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Topology of the valley-Chern effect

Kai Qian,1 David J. Apigo,1 Camelia Prodan,1 Yafis Barlas,2 and Emil Prodan2,*

1Department of Physics, New Jersey Institute of Technology, Newark, New Jersey 07102, USA
2Department of Physics, Yeshiva University, New York, New York 10016, USA

(Received 22 March 2018; revised manuscript received 18 June 2018; published 24 October 2018)

The quantum valley-Hall effect (QVHE) manifests in both classical and quantum materials as the emergence
of pairs of quasichiral bands along certain interfaces. This bulk-boundary principle is well understood in
the limit where the valleys result from a slight splitting of Dirac singularities. However, using a versatile
experimental platform based on magnetically coupled spinners, we demonstrate that this regime is not suitable
for metamaterial applications due to the delocalization of the interface modes. We also find that a strong splitting
of the Dirac singularities washes away the QVHE. We then propose that the enlargement of the bulk gap to be
accompanied by a Berry curvature engineering that keeps it localized near the valleys. This is a new regime,
entirely outside the umbrella of Dirac physics, which we call the valley-Chern effect (VCE). By establishing an
exact relation between VCE and quantum spin-Hall effect, we demonstrate a robust bulk-boundary principle,
which could be the foundation of a new wave of applications of topological metamaterials.
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I. INTRODUCTION

Graphene and related systems continue to be laboratories
for new ideas and sources of remarkable new effects. With
its low-energy physics determined by two small pockets of
the Brillouin zone graphene led scientists to realize that a
new effective observable, the valley, emerges in many physical
situations. This observable can be controlled and manipulated
like the spin [1–5] when the valley commutes with the dynam-
ics of the low-energy degrees of freedom. If the spectrum is
gapped by breaking the inversion symmetry of the honeycomb
lattice, a unique topological effect emerges [4,6] (see Ref. [7]
for a brief and informative update), the quantum valley-Hall
effect (QVHE). It manifests in the emergence of counter-
propagating quasichiral modes at the interface between two
mirrored samples. QVHE is quite appealing for engineering
interface modes because it does not require breaking of the
time-reversal symmetry or strong spin-orbit couplings. It has
been observed in many solid-state devices [8–12] and the
interest continues to be strong, especially in the context of
graphene bilayers [13–20]. It has been proposed in many
photonic devices [21–26] and it was observed recently in
laboratories [27–29]. QVHE has been enthusiastically em-
braced by the topological mechanics community, where there
has been an explosion of laboratory demonstrations of the
effect [30–40]. We were particularly motivated by the work of
Ruzzene et al. [32,33], where the mechanical interface modes
have been recorded in real time, providing a dramatic visual
demonstration of signal guiding along zigzagged interfaces.

The bulk-boundary principle responsible for the observed
interface modes is well understood in the regime where the
valleys result from a slight splitting of graphene’s Dirac cones
[15]. In such cases, the physics of low-energy excitations
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can be captured by effective Dirac models which only cover
the continuum limit, where the domain walls (DW) and the
perturbations occur at small energy scales and over length
scales much larger than that of the lattice parameters. This
regime, unfortunately, is quite far from what is needed for
practical applications of metamaterials, where the DWs have
to be sharp and the spectral gaps large in order to ensure
good localization of the interface modes. These aspects are
analyzed in the first part of our work using a novel and
versatile experimental platform based on magnetically cou-
pled spinners [41]. Using the standard implementation of the
QVHE based on first near-neighbor couplings on a honey-
comb lattice, we discover a fundamental conflict, namely, that
the effect becomes weaker and weaker as the band gap is
increased. This is evidenced through an analysis of the Berry
curvature, which washes away as the spectral gap is increased.
Experimentally, we demonstrate the existence of the interface
modes and study their localization as function of bulk gap,
providing irrefutable evidence that practical constraints forces
on us, the metamaterials scientists, to exit the regime where
Dirac physics applies. In this extra regime, we reproduce the
forward propagation along a zigzagged interface, as observed
in many studies before us, but we demonstrate, perhaps for
the first time, back-scattering of the interface modes under
lattice defects. This demonstrates that the effect is only a
weak topological effect and brings a cautionary tale about the
zigzagged interface test.

Since the protection of the interface modes is not universal,
for practical applications, one needs to understand extremely
well what are the safe working assumptions. This became a
hotly debated issue inside the metamaterials community. The
theory based on the Dirac physics supplies the following safe
working conditions: the domain walls and the perturbations
must occur at small energy scales and over length scales much
larger than that of the lattice parameters. This is clearly of
very little use for metamaterials applications. Prompted by all
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the above, we searched and discovered a new regime, which
we call the valley-Chern effect, where a robust bulk-boundary
principle can be established via topological arguments rather
than effective models. This regime is characterized by large
bulk spectral gaps and Berry curvature distributions that are
entirely concentrated around the valley points. As we al-
ready emphasized, this requires Berry curvature engineering
achievable only by turning on couplings beyond the first near-
neighbors.

We establish an exact connection between the valley-Chern
effect (VCE) and the quantum spin-Chern (SC) effect [42,43],
with the latter defined here as time-reversal invariant systems
with an additional U(1) symmetry. For this, one of our key ob-
servations is that a domain-wall configuration can be formally
folded into a bilayered configuration with an edge. The valleys
of the bulk bilayer now carry integer Chern numbers and a
standard topological argument ensures us that the valleys can
be trivially continued over the entire Brillouin torus. As such,
the valley degrees of freedom become band indices and they
can be defined in the real-space representation. As we shall
see, this continuation is equivalent to inserting totally discon-
nected bands, a procedure that does not affect the physics of
the original system, and the folded bulk Hamiltonian can be
unitarily mapped into a reference SC insulator. By using the
well understood bulk-boundary correspondence of the latter
as well as the precise relation between the reference SC and
VC systems, a generic argument for the existence of the edge
modes emerges.

It will become clear that, in the VCE regime, the DW
potential can be always optimized in order to generate pairs
of chiral DW modes with the following trades of genuine
topological bands: (1) they emerge from one bulk band,
traverse the bulk gap and dive into the opposite bulk band;
(2) they do not back-scatter as long as a certain symmetry
is preserved, which steams from the U(1) symmetry of the
reference SC insulator. Let us point out that in QVHE, the
pseudochiral DW modes reconnect with each other rather
than dissolving into the bulk spectrum, which is an inherent
source of back-scattering. Furthermore, VCE does not require
slow variations of the interface potentials. In fact, our theory
predicts the possibility of chiral modes even under potentials
which completely decouple the domains, hence in a simple
edge configuration. Such chiral modes have been observed
recently [37] under specialized boundary conditions.

