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Covariant cubic approximation for many-body electronic systems
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An approximation scheme determining the excitations of an electronic model on the lattice with pairwise
interactions is proposed. A systematic truncation of the set of Dyson-Schwinger equations for correlators,
supplemented by a “covariant” calculation of correlators lead to a converging series of approximates. The
covariance preserves all the Ward identities among correlators describing various condensed matter probes.
It is shown that the third-order approximant of this kind beyond classical and Gaussian (Hartree-Fock) is
precise enough and due to several fortunate features the complexity of calculation is surprisingly low so that
a realistic material computation might be feasible. Focus here is on the electron field correlator describing the
electron (hole) excitations measured in photoemission and other probes. The scheme is tested on several solvable
benchmark models.
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I. INTRODUCTION

Calculation of the band structure and response functions of
crystalline material with determined chemical composition is
one of the most important theoretical problems in condensed
matter physics. However, computing the electronic excita-
tions and spectra of a stoichiometric chemically well-defined
compounds with significant correlations from first-principles
continues to be a major challenge in computational mate-
rial science. Historically, the Kohn-Sham density functional
method [1] (DFT) opened the door to such calculations. The
method approximates the many-body physics by noninteract-
ing electrons in a periodic potential. It is successful to map out
general features of the band structure of numerous crystalline
solids.

However, DFT is not accurate enough in the most impor-
tant (for condensed matter physics) range of energies near the
Fermi level for which many-body effects are important. Kohn-
Sham eigenvalues have been used to interpret the single-
particle excitation energies measured in direct and inverse
photoemission experiments. Reasonable results were obtained
in simple metals, however, when the excited state properties
of semiconductors and insulators are concerned, ambiguities
between different DFT approaches (for example, the exchange
correlation functional) and significant deviations from the
measured characteristics appear.

In order to tackle the problem of DFT, the many-body-
theory-based methodologies were applied to condensed-
matter physics recently by including the correlation effects.
For example, the dynamical mean field theory [2], Hedin’s
GW approximation [3], and diagrammatic fluctuational ex-
change [4] were developed. A particularly troublesome
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problem for various extensions is that the result must respect
basic conservations like the charge conservation. Hybertsen
and Louie [5] showed that applying GW approximation as a
first-order perturbation to the Kohn-Sham quasiparticles (so-
called G0W0) provides an improved description of the photoe-
mission spectra described by the electron Greens function.

However, it is known that the method violates conservation
laws. The self-consistent GW (scGW ) does better. It belongs
to the class of the so-called �-derivable approximations [6].
It was shown [7] that for these schemes expectation values
of Noether currents (like electric current, momentum, etc.)
are conserved. The scGW was applied to various systems
[8] including to crystalline solids [9]. However, scGW still
significantly overestimates the bandwidth for metals and band
gaps for insulators. This might be attributed to the violation of
the Ward identities of the scGW approximation. While in �-
derivable approximations like scGW the expectation values of
Noether currents are conserved, general Ward-Takahashi iden-
tities (WTI) are not guaranteed [10]. For example, Kutepov
demonstrated, using the two-site Hubbard model, that certain
vertex corrections (G�1W in Ref. [11]) to scGW reduce the
WTI violation’s level. Recent scGW calculations incorporat-
ing the vertex correction demonstrated a substantial improve-
ment to the bandwidths, ionization potential, and the band
gaps of crystalline materials compared to the original scGW

[12,13]. There exist alternative approaches. For example, WTI
is imposed by construction (not a self-consistent approach) in
Ref. [14].

A general method to preserve the WTI in an approximation
scheme was developed long time ago [15] in the context of
field theory as the covariant Gaussian approximation (CGA)
to solve an unrelated problem in quantum field theory and
superfluidity [16]. A nonperturbative variational Gaussian
method which originated in the quantum mechanics of atoms
and molecules in relativistic theories like the standard model
of particle physics had several serious related problems. First,

2469-9950/2018/98(15)/155126(16) 155126-1 ©2018 American Physical Society

http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevB.98.155126&domain=pdf&date_stamp=2018-10-15
https://doi.org/10.1103/PhysRevB.98.155126


BARUCH ROSENSTEIN AND DINGPING LI PHYSICAL REVIEW B 98, 155126 (2018)

the wave function renormalization required a dynamical de-
scription. Second, the Green’s functions obtained using the
naive Gaussian approximation violated the charge conser-
vation. In particular, the most evident problem is that the
Goldstone bosons that resulted from spontaneous breaking
of continuous symmetry are massive. The method is thus
considered dubious and or inconsistent. Both problems were
solved by an observation that the solution of the minimiza-
tion equations is not necessarily equivalent to the variational
Green’s function. This constitutes the covariant Gaussian
approximation or CGA [15].

The method was compared with available exact results for
the S matrix in the Gross-Neveu model [17] (a local four-
fermion interaction in 1D Dirac excitations recently consid-
ered in condensed matter physics) and with MC simulations
in various scalar models, see Ref. [18] for detailed description
and application to thermal fluctuations in superconductors in
the framework of the Ginzburg-Landau-Wilson order param-
eter approach [19]. Applied to the electronic field correlator
in electronic systems, CGA becomes roughly equivalent to
the Hartree-Fock (HF) approximation, which is generally not
precise enough—its covariance might improve the calculation
of the four-fermion correlators like the density-density, but to
address quantitatively photoemission or other direct electron
or hole excitation probes, a more precise method is needed.

The CGA approach is just the second in a sequence of
approximations based on covariant truncations of the Dyson-
Schwinger (DS) equations in which cumulant of third and
higher orders are discarded. One can continue to the next level
by retaining the third cumulant (discarding the fourth), etc.
We term this approximation covariant cubic approximation,
CCA. The covariance still preserves all the Ward identities.
Up to now, the methodology of this kind has not been applied
to more microscopic description of realistic condensed matter
systems.

The subject of the present paper is to inquire whether
is possible and computationally feasible. It is shown using
several solvable benchmark models, that the third-order ap-
proximation that we term a “cubic covariant approximation”
(CCA) is precise enough. Its complexity when applied to a
realistic material calculation is estimated in the end of the
present paper. The focus is on the electron (hole) excitations
correlator described by the electron field correlator. Recently,
the correlator is being “measured” rather directly by various
photo-emission probes like ARPES-angle resolved photoe-
mission spectroscopy. This is especially important for novel
clean crystalline materials, many of them low-dimensional
semiconductors and the so-called Weyl semimetals, like two-
dimensional hexagonal boron nitride (hBN), graphene, etc.
Higher correlators like the density-density (or conductivity)
can be also calculated using the covariant approximation as
shown in Refs. [15,18]. In the present paper, no attempt is
made to apply the method to realistic materials, only to the
Hubbard model, however, the computational complexity of
real materials is estimated.

The paper is organized as follows. In Sec. II, the sequence
of covariant approximations developed using the simplest
possible case: the one-dimensional integral. Next, in Sec. III,
the third approximation of these series, CCA is applied to
a (Z2 invariant) statistical Ginzburg-Landau-Wilson model

[20] describing various statistical mechanical systems like the
Ising chain in terms of low-energy (effective) bosonic field
theory. The results are compared with exact (at low dimen-
sion) and MC simulations (higher dimensionality). In Sec. IV,
the general formalism for a downfolded electronic system
describing crystalline materials is presented and applied in
Sec. V to some low-dimensional benchmark systems like the
single-band Hubbard model. Section VI contains an estimate
of complexity of application of CCA to a realistic material and
conclusions.

II. HIERARCHY OF CONSERVING TRUNCATIONS
OF DS EQUATIONS

The main ideas behind the covariant approximants are
presented in this section in the simplest possible setting. Later,
the third in a series of such approximants for a many-body
system will be considered in some detail.

A. An exactly solvable “bosonic” model:
one-dimensional integral

To clearly present the general covariant approximation
scheme, we will make use of the simplest nontrivial model:
the statistical physics of a one-dimensional classical chain that
is equivalent to the quantum mechanics of the anharmonic
oscillator in the next section. Our starting point here will be
the following “free energy” as a function of a single (real)
variable ψ :

f = a

2
ψ2 + b

4
ψ4 − Jψ . (1)

Here, a and b represent spectrum and “couplings,” respec-
tively, while the “source” or “external field” J will be used
to calculate correlations. The exact partition function of just
one “fluctuating” bosonic variable is [21]

Z[J ] =
∫ ∞

ψ=−∞
e−f = e−F [J ]. (2)

Correlators (Green’s function) are defined as

Gn = dn

dJ n
Z = 〈ψn〉 (3)

so that

G1 = 1

Z

∫
ψe−f = 〈ψ〉,

(4)
Gc

2 ≡ G = Z−1
∫

ψ2e−f − 〈ψ〉2.

