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Optical control over bulk excitations in fractional quantum Hall systems
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Local excitations in fractional quantum Hall systems are amongst the most intriguing objects in condensed
matter, as they behave like particles of fractional charge and fractional statistics. In order to experimentally
reveal these exotic properties and, further, to use such excitations for quantum computations, microscopic control
over the excitations is necessary. Here, we discuss different optical strategies to achieve such control. First, we
propose that the application of a light field with nonzero orbital angular momentum can pump orbital angular
momenta to electrons in a quantum Hall droplet. In analogy to Laughlin’s argument, we show that this field can
generate a quasihole or a quasielectron in such systems. Second, we consider an optical potential that can trap a
quasihole, by repelling electrons from the region of the light beam. We simulate a moving optical field, which
is able to control the position of the quasihole. This allows for imprinting the characteristic Berry phase, which
reflects the fractional charge of the quasihole.
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I. INTRODUCTION

Since the discovery of topological matter in two
dimensions [1,2], it has become clear that the distinction
between fermions, as particles which obey the Pauli exclusion
principle, and bosons, as particles which do not, is incomplete
on the level of emergent particles. Instead, topological
many-body systems can host also quasiparticles, the so-called
anyons with intermediate quantum-statistical behavior [3,4].
In many respects, an anyon behaves like the fraction of a parti-
cle, and accordingly it possesses fractional quantum numbers.
For instance, electronic systems in the fractional quantum
Hall regime host quasiparticles whose electric charge is only
a fraction of the electron’s charge. If two identical anyons are
exchanged, their wave function may acquire a U(1) phase,
which in contrast to the case of bosons and fermions is not
restricted to integer multiples of π . An even more exotic
type of anyons are the non-Abelian ones [5]: they have a
characteristic number of (quasi-)degenerate ground states, and
under particle exchange a state in this manifold can evolve into
another one. Importantly, such mixing is not possible under
local perturbations, which has triggered the hope for an
exciting technological application, namely a robust quantum
memory. The quantum information stored in the topologically
protected state of the anyons can be processed by the braiding
of non-Abelian anyons, possibly allowing for fault-tolerant
quantum computing [6]. The first step to achieve this goal is
to gain control over quasiparticles in fractional quantum Hall
systems.

The standard way of creating fractional excitations is by
tuning the magnetic field strength and/or the electrostatic
backgate potential. Current schemes for detecting anyonic

behavior are based on transport measurements in interfero-
metric devices [7–9]. However, there are also different optical
techniques which can be used to probe quantum Hall physics
beyond electronic transport measurements: since the early
days of quantum Hall physics, the light emission from quan-
tum Hall samples has been measured [10,11] in order to
probe the interaction between electrons and holes [12–14].
In addition to emission spectra, also the elastic and inelastic
scattering of light has been detected [15]. Recently, a novel
spectroscopic approach with improved energy resolution has
been achieved by bringing a GaAs quantum well into a cavity,
and detecting polariton resonances via light reflection [16].
Landau level transitions in graphene have been probed by
infrared absorption spectroscopy [17,18], and Raman spec-
troscopy [19,20]. Photocurrent measurements in graphene
have combined optical probing with transport measurements
[21,22]. Moreover, using a scanning single-electron transis-
tor [23] or a scanning tunneling microscope [24–27], the
local density of states has been detected for graphene in the
quantum Hall regime. The resolution of these measurements
allows one to identify single quasiparticles, and this technique
has recently been suggested for the direct imaging also of
fractional quasiparticles [28].

At the same time, there have also been remarkable ad-
vances in optical control and manipulation of synthetic many-
body systems. The first vortices in Bose-Einstein condensates
have been created by optically imprinting a phase onto the
atomic wave function [29]. Later experiments have achieved
vortex generation by transferring the orbital angular mo-
mentum of photons to the atoms [30]. For atomic quantum
Hall droplets, it has been proposed to create anyons via ac
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FIG. 1. Two schemes to optically prepare quasiparticles in an
FQH system. (a) Synthetic flux insertion: light with orbital angular
momentum couples to a quantum Hall system on a Corbino disk,
and shifts (quasi-)particles through the annulus. Since only entire
electrons may flow through a wire connecting the inner and outer
edges, a fractional quantum Hall system at filling ν = 1/q requires
q pumping cycles for a measurable signal. (b) Light-induced poten-
tials: local light beams create an optical Stark shift, which is suited
to trap quasiparticles in an FQH system.

