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The symmetry and the locality are the two major sources of various general theorems in quantum many-body
systems. We demonstrate that, in gapped phases of a U(1) symmetric Hamiltonian with finite-range interactions,
the bulk properties such as the expectation value of local operators, the ground-state energy and the excitation
gap, and the static and low-frequency dynamical responses in general do not depend on the U(1) phase of the
twisted boundary condition in the limit of the large system size. Specifically, their dependence on the twisted
angle is exponentially suppressed with the linear dimension of the system. Our argument is solely based on
the exponential decay of various types of equal-time correlation functions and does not assume any details
of the Hamiltonian, meaning that the statement applies quite generally regardless of the dimensionality or the
interaction strength of the system.
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I. INTRODUCTION

One of the main goals of theoretical condensed-matter
physics is to achieve a systematic understanding of the inter-
play between symmetry and topology in many-body systems.
The topological properties of noninteracting band insulators
can be characterized by various kinds of winding numbers,
such as Berry phases and Chern numbers, of Bloch wave
functions as a function of the single-particle momentum [1,2].
This picture remains valid even when interactions are pertur-
batively taken into account [3–6]. However, in the nonpertur-
bative regime, one needs an alternative approach.

One possible solution to this problem can be formulated
in terms of the twisted boundary condition. This is a gener-
alization of the more standard periodic boundary condition
in which pairs of two surfaces in the opposite sides of the
system are identified. In the twisted boundary condition, a
U(1) phase is multiplied to one surface before being identified
with its pair (the more precise definition is given in Sec. III A).
The twisted phase eiθi (i = 1, 2, . . . , d) can be assigned inde-
pendently for each direction. It has been empirically known
that the set of angles �θ = (θ1, θ2, . . . , θd ) often serves as the
many-body generalization of the single-particle momentum
�k = (k1, k2, . . . , kd ). For example, the pumped charge in the
Thouless pump [7,8] and the quantized Hall conductance of
the quantum Hall effect [9,10] in interacting systems can be
characterized by a Chern number formulated in terms of θi

in stead of ki . There are also many studies defining the Z2

index for the many-body quantum spin Hall insulator using
the twisted boundary condition [4,11–18].

There is, however, a fundamental difference between �k
and �θ . The single-particle momentum �k can be varied over
the first Brillouin zone even under a fixed boundary condi-
tion. Thus, topological invariants written in terms of Bloch
wave functions are properly defined for each Hamiltonian. In
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contrast, varying θ changes the Hamiltonian itself, implying
that the many-body topological invariants that involve inte-
gration(s) by θi are only defined for a series of Hamiltonians
parametrized by �θ . For example, the Hall conductance σ12(�θ )
can be computed using the linear response theory for each �θ =
(θ1, θ2). The quantization of this quantity nor its connection
to Chern number is not obvious in this form. The prescription
proposed by Refs. [8,9] is to take an average of σ12(�θ ) over all
possible values of �θ , assuming that the �θ dependence of σ12(�θ )
is negligibly small [19]. Then, the resulting integral takes the
form of the Chern number and the quantization to integers be-
comes apparent. There are several recent studies that present
an alternative proof of the quantization without performing
such an average [20–22]. Note that the θi independence
has been a common assumption behind countless subsequent
works [23–27].

Another prominent application of the twisted boundary
condition in the context of the topology in many-body sys-
tems is the generalization of the Lieb-Shultz-Mattis theorem
[28–32] to multidimensions [33–35]. The theorem states that,
in a translation-invariant system with the particle-number
conservation, the filling (the average number of particles per
unit cell) has to be an integer in order to realize a unique
ground state with a nonzero excitation gap. An immediate
consequence of this theorem is that any symmetric gapped
phase with a fractional filling has to develop a “topological
order,” which is usually accompanied by a fractionalization
of particle statistics. The first proof of the Lieb-Schultz-
Mattis theorem in dimensions greater than one is given by
Oshikawa [33], who interpreted the twist operator in the
original one-dimensional argument [28] as the large gauge
translation operator. In the proof, he considered an adiabatic
change of the twisted angle θx from 0 to 2π , assuming that
the excitation gap does not close in the process. The recent
refinement of the Lieb-Schultz-Mattis theorem in nonsym-
morphic space groups [36–38] essentially relies on the same
assumption. In fact, the stability of the gap against an increase
of θx is, in general, not at all for granted. For example, the
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excitation gap in the Kitaev chain vanishes at some values
of θx [39]. Hastings then gave an alternative proof without
such an assumption [34,35], but instead relying on a “reality
condition” [40].

To summarize, the θ independence of the bulk properties
such as the excitation gap and the linear response coefficient
have been an assumption in pioneering studies on the many-
body topological invariants and the multidimensional Lieb-
Schultz-Mattis theorem. Although there have been followup
works that discuss an alternative derivation that goes around
the assumption for each problem, it would be nicer to have
a general and direct verification of the assumption itself,
as it may lead to new applications of the twisted boundary
condition. In this paper, we give a general proof of the in-
sensitivity of bulk properties to the twisted angle �θ , assuming
(i) the locality and the U(1) symmetry of the Hamiltonian
and (ii) a nonzero excitation gap and the uniqueness of the
ground state for one value of �θ (e.g, �θ = �0). Our argument
coherently applies to expectation values [see Eq. (30)], static
susceptibilities, the Thouless pump, and the Hall conductance,
and many other bulk response properties [see Eq. (42)]. As a
by-product, we prove the exponential decay of several new
types of correlation functions [see Eqs. (3), (7), and (8)].

The organization of this paper is as follows. In Sec. II,
we summarize the general behavior of correlation functions
in gapped phases. In Sec. III A, we review the definition of
the twisted boundary condition and its understanding in terms
of the magnetic flux. With these preparations, we prove that
various quantities in many-body systems do not depend on
the twisted angle of the boundary condition in the limit of
a large system size. We start from the expectation value of
charge-conserving operators in Sec. IV, and then move on
to the static responses and topological transport properties in
Sec. V, and finally discuss the excitation gap in Sec. VI. Then,
we conclude in Sec. VII.

II. EXPONENTIAL DECAY OF CORRELATION
FUNCTIONS

A. Assumptions: The locality and the gap

Consider a quantum system in d spatial dimensions. To
discuss a finite-size system without a boundary, we impose the
periodic boundary condition with the linear dimension Li in
ith direction (i = 1, 2, . . . , d). Suppose that the Hamiltonian
Ĥ of the system is given as a sum of local terms:

Ĥ =
∑

�x
Ĥ�x. (1)

We say Ĥ�x is local when its range r is finite and does not scale
with the system size. Namely, Ĥ�x does not affect the local
Hilbert space at �y whenever |�y − �x| > r [41]. For example,
the term Ĥ�x =∑�y t�x,�yc

†
�xc�y + H.c. in the tight-binding model

is local when t�x,�y = 0 for |�y − �x| > r . The support of an
operator Ĥ�x is the set of �y at which Ĥ�x acts nontrivially.
Thus, the support is a subset of the “ball” with the radius r

centered at �x. For continuum model, the sum in Eq. (1) should
be replaced by an integral.

