weight in the thermodynamic limit. For ρf = 1 and small
interactions, the energy per particle to add a pair is again close
to the noninteracting gap. It takes values slightly below 4t in
this regime because the added particles, which populate the
upper band, can further decrease their energy by interacting
attractively. Most importantly, due to the minimal dependence
on system size, one can guarantee that the system is not
superfluid, in agreement with the results of Fig. 4 at this
filling. In the strongly interacting regime, finite size effects
are more pronounced, and δ2 steadily decreases for larger
L’s. Nonetheless, we can once again resort to the mapping
to the effective Hamiltonian Eq. (8) in this regime, to settle
the question whether the two-particle gaps are finite.

In the coupling regime where the pairs are tightly bound,
one expects the two-particle fermionic gap [δf

2 ≡ δ2] to corre-
spond to the single-particle gap of hardcore bosons, δhcb

1 , in the
effective model language. By performing finite size scaling
on the latter, we find that δhcb

1 is finite in the thermodynamic
limit as long as the interactions are also finite. Consequently,
one expects δf

2 to be finite too at strong interactions. Figure 9
displays the dependence of δf

2 and δhcb
1 , at half-filling, as

functions of the inverse interaction strength. The agreement
of the single particle gap for hardcore bosons and the two-
particle gap for fermions is evident at |U | � t . Essentially,
δhcb

1 provides a lower bound to δf
2, indicating the gap to create

a pair is always finite as long as |U | is. This again confirms the
picture that the superfluid weight for ρf = 1 is zero at arbitrary
values of the interactions in the Creutz ladder.

C. Pair correlation functions

The finite gaps for the single-particle excitation suggest
that the single-particle Green’s function, Eq. (4), should decay
exponentially. On the other hand, the high pair mobility indi-
cated by the vanishing of the two-particle excitation energy
suggests that the pair Green function, Eq. (3), decays as a
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FIG. 10. (a) The intrachain pair correlation function, GAA
p as

a function of the distance in a log-log scale and different values
of |U |/t = 1, 2, 3, 4, 5, 6, 7, 8, 12, 16, as signaled by the vertical
arrow. The lattice size is L = 160 and ρf = 1/2. The inset displays
the single-particle Green’s functions in a linear-logarithm scale. In
(b), the dependence on |U |/t of the decay exponent γ of the pair
Green function, for densities ρf = 1/4 and 1/2. At large attractive
interactions, it possesses an asymptotic behavior, saturating at the
value corresponding to the decay of single-particle correlations,
〈b†

j,rbj 〉, of repulsive hardcore bosons in the same geometry and
density ρhcb = ρf/2. Finite size effects are already rather small for
the values of L considered, 160 and 192, at density ρf = 1/2.

power with distance, for densities away from half-filling. This
is confirmed in the inset of Fig. 10(a), which shows very
fast exponential decay of the one-particle Green function with
distance, signaling a robust single-particle gap at the density
ρf = 1/2. We have also confirmed that similar behavior oc-
curs for other densities. Moreover, we remark that ↑ or ↓
channels, in either chain A or B, result in equivalent values
for this correlation.

In contrast, the power-law decay of the pair Green function
[Fig. 10(a)] is characteristic of quasi-long range order for
this observable, and indicates that local pair excitations are
gapless in this system. We note that the larger the attractive
interaction the faster is the decay of Gαα

p (we use α = A).
When compiling the values of the decay exponent γ in
Fig. 10(b), where Gαα

p ∝ r−γ , we note that it essentially
saturates at large interactions, denoting that the extent of
the decay of the correlations is constant. Once more, we
can understand this result via the mapping onto the effec-
tive repulsive hardcore boson model in the Creutz geometry
Eq. (8). In this case, changing the magnitude of U accounts
only for a re-scaling of the Hamiltonian energies, since both
hopping and nearest-neighbor interactions have the same
energy dependence on |U |/t , without changing the decay
extent of the correlation functions. Thus one would expect that
〈�α†

j+r�
α
j 〉 ∝ 〈bα†

j+rb
α
j 〉 ∝ r−γ , in the large |U |/t limit.