Stark shift, and to directly observe their dynamical behavior
[31–33]. In such systems, spectroscopic properties can also
reveal the fractional statistics of excitations [34]. In optical lat-
tices, adiabatic flux insertion is suited to grow fractional quan-
tum Hall states [35], or to create anyonic excitations [36,37].
Angular-momentum resolved spectroscopy of emitted light
has been suggested as a tool to gain microscopic insight into a
photonic quantum Hall system [38]. Exploiting light beams
with orbital angular momentum has been proposed for the
engineering of polaritonic fractional quantum Hall systems
[39].

In the present paper, we apply a quantum optics toolbox
to manipulate electrons in quantum Hall liquids. A major
advantage of optical methods is their versatility. For instance,
while manipulating an electronic material with a gate poten-
tial requires built-in contacts, optical potentials could have
less hardware requirements. Moreover, compared to transport
measurements, optical schemes can be suited for local probes,
and the position of an optical potential can be flexibly tuned.
These properties suggest that optical techniques may become
particularly useful for braiding quasiparticles. In this paper,
we present two different schemes to create and manipulate
quasiparticles in electronic fractional quantum Hall systems,
as schematically shown in Fig. 1(a) (synthetic flux insertion
creates quasiparticles) and Fig. 1(b) (light-induced potentials
are able to trap quasiparticles).

(a) Synthetic flux insertion. In this scheme, presented in
Sec. II, we exploit the orbital angular momentum of light
to synthesize the insertion of a magnetic flux, and to create
individual quasiholes or quasielectrons. Specifically, we use a
pulsed light field with a nonzero orbital angular momentum,
and coherent light-matter interactions to pump the electrons
into a state with the angular momentum shifted by the value of
the photons’ orbital angular momentum. From the conceptual
point of view, this process is equivalent to adding/removing
a magnetic flux into/from the system. Therefore each light
pulse can be designed to exactly produce one quasihole or one
quasielectron, if the orbital angular momentum of the light
field is ±1.

Details of the optical coupling depend on the material.
(i) For Dirac materials like graphene, we consider a sin-
gle optical transition from the Landau level at the Fermi
surface to an empty Landau level. Such a selective coupling
is enabled by the anharmonicity of the relativistic energy
spectrum, in contrast to systems with quadratic dispersion,
e.g., GaAs. If the electron and the photon exchange orbital
angular momentum, such a transition can be used to change
the angular momentum of an electron. By timing the pulse
duration, such that it matches the value π (in units given
by the inverse Rabi frequency), we can coherently increase
(decrease) the angular momentum of all electrons by one, and
thereby, produce a quasihole (quasielectron). (ii) In systems
with quadratic dispersion, we consider a Raman-type coupling
between two spin manifolds in the conduction band, and the
valence band. This approach requires spin-orbit coupling in
the valence band, as found in GaAs. Exploiting a STIRAP-
like protocol, cf. Ref. [40], the Raman beams coherently flip
the spin of the (spin-polarized) fractional quantum Hall state
without producing excitations from the valence band. As in
the case of graphene, it is again possible to increase (decrease)
the angular momentum of each electron by using light with
orbital angular momentum. Both protocols are robust against
disorder provided the timescale for the optical transfer process
is fast compared to the disorder potential.

Our optical method is particularly unique as it provides
an experimentally applicable and well controlled method to
generate quasielectrons in a similar setting as the quasiholes.
Despite their apparent similarity, there is a fundamental dis-
tinction between the two types of quasiparticles, and this can
be understood from the fact that the quasihole state is an
eigenstate of the parent Hamiltonian for the Laughlin state in
the presence of an additional repulsive potential. In contrast,
adding an attractive potential in place of the repulsive one does
not generally produce the quasielectron state, due to the fact
that the position of the potential might be already occupied by
another electron [41,42].