As the program of Berry curvature engineering is yet to
be developed, we will exemplify all these formal arguments
on our present experimental model. At this point, we can
only provide predictions and recommendations for implemen-
tations of true VCE that go beyond the first near-neighbors.

II. COUPLED SPINNERS: A VERSATILE PLATFORM

We describe in this section the experimental platform
based on magnetically coupled spinners. The centers of the
spinners are pinned, hence they only have a rotational degree
of freedom ϕ. By simply staking two or more spinners on top
of each other, we can engineer mechanical building blocks
with controlled number of degrees. Furthermore, the centers
of the spinners can be pinned in any two-dimensional pattern
and the degrees of freedom can be easily coupled in virtually

FIG. 1. Configurable spinner with detachable arms. (a) Ball bear-
ing with six inserts. (b) Detachable arms with magnetic ends for
coupling. [(c)–(f)] The four spinner configurations used in our study,
together with the labels used in the text.

any desirable configuration. The resulting experimental plat-
form is extremely versatile and can be utilized to implement
any quadratic two-dimensional discrete Hamiltonian. It will
be used in the present work to investigate different QVHE
regimes obtained with the classical honeycomb lattice setup.

A. Configurable spinners

The configurable spinners are illustrated in Fig. 1. They
consist of a stainless steel ball-bearing fixed in a brass encap-
sulation. The latter is fitted with six grooved indentations as
shown in see Fig. 1(a), which enable us to attach additional
components. This work features the relatively heavy brass
arms shown Fig. 1(b), which can be securely fastened in the
brass encapsulation via the end-bolts shown in the inset of
Fig. 1(b). The arms are also fitted with strong magnets which
provide the coupling between the spinners. Four spinner con-
figurations will be used in our study, displaying six, five, four,
and three arms, as shown in Figs. 1(c)–1(f). These configura-
tions will be referred to as A, B, C, and D, respectively.

The uniformity of the arms, their fastening to the encapsu-
lation, the uniformity of the magnets, and the quality of the
ball bearings are all essential for the proper functionality of
the system. The latter reflects in the high−Q factors of the
coupled resonators, which was measured to be around 50.

B. Mapping the basic couplings

In the following, we will concentrate on three basic cou-
plings: A-A, B-B, and A-B. These magnetic couplings can
measured by mapping the resonant modes of the correspond-
ing dimers. The dynamics of a dimer is governed by the
Lagrangian:

L(ϕ1, ϕ2, ϕ̇1, ϕ̇2) = 1
2I1ϕ̇

2
1 + 1

2I2ϕ̇
2
2 − V (ϕ1, ϕ2). (1)

In the regime of small oscillations around the equilibrium
configuration ϕ1 = ϕ2 = 0, the potential can be replaced by
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FIG. 2. Mapping the coupling coefficients. [(a) and (b)] The A-A
and B-B dimmer configurations, respectively. (c) The experimentally
measured resonant frequencies f A−A

± (red/blue dots, respectively) of
the A-A dimer as functions of separation d between the magnets.
(d) Same as (c) but for B-B dimer. (e) The ratios f B−B

+ /f A−A
+ (red

dots) and f B−B
− /f A−A

− (blue dots) as a function of separation. (f) The
coupling coefficients α (solid red dots) and β (solid blue dots), as
derived from (6) in units of 4π 2IA × Hz2, together with the analytic
fits (7) (continuous lines).

its quadratic approximation:

V (ϕ1, ϕ2) = V0 + 1
2α

(
ϕ2

1 + ϕ2
2

) + βϕ1ϕ2. (2)

The symmetry of the potential with respect to the exchange
1 ↔ 2 is made explicit in this expansion. We will refer to
α and β as the coupling coefficients and, from stability
considerations, |β| < α. Also, β happens to be positive in
our setup, but one should keep in mind that negative β’s can
be also engineered, if needed. The equations of motion are
straightforward:

Ij ϕ̈j + αϕj + βϕj ′ = 0, j = 1, 2, j ′ = 2, 1. (3)

With the ansatz ϕj (t ) = 1√
Ij

Aj e
iωt , ω = 2πf , the equation

for the resonant modes reads

ω2

(
A1

A2

)
=

(
α
I1

β√
I1I2

β√
I1I2

α
I2

)(
A1

A2

)
. (4)

For I1 = I2 = IA or IB , it leads to the pairs of resonant
frequencies

f A−A
± =

√
α ± β

4π2IA

, f B−B
± =

√
α ± β

4π2IB

. (5)

The upper/lower frequency modes correspond to motions
where the two angles are locked as ϕ2 = ±ϕ1, respectively.

The resonant frequencies have been independently mea-
sured as functions of distance d between the magnets and

FIG. 3. The A-B coupling. (a) The A-B dimer configuration.
(b) The experimentally measured resonant frequencies f A−B

± as a
function of distance between the magnets.

the data is reported in Figs. 2(c) and 2(d). We have verified
that the coupling coefficients are not affect by the removal of
the arms, by examining the ratios f B−B

± /f A−A
± . As one can

see in Fig. 2(e), these two ratios are more or less identical
and independent of d. From (5), this constant value can be

identified with the ratio
√

IA

IB
, which comes to 1.235 from a

fit. At this point, we obtained a quantitative measure of r =
IA/IB = 1.525. Furthermore, it is possible to invert any of the
relations in (5), e.g., A-A, and map the coupling coefficients

α = 2π2IA(f 2
+ + f 2

−), β = 2π2IA(f 2
+ − f 2

−). (6)

The resulting values are shown in Fig. 2(f), in convenient units
of 4π2IA × Hz2, together with the theoretical fits

α(d ) = −654.09√
d

+ 2763.66

d
+ 575.89

d2
,

β(d ) = −778.14√
d

+ 3439.81

d
+ 161.35

d2
. (7)

For completeness, the resonant frequencies for the A-B
dimer are reported in Fig. 3. They agree well with the coupling
coefficients (7). Similar measurements have been performed
for the combinations A-C and A-D, for which the coupling
coefficients remain the same and r was found to be approxi-
mately 1.3 and 1.2, respectively.

III. QUANTUM VALLEY-HALL EFFECT WITH
COUPLED SPINNERS

We will generate the QVHE with the classical honeycomb
configuration. The fully assembled spinner system in the A-B
configuration is shown in Fig. 4, together with the primitive
cell and primitive vectors. The latter have been chosen pur-
posely that way to conform with the domain wall introduced
later. The centers of the primitive cells are located at Rn =
n1a1 + n2a2, hence we can label the cells by n = (n1, n2) ∈
Z2. The spinners can be easily identified using the pair of
indexes (n, A) or (n, B ). The shift operations acting on the
indices

S1n = S1(n1, n2) = (n1 + 1, n2),

S2n = S2(n1, n2) = (n1, n2 + 1), (8)

will prove to be convenient for the calculations below.
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FIG. 4. Bulk configuration. It is a finite bipartite honeycomb lat-
tice populated with A (red) and B (blue) type spinners. The actuator
appears at the bottom of the illustration. For technical specifications,
see Sec. III E. The inset shows the primitive cell (shaded area) and
the primitive vectors a1,2.