While the odd correlators in the Z2 symmetric case vanish,
the exact one-body correlator is

G =
√

π

2Zb3/4
Hypergeometric U

[
3

4
,

1

2
,
a2

4b

]
, (5)

where the partition function itself is

Z =
√

a

2b
exp

[
a2

8b

]
Bessel K

[
1

4
,
a2

8b

]
. (6)

The dependence of the correlator on b for a = 1, is given in
Fig. 1 as a red line.

155126-2



COVARIANT CUBIC APPROXIMATION FOR MANY-BODY … PHYSICAL REVIEW B 98, 155126 (2018)

FIG. 1. Comparison of a series of successive covariant approxi-
mations for a simple integral representing in a nutshell the Z2 sym-
metric statistical (or quantum many-body quantum) system. The red
line is the exact correlator, while the cyan, brown, green, and blue are
classical, Gaussian, cubic, and quartic approximants, respectively.
Inset shows deviations (in percent) from the exact correlator.

Another important set of quantities include cumulant [20]
defined via the “effective action,” the Legendre transform,
Aeff (ψ ) = F [J ] + Jψ , ψ = − d

dJ
F [J ], J = d

dψ
Aeff [ψ]. The

(two-particle irreducible) cumulants

�n = dn

dψn
Aeff = dn−1

dψn−1
J . (7)

The well-known relations between the cumulants and correla-
tors used below are given in Appendix A.

B. The set of the DS equations

The first in a series of the DS equations, the off-shell
“equation of state” (ES, the term “off-shell” in this paper
meaning that the quantity depends on the external source J ) is

0 = −
∫

d

dψ
e−f → J = 1

Z

∫
(aψ + bψ3)e−f

= aψ + b〈ψ3〉. (8)

Using the connected correlators [20] (marked by subscript c)
and eventually cumulants, one obtains

J = aψ + bψ3 + 3bψG + bGc
3. (9)

Higher-order DS equations in the cumulant form are obtained
by differentiating the equation above. The second DS equa-
tion is

� = a + 3bψ2 + 3bG + 3bψ
d

dψ
G + b

d

dψ
Gc

3

= a + 3bψ2 + 3bG + 3bψ�Gc
3 + b�Gc

4, (10)

while the next is more complicated,

�3 = 6bψ + 6b�Gc
3 − 3bψ�3Gc2

3 + 3bψ�2Gc
4

− b�3Gc
3G

c
4 + b�2Gc

5. (11)

Furthermore, the fourth DS (disregarding odd condensates, as
they will not be required for our purposes) has a form

�4 = 6b + 9b�2Gc
4 − b�4

(
Gc

4

)2 + b�3Gc
6. (12)

The infinite set of DS equations is not useful in practice
unless a way to decouple higher-order equations is proposed.
For example, one can ignore all the G3 and G4 terms in
Eqs. (9) and (10) so that the remaining unknown variables can
be solved by the two on-shell (J = 0) “truncated” DS equa-
tions (or equivalently the minimization equations in Gaussian
variational method): the shift equation and gap equation. This
simple truncation procedure called Gaussian approximation,
as stated before, is not symmetry-conserving. Fortunately,
a simple improvement based on Gaussian approximation,
the covariant Gaussian approximation [18], includes “chain
corrections” to the two-body cumulant by taking functional
derivative of the off-shell (keep finite source J ) shift equation
with respect to ϕ. The chain correction is then explicitly
calculated by taking derivative of the gap equation.

In the following several sections, a hierarchy of approx-
imations defined as truncations of the DS equations as well
as their variational interpretations are introduced. The CGA
scheme will immediately follow when one is familiar with the
classical and Gaussian approximations. Let us start with the
simplest truncation: classical approximation evaluation.

C. Classical approximation

The classical approximation consists of neglecting the two
and higher-body correlators in the equation of state, Eq. (9),

J = aϕ + bϕ3, (13)

so that the second and higher equations are decoupled from
the first. Then the “minimization equation,” that is, just the
on-shell (J = 0) ES, aϕ + bϕ3 = 0, is solved. For a < 0,
there are typically several solutions of this equation [21].
Here, restricting discussion here to a > 0, and the solution
has ϕ = 0.

Note that despite the fact that the minimization principle
involved only the one-body cumulant ϕ, one can still calcu-
late the higher cumulants within the classical approximation.
These are given by derivatives of the source J with respect to
ϕ in truncated ES, Eq. (9),

�(I ) = δJ

δϕ
= a + 3bϕ2 = a. (14)

The full correlator in momentum space is just G(I ) = 1/a.
The independence on b for a = 1, is given in Fig. 1 as the
cyan line, compared to the exact correlator (red), emphasizes
the fact that the classical approximation correlator ignores the
quartic term and thus might be useful (as a starting point of
the “loop expansion,” see Sec. IV) only at small b.

The classical minimization equation can be interpreted
variationally as optimizing the free energy (1). One can do
better. Why not optimize also the connected correlator G in
addition to the statistical average of the field ψ? This is the
Gaussian approximation idea proposed early on in the context
of quantum mechanics and develop in field theory in eighties
of the last century, see Ref. [22] and references therein.
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D. Covariant Gaussian approximation

Now we drop in the first two DS equations all the three field
cumulants (equivalently connected correlators). This leaves us
with the coupled equation for the two variational parameters

J = aψ + bψ3 + 3bψGtr ;
(15)

�tr = a + 3bψ2 + 3bGtr .

The first equation is obviously obeyed for ψ = 0, while the
second takes a form

3bGtr2 = 1 − aGtr → Gtr = −a + √
a2 + 12b

6b
. (16)

Within the covariant approximation described in detail in
Ref. [18], the connected correlator G(II ) is equal to Gtr . The
symmetric solution exists for any a, however spurious first
order transition to the “symmetry broken” solution occurs at
asc = −√

6b.
The dependance of the correlator for b = 1 on a in the

range −1 < a < 4 is given in Fig. 1 as the brown line. It
is significantly better than classical, yet underestimates the
correlator up to 15%, see inset at a = 0. This value already
approaches the spurious transition at asc = −√

6b. The ap-
proximation becomes better in the perturbative region at large
a, as will be discussed later.

E. The third-order (cubic) approximation

Continuing the same idea the neglect of fourth and higher
correlators. The ES of state is now exact,

J = aψ + bψ3 + 3bψGtr + bGtr
3 , (17)

while the next two are approximate (truncated),

�tr = a + 3bψ2 + 3bG + 3bψ�trGtr
3 ; (18)

�tr
3 = −Gtr

3 �tr3 = 6bψ + 6b�trGtr
3 − 3bψ�tr3Gtr2

3 . (19)

The first (taken on shell, J = 0) equations are solved by
ψ = 0,�tr

3 = Gtr
3 = 0. Then the gap equation coincides with

the Gaussian, Eq. (16), with the same solution Eq. (15). How-
ever, according to the general covariant approach outlined in
Ref. [18], the calculation of correlators starts with the off-shell
ES, as in original definition in the second line of Eq. (7).

For example, correction to the inverse correlator is the first
derivative of Eq. (17). After making the derivative

�(III ) = a + 3bψ2 + 3bψ
d

dψ
Gtr + 3bGtr + b

d

dψ
Gtr

3 , (20)

one substitutes the truncated quantities and their derivative on
shell:

�(III ) = a + 3bGtr + b
d

dψ
Gtr

3 . (21)

The first two terms, according to the gap equation, Eq. (18),
are inverse of the truncated propagator Gtr , so that the cumu-
lant can be conveniently written as

�(III ) = �tr + ��. (22)

In the last term, the so-called “chain” correction, d
dψ

Gtr
3 , is

naturally obtained from the differentiation of the (off-shell

multiplied by Gtr3) truncated third minimization equation,
Eq. (19):

0 = d

dψ
Gtr

3 + 6bGtr3 + 6bGtr2 d

dψ
G3. (23)

Here, the general relation between cumulant and connected
functions, G3�3 = G3 , was used. Unlike the gap equation,
this equation is linear, so that

d

dψ
G3 = − 6bGtr3

1 + 6bGtr2
, (24)

and finally

�� = − 6bGtr3

1 + 6bGtr2
. (25)

Now, the spurious second-order transition to a “symme-
try broken” solution occurs at a lower negative value asc =
−√

12b than the CGA one. This is a trend. A higher approx-
imation symmetric phase solution works in the increasingly
large portion of the parameter space. The dependance of the
correlator for b = 1 on a in the range −1 < a < 4 is given in
Fig. 1 as the green line. CCA now overestimates the correlator
up to 10% at a = 0, see inset.