Throughout the paper, we assume that the ground state |0〉
of Ĥ is unique and that the excitation gap � does not vanish

Ôx

Ôx

θ
dist(Ôx, Ĵ [Ay])

dist(Ôx , Ĵ[Ay])

Ĵ [Ay]Ô

Ô
V̂ dist(Ô, V̂ )

dist(Ô , V̂ )

(a) (b)

FIG. 1. (a) The spatial configuration of local operators Ô, Ô ′,
and V̂ . The red shades represent their support. (b) The flux θ piercing
the ring.

in the limit of large system size. We will comment on the
case with a finite ground-state degeneracy at the end of the
paper. We focus on zero temperature T = 0 and 〈Ô〉 denotes
the expectation value 〈0|Ô|0〉 with respect to the ground
state. Furthermore, δÔ represents the fluctuation Ô − 〈Ô〉
and the time evolution of an operator is defined by Ô(t ) ≡
eiĤ t Ôe−iĤ t .

B. Behavior of correlation functions

Let Ô and V̂ be local operators and let R ≡ dist(Ô, V̂ ) be
the minimum distance between their support [Fig. 1(a)]. We
assume R > 0; in other words, the support of Ô and V̂ do
not overlap. In gapped phases, it is well known, and is also
rigorously proven [42,43], that the equal-time (connected)
correlation function decays exponentially with the distance:

F0 ≡ 〈δÔ δV̂ 〉, |F0| � C0e
− R

ξ . (2)

In fact, a similar argument proves that the correlation function
of the following form also decays exponentially:

Fn ≡
〈
δÔ

1

(Ĥ − E)n
δV̂

〉
, |Fn| � CnR

n
2 e

− R
ξ . (3)

Here, n = 1, 2, . . . is an arbitrary natural number and E is
the ground-state energy. The proof for F2 can be found in
Ref. [21], although it is buried in a long mathematically
elaborated paper. In Appendix A, we present the simplest
version of the proof in a way applicable to all n. The key tool
of the proof is the Lieb-Robinson bound [44,45]

‖[Ô, V̂ (t )]‖ � Ce
− R

ξ0 (e
v|t |
ξ0 − 1). (4)

Here, ‖Ô‖ ≡ sup|ψ〉,〈ψ |ψ〉=1‖Ô|ψ〉‖ denotes the norm of the
operator Ô, and the constants ξ0 and v are dependent on the
Hamiltonian Ĥ but are independent of the choice of operators
Ô or V̂ . The Lieb-Robinson bound intuitively estimates the
spreads of the operator V̂ (t ) as the time evolves. For example,
at t = 0, the right-hand side of Eq. (4) vanishes. This is
because operators Ô and V̂ themselves commute (recall our
assumption of R > 0). As the time grows, the support of the
operator V̂ (t ) expands and overlaps with the support of Ô.
The Lieb-Robinson bound gives the upper limit of the velocity
v of this spread.

The correlation length ξ in Eqs. (2) and (3) is given by
ξ ≡ ξ0 + 2v

�
, where the constants ξ0 and v are those appearing

in Eq. (4). When the gap � is small, the correlation length ξ

is dominated by 2v
�

and diverges in the limit of � → +0 as
expected.
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The correlation functions in Eqs. (2) and (3) are about two
operators at a distance. Let us now consider correlations in-
volving more operators, e.g., G00 ≡ 〈δÔ δÔ ′ δV̂ 〉. We assume
that the support of V̂ is well separated from that of Ô and
Ô ′, while assuming nothing about the distance between the
support of Ô and Ô ′ [Fig. 1(a)]. In this case, one can simply
regard the product ÔÔ ′ as a single operator and apply Eq. (2)

to get a bound |G00| � C00e
− R′

ξ , where R′ is either the smaller
one of dist(Ô, V̂ ) and dist(Ô ′, V̂ ). In contrast, the following
correlations cannot be evaluated directly through Eqs. (2)
or (3):

Gmn ≡
〈
δÔ

1

(Ĥ − E)m
δÔ ′ 1

(Ĥ − E)n
δV̂

〉
, (5)

G′
mn ≡

〈
δÔ

1

(Ĥ − E)m
δV̂

1

(Ĥ − E)n
δÔ ′
〉

(6)

because the product Ô 1
(Ĥ−E)m

Ô ′ (m = 1, 2, . . .) is not neces-

sarily local even when Ô and Ô ′ are [46]. Nevertheless, we
can prove (see Appendix B)

|Gmn| � CmnR
′ n+m

2 e
− R′

ξ ′ , (7)

|G′
mn| � C ′

mnR
′ n+m+1

2 e
− R′

ξ ′ , (8)

where ξ ′ ≡ ξ0 + 4v
�

and R′ is defined above Eq. (5).

C. Perturbation at distance

The properties of correlation functions summarized above
have many valuable implications which do not seem fully ex-
plored. As a simple example, let us show that any perturbation
at a long distance never affects the expectation value of a local
operator. We consider a Hamiltonian Ĥ (h) = Ĥ − hV̂ with
a local perturbation V̂ . Let |h〉 be the unique ground state
Ĥ (h). Then, differentiating the defining equation Ĥ (h)|h〉 =
E(h)|h〉, one gets

Q̂(h)∂h|h〉 = − 1

Ĥ (h) − E(h)
δV̂ |h〉, (9)

where Q̂(h) ≡ 1 − |h〉〈h| is the projection onto excited states.
For the expectation value O(h) ≡ 〈h|Ô|h〉 of a local Hermi-
tian operator Ô, the derivative ∂hO(h) is thus given in the
form of F1:

∂hO(h) = −〈h|δÔ 1

Ĥ (h) − E(h)
δV̂ |h〉 + c.c., (10)

which is exponentially small when Ô and V̂ are well sepa-
rated, as suggested by Eq. (3):

|∂hO(h)| � C
√

Re
− R

ξ , (11)

where C is a constant and R is the distance between Ô and V̂ .

III. TWISTED BOUNDARY CONDITION AND U(1)
SYMMETRY

As a preparation for discussing more nontrivial applica-
tions of the exponential decay of correlation functions, in this
section we review the basics of the twisted boundary condition
and its connection to magnetic flux.

A. Twisted boundary condition

Suppose that the Hamiltonian Ĥ = ∫ ddx Ĥ�x is written in

terms of the creation (annihilation) operator ĉ
†
�x (ĉ�x). The total

number operator N̂ ≡ ∫ ddx n̂�x is the integral of the number

density operator n̂�x ≡ ĉ
†
�x ĉ�x and the global U(1) phase rotation

is described by eiφN̂ .
Let T̂�v be the operator that describes the translation by �v

and let x̂i be the unit vector along the ith axis (i = 1, 2, . . . , d)
of the Cartesian coordinate. Recall that the periodic boundary
condition is set by identifying two surfaces xi = 0 and Li . In
other words, we identify the translation operator T̂Li x̂i

as the
identity operator:

T̂Li x̂i
= 1. (12)

The extension to the twisted boundary condition can be done
simply by setting instead the product of the translation opera-
tor T̂Li x̂i

and the phase rotation operator eiθi N̂ as the identity:

T̂Li x̂i
eiθi N̂ = 1. (13)

Under this identification, the creation operator ĉ
†
�x , for exam-

ple, satisfies

ĉ
†
�x+Li x̂i

= e−iθi ĉ
†
�x (14)

for every i = 1, 2, . . . , d . We denote by Ĥ (�θ ) the resulting
Hamiltonian written in terms of operators ĉ

†
�x and ĉ�x in the

range �x ∈ [0, L1) × [0, L2) × · · · × [0, Ld ).