(b) Light-induced potentials. In this scheme, we propose
that by using an off-resonance light field, one can generate
an ac Stark shift to produce a local potential, as presented
in Sec. III. By choosing the frequency of the light field to
be larger than the one of the corresponding Landau level
transition, we show that the resulting repulsive potential can
stabilize the system with a single quasihole. The optimal size
of the trap corresponds to a situation where the potential
width is of the order of the magnetic length. However, within
the quantum Hall regime, this length scale is usually smaller
than the wavelength of light, which sets the minimal trap
size. Improvements on the potential can be achieved by an
alternative subwavelength trapping scheme. Specifically, by
coupling three electronic levels, e.g., from two spin levels and
the valence band, it is possible to engineer optical potentials
below the diffraction limit. Furthermore, we show that by
adiabatically moving the optical potential, the electronic wave
function acquires a Berry phase which reflects the fractional
charge of the excitation. By explicitly simulating the dynam-
ics of a small system, we determine the maximum speed at
which the potential can be moved without resulting in nona-
diabatic behavior. Our simulation demonstrates that optical
traps may become a useful tool for the braiding of anyons.
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Although our optical schemes can be applied to different
fractional or integer quantum Hall phases, the present paper
focuses on systems in the Laughlin phase [2]. Despite its
relatively simple form, the Laughlin wave function supports
fractional quasiparticles, and it captures very well the ground
state of electrons at filling 1/3. In the remainder of this intro-
ductory section, we briefly discuss some general properties of
the Laughlin wave function and of its excitations, which will
be used in this work.

The Laughlin wave function is given by

�L ∼
∏
i,j

(zi − zj )3 exp

[
−

∑
i

|zi |2/(4lB)

]
, (1)

where zj = xj − iyj are the spatial coordinates of the j th
electron, with lB = √

h̄/(eB ) being the magnetic length in a
field of strength B. The wave function assumes that electrons
are confined to the lowest Landau level, denoted by a Landau
level index n = 0. We note that within the n = 0 Landau level,
there is no difference between graphene and semiconducting
materials, except for an additional valley degree of freedom
in graphene. In the Laughlin state, spin and valley degrees of
freedom are assumed to be fully polarized.

For N electrons, the z component of the total angular
momentum in the Laughlin state is LN = 3

2N (N − 1). In the
thermodynamic limit, this quantum number is replaced by the
filling factor ν, that is, by the ratio between the number of
electrons, and the number of states within a Landau level. The
filling factor is also well-defined in compact geometries such
as the torus. The Laughlin wave function corresponds to a
filling ν = 1/3.

One distinguishes between low-energy excitations at the
edge and in the bulk of a Laughlin system. Excitations at
the edge are gapless deformations, which increase the an-
gular momentum slightly (by a value � Nh̄). The anyonic
quasiparticles that we are interested in here are excitations
in the bulk. They are gapped excitations that appear as frac-
tional electrons (“quasielectrons”) or fractional holes (“quasi-
holes”), that is, as a local increase or decrease of the charge
density. The wave function of a quasihole at position ξ is
obtained by multiplying the Laughlin wave function with a
prefactor f

ξ
qh = ∏N

i=1(zi − ξ ). From this expression, it is seen
that a quasihole increases the z component of total angular
momentum by O(N ) above the Laughlin value (in units h̄).
In contrast, for a quasielectron in the lowest Landau level
located at a position ξ , the Laughlin wave function should
be multiplied by f ξ

qe = ∏N
i=1(∂zi

− ξ ), where the derivative
does not act on the exponential factor of the Laughlin wave
function. Obviously, the quasielectron has the opposite effect
on the total angular momentum compared to a quasihole.

Within the lowest Landau level, the coordinate zi can be
replaced by the operator b

†
i , which raises the angular momen-

tum of an electron. With this, we can re-write the quasihole
state as

�
ξ
qh ∼

N∏
i=1

(b†i − ξ )�L. (2)

Choosing the quasihole position to be in the center, ξ = 0, this
expression shows that the quasihole state can be produced by

FIG. 2. Different schemes for generating quasiholes. (a) Cou-
pling scheme for graphene: electrons from the Fermi surface at
LL0 are shifted to an empty Landau level (LL1) by a π pulse. If
the beam carries orbital angular momentum, it will also act on the
orbital quantum number, m → m + 1. A second π pulse is applied
to remove the Landau level excitation, while leaving the angular
momentum increased. The final state is a quasihole excitation at
the Fermi level. (b) Coupling scheme for GaAs quantum well: a
Raman-like coupling, consisting of a π - and a σ -polarized light
beam, couples two spin Landau levels in the conduction band to the
valence band. We can flip the spin of all conduction band electrons,
while avoiding excitations from the valence band by using the shown
STIRAP-like timing of the pulses. That is, we initially turn on a
coupling between the filled conduction band level and the filled
valence band level, and subsequently couple the valence band level
to an empty conduction band state. If one of the light beams carries
orbital angular momentum, the spin flip is combined with an orbital
shift, m → m + 1. The final state is a quasihole excitation within the
spin-excited Landau level.

shifting each electron into the next angular momentum orbital.
A similar expression can be obtained for the quasielectron by
replacing b

†
i with bi , which shows that in this case the angular

momentum of each electron should be decreased by one. This
observation outlines the strategy which we will pursue in the
following section in order to generate Laughlin quasiparticles.