A. Mapping the bulk spectrum

The Lagrangian of the infinite lattice takes the form

L =
∑
n∈Z2

(
1

2
IAϕ̇2

n,A + 1

2
IBϕ̇2

n,B − V (ϕn,A, ϕn,B )

)
− V

(
ϕn,A, ϕS−1

1 S−1
2 n,B

) − V
(
ϕn,A, ϕS−1

2 n,B

)
, (9)

and, using the quadratic approximation (2), the equations of
motions take the form(

IAϕ̈n,A

IBϕ̈n,B

)
=

(
−3αϕn,A − β

(
ϕn,B + ϕS−1

1 S−1
2 n,B + ϕS−1

2 n,B

)
−3αϕn,B − β

(
ϕn,A + ϕS1S2n,A + ϕS2n,A

) )
.

(10)

It is convenient to make the change of variables

ϕn,A = 1√
IA

ψn,A, ϕn,B = 1√
IB

ψn,B, (11)

and bring the equations to the form(
ψ̈n,A

ψ̈n,B

)

=
(−3 α

IA
ψn,A − β√

IAIB

(
ψn,B + ψS−1

1 S−1
2 n,B + ψS−1

2 n,B

)
−3 α

IB
ψn,B − β√

IAIB

(
ψn,A + ψS1S2n,A + ψS2n,A

) )
.

(12)

We can encode the degrees of freedom in a single function:

ψ : Z2 → C2, ψ (n) =
(

ψn,A

ψn,B

)
, (13)

and use the ansatz ψ (t ) → Re[eiωtψ], ω = 2πf . Then, in the
units used in Fig. 2, the equations of motions simplify to

f 2ψ = [
3
2α(1 + r + (1 − r )σ3) + β

√
r (σ1 + σ−(S1S2 + S2)

+ σ+(S†
1S

†
2 + S

†
2 ))

]
ψ, (14)

where the shift operators act as

(Sjψ )(n) = ψ (Sj n), j = 1, 2, (15)

and σ ’s are Pauli’s matrices. The shift operators commute
with each other and also with the dynamical matrix and have
common eigenvectors:

Sj eikn = eikj eik·n, k = (k1, k2) ∈ [−π, π ]2, j = 1, 2.

(16)

Hence the normal modes will be sought in the form ψ (n) =
eik·n ξ, ξ ∈ C2, in which case the dispersion equation reduces
further to

f 2ξ =
[

3

2
α(1 + r + (1 − r )σ3) + β

√
r

(
0 γ (k)∗

γ (k) 0

)]
ξ,

(17)

with γ (k) = 1 + ei(k1+k2 ) + eik2 . The explicit dispersion equa-
tions of the resonant modes then follow:

f± = 3α

2

[
(1 + r ) ±

√
(1 − r )2 + 4rβ2

9α2
|γ (k)|2

] 1
2

. (18)

When r = 1, the system is inversion symmetric and two
Dirac singularities are present in the bulk band structure. The
imbalance between IA and IB breaks the inversion symmetry,
hence the Dirac singularities split as soon as r > 1. Let us note
that the valleys are located at the points where |γ (k)| = 0,
which are K = −K ′ = ( 2π

3 ,− 2π
3 ).

A graphical representation of the dispersion equations (18)
is reported in Fig. 5 for a sequence of increasing values of r .
For the value r = 1.525 corresponding to the A-B configura-
tion, a comparison between the theoretical spectrum and the
experimental reading from a sensor placed inside the structure
is shown in Fig. 6. Since the structure is actuated from
the edge, a nonzero reading from the sensor indicates that

Fr
eq

ue
nc

y
(H

z)

r = 1.4

r = 1 r = 1.1 r = 1.2

r = 1.3 r = 1.525

k1

k2

k1

k2

k1

k2

FIG. 5. Predicted bulk band spectra. Plots of the dispersion equa-
tions (18) for various values of the ratio r = IA/IB . The graphs are
rendered as functions of (k1, k2) ∈ [−π, π ]2 and the red dots indicate
the position of the valleys points K and K ′.
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(a)

Fr
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y 
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z)

(b)

Sensor Outputk−π π
1

FIG. 6. Predicted vs measured bulk spectrum. (a) The theoretical
data taken from the last panel of Fig. 5 (r = 1.525). The view point
is chosen here such that k2 is into the page and the red dots indicate
the position of the valleys K and K ′; (b) The reading from a sensor
placed inside the spinner structure when the system is actuated from
the edge, as seen in Fig. 4. The shaded area marks the spectral gap.

the actuating frequency belongs to the bulk spectrum, while
a zero reading indicates that it is in a spectral gap. Using this
criterion, we found that the predicted spectral gap in Fig. 6
is confirmed by the experiment within 1%. The details of the
measurements are reported in Sec. III E.

There are several important observations about the bulk
dynamics. First, let us recall that one pre-requisite for QVHE
is a well defined pair of valleys. Looking at the expressions
(18), one sees that the depth of the valleys is set by the
ratio β/α, once r is fixed. The larger this ratio the deeper
the valleys, but note that β/α < 1, so with a first nearest
neighbor coupling design on the honeycomb lattice, there is an
upper limit on the sharpness of the valleys. Note that for our
experimental system β/α = 0.8, placing it among the most
optimized systems ever produced. As such, the conclusions
we draw based on our experimental setup have quite a broad
relevance.

Secondly, let us point out that, while the dynamical matrix
in (17) can be indeed approximated by a Dirac Hamiltonian
around the valleys K and K ′, by a simple linear expansion, the
region on which this approximation holds reduces drastically
with the increase of r . This can be already seen by examining
the spectra in Fig. 5, from where we concluded that treating
QVHE with the effective Dirac approximation is questionable
at and beyond r = 1.2.

B. Berry curvature analysis

For a two-band model, the gap projector can always be
expressed as

PG(k) = 1
2 (I − n(k) · σ ), |n(k)| = 1, (19)

in which case the Berry curvature reduces to

F (k) = π n · (
∂k1 n × ∂k2 n

)
. (20)

In our case,

n(k) = (gRe[γ (k)], gIm[γ (k)],−1)√
1 + g2|γ (k)|2 , g = 2

√
rβ

3α(r − 1)
,

(21)

FIG. 7. Berry curvature. The theoretical calculations were per-
formed with the experimental values of the coupling constants α and
β and for the specified values of r = IA/IB . The last value r = 1.525
is used in the experimental demonstrations. The data is rendered as
function of (k1, k2) whose axes are not shown.

which leads to the simple expression

F (k) = 1

4π

g2 sin(k1)

(1 + g2|γ (k)|2)3/2
. (22)

A graphical representation is reported in Fig. 7 for various
values of the parameter r = IA/IB .