F. The fourth-order (quartic) approximation

The truncation is not needed now for the first two DS
equations, so that the ES stays as in Eq. (17) and the gap
equation takes the full form

�tr = a + 3bψ2 + 3bG + 3bψ�trGtr
3

+ 3b�tr2Gtr2
3 + b�trGtr

4 , (26)

while the next two are approximate. The third will be required
off-shell,

�tr
3 = 6bψ + 6b�trGtr

3 − 3bψ�tr3Gtr2
3 + 3bψ�tr2Gtr

4

− b�tr3Gtr
3 Gtr

4 . (27)

The last term is needed only on-shell, thus all the odd correla-
tors can be omitted:

�tr
4 = 6b + 9b�tr2Gtr

4 − b�tr4(Gtr
4

)2
. (28)

The first and the third minimization equations are still
trivially satisfied as long as odd correlators vanish. The second
and the fourth equations on-shell for the two even connected
correlators Gtr and Gtr

4 , take (upon multiplication by Gtr and
Gtr4, respectively) the “Bethe-Salpeter” form:

1 = aGtr + 3bGtr2 + bGtr
4 ; (29)

Gtr
4 = −6bGtr4 − 9bGtr2Gtr

4 + b
(
Gtr

4

)2
. (30)

The gap equations, solved for Gtr
4 allows to obtain a cubic

equation,

30b2Gtr3 + 15abGtr2 − (12b − a2)Gtr − a = 0, (31)

for Gtr .
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TABLE I. Weak- and strong-coupling expansions of covariant approximations for the toy model.

approximants weak-coupling expansion strong-coupling expansion b = 1 b = 4 b = 16

exact 1 − 3b + 24b2 − 297b3 + 4896b4 0.67598b−1/2 − 0.27153b−1

classical (I) 1 + 0 b + 0 b2 + 0 b3 + 0 b4 1 114 259 559
cov. Gauss (II) 1 − 3b + 18b2 − 135b3 + 1134b4 0.57735b−1/2 − 0.16667b−1 −7.2 −10.3 −12.3
cov. cubic (III) 1 − 3b + 24b2 − 261b3 + 3222b4 0.74231b−1/2 − 0.37755b−1 3.1 5.5 7.3
cov. quartic (IV) 1 − 3b + 24b2 − 297b3 + 4536b4 0.63246b−1/2 − 0.20833b−1 −2.0 −3.7 −4.9

The cumulant �, given by the derivative of the ES in terms
of the chain d

dψ
Gtr

3 is the same as for the cubic approximation,
Eq. (24). However, the chain equation, although still linear,

− d

dψ
Gtr

3 = 6bGtr3 + 6bGtr2 d

dψ
Gtr

3

+ 3bGtrGtr
4 − bGtr

4
d

dψ
Gtr

3 , (32)

now gives

d

dψ
Gtr

3 = 3Gtr 2bGtr2 + bGtr
4

bGtr
4 − 1 − 6bGtr2

= 3
bGtr2 + aGtr − 1

a + 9bGtr
.

(33)
The cumulant now takes a form

�(IV ) = a + 3bGtr + 3b
bGtr2 + aGtr − 1

a + 9bGtr
. (34)

Its inverse for b = 1 is given in Fig. 1 as the blue line over
the range −1 < a < 4. It underestimates the exact results by
just 5% at a = 0, as shown in the inset. The general trend
is that the approximants oscillate converging the exact result.
Let us now discuss the convergence of these approximations
to the exact correlator, Eq. (5) and their asymptotic at weak
and strong coupling.

III. TESTING THE COVARIANT APPROXIMATIONS
ON STATISTICAL PHYSICS MODELS

In this section, the results of the covariant approxi-
mants outlined above are compared with exact values (or
in more complicated cases numerical simulations that is
known to be reliable) for the bosonic Z2 invariant Ginzburg-
Landau-Wilson models. The formalism is generalized to
the lattice model of arbitrary dimension D. We start with
D = 0.

A. Convergence of the first four approximants to the exact
correlator of the bosonic toy model

The “partition function” of the toy model, used in the
previous section, Eq. (2), despite having two coefficients,
a and b, has just one independent parameter: a/

√
b. Since

b > 0 and we first assume a > 0, only a = 1 is considered in
Fig. 1. The figure indicates that the sequence of approximants
converges quite fast. To make this more quantitative, let us
first compare asymptotic.

At small coupling b � a2, the expansion up to b4 are
given in Table I. One observes that the expansion is exact

to order nN−1, where N is the order of the approximation.
A more surprising result is that the leading incorrect term
is within 10% of the correct value. For example, for the
cubic approximation the b3 coefficient is 261 compared with
exact 297, the quartic approximation the b4 coefficient is 4536
compared with exact 4896.

At strong coupling, the situation is a bit different. At
any order of the expansion parameter 1/

√
b, the coefficient

converges to the exact value at large N (see values b = 1, 4,
and 16 in Table I). The deviation from exact (given in percent)
does not exceed 13% for covariant Gaussian (typical of course
to numerous “mean-field” approaches), 8% for covariant cu-
bic, and 5% for covariant quartic. Note that the deviations
would increase dramatically if a noncovariant (naive or varia-
tional) version is used [18].

To conclude, increasing the rank of the covariant truncation
approach increases precision at a price of more complex-
ity. Now we consider the same φ4 Ginzburg-Landau-Wilson
model in higher dimensions D > 0. Although an exact cor-
relator is unknown, it can be calculated numerically with
practically arbitrary precision as in Ref. [18] and compared
with classical, CGA, and CCA approximations.

B. Statistical mechanics of the D-dimensional ψ4 model

The statistical physics in terms of the (real) order param-
eter of the Ising universality class [20,23,24] is defined by
the statistical sum Z = exp [−A/T ] on a hypercube lattice
r = {r1, . . . , rD} ri = 1, . . . , N :

A = dD

{
−1

2

∑
r,r ′

ψr∇2
r−r ′ψr ′

+
∑

r

(
a

2
ψ2

r + b

4
ψ4

r − Jrψr

)}
. (35)

The lattice Laplacian in D dimensions is

�2
r = d−2

∑
i=1,...,D

(δr−̂i + δr+̂i − 2δr ). (36)

The hopping direction is denoted [23,24] by î. Periodicity of
each direction is assumed, with “lattice spacing” setting the
length scale d = 1.
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The temperature will set the energy scale T = 1. This
can be regarded as a lattice version of the Ginzburg-Landau-
Wilson action [20,23] and is a generalization of the toy model
of the previous section, in that the position index r appears. In
fact, we transform it to the momentum space

ψr = 1

ND/2

N∑
ki=1

exp

(
2πi

N
k r

)
ψk , (37)

so that

A = 1

2

∑
k

εkψkψ−k + b

4V

∑
k1k2k3

ψk1ψk2ψk3ψ−k1−k2−k3 ;

εk = k̂2 + a; k̂2 = 4
D∑

i=1

sin2

(
πki

N

)
, (38)

where V ≡ ND is the number of points of the lattice.
The off-shell truncated DS equations now take a form

J−p = εpψ−p + b

V

(
ψk1ψk2ψ−k1−k2−p + 3Gk1k2ψ−k1−k2−p + Gk1k2,−k1−k2−p

)
,

�qp = εpδq+p + b

V

(
3ψk1ψ−k1−q−p + 3Gk1,p+q−k1 + 3�qk1Gk1k2k3ψ−k2−k3−p

)
,

�qpu = 3b

V

(
2ψ−q−p−u + �qk2Gk2,k1,−k1−p−u + �uk2Gk2,k1,−p−q−k1 + �qk2uGk2k1k3ψ−k2−k3−p

)
. (39)

Here, summations over k1, k2, and k3 should understood
as an Einstein summation index are assumed. Minimization
equations in the symmetry unbroken phase ψ = �qpu = 0
phase reduces to the Gaussian one, solved in Ref. [18].