In (quasi-)one-dimensional systems, repulsive hardcore
bosons behave as Luttinger liquids when away from the half-
filling regime [42]. We then expect the exponent γ we obtain

FIG. 11. Drude weight in the thermodynamic limit vs |U |/t , for
a regular ladder. The noninteracting results, which are finite, unlike in
the Creutz lattice, are indicated by the star symbols at |U |/t = 0. The
strongly interacting regime is explained by the results of repulsive
hardcore bosons on a regular ladder, depicted by the dashed-dotted
lines.

in the strongly interacting regime to be related to the Luttinger
liquid parameter K , which is a function of the density of
particles. To the best of our knowledge, this is not known
for a system where the interactions and hoppings have the
geometry of the Creutz lattice, thus a quantitative prediction
is hard to make. Nevertheless, the behavior of Ds , δ1, δ2, and
the Green functions leads to the conclusion that the attractive
Hubbard model in the Creutz lattice, given by Eq. (1), exhibits
superfluidity for any U < 0, for densities away from half-
filling.

D. Regular two-leg ladder

We now compare the above results of the Creutz lattice
with the behavior of the attractive fermionic Hubbard model
on a simple regular ladder composed of two coupled chains
(see Fig. 11). In this case, the Hamiltonian is written as

H = −t
∑

〈i,j〉,σ
(c†i,σ cj,σ + H.c.) + U

∑

j

nj,↑nj,↓, (10)

where 〈i, j 〉 indicates inter- and intrachain nearest neighbors
and, again, U < 0. To start, we highlight the main difference
between the Creutz and regular ladders, which is evident when
comparing the noninteracting regime. In the Creutz case,
as |U |/t → 0, Ds → 0 due to the geometrical localization
caused by the flat band; on the other hand, in the ladder case,
|U | → 0 leads to a free fermion gas with nonflat dispersion
which is mobile.

For finite interactions, we resort to numerical calculations.
We calculate the superfluid weight via Eq. (6), by repeating
the analysis done for the Creutz lattice. After finite size
extrapolations to the thermodynamic limit, we obtain the
dependence of Ds on the interaction strength depicted in
Fig. 11. As before, one can explain the strongly interacting
limit using an effective hardcore boson Hamiltonian similar to
Eq. (8), but with hopping and interacting terms corresponding
to the ladder geometry. However, in contrast to the Creutz
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FIG. 12. The same as in Fig. 10, but now in the case of a regular
ladder. The interaction values used are |U |/t = 1, 1.5, 2, 3, and 4,
and are schematically represented by the vertical arrow.

case, the noninteracting, U = 0, result is finite and can be
calculated exactly using the energy dispersion of the ladder,
εk = −2t cos(k) ± t . The definition of the superfluid weight
[Eq. (6)] yields Ds (U = 0) = 4t sin (πρ), for ρ � 1/2, i.e.,
where only the lower band has finite occupancy in the ground
state. These are indicated by star symbols in Fig. 11 for the
two densities we investigated, ρf = 1/4 and 1/2. However, it
is very important to keep in mind our discussion after Eq. (6):
that Ds (U = 0) is nonzero does not mean that the noninter-
acting system is superfluid. At U = 0, both the single particle
and pair Green functions decay as power laws indicating
metallic behavior. Our results indicate that (up to the precision
of our calculations) as soon as |U | �= 0, the fermions start to
pair and form a superfluid phase characterized by exponential
decay of the single particle Green function and power law for
the pair correlations.

At half-filling, one can apply a particle-hole transformation
in one of the spin components, say c̃i,↓ = (−1)ic†i,↓, keeping
the other component unchanged, to map the Hamiltonian onto
the repulsive Hubbard model in a two-leg ladder. In this
case, one expects a Mott insulating behavior, whose charge
stiffness approaches zero in the thermodynamic limit. Hence,
in the original Hamiltonian, both the superfluid and Drude
weights should also decay to zero when L → ∞, provided
the interactions are finite.