There are several important remarks here. First, as ex-
pected, if the inversion symmetry is only slightly broken,
such as when r = 1.05, we see that the Berry curvature is
strongly localized near the valleys. But as r is increased,
this localization becomes worse, as it can be easily assessed
in Fig. 7. A quantitative measure of this localization is the
integral of the Berry curvature over half of the Brillouin torus,
−π � k1 � 0, which gives 0.444, 0.395, 0.355, 0.320, and
0.284 for r = 1.1, 1.2, 1.3, 1.4, and 1.525, respectively. This
somewhat surprising rapid decrease is due to, in part, the slow
decay at infinity of the Berry curvature supported by a split
Dirac cone.

Those numbers confirm again that one has to be cautious
when using Dirac effective models for and beyond r = 1.2.
Furthermore, it becomes quite apparent that robust QVHE,
primed for applications, cannot be generated via simple Dirac
cone splittings and instead it will require sophisticated Berry
curvature engineering. Let us remind that our experimental
model is highly optimized, hence the above warning signs
apply to any model based on first nearest neighbor coupling
on honeycomb lattice.

C. Domain-wall analysis

The experimental setup with a straight DW is shown in
Fig. 8. A schematic of it together with some geometrical data
are supplied in Fig. 9. It is important to note that the previously
chosen primitive cell and vectors are consistent with the DW,
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FIG. 8. The experimental setup with a straight domain wall. The
domain wall consists of the zigzag chain of B type (blue) spinners.
Note the actuator positioned at one end of the domain wall.

in the sense that the domain does not slices the unit cell and
the primitive vector a1 is parallel to the DW.

We place the DW between n2 = −1 and n2 = 0 such as
the reflection I (I∗ = I, I2 = I ), acting as I|n1, n2, A〉 =
|n1,−n2 − 1, B〉 and I|n1, n2, B〉 = |n1,−n2 − 1, A〉, maps
the left and right sides of the DW into each other. To determine
the dispersion equation, note that, as we cross the interface,
the coupling coefficients α and β remain the same and the only
effect is the exchange of IA and IB . Hence, in the presence of
the DW:

ω2(I − δI σ3 sgn(X2))ϕ = Dϕ, (23)

where I = 1
2 (IA + IB ) and δI = 1

2 (IA − IB ), as well as

sgn(X2) =
∑
n,m

sgn(n) |m, n〉〈m, n|, (24)

with the convention that sgn(0) = 1.

FIG. 9. Schematic of the domain wall. Note that the domain wall
does not cut any of the primitive cells.

The left hand side of Eq. (23) is a compact way of saying
that the moments of inertia have different values on the two
domains. The dynamical matrix in (23) is same as in (10):

D = 3α + β(σ1 + σ−(S1S2 + S2) + σ+(S†
2S

†
1 + S

†
2 )). (25)

We transform (23) in a standard eigen-system problem by
performing the transformation

ϕ = (I − δI σ3 sgn(X2))−
1
2 ψ, (26)

in which case the dispersion equation becomes

ω2ψ = (I − δI σ3 sgn(X2))−
1
2 D (I − δI σ3 sgn(X2))−

1
2 ψ .

(27)

Note that, with � = 1
2 ( 1√

IA
+ 1√

IB
) and � = 1

2 ( 1√
IA

− 1√
IB

),

(I − δI σ3 sgn(X2))−
1
2 = � − � σ3 sgn(X2). (28)

Lastly, because S1 commutes with the dynamical matrix in
(27), we can seek the modes in the form

ψ (n1, n2) = Re[eikn1ξ k (n2)], k ∈ [−π, π ], (29)

in which case the dispersion equation takes the form
H (k)ξ k = ω2

kξ k , where H takes the explicit expression

H (k) = (� − �σ3sgn(X2)) Dk (� − �σ3sgn(X2)), (30)

with Dk derived directly from (25),

Dk = 3α + β(σ1 + (eik + 1)σ−S2 + (e−ik + 1)σ+S
†
2 ). (31)

The action of H (k) on the basis of C2 ⊗ 2(Z),

|n,+1〉 =
(|n〉

0

)
, |n,−1〉 =

(
0

|n〉
)

, (32)

can be written explicitly (s = ±1) as

H (k) |n, s〉 = 3α(� − s� sign(n))2|n, s〉
+ β(�2 − �2)|n,−s〉 + β(�2 − �2)(eisk + 1)

× |n + s,−s〉. (33)

The resulting spectrum for the domain-wall configuration
of Fig. 8 is reported in Fig. 10, which reproduces the well-
known QVHE features. First thing to notice is that the DW
modes do not dive into the bulk spectrum but rather get
connected at higher and lower energies. This is one difference
between this effect and a true topological effect. Also, as r

is increased, the bulk gap increases, hence strengthening the
localization of the interface modes along DW, but, unfortu-
nately, the DW bands move away from the bulk spectrum and
the system will eventually become gapped.

D. Experimental observation of the DW modes

The DW has been actuated from one end, as shown in
Fig. 8, until a stationary regime was established. In this setup,
the counter-propagating DW modes are scattered into each
other at the ends of the interface, leading to a standing wave.
Pick-up coils similar to the ones found in electric guitars have
been placed on top of the bonds and the standing wave pattern
was mapped out. While the details of the measurements are
provided in the following section, let us mentioned that four
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k k k

)zH( ycneuqerF
)zH( ycneuqerF

r = 1.4

r = 1 r = 1.1 r = 1.2

r = 1.3 r = 1.525

FIG. 10. Predicted spectrum in the presence of a domain wall.
Simulations are shown for increasing values of r = IA

IB
, ranging from

1 all the way to the experimental value of 1.525. The spectrum is
computed on a strip with the domain-wall at the center. The doubly
degenerated flat band seen in all panels is located at the edges of the
ribbon, hence it is unrelated to the physics studied here. They have
been colored in blue for reader’s convenience.

magnetic bonds in the a2 direction have been probed, starting
from the DW, enough to asses the spatial localization of the
modes.