The Z2 symmetric solution of the minimization equations
reduce, as in the toy model, to the solution of the gap equation,
that due to translation invariance

�tr
qp = δq+pγp; γp = p̂2 + m2 (40)

is algebraic:

m2 = a + 3

V

∑
k

gp. (41)

There gp = γ −1
p . Correction to correlator subsequently is

�γp = b

V

∑
k1k2

C−p;k1,k2,−p−k1−k2 = b

V

∑
k1k2

cp;k1,k2 , (42)

where the chain is defined as Cw;l1l2l3 ≡ δ
δψw

Gl1l2l3 . The trans-
lation invariance of the chain, Cw;l1l2l3 = δl1+l2+l3−wcw;l1l2 , al-
lows to write the second equality.

Let us turn now to the chain equations, obtained, as in
the toy model, from (functional) derivative of the third DS
equation, Eq. (39). It reads

cw;lm = −3b

V

(
2glgmg−l−m+w + gmg−l−m+w

∑
k

cw;lk

+ glgm

∑
k

cw;−l−m+w,k

)
. (43)

One notices that due to locality of the interaction, in addition
to the fact that w is a “spectator,” on the right-hand side
of the equation only the sum over the last momentum k in
c appears. Since we need only summed c in the correction
to the inverse correlator, Eq. (42), we sum up the equation
over the last index m, cw;l ≡ ∑

m cw;lm. Using the fish integral

fw = 1
V

∑
k gkgw−k , the chain equation finally takes the form

cw;l = −3b

(
2glfw−l + fw−lcw;l + gl

V

∑
k

gkcw;−l−k+w

)
.

(44)
This set of V linear equations is solved numerically. Let us
start with a simpler 1D case that allows a simpler solution (and
can be interpreted as quantum mechanics of the anharmonic
oscillator).

C. D=1 chain (or quantum mechanical anharmonic oscillator)

The D = 1 case corresponds to the Ginzburg-Landau-
Wilson type description of the Ising chain. It is equivalent
to the quantum mechanics of the anharmonic oscillator for
small d limit, see Eq. (35). This case, although not solvable
analytically, allows numerical solution with unlimited pre-
cision, and is compared with covariant Gaussian and cubic
approximations first. A more general case of arbitrary d is
compared with MC simulations.

1. Low-temperature compared with the quantum
anharmonic oscillator

In 1D, the temperature T in statistical physics of classical
chain can be reinterpreted as h̄ and the quantum anharmonic
oscillator,

H = −1

2

d2

dx2
+ a

2
x2 + b

4
x4, (45)

discretized partition function (at temperature T = 1/N). For
very large N , the correlator approaches the correlation of x(τ )
for the ground state of the quantum anharmonic oscillator
[23]. The thermal fluctuations in this interpretation are re-
placed by the quantum ones. A classical approximation and
CGA for this model for the correlator and some composite
correlators were worked out in Ref. [18].

The distance between spatial points should be a small as
possible, so we take d = 1/20. The coupling b is fixed at b=1
(can be rescaled to this value), while a = −1.5,−1, 0, 1. The
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(a) (b)

(c) (d)

FIG. 2. Comparison of a Gaussian and cubic covariant approximations for a 1D Ginzburg-Landau-Wilson chain (representing the Z2

symmetric statistical physics) for small d = 1/20 with quantum mechanical anharmonic oscillator. The red line is the exact correlator, while
the brown and the green dots are CGA and CCA, respectively.

“exact” correlator (the red line in Fig. 2) was calculated as

Gk = |〈0|x|0〉|22πδk +
∑
n>0

|〈0|x|n〉|2 2(En − E0)

k2 + (En − E0)2 ,

(46)

where En and |n〉 are eigenvalues and eigenstates of Hamil-
tonian of Eq. (45). We used N = 2048 to ensure continuum
limit. One observes that the convergence to exact value is
generally faster than in D = 0, see Fig. 1. Cubic overestimates
much less than the Gaussian underestimates the correlator for
all k vectors. For example, the a = 1, Fig. 2(d), CCA is within
1% for the whole range of k vectors. Even for negative values
of a CCA is very precise away from the spurious phase tran-
sition of the Gaussian approximation at sspt = −1.97. It was
shown in Ref. [18] that the instanton calculus is effective only
for a < −3, so that the approximations work in the region
where no other simple approximation scheme exists. For the
value of d that is not small, one cannot rely on continuum limit
quantum mechanics, so the Monte Carlo approximate method
is employed.

2. Monte Carlo simulation of the GLW action on finite chain

In Fig. 3, the results of the MC calculation of the average
correlator in space 〈ψ2

x 〉 are shown for a in the range −1 to
4 and b = 1. The sample size was N = 256 with d = 1 (with
periodic boundary condition). The standard METROPOLIS al-
gorithm is usually inefficient for a < 0 because of the large

autocorrelation of the samples. The autocorrelation, however,
can be reduced to a large extent by combining the Metropolis
algorithm with the cluster algorithm. This is done by using
Wolff’s single-cluster flipping method [25]. Each cycle of the
MC iteration contains a single cluster update of the embedded
Ising variables, followed by a sweep of local updates of the

FIG. 3. Comparison of a Gaussian and cubic covariant approxi-
mations for a 1D Ginzburg-Landau-Wilson chain at d = 1. The red
line is the MC simulation result, while the brown and the green lines
are covariant Gaussian and cubic approximants, respectively. Inset
shows deviations (in percent) from the exact value.
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FIG. 4. The order parameter square of 2D Ginzburg-Landau-
Wilson model. MC simulation results (the red dots) are compared
with covariant Gaussian (the brown dots) and cubic (green dots)
approximations.

original fields using Metropolis algorithm. The calculated
integrated autocorrelation time was typically less then 10
second in a desktop PC. With such reduced autocorrelation,
the statistical error for a run containing several 105 cycles after
reaching equilibrium is already small enough.

The CCA was computed for the same sample size using
MATHEMATICA (green dots in Fig. 3. The results are reminis-
cent of the quantum mechanical continuum limit with max-
imal deviations at a = −1 of 6% for CGA (underestimate)
reduced to 2% for CCA (overestimate). A naive expectation
is that, when dimensionality is increased or interaction that
becomes longer range, the mean-field-like approximations of
the type considered here, the range of applicability grows.
Although in the present paper nonlocal interactions (most
notably Coulomb interactions in insulators, semiconductors)
are not considered here, the Ginzburg-Landau-Wilson model
has been studied by MC in higher dimensions (D = 2, 3) [26]
and it will be compared with the CCA calculation below.

D. CCA for the D = 2 Ginzburg-Landau-Wilson model
compared to MC simulation

Similar calculation has been performed in 2D for the
sample size 32×32. Here in the same region of parameter
space, −1 < a < 4, b = 1, the fluctuations influence is less
pronounced, so the cluster method is not required in the
case not being too near the critical state. This is above the
second-order phase transition (lower critical dimensionality
for the Z2 spontaneous symmetry breaking is D = 2) at ac =
−1.1 deduced from the correlator 〈ψr ′ψr+r ′ 〉 as a function of
distance between the two points. The correlator was averaged
over 128 points r ′. Results for 〈ψ2

r 〉 are presented (as the
red dots) in Fig. 4. The precision estimate for 〈ψ2

r 〉 is 0.2%.
Thermalization was achieved after 105 MC steps and 3 × 105

were used for measurement.
Gaussian approximation for 〈ψ2

r 〉 was calculated on the
same lattice, see brown dots in Fig. 4. As was noticed long ago
[22], the transition at ac = −1.198 is a spurious weakly first
order with finite excitation mass m2 = 0.12 on the symmetric
side (symmetric solution exists for any a). This fact was one

of the problems of the approximation at the early stages of its
development. The spurious first transition, however, is very
close to the second-order transition point found in MC. CGA
underestimates the MC result by 2.5% at a = 0 , see inset.

The CCA value for 〈ψ2
r 〉 in the same range was computed

for the same sample size using Mathematica (green dots in
Fig. 4) using parallel computing. The results, green dots in
Fig. 4, overestimate the MC value by 0.8% at a = 0. Of
course, in the perturbative region (large a), as before the
Gaussian approximation is one loop exact, while the cubic is
two-loop exact. Generally, 2D convergence is better than in
1D and is expected to further improve in 3D.

In the next section, we formulate the CCA for a gen-
eral fermionic model and apply it to develop a calculational
scheme for a general computation of the electron Green
function for an arbitrary crystalline material.