Previous studies using zero-temperature quantum Monte
Carlo techniques [43] obtained the power-law decay of pair
correlations for the normal ladder at ρf = 1/2. The decay
exponent was found to be either γ = 1.07(3) or γ = 0.87(2),
if considering the fitting to the upper or lower envelope of
the oscillating pair correlations with distance, for interac-
tions |U |/t = 2. Here, we focus on the same density using
DMRG. Similarly to Fig. 10, we report in Fig. 12(a) the
decay with distance of the pair and single-particle Green’s
functions. Again, the respective power-law and exponential
decays signal the superfluid character of the system and agrees
with the predictions of the superfluid weight presented in

Fig. 11. Furthermore, we show in Fig. 12(b) the dependence
of the decay exponent of the pair Green’s functions on the
interaction strength. One can highlight two points: the first is
that the magnitude of the interactions that yields a saturated
exponent is much smaller than in the case of the Creutz
lattice (note the different ranges of interactions in both plots).
This can be understood by noticing that the agreement of the
superfluid weight of hardcore bosons with the one obtained
for the original fermionic model (Fig. 11) appears at smaller
interactions in comparison to the Creutz lattice (Fig. 5). The
second point is that at the same density we have investigated
for the Creutz ladder [Fig. 10(b)] the decay exponent is larger
for the ladder. This means that the pair correlations, although
still displaying algebraic behavior, are shorter ranged for the
ladder than for the Creutz lattice at the same density. In that
sense, one can argue that the superfluid nature in a Creutz
lattice is more robust that in a regular ladder.

IV. CONCLUSIONS AND REMARKS

We investigated the superfluid properties of attractive
fermions on a cross-linked ladder using numerical unbiased
methods, namely exact diagonalization and density matrix
renormalization group. The ladder, known as the Creutz lat-
tice, is constructed in such a away as to render two flat
bands in the tight-binding regime. We introduce local attrac-
tive interactions between fermions and show that the system
displays finite superfluid weight with two distinct regimes, of
weak and strong interactions if the fermionic filling is smaller
than one. In the former, we show that this quantity is explained
by the analysis of a projected Hamiltonian on the lower band,
valid at small energy scales [24], whereas in the latter, it can
described by the superfluid properties of repulsive hardcore
bosons on a similar lattice, but with all the bonds having
hopping energies with the same sign.

Quantitative study of single and two-particle excitations
of the fermionic problem corroborates this picture, showing
that the energy to excite a single charge is gapped for the
wide range of interactions we investigate. On the other hand,
pairs can be excited without an energy cost for densities
ρf < 1. We further study the single-particle (pair) correlation
functions along the ladder, obtaining exponential (power law)
decay with distance, denoting gapped (gapless) behavior for
this excitation. Finally, we found that power-law decay of
pair correlations are slower, often much slower, in the Creutz
lattice than in the normal ladder. Note that Fig. 10(b) shows
that the decay exponent on the Creutz lattice is always less
than 1/2, while on the ladder, Fig. 12(b) shows it always
to be larger than 1/2 and can even rise above 1. With the
Luttinger parameter K , defined as G(r ) ∼ 1/r (1/2K ), this
gives K > 1 for Creutz and K < 1 for the ladder. It is known
from bosonization [26] that when K < 1/2 (i.e., power decay
exponent larger than 1) the superfluid is unstable and can be
localized even by a single impurity. In this sense, we say that
superfluidity in the Creutz lattice is more robust.

Note added. Upon completion of this manuscript, a preprint
appeared which tackled a similar problem [44], also finding
formation of pair superfluidity away from half-filling. In addi-
tion to obtaining similar results, here we also quantitatively
connect the results in the strongly interacting regime to a
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repulsive hardcore boson model which is superfluid for any
finite interactions. We also show how those are connected
to properties of the ground state, as in the single- and pair-
correlation functions.
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