The results obtained with A/B spinners (hence r = 1.525)
are reported in Fig. 11. One can see there that, for frequencies
up to 25 Hz, the sensors return only small motion amplitudes.
These frequencies must be within or very close to the bulk
spectrum in which case the signal from the actuator disperses
throughout the entire lattice, hence explaining the small am-
plitudes. Beyond 25 Hz, the sensors pick-up strong amplitudes
near the interface and the amplitudes are seen to fade away
into the bulk. We are definitely witnessing a standing wave
supported by the interface channels. The strongest resonant

FIG. 12. DW modes along straight interfaces. The panels show
the interfaces obtained with the A-B (r = 1.525, top), A-C (r = 1.3,
middle), and A-D (r = 1.2, bottom) configurations of the spinner
system. The DW modes are actuated from the left (see white arrow).
Video recordings of the DW modes are reported in Ref. [44].

patterns are observed within 28–29 Hz range of frequencies.
Above this range, the sensor readings are seen again to fade
away signaling that the frequency approaches the upper part
of the bulk spectrum.

FIG. 11. Experimental observation of the DW modes. The fine line marks the position of the interface relative to the honeycomb lattice,
indicated by the black dots. The red disks mark the position of the motion sensors, which are placed above bonds. The size of a disk is
proportional with the reading of the motion sensor at that location. The frequencies, which are marked in each panel, sample the entire bulk
gap. The measurement are for the A-B system (r = 1.525).
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FIG. 13. The experimental setup with an L-shape domain wall.
The domain wall consists of the zig-zag chain of B-type (blue)
spinners. Note again the actuator positioned at one end of the domain
wall.

In Fig. 12 and Ref. [44], we report a comparison between
the DW modes generated with A-B (r = 1.52), A-C (r =
1.3), and A-D (r = 1.2) systems. Given that the actuation
was identical, the difference between the modes is striking.
Indeed, for r = 1.525 case, the mode is highly localized and
the amplitude of the oscillations is substantial, while for the
r = 1.3 and r = 1.2 cases, the mode is quite delocalized
and, because of that, the amplitudes of the oscillations are
much smaller. In fact, with r = 1.2, it was difficult to observe
the DW mode. The inherent conclusion is that the regime
r < 1.2, where the effective Dirac models apply, is interesting

for demonstration purposes but has little relevance for the
practical applications.

The DW modes in QVHE are known to be robust against
spatially slow deformations of the interface. However, it has
been reported in many occasions [30–35,37–40] that a signal
can propagate along the domain-wall channels with very
little back-reflection, even if the interface is bent sharply. To
investigate this interesting and potentially important effect, we
reconfigured our A-B system in the L-shaped DW configura-
tion shown in Fig. 13. The measurements have been repeated
and the results are reported in Fig. 14. As many before us, we
find that, indeed, there is a healthy transmission of the signal
beyond the corner of the L-shaped DW. However, judging
by the amplitudes seen along the two arms of the L shape
(see especially the panels f = 28.5 Hz and f = 29 Hz), we
concluded that the transmission is only about 90%.

Figure 15 and Ref. [45] report video recordings of the
L-shaped DW mode, actuated in various conditions. The first
panel of Fig. 15 shows a clean interface and the corresponding
video recording of the DW mode, supplied in Ref. [45],
confirms the conclusion drawn above and the data in Fig. 14.
We want, however, to clarify that lack of back scattering in
zigzagged interfaces might not have much to do with topo-
logical protection. In our case, the wave carries only angular
and no linear momentum, so corners have little effect on the
wave propagation. This is also the case for the transversal
mechanical waves in plates, but corner-passing has been ob-
served with acoustic waves [31], which are longitudinal. The
latter observation was in the regime of highly delocalized DW
modes, though, and also, note that back-scattering require a
high air-pressure point at the corner, which cannot develop in
the zigzag geometry. To investigate this issue further, we show
in the last two panels of Fig. 15 interfaces where one spinner
has been removed from the lower/upper arms of the L shape.
As one can see in the video recordings of the DW modes [45],
while the domain-wall modes appear to defy sharp corners,

FIG. 14. Experimental observation of the L-shaped domain-wall modes. Except for the shape of the interface, the rest of the details are as
in Fig. 11.
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FIG. 15. DW modes along L-shaped interfaces. The panels show L-shaped interfaces obtained with the A-B (r = 1.525) spinner
configurations. The interface in the left panel is defect-free while in the middle and right panels a defect has been placed on the lower
and upper arms of the L shape, respectively. DW modes are actuated from the bottom. Video recordings of the DW modes are reported in
Ref. [45].

they are fully back-reflected when a spinner at the interface is
jammed or removed. This behavior is in stark contrast with the
edge excitations reported in Ref. [46], where the modes of the
mechanical Chern insulator are seen to find new propagation
paths when obstructions are imposed. This clearly demon-
strates that QVHE is only a weak topological effect.

E. Experimental details and media files

One issue we faced right from the beginning is the large
size of a fully self-assembled system. An effective solution
we found was to divide the base that supports the assemblage
in smaller panels which interlock one in another like a jigsaw
puzzle. Henceforth, we laser cut 6-mm-thick acrylic panels
and fitted them with holes such that, when assembled, the
holes generate a honeycomb lattice. The ball bearings shown
in Fig. 1(a) were secured in place using zinc carriage bolts and
the distance from spinners to base was maintained uniformly
throughout the system with washers and nuts. Such panels
can be readily assembled and then taken apart for storage or
transportation. For example, this practical feature enabled us
to demonstrate the topological boundary modes in front of
several audiences.

The particular configurations shown in Figs. 8 and 13 were
realized with eight acrylic panels and ninety six spinners.
The ball bearings were fitted with arms and coupled by
neodymium disk magnets, which were secured at the ends of
specific arms with super glue. The distance between adjacent
magnets (always of opposite polarity) was 7.0 mm. Different
configurations of the spinners can be achieved as illustrated in
Fig. 1. Prior to running an experiment, all ball bearings were
lubricated with silicone oil and the spinner arms were checked
for tightness. We found that the connection arms need to be
actually glued into place (we used Loctite Threadlocker Red
271 glue).

The lattice was actuated by a Pasco WA-9857 string vi-
brator, whose arm was fitted with a neodymium disk magnet
and placed next to a connecting spinner arm, with the distance
between the two held at 7.0 mm. The actuator was computer
controlled by a custom LabVIEW software that drives a
Rigol DG1022 function generator. That signal was amplified
by a Crown XLS 2502 power amplifier with gain set to 5.

Frequency sweeps between 8.0 and 40.0 Hz with two different
frequency step sizes (0.5 and 0.1 Hz) were performed.