B. U(1) symmetry and magnetic flux

There is a distinct but equivalent view of θi in terms of the
magnetic flux when the Hamiltonian has the global U(1) sym-
metry. Let us start with the Hamiltonian under the periodic
boundary condition Ĥ (�0). Let us consider a unitary operator
Ûχ ≡ ei

∫
ddx χ (�x)n̂�x that multiplies a position-dependent phase

eiχ (�x ) to ĉ
†
�x . Here, χ (�x) is an arbitrary piecewise smooth func-

tion of �x, and the Hamiltonian is not necessarily invariant un-
der such a local U(1) rotation. We introduce a nondynamical
gauge field �A(�x) in such a way that (i) Ĥ [ �A] = ∫ ddx Ĥ�x[ �A]
transform as

Ûχ Ĥ�x[ �A]Û †
χ = Ĥ�x[ �A′], �A′(�x) ≡ �A(�x) − ∂�xχ (�x) (15)

and (ii) Ĥ [ �A] reduce to Ĥ (�0) when �A(�x) = �0. We can always
introduce �A with this property as long as the Hamiltonian
Ĥ (�0) has the global U(1) symmetry (i.e., commutes with the
number operator N̂ ). The simplest example of Ĥ�x[ �A] may be

Ĥ�x[A] = ĉ
†
�x

[
− 1

2m
[∂�x + i �A(�x)]2 + U (�x)

]
ĉ�x + Ĥ int

�x , (16)

where U (x) is the single-particle potential and Ĥ int
x describes

the many-body interactions. A bad example would be the
(mean field) BCS Hamiltonian which lacks the U(1) symme-
try due to the presence of terms proportional to ĉĉ or ĉ†ĉ†. In
this case, there is no way to introduce �A(x) satisfying Eq. (15).
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We describe the “magnetic flux” θi ≡ ∫ Li

0 dxiAi (x) by
choosing a position-independent vector potential

�A(�x) =
(

θ1

L1
,

θ2

L2
, . . . ,

θd

Ld

)
. (17)

We write the resulting Hamiltonian as Ĥ ′(�θ ) = Ĥ [ �A]. Note
that we did not actually apply any real “magnetic field” to the
system. The magnetic flux θi is pierced through the hole of
the “ring” formed by the xi axis under the boundary condition
identifying xi = Li and 0. See Fig. 1(b) for the illustration in
the case of d = 1.

C. Equivalence of Ĥ (�θ ) and Ĥ ′(�θ )

The Hamiltonian Ĥ (�θ ) under the twisted boundary con-
dition in Sec. III A and the Hamiltonian Ĥ ′(�θ ) under the
magnetic flux in Sec. III B are, in fact, unitary equivalent
with each other. Therefore, they describe physically the same
system; in particular, their spectrum and the properties of
correlation functions, for example, are the same. The two
Hamiltonians are related by Ûχ with χ (�x) =∑d

i=1 θi
xi

Li
:

Ûχ Ĥ ′(�θ )Û †
χ = Ĥ (�θ ). (18)

Note that the function χ (�x) is discontinuous at the boundary
jumping from θi at xi = Li to 0 at xi = 0. Using Eq. (15), we
find that

A′
i (�x) = θi

Li

− ∂xi
χ (�x) = θiδ(xi ), (19)

where the δ function originates from the discontinuity of
χ at the boundary. This means that the Hamiltonian Ĥ (�θ )
under the twisted boundary condition can be interpreted as the
Hamiltonian subjected to the δ-function-type vector potential
localized at the boundary. This should also clarify that we can
freely move the position of the δ-function peak in the system
by performing a proper gauge transformation. This is actually
what we do in the following sections [e.g., see Eq. (21)].

IV. INSENSITIVITY OF EXPECTATION VALUES

With these preparations, let us now demonstrate that the
expectation value of a wide class of operators do not depend
on �θ in the limit of large Li . To simplify the notation here
we focus on one-dimensional (1D) systems (and thus drop
the subscript “1”). This is actually sufficient to prove the
same claim in higher dimensions since we can apply the 1D
argument for each direction separately.

Let us consider an operator Ô = ∫ L

0 dx Ôx that is given as
an integral of local terms Ôx and commutes with N̂ . We can
then introduce A so that Ô[A] = ∫ L

0 dx Ôx[A] transforms in
the same way as Ĥ [A] does in Eq. (15). The operator Ô can be
the Hamiltonian Ĥ itself, but it may also be, for example, the
polarization operator P̂ = ∫ L

0 dx xn̂x or the current operator.
Now, we choose the uniform vector potential A(x) = θ

L
.

We denote the unique ground state of Ĥ ′(θ ) = Ĥ [ θ
L

] by |θ〉.
Our claim is that the θ dependence of the expectation value

O(θ ) ≡ 〈θ |Ô
[ θ

L

]
|θ〉 =

∫ L

0
dx〈θ |Ôx

[ θ

L

]
|θ〉 (20)

is suppressed for a large L by a factor L3/2e
− L

2ξ . When Ô =
Ĥ , the statement is the flatness of the ground-state energy Eθ

as a function of θ , which was numerically observed before,
e.g., in Ref. [47]. Later, we will also argue that the excitation
gap is independent of θ in the limit of large L.

To prove the claim, let us define a function of x labeled by
y ∈ [0, L]. It reads as

χy (x) =
{ θ

L
x (0 � x < y),

θ
L

(x − L) (y � x < L).
(21)

The corresponding unitary operator Ûχy
= ei

∫ L

0 dx χy (x)n̂x in-
duces the gauge transformation

A(x) = θ
L

→ Ay (x) ≡ θδ(x − y). (22)

In this gauge, one can say θ is the U(1) phase of the twisted
boundary condition at the new boundary x = y.

The key observation is that, thanks to the assumed locality,
Ôx[Ay] is independent of θ and thus is identical to Ôx[0] when
y is out of the range of Ôx . Namely, if we denote by r the
maximum range of Ôx over all x ∈ [0, L], then we have

Ôx[Ay] = Ôx[0] if |y − x| > r. (23)

For example, in the case of Ôx[A] = t ĉ
†
x+re

−i
∫ x+r

x
dzA(z)ĉx ,

Ôx[Ay] = t ĉ
†
x+re

−iθ
∫ x+r

x
dzδ(z−y)ĉx = t ĉ

†
x+r ĉx (24)

is independent of θ as long as |y − x| > r . It follows that the
local terms of the Hamiltonian Ĥx[Ay] do not depend on θ

either unless y is within the range of Ĥx .
Inserting Û †

χy
Ûχy

= 1 to the last expression in Eq. (20) and

writing |θy〉 ≡ Ûχy
|θ〉, we get

O(θ ) =
∫ L

0
dx 〈θy |Ôx[Ay]|θy〉. (25)

Note that the value of y here is arbitrary and can be chosen
depending on x. Thus, we can freely set y to be far away from
x so that Ôx[Ay] = Ôx[0] [Fig. 1(b)]. For example, take the
opposite point of x on the ring with |x − y| = L

2 :

O(θ ) =
∫ L

0
dx 〈θy |Ôx[0]|θy〉, |x − y| = L

2 > r. (26)

Then, intuitively, the twisted angle θ does not affect the
expectation value 〈θy |Ôx[0]|θy〉 since |θy〉 = Ûχy

|θ〉 is the
ground state of Ĥ [Ay] twisted only near y, far away from x.
In fact, using Eq. (9) for h = θ , we can express ∂θO(θ ) in the
form of F1:

∂θO(θ ) = −
∫ L

0
dx

(
〈θy |δÔx[0]

1

Ĥ [Ay] − Eθ

δĴ [Ay]|θy〉

+ 〈θy |δĴ [Ay]
1

Ĥ [Ay] − Eθ

δÔx[0]|θy〉
)

, (27)

where

Ĵ [Ay] ≡ ∂θ Ĥ [Ay] (28)
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is the local current operator at y. Therefore, one can apply
Eq. (3) for R = L

2 to the integrand and get the desired bound

|∂θO(θ )| < CL3/2e
− L

2ξ (29)

with a constant C. In a higher dimension, the same argument
leads to ∣∣∂θi

O(�θ )
∣∣ < CV L

1/2
i e

− Li
2ξ (30)

for each direction i = 1, 2, . . . , d. Here, V = L1 . . . Ld is the
volume of the system, which originates from the integral in
Eq. (27).