IV. COVARIANT CUBIC APPROXIMATION
FOR INTERACTING ELECTRONS

Covariant Gaussian approximation for a fermionic system
interacting via local four-Fermi term has been considered
long time ago and compare well [17] with exact scattering
matrix found by the factorization methods [27] in some 1 +
1-dimensional relativistic models (the Gross-Neveu model,
known in condensed matter physics as the Schrieffer-Su-
Heeger model, was considered). Here, we formulate the third-
order covariant approximation, CGA, that surprisingly turns
out to be not much more complicated computationally. The
additional effort is to solve large systems of linear equations.

A. Cubic approximation in general four-fermion
interaction model.

Let us start with a rather general case using abstract nota-
tions, to demonstrate the general structure of the method. All
the characteristics of fermionic degrees of freedom (electrons)
like location in space, time, charge, band index (including
spin), etc., described by (real) Grassmanian numbers are
lumped into one index A. The four-Fermi interaction model
(described in more detail for “down-folded” models electrons
on lattice with effective interactions in the next section) is de-
fined by the Nambu-Matsubara “action” and “statistical sum”:

A[ψ] = 1

2
ψAT ABψB + 1

4!
V ABCDψAψBψCψD;

(47)
Z[J ] =

∫
Dψ exp(−A[ψ] + JAψA).

This formalism is slightly more general than the complex
Grassmanian numbers approach [28], in which a conjugate
pair ψ,ψ∗ is was describing annihilation or creation of a
charged fermion. The Nambu approach is often used in de-
scription of superconducting state has an advantage of trans-
parency due to explicit antisymmetry of all the Grassmanians.
In particular, the “hopping amplitudes” T AB and the interac-
tion V ABCD are totally antisymmetric in generalized indices.

Let us adjust the definitions of correlators to the fermionic
case, paying attention to order of the Grassmanian variables
and their derivatives. Cumulants and connected correlators of
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fermions are defined as

�A1A2...An = δnAeff

δψA1δψA2 . . . δψAn
;

GA1A2...An

c = − δnF

δJA1 . . . δJAn

= 〈ψA1 . . . ψAn〉c ≡ 〈A1 . . . An〉. (48)

The description of CCA closely follows the steps described
for bosons above. The first is “truncation” of the infinite set of
DS equations.

1. First three DS equations and their truncation

Differentiating the effective action (Legendre transform of
F [J ] ≡ − ln [Z[J ]]) off-shell (namely in the presence of the

fermionic source J ), the equation of motion is

JA = −δAeff

δψA

= −T AXψX − 1

3!
V AX2X3X4

×{ψX2ψX3ψX4 + 3ψX2〈X3X4〉 + 〈X2X3X4〉}. (49)

Note that the antisymmetry of the coefficients in the Nambu
real Grassmanian used here greatly simplifies the expressions
compared to the complex Grassmanian formalism. Similarly,
the second DS, using repeatedly the relation δ

δψB 〈X1 . . . 〉 =
�YB〈YX1 . . . 〉, is

�AB = δ

δψB
JA � −T AB − 1

2
{V ABX3X4ψX3ψX4 + V ABX3X4GX3X4 − V AX2X3X4ψX2�X1B〈X1X3X4〉}. (50)

As in the bosonic CCA of the previous section, the fourth correlator term was dropped from the truncated equation (this is
the meaning of “� ”). Similarly, all the terms containing fourth and fifth cumulants will be dropped from the third DS equation:

�CAB = δ

δψC
�AB � −1

2

{
2V ABCXψX + V ABX3X4�X1C〈X1X3X4〉

−V ACX3X4�X1B〈X1X3X4〉 + V AX2X3X4ψX2�CX1B〈X1X3X4〉

}
. (51)

These equations will be used twice. First, the on-shell version,
J = 0, the minimization equations are solved and then, the
(CCA) correlator is computed from a derivative of the ES
using via chain rule.

2. Minimization equations: just the Hartree-Fock approximation

In fermionic systems, one obviously does not have nonzero
expectation values for (on-shell, J = 0) odd cumulants,
namely 〈X〉 = 〈X1X2X3〉 vanish on-shell. Unlike in the
bosonic theories this does not hinge on the preservation of
symmetries. As a consequence, the first and the third mini-
mization equations are trivially satisfied. The gap equation on
shell is (we do not mark “tr” for the variational on-shell Green
function in this section for the simplicity of notation)

�AB = −[G−1]AB = −T AB − 1
2V ABXY GXY . (52)

The first (matrix) equality has a sign opposite to that for
bosons. The equation is just the Hartree-Fock self-consistency
condition [28]. This means that the complexity of the only
nonlinear operation within the CCA scheme for fermions
coincides with the complexity of a presumably less precise
CGA (equal for calculation of the one-body correlator to the
HF approximation). The additional complexity arises only to
the fact that within CCA the connected correlation does not
coincides with the truncated correlator, as we have seen in the
previous section and will be assessed later. Therefore we turn
to the derivation of the correction ��AB formally similar to
that in the bosonic model, Eq. (22).

3. Correction to correlator

The CCA inverse correlator is a derivative of the off-shell
ES, Eq. (49):

�AB
(III ) = δJA

δψB
= −T AB − 1

2
(V ABX1X2ψX1ψX2

+V ABX1X2GX1X2 − V AX2X3X4ψX2�X1B〈X1X3X4〉)

− 1

3!
V AX1X2X3

δ

δψB
〈X1X2X3〉. (53)

The on-shell nonzero contributions to �AB
(III ) in the fermionic

model are written via correction �AB
(III ) = �AB + ��AB as

��AB = − 1

3!
V AX1X2X3

δ

δψB
〈X1X2X3〉

= −1

6
V AX1X2X3 [B|X1X2X3]. (54)

The first term is just the truncated inverse correlator (or the
covariant Gaussian inverse correlation) in view of the gap
equation, Eq. (52). The chain, a derivative of truncated three-
point connected correlator will be denoted by

δ

δψB
〈X1X2X3〉 ≡ [B|X1X2X3]. (55)

The “chain” is found from the derivative of the third DS
equation, Eq. (51).

4. The chain equation

Differentiating the “connected version” of the third trun-
cated DS equation,

〈Z1Z2Z3〉 = GZ1Y1GZ2Y2GZ3Y3V Y1Y2Y3XψX

+ 1
2V Y1Y2Y3Y4GZ2Y2GZ3Y3〈Z1Y1Y4〉 (56)

+ 1
2V Y1Y2Y3Y4GZ1Y1GZ2Y2〈Z3Y3Y4〉, (57)

155126-9



BARUCH ROSENSTEIN AND DINGPING LI PHYSICAL REVIEW B 98, 155126 (2018)

one obtains on-shell:

[B|Z1Z2Z3] = GZ1Y1GZ2Y2GZ3Y3V Y1Y2Y3B

+ 1
2V Y1Y2Y3Y4GZ2Y2GZ3Y3 [B|Z1Y1Y4]

+ 1
2V Y1Y2Y3Y4GZ1Y1GZ2Y2 [B|Z3Y3Y4]. (58)

One can prove that the chain is antisymmetric under
[B|Z1Z2Z3] = −[B|Z3Z2Z1] only. For example,
[B|Z1Z2Z3] = −[B|Z2Z1Z3]. This is typical for “truncated”
(noncovariant) quantities that was observed already in CGA
[17,18].

The first important observation is that the chain equation
is linear, as in the bosonic case. An additional important
observation is that the parameter B is a “spectator,” so, since
it is an external index in the correlator itself, Eq. (54), one do
not have to run over all its values.

5. Most economic linear combination of chains: V chains

The chain equations although linear are very numerous. On
the other hand, a glance at the expression for the correction
to the inverse correlator, Eq. (54), shows that only N linear
combinations are required. A general question arises whether
some linear combinations are “closed” on themselves. We
have already noticed “spectators” in Eq. (58).

After some “trial and error,” it turns out that the following
combinations of the chains are more convenient. Defining the
convenient chains combination as

〈B|AY |X1〉 = V AYX2X3 [B|X1X2X3], (59)

the correction becomes a “trace”:

��AB = − 1
6V AX1X2X3 [B|X1X2X3] = − 1

6 〈B|AY |Y 〉, (60)

where Y is the summation index, and Y and Z indices are
also summation indices in the equation below. The “V chain”
(antisymmetric in the second and third index) obeys the
corresponding linear combination of the chain equations:

〈B|X1X2|R〉 = V X1X2Z1Z2

×
{〈Z1Y1〉〈RY3〉〈Z2Y2〉V Y1Y2Y3B + 1

2 〈Z1Y1〉
×(〈Z2Y2〉〈B|Y1Y2|R〉 − 〈RY2〉〈B|Y1Y2|Z2〉)

}
. (61)

This allows to solve the set of linear equations less times and
in addition to use the “reduce” routines. Let us now apply
the rather abstract formalism to a sufficiently general charge
conserving electronic system.