The data were collected by commercially available in-
duction coil sensors, which were placed perpendicular and
symmetrically on top of the magnetic bonds between spinners.
Special place-holders were 3d-printed and hole locations were
laser-cut into the base to ensure that the sensors are always
placed in the same geometry relative to the arms. These
sensors generate a time-oscillatory output, proportional to the
rate of variation of the magnetic flux through the pick-up coil.
In turn, these rates are proportional to the speed of the arms.
For each frequency, the outputs were recorded and their root
mean squares were extracted. The latter are proportional with
the amplitudes of oscillations of the spinners and were used to
generate the plots in Figs. 11 and 14.

IV. BEYOND QVHE: THE TOPOLOGICAL
VALLEY-CHERN EFFECT

QVHE is associated with and explained by Dirac effective
models. As revealed by our experimental investigations, the
regime where these effective models apply is not optimal
for practical applications. In this section, we identify, define
and characterize the valley-Chern effect, which can occur in
regimes where the Dirac effective models can fail completely.

A. The Regime of valley-Chern effect

The reader can find here the precise conditions where VCE
can be observed. The degrees of freedom per primitive cell
will be fixed at two but at no point our theory is conditioned by
that choice. The choice was mainly made to keep our diagrams
simple.

Henceforth, let

H : C2 ⊗ 2(Z2) → C2 ⊗ 2(Z2) (34)

be a bulk Hamiltonian

H =
∑

x,x′∈Z2

hx−x′ ⊗ |x〉〈x′|, h
†
x−x′ = hx′−x (35)

over a lattice with two degrees of freedom per primitive cell.
Above, Z2 is not to be confused with a square lattice as it only

155138-9



QIAN, APIGO, PRODAN, BARLAS, AND PRODAN PHYSICAL REVIEW B 98, 155138 (2018)

serves as labels for the primitive cells. The primitive cell and
the labels are assumed to be consistent with a domain wall
(DW), to be imposed later. More precisely, the shift operators
S‖|n,m〉 = |n + 1,m〉 and S⊥|n,m〉 = |n,m + 1〉 act parallel
and across the DW. The Hamiltonian can be expressed in
terms of these shift operators and, by using their common
eigenmodes, ϕk = ∑

n,m∈Z eı(k‖n+k⊥m) |n,m〉, one can easily
move between the real and quasimomentum representations
[k = (k‖, k⊥)]:

H =
∑
q∈Z2

hq ⊗ Sn
‖ Sm

⊥ ↔ H (k) =
∑

q

eık·q hq . (36)

The hq’s, which coincide with hx−x ′ if q = x − x ′, are just
the Fourier coefficients of H (k), which in the present context
are matrices of appropriate dimension. In the following, we
will often and tacitly switch between the two representations,
always using the principle stated in Eq. (36).

Let G be a gap in the spectrum of H . Then the gap projec-
tion PG = χ(−∞,G](H ), with χ the characteristic function of
an interval, carries the Berry curvature [47]

F (k) = (2πı)−1 Tr(PG(k)[∂k1PG(k), ∂k2PG(k)]). (37)

Above, Tr is the trace over the two internal degrees of
freedom.

The regime of CVE is defined by the following conditions.
(1) Time reversal is conserved. As such, F (k) = −F (−k)
and necessarily

∫
BZ

F (k)dk = 0. (2) The band spectrum of
H (k) is gutted at two points K and K ′ = −K , called the
valleys. In our theory, the valleys can have structure and
hence no relation to massive Dirac spectra is required. (3)
There are concentrations of the Berry curvature F (k) near
the valleys. They may result from the splitting of a pair of
Kramer degenerate Dirac nodes of the bulk bands or from
Berry curvature engineering, which has nothing in common
with Dirac physics. (4) In small vicinities of the valleys:∫

Vec(K )
F (k)dk = −

∫
Vec(K ′ )

F (k)dk = 1

2
. (38)

We introduce now the DW and for this let I be a lattice in-
version I (ξ ⊗ |n,m〉) = Wξ ⊗ |n,−m + 1〉, I2 = I , where
W may act nontrivially on the internal degrees of freedom.
The DW, whose center is located between the primitive cells
with labels m = 0 and −1, divides the lattice into two disjoint
sectors Z2 = LL ∪ LR , as illustrated in Fig. 16(a). The most
generic Hamiltonian for the DW configuration, excluding the
disorder, takes the form

Ĥ = HL + HR + VDW, (39)

where HL/R are half-space Hamiltonians with open boundary
conditions:

HR =
∑

x,x′∈LR

hx−x′ ⊗ |x〉〈x′|, HL = IHRI, (40)

and VDW is a potential localized near the DW and invariant
under parallel translations, gluing together the left and right
sides.

The following questions need to be answered: (1) can Ĥ

posses true chiral interface bands, which emerge from one

Domain-wall

L+L-

-3 -2 -1 0 1 2 3 …

(a)

(b)

m = …

FIG. 16. Lattice folding. (a) The domain-wall configuration.
(b) Folding of the lattice into an edge configuration.

bulk band and dive in the opposite bulk band? (2) If yes, what
interface potentials generate such chiral bands?

B. An exact topological reference system

The formal folding of the lattice around the DW illustrated
in Fig. 16(b) transforms the system into a bilayer with an edge.
It only involves a proper relabeling, leading to the unitary
transformation � : C2 ⊗ 2(Z2) → C4 ⊗ 2(LR ):

�(ξ ⊗ |n,m〉) =
(

ξ

0

)
⊗ |n,m〉 (41)

and

�(ξ ⊗ |n,−m − 1〉) =
(

0

Wξ

)
⊗ |n,m〉, (42)

for m � 0. It transforms the Hamiltonian to the form

Ĥ =
∑

x,x′∈LR

(
hx−x′ 0

0 hx−x′

)
⊗ |x〉〈x′| + V E, (43)

with the potential V E = �WDW�† localized near the edge.
Three important achievements to notice. (1) The DW configu-
ration has been reduced to an edge configuration for the folded
bulk Hamiltonian:

H =
∑

x,x′∈Z2

(
hx−x′ 0

0 hx−x′

)
⊗ |x〉〈x′|, (44)

acting on C4 ⊗ 2(Z2). (2) Because the folded bulk system
consists of two identical copies of the original system, in the
vicinities of the valleys:∫

Vec(K )
F(k)dk = −

∫
Vec(K ′ )

F(k)dk = 1, (45)

where this time, F is the Berry curvature of the gap projection
PG = χ(−∞,G](H ):

PG(k) =
(

PG(k) 0

0 PG(k)

)
. (46)
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(b)

H+(k)

(c)

H-(k)

(a)

H(k)

(d)

Htr(k)

K K’

K K’ K K’

K K’

FIG. 17. Schematics of the continuous extensions. (a) The origi-
nal folded Hamiltonian H ; (b,c) the extensions to H±, respectively.
(d) The emerging trivial Hamiltonian H tr . All Hamiltonians are
represented by a section of their band spectral structure.