V. INSENSITIVITY OF BULK RESPONSES

Let us move on to the discussion of �θ independence of bulk
responses. Specifically, we will focus on the class of responses
that can be characterized by the correlation function of the
form

Gn(θ ) = 〈θ |δÔ
[ θ

L

] 1(
Ĥ
[

θ
L

]− Eθ

)n δÔ ′
[ θ

L

]
|θ〉. (31)

For example, the static susceptibility, in general, takes the
form G1(θ ) as demonstrated in Sec. II [see Eq. (10)].
The simplest instance is the static magnetic susceptibil-
ity corresponding to the choice Ô = Ô ′ = Ŝz. As we will
see now, the correlation G2(θ ) is related to topological
transports.

A. Thouless pump

When the Hamiltonian has an adiabatic and periodic time
dependence, the phenomenon so-called Thouless pump takes
place and a certain amount of charge is transported through the
system over time. According to Ref. [8], the pumped charge
of a weakly time-dependent Hamiltonian over one cycle T is
given by

�Q(θ ) = i

∫ T

0
dt (∂t 〈θ |∂θ |θ〉 − ∂θ 〈θ |∂t |θ〉). (32)

Here, |θ〉 is the ground state of the snapshot Hamiltonian
Ĥ [ θ

L
]. Using Eq. (9), we can rewrite �Q(θ ) in the form of

G2(θ ):

�Q(θ )= i

∫ T

0
dt

[
〈θ |δ

(
∂t Ĥ

[ θ

L

]) 1(
Ĥ
[

θ
L

]− Eθ

)2 δĴ
[ θ

L

]
|θ〉

− 〈θ |δĴ
[ θ

L

] 1(
Ĥ
[

θ
L

]− Eθ

)2 δ

(
∂t Ĥ

[ θ

L

])
|θ〉
]
.

(33)

Note that the θ integral is missing in Eqs. (32) and (33).

B. Hall conductance

The Hall conductance can be formulated in a similar
manner. Following Refs. [9,10], let us introduce the con-
stant vector potential �A(x, y) = ( θ1

L1
, θ2

L2
). If we denote by

|�θ〉 the ground state of Ĥ [ �A], the Hall conductance is given

by [9,10]

σ12(�θ ) = e2

h
2πi
(
∂θ2〈�θ |∂θ1 |�θ〉 − ∂θ1〈�θ |∂θ2 |�θ〉), (34)

which can be written in the form of G2(�θ ) using Eq. (9):

σ12(�θ ) = e2

h
2πi

(
〈�θ |δĴ2[ �A]

1

(Ĥ [ �A] − E�θ )2
δĴ1[ �A]|�θ〉

−〈�θ |δĴ1[ �A]
1

(Ĥ [ �A] − E�θ )2
δĴ2[ �A]|�θ〉

)
. (35)

Again, θ1,2 integrals are missing in Eqs. (34) and (35), al-
though they are the key in identifying this quantity as the
Chern number. As we will show in Sec. V C, Gn(θ ) is almost
independent of θ in a large system. Thus, one can approximate
σ12(�θ ) by its average σ̄12 [9]:

σ̄12 ≡
∫ 2π

0

dθ1

2π

∫ 2π

0

dθ2

2π
σ12(�θ ) = e2

h
C, (36)

C ≡
∫

d2θ

2π
i
(
∂θ2〈�θ |∂θ1 |�θ〉 − ∂θ1〈�θ |∂θ2 |�θ〉). (37)

The connection to the Chern number is now evident [9]. We
can perform the same trick to �Q(θ ) and relate it to a Chern
number in the t-θ space [8].

C. Insensitivity of Gn(θ )

Motivated by these examples, let us now prove that the θ

dependence of Gn(θ ) is exponentially suppressed for a large

system by a factor L2+ n
2 e

− L

4ξ ′ with ξ ′ ≡ ξ0 + 4v
�

. Our proof
proceeds in the same way as that for O(θ ). Again, we focus
on one dimension.

We first write Gn(θ ) in terms of the integral of local
operators

Gn(θ ) =
∫

dx dx ′〈θ |δÔx

[ θ

L

] 1(
Ĥ
[

θ
L

]− Eθ

)n δÔ ′
x ′

[ θ

L

]
|θ〉

(38)

and then insert Û †
χy

Ûχy
= 1:

Gn(θ ) =
∫

dx dx ′〈θy |δÔx[0]
1

(Ĥ [Ay] − Eθ )n
δÔ ′

x ′ [0]|θy〉.

(39)

In Eq. (39), we have chosen y ∈ [0, L] to be out of the range
of Ôx , Ô ′

x ′ as illustrated in Fig. 1(b) and used Eq. (23). In
fact, for every x, x ′ ∈ [0, L], we can always find y on the ring
such that |x − y| � L

4 and |x ′ − y| � L
4 . Again using Eq. (9),

we can express ∂θGn(θ ) in terms of Gm,� and G′
m,� with
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m + � = n + 1:

∂θGn(θ ) = −
∫ L

0
dx

∫ L

0
dx ′
( n∑

m=1

〈θy |δÔx[0]
1

(Ĥ [Ay] − Eθ )m
δĴ [Ay]

1

(Ĥ [Ay] − Eθ )n−m+1
δÔ ′

x ′ [0]|θz〉

+ 〈θy |δÔx[0]
1

(Ĥ [Ay] − Eθ )n
δÔ ′

x ′ [0]
1

Ĥ [Ay] − Eθ

δĴ [Ay]|θy〉

+ 〈θy |δĴ [Az]
1

Ĥ [Ay] − Eθ

δÔx[0]
1

(Ĥ [Ay] − Eθ )n
δÔ ′

x ′ [0]|θy〉
)

. (40)

Thus, one can use Eqs. (7) and (8) with R′ = L
4 to get the

stated bound

|∂θGn(θ )| < CL3+ n
2 e

− L

4ξ ′ (41)

with a constant C. In a higher dimension, the same argument
suggests

|∂θi
Gn(�θ )| < CV 2L

1+ n
2

i e
− Li

4ξ ′ . (42)

VI. EXCITATION ENERGY

So far, we have only investigated the ground-state proper-
ties. Here, let us discuss what we can say about excitations.

A. Energy expectation value of variational state

Let us consider an operator Ô of the form Ô = ∫ dd �x Ô�x
with local operators Ô�x . We construct a variational state
|O〉 = δÔ|0〉, which is orthogonal to the ground state by
definition. Its energy expectation value measured from the
ground-state energy is given by

�O ≡ 〈O|Ĥ |O〉
〈O|O〉 − E = 〈δÔ†[Ĥ , δÔ]〉

〈δÔ†δÔ〉

=
∫

dd �x dd �y〈δÔ†
�x[Ĥ , δÔy]〉∫

dd �x dd �y〈δÔ†
�xδÔ�y〉

. (43)

The denominator is proportional to the system size V =
L1L2 . . . Ld because of the exponential decay of the corre-
lation function. Similarly, the numerator is also proportional
to V since the commutator [Ĥ , δÔy] is still local owing to the
locality of the Hamiltonian. Therefore, the energy expectation
value �O can be at most O(V 0) [48].