B. Charge conserving electron system with pairwise interaction

1. Matsubara action

The Matsubara action of the general pairwise interacting
downfolded electron model has the form [28]

A[ψ] = ψ∗
a Tabψ

·
b + 1

2
ψ∗

a ψ ·
aVabψ

∗
b ψ ·

b;
(62)

Z[J ] =
∫

DψDψ∗ exp[−A[ψ] + J ∗
a ψ∗

a + J ·
aψ

·
a].

Charge conservation is explicit here. This should be matched
with fully symmetrized Grassmanian form, Eq. (47):

A = 1

2
ψA

a T AB
ab ψB + 1

4!
V ABCD

abcd ψA
a ψB

b ψC
c ψD

d − JA
a ψA

a .

(63)
Here, A = ∗, · is the charge (Nambu) index that originate
from the creation and annihilation operators in the many-body
Hamiltonian [28]. The rest of the indices are contained in a =
{position, time, band}. The “band” index includes spin. The
interaction is of the density-density form and thus Vab = Vba .
The result is

T AB
ab = δA∗δB·Tab − δA·δB∗Tba; (64)

V Y1Y2Y3Y4
y1y2y3y4

=
⎧⎨⎩ δy3y4Vy3y1δy1y2 (δ∗Y4δ·Y3 − δ·Y4δ∗Y3 )(δ∗Y2δ·Y1 − δ·Y2δ∗Y1 )

−δy2y4Vy2y1δy1y3 (δ∗Y4δ·Y2 − δ·Y4δ∗Y2 )(δ∗Y3δ·Y1 − δ·Y3δ∗Y1 )
−δy1y4Vy3y1δy3y2 (δ∗Y4δ·Y1 − δ·Y4δ∗Y1 )(δ∗Y2δ·Y3 − δ·Y2δ∗Y3 )

⎫⎬⎭.

This model is now amenable to the CCA approximation
scheme. In the present paper, only the correlator (one body
correlator or green function) is computed.

2. CCA equations for the correlator

For charge unbroken case (no superconductivity) some
simplifications occur. All the “charges” correlators like G∗∗

ab

vanish on-shell. The only correlators remaining are G∗·
ab ≡

Gab,�
∗·
ab ≡ �ab, related by �axGbx = −δab, where x is the

summation index. General Nambu gap equation, Eq. (52) in
an electric charge preserving system takes a form

�ab = −Tab − δabVxaGxx + VbaGba . (65)

The chain correction to the inverse propagator, Eq. (22) in our
case becomes

��ab = 1
6 (〈·b|·∗xa|·x〉 + 〈·b|∗∗

xa|∗x〉). (66)

Only two charge components of the chain appear here due
to the antisymmetry of the chain. Let us denote them as diffu-
son and cooperon chains in analogy to similar expressions in
diagrammatic many-body physics [29]:

Dbx1x2r ≡ 〈·b|·∗x1x2
|·r〉; Cbx1x2r ≡ 〈·b|∗∗

x1x2
|∗r 〉. (67)
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For these two quantities the general chain equation, Eq. (58), closes

Dzx1x2r = 2Vy1z〈x1y1〉(〈y1r〉〈zx2〉 − 〈zr〉〈y1x2〉)Vx2x1 − 2δx1x2Vy1zVx2y2〈y2y1〉(〈y1r〉〈zy2〉 − 〈zr〉〈y1y2〉)

+Vx2x1

(−〈x1y1〉〈y2x2〉Dzy1y2r + 1
2 〈x1y1〉〈y2r〉Dzy1y2x2 + 1

2 〈y1x2〉〈y2r〉Czy1y2x1

)
+ δx1x2Vx1y3

(〈y3y1〉〈y2y3〉Dzy1y2r − 1
2 〈y3y1〉〈y2r〉Dzy1y2y3 − 1

2 〈y1y3〉〈y2r〉Czy1y2y3

)
;

Cbx1x2r = 2Vx2x1Vby〈ry〉(〈bx2〉〈yx1〉 − 〈bx1〉〈yx2〉)

+Vx2x1

(
1
2 〈y2x1〉〈ry1〉Dby1y2x2 − 1

2 〈y2x2〉〈ry1〉Dby1y2x1 − 〈y2x2〉〈y1x1〉Cby1y2r

)
. (68)

Solution and application of these equations greatly simplifies
when the translational symmetry is utilized.

3. Translation invariance

In addition to charge conservation, we assume the elec-
tronic system to be invariant under a crystalline translation
symmetry and time translations. The model of relevant num-
ber of Nf bands (including spin) constructed on the lattice
with periodic boundary conditions Ns in each direction, to
keep notations as simple as possible, the square lattice is
assumed with lattice spacing defining the unit of length a = 1.
The points therefore are ri = 1, . . . , Ns , i = 1, . . . , D (di-
mensionality). At temperature T , the Matsubara (Euclidean)
time is also discretized t = 1, . . . , Nt in the range 0 < 1

T Nt
t �

1/T and ψt is antiperiodic [28].
Therefore the electron field is carrying two types of indices

a = {A, a}, the band index will be consistently written as a
superscript, while the space-time index a will be eventually
substituted by integer valued wave number k and the Matsub-
ara frequency n, so that we map ψ∗

a → ψA∗
a . The definitions

of the discrete Fourier transform (FT) of the complex Grass-
manian field is

ψA∗
a =

√
T

ND
s

Ns∑
k1,...,kD=1

M∑
n=1

× exp

[
−2πi

(
(n + 1/2)t

Nt

+ kiri

Ns

)]
ψA∗

α . (69)

Now α = {n, k1, . . . , , kD} enumerates the space-time
components of the energy-momentum basis. Translation in-

variance (energy and momentum conservation) leads to the
following FT for the correlators:

GAB
ab = T

ND
s

∑
α

exp [i(b − a) · α]gAB
α , (70)

where α = 2π{ (n+1/2)
Nt

, k
Ns

}. For the inverse propagator, it is
convenient to define FT by

�AB
ab = τ

NtND
s

∑
α

exp [i(a − b) · α]γ BA
α , (71)

where τ = 1
T Nt

is the Matsubara time step, so that gBX
α γ XA

α =
δAB . Consequently, tunneling and interaction potentials FT are

T AB
ab = τ

NtND
s

∑
α

exp [i(a − b) · α]tBA
α ;

(72)
V AB

ab = τ

NtND
s

∑
λ

exp [i(a − b) · λ]vAB
λ ,

where λ = 2π{ n
Nt

, l
Ns

} has bosonic Matsubara frequency.
Using these definitions, the HF equation (65) becomes

γ BA
α = −tBA

α − T

ND
s

∑
χ

(
δABvXA

0 gXX
χ − vAB

α−χgBA
χ

)
. (73)

The correction to the inverse propagator takes a form

�γ BA
α = 1

6

T

ND
s

∑
κ

(
dBXAX

ακα + cBXAX
ακα

)
, (74)

where

Dax1x2r = (
ND

s Nt

)−3 ∑
ακγ

exp[−(aα − x1(κ − γ ) − x2γ + (κ − ζ )r )]dακγ ;

Cax1x2r = (
ND

s Nt

)−3 ∑
ακγ

exp[−(aα − x1(κ − γ ) − x2γ + (κ − ζ )r )]cακγ . (75)