(3) Since the Berry curvature near a valley integrates to an
integer, there is no topological obstruction against smoothly
extending PG(k) from Vec(K ) or Vec(K ′) to the entire Bril-
louin torus, without adding any more Berry curvature flux.

The last two observations reflect the main differences be-
tween the simple edge and DW configurations and, as we shall
see, it explains why topological modes are most of the time
observed along DWs and rarely along edges. On another note,
let us point out that the rigorous bulk-boundary machinery
[48–50] for class A has been developed for the edge con-
figuration, hence the folding trick enables us to extend these
results to a DW configuration too. If approached directly,
the bulk-boundary correspondence for a DW configuration
requires additional tools [51].

We call the continuations mentioned above P±
G(k), respec-

tively, and note that I − P±
G(k) provide continuous extensions

of the projection corresponding to the upper spectrum. The
conclusion at this point is that the folded Hamiltonian H (k)
can be continuously extended over the whole Brillouin torus
to topological Chern Hamiltonians H±(k), as schematically
shown in Figs. 17(b) and 17(c). Let us state explicitly that for
these Hamiltonians,

Ch( P±
G) = ∓1. (47)

Figure 18 shows how these extensions are precisely performed
over the Brillouin torus. As one can see, they are performed
along k‖ such that H±(k) and H coincide over more than
half of the Brillouin torus. Furthermore, there is an overlap
region O where H±(k) and H all coincide. This enables
us to construct the trivial Hamiltonian H tr (k) illustrated in
Fig. 17(d), which also coincides with H±(k) and H over the
region O. The latter has spectrum far from the gap G and its
Berry curvature is null or very small.

K

K’

K

K’

||

||

||

⊥

⊥

0

2

(a)

(b)

(c)

O
FIG. 18. The smooth extensions across the Brillouin torus. (a)

H (k) is smoothly deformed from and in the direction of the blue
arrows into what becomes H+(k). (b) H (k) is smoothly deformed
from and in the direction of the red arrows into what becomes
H−(k). The color coding is the same as in Fig. 17. It is important
to note that the arrows are aligned with k‖ and that there is an overlap
between ± extensions, which in the text is called O. (c) The angle
θk‖ entering in Eq. (53).

The above procedure leads us naturally to the reference
topological Hamiltonian

HSC (k) =
(

H+(k) 0

0 H−(k)

)
, (48)

which is a spin-Chern insulator, i.e., a time-reversal symmet-
ric system with an additional U(1) symmetry, the latter being
generated by

�(k) =
(

I4×4 0

0 −I4×4

)
. (49)

An important observation is that the reference Hamiltonian
is defined over the entire Brillouin torus and, as such, it
admits a real-space representation where real physical edges
can be considered. As long as the U(1) symmetry is present,
the two nontrivial Chern sectors of HSC decouple and the
strong version of the bulk-boundary correspondence princi-
ple applies separately on these sectors. As such, a pair of
counter-propagating boundary chiral modes emerges when the
Hamiltonian (48) is halved in such a way that U(1) symmetry
is preserved.

Before we move forward with the general argument, let us
exemplify how these extensions can be explicitly executed
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for our experimental model. Let us point out that, strictly
speaking, the CVE cannot be generated with just first near
neighbor couplings. However, using the data from Sec. III B,
we see that the systems corresponding to r = 1.1, and with a
little bit of stretch also r = 1.2, come close to our definition
of VCE regime. Now, recall that PG(k) is given in (19) with
n(k) specified in (21). Let us consider the simple modification
given by

n(k) → ñ(k) = (gRe[γ (k)], gIm[γ (k)],−h(k‖))√
1 + g2|γ (k)|2)

, (50)

where

h(k‖) = tanh

(
k‖ + π + p

s

)
− tanh

(
k‖ − up

us

)
+ tanh

(
k‖ − π + p

s

)
, (51)

with u, s, and p adjustable parameters. This function takes
value +1 on more than half of the Brillouin torus −π � k‖ �
0, and value −1 inside the second half, with smooth variation
in between. As such, h(k) changes the sign of the third
component of the vector n in the region k1 > 0 and, based
on (20), this results in a sign change for the Berry connection
of the projection P̃G = 1

2 (1 − ñ · σ ). The continuation P+
G of

PG is then

P+
G(k) =

(
PG(k) 0

0 P̃G(k)

)
, (52)

whose Berry connection is simply F+(k) = F (k) + F̃ (k).
With the change h(k‖) → h(−k‖), the procedure can be re-
peated to obtain the extension P−

G(k). In Fig. 19, we report the
Berry curvatures carried by these projections for two cases,
r = 1.1 and r = 1.2. We have verified numerically that they
indeed satisfy (47). Note that additional off-diagonal blocks
in (52) can be trivially inserted.

r = 1.1

erutavruC yrreB
erutavruC yrreB

r = 1.1
r = 1.1

r = 1.2

r = 1.2

r = 1.2

FIG. 19. Topology of the continued projections. Berry curvatures
associated to the projections PG(k), P+

G(k), and P−
G(k), computed

for r = 1.1 and 1.2. The parameters in (51) were fixed at s =
0.1, p = 0.2, and u = 3 for r = 1.1 and u = 4 for r = 1.2.

C. Relation with original system

In (48), the (±) Hamiltonians act on different four-
dimensional internal spaces. As such, when HSC is trans-
formed back to the real space representation, it will look
very different from the folded Hamiltonian H written in (44).
To establish an exact connection between the two, we use
the unitary transformation that rotates the eight-dimensional
internal space of HSC:

U (k) =
(

cos θk‖ · I4×4 − sin θk‖ · I4×4

sin θk‖ · I4×4 cos θk‖ · I4×4

)
, (53)

with the angle θ‖ specified in Fig. 18(c). Then it is straightfor-
ward to see that

HVCE(k) = U (k) HSC(k) U (k)† (54)

coincides with the original system augmented by the trivial
Hamiltonian, that is,

HVCE(k) =
(

H (k) 0

0 H tr (k)

)
. (55)

Note that the remarkable identity in (54) holds in part because
H±(k) coincide with H (k) on the zone O of the Brillouin
torus, where θk‖ has its variations. Obviously, HSC(k) and
HVCE(k) are isospectral and, furthermore,

Spec(HSC) = Spec(H ) ∪ Spec(H tr ). (56)

As promised, we obtained a unitary connection between the
VCE system and a genuine strong topological insulator.