We show that the excitation energy of locally excited states
is almost independent of the flux θ . To this end, suppose
that the Hamiltonian Ĥ [A] has a U(1) symmetry satisfying
Eq. (15). We assume the form Ô[A] = ∫ dd �x Ô�x[A] with
local operators Ô�x[A] obeying in Eq. (15). We set A(x) = θ

L

and construct the variational state |O[ θ
L

]〉 = δÔ[ θ
L

]|θ〉. Now,
note that the last expression of Eq. (43) is written in terms of
the expectation value of local operators. Thus, we can apply
the result in Sec. IV. Therefore, the derivative ∂θ�O[ θ

L
] is

bounded by F1 in Eq. (3) with R = L
4 .

B. Insensitivity of excitation gap

Now, let us discuss the θ dependence of the true excitation
gap. More precisely, here �θ denotes the gap to the first
excited state |1〉θ in the same sector of the conserved U(1)

charge. We assume that there exits a local operator Ô0 such
that the state Ô0|0〉 has a nonzero overlap with |1〉, i.e.,
|〈1|Ô0|0〉|2 = w > 0. (The weight w can be proportional to
L−α with α � 0. The expectation value of the excitation
energy �O ′ can be much larger than �.) Then, by applying
the energy filter [49], one can construct a low-energy local
operator Ô from Ô0 such that, for any ε > 0, (i) the exci-
tation energy �O satisfies � � �O � �(1 + ε) + δ, where
δ = C̃

w
(R̃/ξ0)�e−εR̃/ξ̃ is an exponentially small correction with

some power � and ξ̃ ≡
√

2v
�

+ εξ0 and (ii) the support �

of Ô is finite and includes the support of Ô0 inside. Here,
R̃ = dist(∂�, Ô0) denotes the minimum distance between the
boundary of � and the support of Ô0 [21,49]. We reproduce
the derivation in Appendix C.

Using this operator Ô, we prove that �θ does not depend
much on θ for a large system size. Our argument is proof by
contradiction. Suppose that the gap becomes smaller at θ =
θ0 (0 < θ0 < 2π ) than the value �0 at θ = 0. Namely, there
exists ξ (0 < ξ < 1) such that

�θ0 = ξ�0. (44)

By setting ε = 1−ξ

2ξ
and R̃ = L

2 , for example, we can construct

a local operator Ô[ θ0
L

] such that

�θ0 � �O[ θ
L

] � �θ0 (1 + ε) + δ = 1 + ξ

2
�0 + δ. (45)

Since �O[ θ
L

] does not depend much on θ as proven above, it
in turn implies that

�O[0] <
1 + ξ

2
�0 + δ + δ′ (46)

with another exponentially small correction δ′. We can make
δ + δ′ smaller than 1−ξ

2 �0 by choosing a sufficiently large L

so that

�O[0] < �0. (47)

This is a contradiction since the energy expectation value of a
variational state can never be smaller than the real excitation
energy. Therefore, the assumption in Eq. (44) must be wrong
and �θ0 cannot be smaller than �0 by any finite amount. In
fact, the excitation gap � can depend on θ at most by an
exponentially small amount with respect to the system size.

This, in particular, indicates that that the excitation energy
�θ never vanishes if �0 is finite in the limit of large system
size. This corollary completes, with one remaining assump-
tion on the existence of the local operator Ô, the proof of
the higher-dimensional Lieb-Schultz-Mattis theorem by Os-
hikawa [33], without assuming the reality of the Hamiltonian.
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VII. CONCLUDING REMARKS

We demonstrated the θ independence of static responses
among other things. In fact, one can replace Ĥ − E in
Eqs. (3)–(6) by Ĥ − E − ω as long as ω < �, which simply
gives the “effective gap” � − ω. Therefore, the dynamical
susceptibility with a frequency lower than � can be covered
by the method developed in this work.

The θ dependence of the ground-state energy is related to
the transport properties: the first derivative ∂θEθ represents
the persistent current and the second derivative gives the
Drude weight via the Kohn formula D = πL2

V
∂2
θ Eθ [50–52].

Our argument for expectation values and response properties
proves that both of them are exponentially small with the
system size in U(1) symmetric gapped phases.

In the derivation we assumed the uniqueness of the
ground state. However, similar statements should hold even
when a finite (quasi)degeneracy originates from spontaneous

breaking of discrete symmetries or the presence of topo-
logical orders [21]. Let us denote by {|0α〉}qα=1 the q-fold
(quasi)degenerate ground states. In general, off-diagonal ma-
trix elements 〈0α|Ô|0β〉 (α �= β) are expected to be exponen-
tially small with the system size as long as the operator Ô =∑

�x Ô�x is a sum (or integral) of local operators. They should

be proportional to e
− V

ξd in phases with discrete symmetry
breaking and e

− L
ξ for topologically ordered phases. Assuming

this scaling, the degenerate case does not seem fundamentally
different, but we will leave the concrete analysis to future
work.
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APPENDIX A: BOUND OF TWO-POINT CORRELATION FUNCTIONS

In this appendix we prove the exponential decay of correlation functions in Eqs. (1) and (2) of the main text. The proof
involves a few math formulas. For example, for x � 0, we have

0 �
∫ x

0

dy

2π

ey − 1

y
<

ex

x
, (A1)

0 < erfc(x) ≡ 2√
π

∫ ∞

x

dy e−y2 � e−x2
. (A2)

We will also use

|〈Ô Ô ′〉| �
√

〈ÔÔ†〉〈Ô ′†Ô ′〉 � ‖Ô‖‖Ô ′‖, (A3)

〈Ô†f (Ĥ )Ô〉 � 〈Ô†Ô〉f (�) for a positive and monotonically decreasing function f (E ), (A4)

〈ÔÔ ′(τ )〉 = e−αt2[〈ÔÔ ′(τ )〉(eαt2 − e−ατ 2)+ 〈ÔÔ ′(τ )〉e−ατ 2]
= e−αt2[〈ÔÔ ′(τ )〉(eαt2 − e−ατ 2)+ 〈Ô ′(τ )Ô〉e−ατ 2 + 〈[Ô, Ô ′(τ )]〉e−ατ 2]

. (A5)

Here, Eq. (A3) is the Schwartz inequality and Eq. (A5) follows just by the definition of the commutation relation.
The following mathematical identities are valid for arbitrary E, α, t > 0:

F+(E ) ≡
∫ ∞

−∞

dτ

2πi

e+iEτ

τ − it

(
eαt2 − e−ατ 2) = 1

2
√

πα

∫ ∞

0
dω e+ωt− (E+ω)2

4α = 1

2
eαt2−tEerfc

(E − 2αt

2
√

α

)
> 0, (A6)

F−(E ) ≡
∫ ∞

−∞

dτ

2πi

e−iEτ

τ − it
e−ατ 2 = 1

2
√

πα

∫ ∞

0
dω e−ωt− (E+ω)2

4α = 1

2
eαt2+tEerfc

(E + 2αt

2
√

α

)
> 0. (A7)

Using the property Eq. (A2), we have

0 < F±(E ) � 1

2
e− E2

4α when 0 < t � E
2α

. (A8)

Finally, the Lieb-Robinson bound will be used to derive an upper bound of commutation relations:

‖[Ô, V̂ (t )]‖ � COV e
− R

ξ0
(
e

v|t |
ξ0 − 1

)
. (A9)

Here, ξ0 and v are constants, independent of the choice of Ô and V̂ .