Finally, the chain equations are (the spectator frequency-wave-vector indices are α and B)

cBX1X2R
α,κ,γ = 2T

ND
s

(
v

X1X2
α+χ−γ vBY

χ gRY
κ−αg

BX2
α+χg

YX1
κ−α−χ − v

X1X2
κ−α−χ−γ vBY

χ gRY
κ−αg

BX1
α+χg

YX2
κ−α−χ

)
+ T

2ND
s

×
(
v

X1X2
α−γ−χg

Y2X1
χ+κ−αg

RY1
κ−αd

BY1Y2X2
α,χ,χ+κ−α − v

X1X2
κ+χ−α−γ g

Y2X2
κ+χ−αg

RY1
κ−αd

BY1Y2X1
α,χ,κ+χ−α − 2v

X1X2
χ−γ gY2X2

χ g
Y1X1
κ−χ cBY1Y2R

α,κ,χ

)
;

dBX1X2R
α,κ,γ = 2T

ND
s

(
v

X1X2
χ−γ v

Y1Z
α−χg

X1Y1
χ−κ g

Y1R
α−κg

BX2
χ − v

X1X2
χ−γ vY1B

κ g
X1Y1
χ−κ gBR

α−κg
Y1X2
χ

)
+ 2T

ND
s

δX1X2vY1B
κ g

Y2Y1
χ−κ

(
vX2Y2

κ gBR
α−κg

Y1Y2
χ − v

X2Y2
α−χ g

Y1R
α−κg

BY2
χ

)
+ T

2ND
s
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×
(
−2v

X1X2
χ−γ g

X1Y1
χ−κ g

Y2X2
χ dBY1Y2R

α,κ,χ + v
X1X2
α−χ−γ g

X1Y1
α−χ−κg

Y2R
α−κd

BY1Y2X2
α,χ,α−κ + v

X1X2
χ−γ gY1X2

χ g
Y2R
α−κc

BY1Y2X1
α,α−κ+χ,α−κ

)
+ T

2ND
s

δX1X2vX1Y3
κ

(
2g

Y3Y1
χ−κg

Y2Y3
χ dBY1Y2R

α,κ,χ − g
Y3Y1
α−κ−χg

Y2R
α−κd

BY1Y2Y3
α,χ,α−κ − g

Y1Y3
κ+χ−αg

Y2R
α−κc

BY1Y2Y3
α,χ,α−κ

)
, (76)

with χ being the only summation index. To test the CCA
in a fermionic model, one should apply the method to an
exactly solvable one. The exact solution exists for sufficiently
small Ns in the case of the local-interaction Hubbard model.
We therefore apply CCA to the case of Hubbard model and
compare it to the exact diagonalization [32] (ED) in the case
of Ns = 1 (quantum dot) and 1D with small finite Ns .

V. FERMIONIC BENCHMARK MODELS: QUANTUM DOT
AND ONE-DIMENSIONAL HUBBARD MODEL

A. The CCA approximation in D-dimensional one band
Hubbard model

1. The model, gap, and chain equations

The single-band Hubbard model is defined on the D-
dimensional hypercubic lattice. The tunneling amplitude to
the neighboring site in any direction i = 1, . . . , ,D is denoted

in literature by t . We chose it to be the unit of energy t = 1.
Similarly, the lattice spacing sets the unit of length a = 1 and
h̄ = 1. The Hamiltonian is

H =
Ns∑

r1,...,,rD=1

[
−

∑
i

(
aA†

r aA

r+̂i
+ H.c.

)
−μnr − haA†

r σAB
z aB

r + Un�
rn

↓
r

]
. (77)

The chemical potential μ and the on-site repulsion energy U

are therefore given in units of the hopping energy. The “band”
index therefore takes two values A,B =↑,↓. The hopping
direction is denoted by î as in statistical physics model [23,24]
of Eq. (36). The density and its spin components are nr =
n
�
r + n

↓
r with nA

r ≡ a
A†
r aA

r . External magnetic field h makes
the electrons polarized. At half-filling, μ = U

2 .
The discretized Matsubara action is [28]

A = τ
∑
t,r

{
1
τ

(
ψA∗

t+1,rψ
A
t,r − ψA∗

t,r ψA∗
t,r

) − 1
2

∑
i

(
ψ

A†
t,r ψA

t,r+̂i
+ ψ

A†
t,xψA

t,r−̂i

)
−(

μH − U
2

)
nr − hψ

A†
r σAB

z ψB
r − Uψ

�∗
t,rψ

↓∗
t,r ψ

�
t,rψ

↓
t,r

}
, (78)

where nt,r ≡ ψ
X†
t,r ψX

t,r and the “slice size” in antiperiodic Matsubara time is τ = (T Nt )−1, where T is temperature and Nt

is the number of points in the compact time axis [28]. Therefore the hopping matrix in frequency-momentum space of the
corresponding Matsubara action, Eq. (62) is

tAB
n,k = δABtn,k − hσAB

z ;

tn,k = 1

τ

[
exp

(
i
2π (n + 1/2)

Nt

)
− 1

]
− 2

∑
i

cos

(
2πki

Ns

)
− μH , (79)

while the interaction is just a constant,

vAB
nk = U . (80)

The gap equation, Eq. (65), in this case takes the form

γ BA
ζ = −tAB

ζ − U
(
δABnXX − nBA

)
,

nAB = T

ND
s

∑
χ

gAB
χ , (81)

where the D + 1 dimensional notations like ζ = {n, k} will
be used to simplify the expressions. In the range of param-
eters considered in the present paper the spin rotation U(1)
symmetry along the z axis will be assumed unbroken. A larger
SU (2) symmetry appears at zero magnetic field [30], which is
not discussed here since we focus initially on the “symmetry”
unbroken phases. The most general ansatz is therefore n↑↑ =
n↑; n↓↓ = n↓; n↑↓ = n↓↑ = 0.

Therefore the only two nontrivial diagonal components
(denoted by gAA

ζ ≡ gA
ζ ) of the truncated inverse propagator are

1/gA
ζ = −tAζ − UnA, (82)

where the bar over the spin index means that the spin was
flipped. The couple of algebraic self-consistent equations
finally is

nA = − T

ND
s

∑
χ

1

tAχ + UnA
, (83)

and is easily solved numerically.
The set of chain equations greatly simplified exactly as in

the bosonic model since the interaction is local. One requires
only coincident coordinates for the cooperon CZX1X2R

zxxr and dif-
fuson DZX1X2R

zxxr defined in Eq. (67). Moreover, the remaining
U(1) spin symmetry (spin along the z axis) limits the nonzero
spin components. Generally, Pauli symmetry demands that
for cooperon with fixed spectator spin Z, the only nonzero
choice is C = CZZZZ . For D, the symmetry leaves three
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choices D1 = DZZZZ , D2 = DZZZZ , and D3 = DZZZZ . The resulting set of chain equations in Fourier space is

ND
s

UT
cζκ = −2UgZ

κ−ζ g
Z
κ−ηg

Z
η + 1

2
gZ

κ−ζ+χgZ
κ−ζ d

3
ζχ − 1

2
gZ

κ−ζ+χgZ
κ−ζ d

2
ζχ − gZ

κ−ηg
Z
η cζκ ,

ND
s

UT
d1

ζκ = 2UgZ
ζ−κg

Z
η−κg

Z
η + 1

2
gZ

κ−ζ+χgZ
ζ−κcζχ + gZ

η−κg
Z
η d2

ζκ − 1

2
gZ

ζ−κ−χgZ
ζ−κd

3
ζχ ,

(84)
ND

s

UT
d2

ζκ = gZ
η gZ

κ+ηd
1
ζκ − 1

2
gZ

ζ−κ−χgZ
ζ−κd

1
ζχ ,

ND
s

UT
d3

ζκ = 2UgZ
η−κg

Z
ζ−κg

Z
η + 1

2
gZ

−ζ+κ+χgZ
ζ−κcζχ + 1

2
gZ

ζ−κ−χgZ
ζ−κd

2
ζχ − gZ

η gZ
η+κd

3
ζκ .

Here summation over bosonic (χ ) and fermionic (η) frequen-
cies/momenta is assumed.

The CCA correlator, Eq. (74), in this case is

�γ ZZ
ζ = T

6ND
s

∑
κ

(
d1

ζκ + d3
ζκ − cζκ

)
. (85)

It was calculated (using a C++ program on parallel computer
cluster described below) for the cases of the toy model (quan-
tum dot) D = 0 and D = 1 for sufficiently small Ns so that
exact diagonalization is possible.

B. Fermionic toy model: quantum dot

Let us first consider an exactly solvable model of just a
single site (“quantum dot”). Recently artificial systems like
that with several sited Hubbard model were manifactured
[31] and the experimental results were compared with exact
diagonalization (ED). The space indices are absent in the
D = 0 model, so that the space-time index α stands for the
frequency after Fourier transform. The model can be solved
with the result for the correlator of the up spin being

g↑
n = − 1

Z

{
1 + e(μ+h)/T

iπT (2n + 1) − μ − h

+ e(μ−h)/T + e(2μ−U )/T

iπT (2n + 1) − μ − h + U

}
,

Z = 1 + e(μ+h)/T + e(μ−h)/T + e(2μ−U )/T . (86)

This is presented as a red lines in Fig. 5. In Fig. 5(a), the
real part of the Matsubara correlator in wide range of doping
δμ ≡ μ − U/2 for U = 3 is given, while Fig. 5(b) exhibits
the imaginary part. Temperature and magnetic field were fixed
at T = 1 and h = 1. One observes a very good agreement not
only in perturbative domains for large absolute value of δμ

(far away from half-filling). The maximal deviations are 0.03,
0.01 (real part) and 10%, 5% (imaginary part) for CGA and
CCA, respectively, see insets. In Fig. 6, the same is given for a
strong coupling U = 5. The agreement is worse, by still have
maximal deviations are 0.04, 0.025 (real part) and 28%, 14%
for CGA and CCA.