We end this section by exemplifying how the extensions
of the Hamiltonians can be implemented for our experimental
model, specifically, for the cases r = 1.1 and r = 1.2, which
are more or less close to our definition of a VCE system.
The H±(k) Hamiltonians can be generated by the simple
procedure

H+(k) = f ′
−(k)2 P+

G(k) + f ′
+(k)2(I4×4 − P+

G(k)), (57)

where f ′
±(k) are given by the same (18) but with |γ (k)|2

modified to

1
2 (1 + h(k‖)) ∗ |γ (k)|2 + 1

2 (1 − h(k‖)). (58)

After changing h(k‖) into h(−k‖), we can use exactly the
same procedure to obtain H−(k). We found that best results
are obtain when we double the value of u used for the
continuation of the projections. A comparison between the
spectrum of the original Hamiltonian H (k) and H+(k) is
provided in Fig. 20. As one can see, we indeed achieved what
it was sketched in Fig. 17. Lastly, let us point out that θk‖ can
be taken as

θk‖ = −π

4

(
tanh

(
k‖ + π

s

)
− tanh

(
k‖
s

)
+ tanh

(
k‖ − π

s

)
− 1

)
. (59)

We conclude here by pointing out that all extensions intro-
duced in this section can be represented in real space using
relation (36).
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r=1.1 r=1.1 r=1.1 r=1.1

r=1.2 r=1.2 r=1.2 r=1.2

FIG. 20. Executing the continuations. The panels report the spec-
tra of the original Hamiltonians and of the continuations (57), as well
as of the trivial Hamiltonians.

D. Existence of chiral edge bands

We start with the real space representation and let �R :
2(Z2) → 2(LR ) be the isometry:

�R|x〉 = χLR
(x)|x〉, x ∈ Z2, (60)

where χ is the indicator function of a set. Then, given a bulk
operator M, M̂ = �R M�

†
R is the half-space version of it

with open boundary condition. Throughout, we will use the
hat to indicate the halving with open boundary condition.

Since U in (53) involves only k‖, the real space represen-
tation of U involves only S‖, hence it commutes with �R . As
such,

ĤVCE = �RU HSC U†�†
R = Û ĤSC Û

†
. (61)

Since Û = �RU�R remains an unitary operator and conju-
gation by unitaries preserves the spectra, it follows that ĤVCE

and ĤSC are isospectral. Furthermore, after a Bloch-Floquet
transformation with respect to k‖:

ĤCVE(k‖) = Û (k‖) ĤSH(k‖) Û
†
(k‖). (62)

We reached one of the main conclusions of our analysis,
namely, that ĤCVE and ĤSC have identical edge spectra. Since
the latter displays a pair of chiral edge bands, we can conclude
that ĤCVE does too.

The above statement was for open boundary conditions and
now we show that it holds under far more general boundary
conditions. For this, recall that the pair of chiral edge bands
of ĤSC(k‖) cannot be destroyed by any change of boundary
condition which preserves the U(1) symmetry spelled out in
Eq. (49), in particular, by the one below:

ĤSC(k‖) → ĤSC(k‖) +
(

V E(k‖) 0

0 V E(k‖)

)
. (63)

Here, V E(k‖) is any edge potential such as the physical one in
Eq. (43). The particular form of U (k) [see (53)] ensures that
any block-diagonal Hamiltonian commutes with Û (k‖), hence
the following simple algebra holds:

Û (k‖)

[
ĤSC(k‖) +

(
V E(k‖) 0

0 V E(k‖)

)]
Û

†
(k‖) (64)

= ĤVCE(k‖) +
(

V E(k‖) 0

0 V E(k‖)

)
.

FIG. 21. Schematics of the edge spectra. (a) The topological
edge spectrum of the spin-Chern Hamiltonian HSC consists of a pair
of counter-propagating chiral bands, shown in blue and red. (b) The
topological edge spectrum coincides with the reunion of the spectra
of the original Hamiltonian H , shown in black, and of the trivial
Hamiltonian H tr , shown in green. The shaded areas represent the
bulk spectra.

This shows that the unitary equivalence between SC and CVE
Hamiltonians with generic edge potentials continue to hold.
Hence we can conclude that the pair of chiral edge bands of
ĤVCE cannot be destroyed by block-diagonal edge potentials.

There is one more step in the argument. Recall that our
ultimate goal is to produce a statement about the edge spec-
trum of the physical Hamiltonian Ĥ and, so far, we only have
a statement about the spectrum of ĤVCE with any physical
edge, which is just

ĤVCE =
(

Ĥ + V E 0

0 Ĥ tr + V E

)
.

Hence the pair of edge bands predicted above must coincide
with the reunion of the edge spectra of Ĥ and Ĥ tr . Recall that
these two Hamiltonians coincide over the section O of the
Brillouin torus and that H tr is topologically trivial. As such,
under generic edge potentials, the band spectra must be as
shown in Fig. 21. However, H tr is trivial so there are particular
edge potentials V E, which produce no edge spectrum for Ĥ tr .

At this point, we reached our most important conclusion.
Recall that the edge potential is connected to the DW-potential
as V E = �WDW�†, where � is the unitary transformation,
which implements the folding. Then the above analysis as-
sures us that, by adjusting the DW potential for a VCE system,
as defined in Sec. IV A, one can always generate a pair of
genuine chiral DW-modes.

Furthermore, using again the connection with the spin-
Chern physics, we can also identify the U(1) symmetry, which
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protects the modes from back-scattering. It is generated by

�̃(k‖) = U�U−1 =
(

cos(2θk‖ ) sin(2θk‖ )

sin(2θk‖ ) − cos(θk‖ )

)
. (65)

More precisely, any disorder potential V ω on the folded
Hamiltonian with the property that[

�̃ ,

(
V ω 0

0 V ω

)]
= 0, (66)

cannot Anderson-localize the domain wall modes. At this
point, we have accomplished everything we promised in In-
troduction.

V. CONCLUSIONS

Using a versatile and highly optimized experimental plat-
form, we uncover a fundamental difficulty in the current
implementations of the QVHE. More precisely, the designs
based on first nearest neighbor couplings on a honeycomb
lattice will inherently fail one of the following tests: (1) Berry
curvature localization around the valleys and (2) localization

of the DW modes along the interface. (3) Lack of back-
scattering of DW modes under lattice defects. To correct for
these shortcomings, we proposed a certain Berry curvature en-
gineering via couplings beyond nearest neighbors. We pointed
out that this will force us to exit the regime where effective
Dirac models can be applied and a call for new theory was put
forward.

To answer this call, we introduced a new regime called
valley-Chern effect, defined by large bulk spectral gaps and
Berry curvature distributions localized near the valleys, both
achievable, in principle, through energy bands engineering.
For this regime, we demonstrated that genuine chiral DW-
modes can be achieved by adjusting the DW potential. The
arguments do not rely on effective models but rather on
topological ones which led us to an exact unitary equivalence
with a strong spin-Chern insulator.
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