1. Correlation function F0

Let us start with F0 ≡ 〈δÔ δV̂ 〉. Instead of directly dealing with F0, here we evaluate

F0(t ) ≡ 〈δÔ δV̂ (it )〉 = 〈δÔ e−t (Ĥ−E)δV̂ 〉. (A10)
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Using the complex analysis, we can express 〈δÔ δV̂ (it )〉 in the form of the integral

F0(t ) =
∮

dz

2πi

〈δÔ δV̂ (z)〉
z − it

= lim
S→∞

∫ S

−S

dτ

2πi

〈δÔ δV̂ (τ )〉
τ − it

+ lim
S→∞

∫ π

0

dφ

2π
Seiφ 〈δÔ δV̂ (Seiφ )〉

Seiφ − it
. (A11)

The second integral in the right-hand side of Eq. (A11) vanishes in the limit of S → ∞:∫ π

0

dφ

2π

∣∣∣∣∣ 〈δÔ δV̂ (Seiφ )〉
1 − ie−iφt/S

∣∣∣∣∣ � ‖δÔ‖‖δV̂ ‖
∫ π

0

dφ

2π

e−S� sin φ√(
1 − t

S
sin φ

)2 + ( t
S

cos φ
)2 � ‖δÔ‖‖δV̂ ‖ 1 − e−S�

2(S − t )�
→ 0. (A12)

We used Eqs. (A3) and (A4) in the first step.
The remaining integral in Eq. (A11) can be split into four using Eq. (A5):

F0(t ) =
∫ ∞

−∞

dτ

2πi

〈δÔ δV̂ (τ )〉
τ − it

= e−αt2
(I1 + I2 + I3 + I4), (A13)

where

I1 ≡
∫ ∞

−∞

dτ

2πi

〈δÔ δV̂ (τ )〉
τ − it

(
eαt2 − e−ατ 2)

, (A14)

I2 ≡
∫ ∞

−∞

dτ

2πi

〈δV̂ (τ ) δÔ〉
τ − it

e−ατ 2
, (A15)

I3 ≡
∫

|τ |>T

dτ

2πi

〈[Ô, V̂ (τ )]〉
τ − it

e−ατ 2
, (A16)

I4 ≡
∫ T

−T

dτ

2πi

〈[Ô, V̂ (τ )]〉
τ − it

e−ατ 2
. (A17)

The parameters T and α are chosen as

T ≡ 2R

ξ�
, α ≡ �2ξ

4R
, R ≡ dist(Ô, V̂ ), (A18)

so that �2

4α
= αT 2 = R

ξ
 1.

Integrals I1 and I2 can be performed with the help of the identities in Eqs. (A6) and (A7):

I1 = 〈δÔ F+(Ĥ − E) δV̂ 〉, (A19)

I2 = 〈δV̂ F−(Ĥ − E) δÔ〉. (A20)

Then, assuming 0 < t � �
2α

and using Eqs. (A3) and (A4), we get

|I1| �
√

〈δÔδÔ†〉〈δV̂ †F+(Ĥ − E)2δV̂ 〉 �
√

〈δÔδÔ†〉〈δV̂ †e− (Ĥ−E)2

2α δV̂
〉
� ‖δÔ‖‖δV̂ ‖

2
e− �2

4α , (A21)

|I2| �
√

〈δV̂ δV̂ †〉〈δÔ†F−(Ĥ − E)2δÔ〉 �
√

〈δV̂ δV̂ †〉〈δÔ†e− (Ĥ−E)2

2α δÔ
〉
� ‖δÔ‖‖δV̂ ‖

2
e− �2

4α . (A22)

The integral I3 can be bounded by Eqs. (A3) and (A2):

|I3| �
∫

|τ |>T

dτ

2π

|〈[δÔ, δV̂ (τ )]〉|√
τ 2 + t2

e−ατ 2 � 4‖δÔ‖‖δV̂ ‖
∫ ∞

T

dτ

2π

e−ατ 2

T
� ‖δÔ‖‖δV̂ ‖√

παT 2
e−αT 2

. (A23)

Finally, the integral I4 can be bounded by Lieb-Robinson bound (A9) and the inequality in Eq. (A1):

|I4| �
∫

|τ |<T

dτ

2π

|〈[Ô, V̂ (τ )]〉|√
τ 2 + t2

e−ατ 2 � 2COV e
− R

ξ0

∫ T

0

dτ

2π

e
vτ
ξ0 − 1

τ
� 2COV

e
vT −R

ξ0

vT
ξ0

= ξ0�

v

COV

R/ξ
e
− ξ− 2v

�
ξ0

R
ξ . (A24)

All in all, when 2R
ξ

� t� > 0, we have

|F0(t )| � e−αt2
(|I1| + |I2| + |I3| + |I4|)

� e− 4ξ

R
(t�)2‖δÔ‖‖δV̂ ‖

(
e
− R

ξ + 1√
πR/ξ

e
− R

ξ + ξ0�

v

COV

‖δÔ‖‖δV̂ ‖R/ξ
e
− ξ− 2v

�
ξ0

R
ξ

)
. (A25)
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If we set ξ = ξ0 + 2v
�

, all terms have a factor e
− R

ξ . When t� � 2R
ξ

, we can directly evaluate F0(t ) in Eq. (A10) using Eqs. (A3)
and (A4). At the end, we have

|F0(t )| �
⎧⎨
⎩‖δÔ‖‖δV̂ ‖

(
1 + 1√

πR/ξ
+ 2ξ0

ξ−ξ0

COV

‖δÔ‖‖δV̂ ‖ R/ξ

)
e− 4ξ

R
(t�)2

e
− R

ξ

(
2R
ξ

� t� > 0
)
,

‖δÔ‖‖δV̂ ‖e− 2R
ξ

(
t� � 2R

ξ

)
.

(A26)

The equal-time correlation F0 = 〈δÔ δV̂ 〉 is the limit of t → +0.

2. Correlation function Fn

Next, let us discuss the correlation function with (Ĥ − E)−n:

Fn ≡
〈
δÔ

1

(Ĥ − E)n
δV̂

〉
=
∫ ∞

0
dt

tn−1

(n − 1)!
〈δÔ e−t (Ĥ−E)δV̂ 〉 =

∫ ∞

0
dt

tn−1

(n − 1)!
F0(t ) = I4 + I5, (A27)

I4 ≡
∫ ∞

T

dt
tn−1

(n − 1)!
〈δÔ e−t (Ĥ−E)δV̂ 〉, (A28)

I5 ≡
∫ T

0
dt

tn−1

(n − 1)!
f0(t ). (A29)

The integral I4 can be estimated by Eqs. (A3) and (A4):

|I4| � ‖δÔ‖‖δV̂ ‖
∫ ∞

T

dt
tn−1

(n − 1)!
e−t� = ‖δÔ‖‖δV̂ ‖

�n

n−1∑
m=0

(T �)m

m!
e−T � = ‖δÔ‖‖δV̂ ‖

�n

n−1∑
m=0

1

m!

(
2R

ξ

)m

e
− 2R

ξ . (A30)

For the integral I5, we can use the first line of Eq. (A26). Writing cn ≡ ∫∞
0 dx xn−1

(n−1)!e
−x2

, we have
∫ T

0 dt tn−1

(n−1)!e
− 4ξ

R
(t�)2 �

cn

�n ( 4R
ξ

)
n/2

and

|I5| � cn

�n

(
4R

ξ

)n/2

‖δÔ‖‖δV̂ ‖
(

1 + 1√
πR/ξ

+ 2ξ0

ξ − ξ0

COV

‖δÔ‖‖δV̂ ‖R/ξ

)
e
− R

ξ . (A31)

Therefore, |Fn| � |I4| + |I5| is exponentially suppressed. For a sufficiently large R/ξ  1, the dominant contribution to Fn

comes from the first term in |I5|.