C. Comparison of results with exact diagonalization
for one-dimensional Hubbard model

The one-dimensional case is considered for simplicity and
availability of exact results utilizing the exact diagonalization
[32] for reasonably large values of Ns . The largest lattice we
have used to exactly calculate Green’s function was Ns = 6
(so that the number of fermionic degrees of freedom is 12)
and avoided using the Lancos algorithms to diagonalize large
matrices, since temperature range T = 0.2–4 in units of the
hopping parameter t of the Hubbard model is considered. The
relatively high temperature allows lower Nt = 512–2048 to
obtain precision of 0.2% for the CCA calculation using the
“naive” discretization of Eq. (78). Larger lattices were treated
by the exact diagonalization, however, in these calculations
typically only spectrum and expectation values were com-

(a) (b)

FIG. 5. Real (a) and imaginary (b) parts of the Matsubara correlator for quantum dot at intermediate value of the coupling.
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(a) (b)

FIG. 6. Same as Fig. 5 for a rather strong coupling.

puted. To compare with CCA, the Matsubara time correlators
are required. These are more difficult to compute. The pro-
gram was written in Mathematica.

The program for CCA was written in C++ and utilizes
parallel computing on a 128 node cluster and large memory
of 512 Gbyte. The doping range was 10 < δμ ≡ μ − U/2 <

10 for the band with 4 (in units of the hopping parameter).
Temperature and magnetic field were fixed at T = 1, h = 1.
The results for Ns = 4 are presented in Figs. 7 and 8 for in-
termediate, U = 3 and strong, U = 5, couplings respectively.
Figures 7(a) and 8(a) show the real part of the Matsubara
correlator, while Figs. 7(b) and 8(b) the imaginary part. One
observes a very good agreement not only in perturbative
domains for large absolute values of δμ (far away from
half-filling). The maximal deviations are 0.013, 0.003 (real
part) and 12%, 5% (imaginary part) for CGA and CCA,
respectively, for U = 3, see insets in Fig. 7. In Fig. 8, the
same is given for a strong coupling for U = 5. The agree-
ment is worse, the maximal deviations are 0.02, 0.01 (real
part) and 28%, 17% for CGA and CCA. Generally, results
are similar to that in D = 0 for the relatively low value
of Ns = 4.

Till now, the application of CCA to a number of solvable
field theoretical models was considered to gauge its precision
and complexity. It is not the purpose of the present paper to
apply the method to a realistic material, however, below we
estimate the mathematical/computational complexity of such
a calculation.

VI. DISCUSSION AND CONCLUSIONS

To summarize, we have developed the covariant cubic
approximation, CCA, determining the excitation properties of
lattice models of electronic systems. It was shown that trunca-
tion of the set of Dyson-Schwinger equations for correlators
of the model lead to a converging series of approximates.
The covariance ensures that all the Ward identities expressing
the charge conservation or high-order correlator identities
(obtained by successive functional derivative of the Dyson
equations) are obeyed. A large number of solvable bosonic
and fermionic field theoretical models demonstrate that the
third approximant in this series, CCA, is sufficiently precise.
Moreover, it turns out that is still calculable by currently
available calculational tools.

Now, let us speculate on the application of the method
to crystalline solids. Although the basic band structure of
crystalline solids can be theoretically investigated by the den-
sity functional methods, the condensed matter characteristics
dependent on the detailed structure of the electronic matter
near the Fermi level requires more precise treatment of the
electrons near the Fermi level. It is not possible to perform
the CCA computation for the realistic materials on the mi-
croscopic level due to complexity of the chain equations.
Therefore one should rely on “downfolding” of the original
microscopic Hamiltonian to a simpler interacting electronic
model of Sec. IV (by “integrating out” the bands far from
the Fermi surface [33]) on the sufficiently coarse grained
lattice. The hopping amplitude T AB (ω,p) is a function of

(a) (b)

FIG. 7. Real (a) and imaginary (b) parts of the Matsubara correlator for the Hubbard spin chain at intermediate coupling.
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(a) (b)

FIG. 8. Same as Fig. 7 for a larger value of the coupling.

frequency and quasimomentum with relevant bands indexed
by A = 1, . . . , Nb. The problem of the determination of the
electromagnetic, thermal, and other condensed matter prop-
erties that incorporate the excitation effects, is divided into
steps depicted in Fig. 9. The Matsubara frequency correlator
calculated within CCA should therefore be analytically con-
tinued [34] to the spectral weight and density of states to be
compared with experiments and other methods, see Fig. 9.

Naive estimate of the computational complexity of co-
variant third-order approximation is misleading due to the
following three observations of the formalism presented in
Sec. IV. (1) Since the odd order fermionic correlators vanish,
the only variational parameter is still the truncated correlator,
namely, the most complicated third equation, Eq. (56), is
trivially satisfied in the fermionic model (unlike in the bosonic
model in the symmetry broken phase, which is indeed too
complicated). Moreover, the only on shell equation coincides
with HF. (2) The chain equations (75) are all linear. We do
not have a proof, but it seems to be a common feature for
both covariant Gaussian and CCA. (3) The chain equations,
albeit linear have a lot of variables and one can either apply a
solution algorithm or look for a convergent recursion. At least
in the Hubbard-type models such a recursion exists.

Let us estimate the complexity for the case of negligible
spin-orbit interaction, and provide numbers using an example
of a simple 2D semiconductor hexagonal 2D boron nitride,
layer hBN. In this case, one can retain eight bands, Nb = 8,

four for the boron atom and two for the nitrogen. The Brillouin

Composition & 
crystal symmetry 
Composition &

crystal symmetry

CCA G 
expression 

Hartree - FockHartree - Fock

Downfolding CCA G 
expressionp

Matsubara Correlator

Downfolding

Chain 
equations

Chain
equations

Spectral function

FIG. 9. Flow chart of the CCA calculation of the electron field
correlator of crystalline material.

zone hexagonal grid contains Ns for Ns = 6×6, while the
number of Matsubara frequencies is Nt = 64. The later de-
termines the lattice size for periodic boundary conditions and
is related to physical frequencies. The number of fermionic
variables in the Matsubara action is

n = NsNtNb. (87)

Therefore one has to solve n nonlinear equations (65). For
hBN, the number of equations is n = 3.6×104. Therefore
generally there is no problem with either memory of the
calculation time for this simple case.

The price to pay is that in addition to computing the HF
fermionic Green’s function, one also has to solve an extensive
system of linear equations, the so-called chain equations,
either in the configuration space, Eq. (68), or frequency-k-
vector space, Eq. (76). The chain correction is then added to
the inverse Green’s function that is inherently charge conserv-
ing. The number of “chains” after reductions due to translation
symmetry is very large. The number of variables in the chain
equations, Eq. (76), is

nch = 4N3
b N2

s N2
t . (88)

The factor 4 is due to two “charge” and spin channels
(cooperon and diffuson). In the hBN example, it amounts
for the spin symmetric case to nch = 5.4×109. However,
the matrix is sparse, since there is only one space and time
summation in the chain equation, Eq. (76). The density of the
matrix (ratio of nonzero matrix elements of the total n2

ch) is

density = 1

NtNs

. (89)

This amounts to 4.3×10−4, so that the matrix is sparse with
2.3×106 nonzero elements. This is achievable, as recent com-
putation [35] (in a different field) with similar parameters con-
firms. Of course, symmetries sometimes reduce the number.
The matrices are sparse in the configuration space, Eq. (68),
since coefficients contain many fast decreasing Matsubara
correlators. We have not made use of this calculations, pre-
ferring the exact solution. However, in realistic calculations,
one might have to use a properly constructed iteration scheme.
To calculate the whole set of frequencies (required for the
analytic continuation) and k vectors, the equations should be
solved n times (“spectator” parameter in the CCA scheme,
see Sec. IV). Other methods, like iteration (using fast Fourier
transforms), might be much faster.
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