APPENDIX B: THREE-POINT CORRELATION FUNCTIONS

Here, we derive the bound in Eqs. (5) and (6) in the main text. To this end, we evaluate the correlation function of the following
form:

G(s, t ) ≡ 〈δâ e−s(Ĥ−E)δb̂ e−t (Ĥ−E)δĉ〉 = 〈δâ e−s(Ĥ−E)δb̂ δĉ(it )〉 (B1)

for s, t ∈ (0, T ) with T = 2R
ξ�

. Later, we will set “â = V̂ , b̂ = Ô, and ĉ = Ô ′” or “â = Ô, b̂ = V̂ , and ĉ = Ô ′” with R ≡
min(dist(Ô, V̂ ), dist(Ô ′, V̂ ))  ξ . Once |G(s, t )| is bounded, then the correlation functions in Eqs. (3) and (4) in the main text
can be evaluated by performing the integral

∫
ds sm−1

∫
dt tn−1G(s, t ) as we did in Appendix A 2.

As before, we split the integral into those pieces which we know how to estimate:

G(s, t ) =
∫ ∞

−∞

dτ

2πi

〈δâ e−s(Ĥ−E)δb̂ δĉ(τ )〉
τ − it

= e−αt2
(I1 + I2 + I3), (B2)

where α = �2ξ

4R
and

I1 ≡
∫ ∞

−∞

dτ

2πi

〈δâ e−s(Ĥ−E)δb̂ δĉ(τ )〉
τ − it

(
eαt2 − e−ατ 2)

, (B3)

I2 ≡
∫

|τ |>T

dτ

2πi

〈δâ e−s(Ĥ−E)δb̂ δĉ(τ )〉
τ − it

e−ατ 2
, (B4)

I3 ≡
∫ T

−T

dτ

2πi

〈δâ e−s(Ĥ−E)δb̂ δĉ(τ )〉
τ − it

e−ατ 2 =
∫ T

−T

dτ

2πi

e−ατ 2

τ − it
〈δâ(−is)δb̂ δĉ(τ )〉

=
∫ T

−T

dτ

2πi

e−ατ 2

τ − it

∫ ∞

−∞

dσ

2πi

〈δâ(σ )δb̂ δĉ(τ )〉
σ + is

=
∫ T

−T

dτ

2πi

e−ατ 2

τ − it
e−αs2

(I31 + I32 + I33 + I34), (B5)
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and

I31 ≡
∫ ∞

−∞

dσ

2πi

〈δâ(σ )δb̂ δĉ(τ )〉
σ + is

(
eαs2 − e−ασ 2)

, (B6)

I32 ≡
∫ ∞

−∞

dσ

2πi

〈δb̂ δĉ(τ )δâ(σ )〉
σ + is

e−ασ 2
, (B7)

I33 ≡
∫

|τ |>T

dσ

2πi

〈[δâ(σ ), δb̂ δĉ(τ )]〉
σ + is

e−ασ 2
, (B8)

I34 ≡
∫ T

−T

dσ

2πi

〈[δâ(σ ), δb̂ δĉ(τ )]〉
σ + is

e−ασ 2
. (B9)

In the same way as Eqs. (A21) and (A22), we have

|I1|, |I31|, |I32| � ‖δâ‖‖δb̂‖‖δĉ‖
2

e
− R

ξ . (B10)

Following Eq. (A23), we get

|I2|, |I33| � ‖δâ‖‖δb̂‖‖δĉ‖√
πR/ξ

e
− R

ξ . (B11)

Therefore, it remains to estimate I34:

I34 =
∫ T

−T

dσ

2πi

〈δb̂ [â(σ ), ĉ(τ )]〉 + 〈[â(σ ), b̂] δĉ(τ )〉
σ + is

e−ασ 2
. (B12)

1. When â = V̂ , b̂ = Ô, and ĉ = Ô ′

In this case we can simply apply the Lieb-Robinson bound (A9):

|I34| �
∫ T

−T

dσ

2π

e−ασ 2

√
σ 2 + s2

(|〈δÔ [V̂ (σ ), Ô ′(τ )]〉| + |〈[V̂ (σ ), Ô] δÔ ′(τ )〉|)

�
∫ T

−T

dσ

2π

e−ασ 2

√
σ 2 + s2

(
‖δÔ‖CV O ′e

v(|σ |+|τ |)−|�xc−�xa |
ξ0 + ‖δÔ ′‖CV Oe

v|τ |−|�xb−�xa |
ξ0

)

�
∫ T

−T

dσ

2π

e−ασ 2

√
σ 2 + s2

(‖δÔ‖CV O ′ + ‖δÔ ′‖CV O )e
2vT −R

ξ0 � F (s)(‖δÔ‖CV O ′ + ‖δÔ ′‖CV O )e
2vT −R

ξ0 , (B13)

where

F (x) ≡
∫ ∞

−∞

dy

2π

e−αy2√
x2 + y2

. (B14)

Collecting all terms and setting ξ ′ = ξ0 + 4v
�

, we get

|G(s, t )|
‖δV̂ ‖‖δÔ‖‖δÔ ′‖ �

(
1

2
+ 1√

πR/ξ

)
e
−αt2− R

ξ + F (t )

(
1 + 1√

πR/ξ
+ F (s)

‖δÔ‖CV O ′ + ‖δÔ ′‖CV O

‖δV̂ ‖‖δÔ‖‖δÔ ′‖

)
e
−α(s2+t2 )− R

ξ . (B15)

The function F (x) itself may diverge at x = 0, but it only appears in the following integral at the end:∫ ∞

0
dx

xn−1

(n − 1)!
e−αx2

F (x) =
∫ ∞

0
dx

∫ ∞

−∞

dy

2π

xn−1

(n − 1)!

e−α(x2+y2 )√
x2 + y2

� 1

2

∫ ∞

0
dr

rn−1

(n − 1)!
e−αr2 = cn

2αn/2
. (B16)

2. When â = Ô, b̂ = V̂ , and ĉ = Ô ′

This case requires a new relation:

|〈δÔ(σ1) δÔ ′(σ2) δV̂ 〉| � ‖δV̂ ‖‖δÔ‖‖δÔ ′‖
(

1 + 1√
πR/ξ

+ ‖δÔ‖CO ′,[H,V ] + ‖δÔ ′‖CO,[H,V ]

‖δV̂ ‖‖δÔ‖‖δÔ ′‖�

√
R

πξ

)
e
− R

ξ

≡ B(R/ξ )e− R
ξ (B17)
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for |σ1|, |σ2| � T . Given this, we can get

|I34| �
∫ T

−T

dσ

2π

e−ασ 2

√
σ 2 + s2

(|〈δV̂ [Ô(σ ), Ô ′(τ )]〉| + |〈[Ô(σ ), V̂ ] δÔ ′(τ )〉|)

�
∫ T

−T

dσ

2π

e−ασ 2

√
σ 2 + s2

[
2B(R/ξ )e− R

ξ + ‖δÔ ′‖COV e
vT −R

ξ0
]
� F (s)[2B(R/ξ ) + ‖δÔ ′‖COV ]e− R

ξ . (B18)

The bound (B17) can be verified in the following way. Again using Eq. (A5), we have

〈δÔ(σ1) δÔ ′(σ2) δV̂ 〉 = lim
t→+0

∫ ∞

−∞

dτ

2πi

〈δÔ(σ1) δÔ ′(σ2) δV̂ (τ )〉
τ − it

= I ′
1 + I ′

2 + I ′
3 + I ′

4, (B19)

where

I ′
1 = lim

t→+0

∫ ∞

−∞

dτ

2πi

〈δÔ(σ1) δÔ ′(σ2) δV̂ (τ )〉
τ − it

(
eαt2 − e−ατ 2)

, (B20)

I ′
2 = lim

t→+0

∫ ∞

−∞

dτ

2πi

〈δV̂ (τ ) δÔ(σ1) δÔ ′(σ2)〉
τ − it

e−ατ 2
, (B21)

I ′
3 = lim

t→+0

∫
|τ |>T

dτ

2πi

〈[δÔ(σ1) δÔ ′(σ2), δV̂ (τ )]〉
τ − it

e−ατ 2
, (B22)

I ′
4 = lim

t→+0

∫ T

−T

dτ

2πi

〈[δÔ(σ1) δÔ ′(σ2), δV̂ (τ )]〉
τ − it

e−ατ 2 =
∫ T

0

dτ

2πi

e−ατ 2

τ

∫ τ

−τ

du〈[δÔ(σ1) δÔ ′(σ2), ∂uV̂ (u)]〉. (B23)

I ′
1, I ′

2, I ′
3 can be bounded in the same way as in Eqs. (A21), (A22), and (A23):

|I1|, |I2| � ‖δV̂ ‖‖δÔ‖‖δÔ ′‖
2

e
− R

ξ , |I3| � ‖δV̂ ‖‖δÔ‖‖δÔ ′‖√
πR/ξ

e
− R

ξ . (B24)

For I ′
4, we have

|I ′
4| �

∫ T

0

dτ

2π

e−ατ 2

τ

∫ τ

−τ

du(|〈δÔ(σ1)[Ô ′(σ2), [Ĥ , V̂ (u)]]〉| + |〈[Ô(σ1), [Ĥ , V̂ (u)]]δÔ ′(σ2)〉|)

�
∫ T

0

dτ

2π

e−ατ 2

τ

∫ τ

−τ

du(‖δÔ‖CO ′,[H,V ] + ‖δÔ ′‖CO,[H,V ] )e
2vT −R

ξ0 = ‖δÔ‖CO ′,[H,O] + ‖δÔ ′‖CO,[H,V ]

�

√
R

πξ
e

2vT −R
ξ0 . (B25)

In the derivation, we used the Lieb-Robinson bound (A9) and |u − σi | � 2T .

APPENDIX C: CONSTRUCTION OF THE LOCAL OPERATOR APPROXIMATELY CREATING |1〉
Here, we discuss the construction of Ô starting from Ô0 defined in the main text. Let |1〉 be the first excited state with the

energy � = E1 − E0. Suppose that the state Ô0|0〉 has a nonzero overlap with |1〉, i.e., |〈1|Ô0|0〉|2 = w > 0. In order to extract
only the |1〉 component, let us apply the energy filter

Ô =
√

β

π

∫ +∞

−∞
dt Ô0(t )e−it�−βt2 =

√
β

π

∫ +∞

−∞
dt eitĤ Ô0e

−it (Ĥ+�)−βt2
(C1)

with β = ε2 �2ξε

2R
. Let us define two projection operators Q̂low and Q̂high onto energy windows Elow ∈ [E1, E1 + ε�] and Ehigh ∈

(E1 + ε�,+∞), respectively. We have

〈Ô†Q̂highÔ〉 = 〈Ô†
0e

− 1
4β

(Ĥ−E1 )2

Q̂highe
− 1

4β
(Ĥ−E1 )2

Ô0
〉
� ‖Ô0‖2e

−ε2 �2

2β = ‖Ô0‖2e
− R

ξε , (C2)

〈Ô†Q̂lowÔ〉 � 〈Ô†|1〉〈1|Ô〉 = 〈Ô†
0|1〉〈1|Ô0〉 = w. (C3)

Next, we want to approximate Ô by a local operator

Ô =
√

β

π

∫ +S

−S

dt eitĤ�Ô0e
−it (Ĥ�+�)−βt2

. (C4)
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Here, � is a region including the support of Ô0, and Ĥ� denotes the Hamiltonian restricted onto the region. Let us denote by R

the distance between ∂� and the support of Ô0. We have

Ô − Ô =
√

β

π

∫
|t |>S

dt eitĤ Ô0e
−it (Ĥ+�)−βt2 +

√
β

π

∫ S

−S

dt

∫ t

0
ds

d

ds

(
eisĤ+i(t−s)Ĥ�Ô0e

−i(t−s)Ĥ�−isĤ−it�−βt2)

=
√

β

π

∫
|t |>S

dt eitĤ Ô0e
−it (Ĥ+�)−βt2 +

√
β

π

∫ S

−S

dt

∫ t

0
ds eisĤ [Ĥ − Ĥ�, ei(t−s)Ĥ�Ô0e

−i(t−s)Ĥ� ]e−isĤ−it�−βt2
. (C5)

Using the Lieb-Robinson bound and setting S =
√

2R
εξε�

, β = ε2 �2ξε

2R
, ξε = ξ0 +

√
2v

ε�
, we get

‖Ô − Ô‖ � ‖Ô0‖
√

β

π

∫
|t |>S

dt e−βt2 + CH∂�O0Se
vS−R

ξ0

√
β

π

∫ +S

−S

dt e−βt2 � ‖Ô0‖e−βS2 + CH∂�O0Se
vS−R

ξ0

�
(

‖Ô0‖ + CH∂�O0

√
2R

ε�ξε

)
e
− R

ξε . (C6)

Using

〈Ô†Q̂high[Ĥ , Ô]〉 �
√

〈Ô†Q̂highÔ〉〈[Ĥ∂�, Ô]†[Ĥ∂�, Ô]〉 � 2‖Ĥ∂�‖‖Ô0‖
√

〈Ô†Q̂highÔ〉, (C7)

〈Ô†Q̂low[Ĥ , Ô]〉 � 〈Ô†Q̂lowÔ〉(1 + ε)�, (C8)

and

〈Ô†Q̂Ô〉 = 〈Ô†Q̂Ô〉 + 〈Ô†Q̂(Ô − Ô )〉 + 〈(Ô − Ô )†Q̂Ô〉, (C9)

〈Ô†Q̂Ô〉 − 2‖Ô0‖‖Ô − Ô‖ = 〈Ô†Q̂Ô〉 � 〈Ô†Q̂Ô〉 + 2‖Ô0‖‖Ô − Ô‖, (C10)

we have

〈Ô†Q̂[Ĥ , Ô]〉
〈Ô†Q̂Ô〉 = 〈Ô†Q̂low[Ĥ , Ô]〉 + 〈Ô†Q̂high[Ĥ , Ô]〉

〈Ô†Q̂lowÔ〉 + 〈Ô†Q̂highÔ〉 �
〈Ô†Q̂lowÔ〉(1 + ε)� + 2‖Ĥ∂�‖‖Ô0‖

√
〈Ô†Q̂highÔ〉

〈Ô†Q̂lowÔ〉

� (1 + ε)� + 2‖Ĥ∂�‖‖Ô0‖
√

〈Ô†Q̂highÔ〉 + 2‖Ô0‖‖Ô − Ô‖
〈Ô†Q̂lowÔ〉 − 2‖Ô0‖‖Ô − Ô‖

� (1 + ε)� + 2‖Ĥ∂�‖e− R
2ξε

√
‖Ô0‖ + 2

(
‖Ô0‖ + CH∂�O0

√
2R

εξε�

)
w − 2

(
‖Ô0‖ + LH∂�a0

√
2R

εξε�

)
e
− R

ξε

. (C11)

Therefore, Ô has the property stated in the main text.
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