II. SYNTHETIC FLUX INSERTION

In this section, we present two approaches to synthesize
the insertion of a flux, i.e., to add quantized angular momenta
to the electronic system. In both approaches, we achieve this
by applying a light field with orbital angular momentum. Our
first approach, presented in Sec. II A, uses several π pulses,
which resonantly couple two Landau levels. This approach
is best suited for Dirac materials such as graphene with an
anharmonic Landau level spectrum. The schematics of our
approach is illustrated in Fig. 2(a). The proposed coupling
brings an electron from the Fermi surface into an empty
Landau level, so the action of the coupling is to change the
Landau level index by one: n → n + 1. Simultaneously, the
coupling increases the electron angular momentum by h̄, i.e.,
the orbital quantum number within the Landau level increases
by one: m → m + 1. By a proper timing of this coupling
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(that is, by applying a π pulse), all electrons can coherently
be transferred, resulting in a quasihole state according to
Eq. (2) within a higher Landau level. To remove the Landau
level excitation, one can apply a second π pulse at constant
angular momentum. In this section, we perform a numerical
simulation of the system dynamics which shows that deco-
herence due to electron-electron interactions is small, if the
Rabi frequency is on the order of the Coulomb interactions
(∼1 eV). Spontaneous emission from the excited Landau level
can then be neglected, as lifetimes on the order of picoseconds
are much longer than the duration of a π pulse.

The second approach, presented in Sec. II B, is based on a
three-level scheme, as shown in Fig. 2(b). Here, a Raman-type
coupling between two spin Landau levels in the conduction
band leads to a spin flip. An important ingredient to enable the
Raman transition is spin-orbit coupling in the valence band,
which can be found in prominent quantum Hall materials,
including GaAs. As in our first approach, angular momentum
transfer from the photons to the electrons generates the desired
orbital shift, m → m + 1. This approach produces a quasihole
state within the spin-reversed Landau level. Since interactions
are spin-independent, this scheme is free from decoherence
due to interactions. Moreover, the lifetimes of spin excitations
are extremely long (on the order of nanoseconds) [43,44], so
the final state is sufficiently stable. Excitation of valence-band
electrons can be avoided by applying a detuned STIRAP
protocol.

In Sec. II C, we discuss an experimental proposal to mea-
sure the fractional charge of an anyon. The main idea is that
by increasing the angular momentum of each electron by h̄,
a charge e/q is pumped through the system, with q = 1/ν,
which is set by the filling factor ν.

A. π -pulse coupling in graphene

We consider an optical coupling between the fractionally
filled Landau level n at the Fermi surface to an empty Lan-
dau level n′. Such a selective coupling is possible in Dirac
materials such as graphene, as they exhibit a nonequidistant
Landau level spectrum. The selection rules for circularly
polarized light, |n| ↔ ±(|n| ± 1), determine optically al-
lowed transitions, cf. Ref. [17]. For concreteness, we will
focus on graphene at a fractionally filled n = 0 level, and
consider a coupling to n′ = 1. We note that both Landau
levels support Laughlin-like ground states [45–47] at filling
ν = 1/3. If the light also carries orbital angular momentum �,
the selection rule regarding the orbital quantum number m is
given by |�m| = �, see Ref. [48].

In the rotating frame, such coupling is described by a time-
independent Hamiltonian [45]:

H0 =
∑
m

[
h̄δc

†
m,1cm,1 + h̄

�m

2
(c†m+�,1cm,0 + H.c.)

]
. (3)

The operators c
†
m,n (cm,n) create (annihilate) electrons in the

mth orbital of the nth Landau level, δ is the detuning of the
laser field from the Landau level transition frequency, and
�m = ∫

d2r 〈m + �, 1|E(r) · r|m, 0〉 is the Rabi frequency of
the optical transition m → m + � in the (3D) electric field
E(r) within the 2D-plane r.

In the following, we will take �m = �, that is, a constant
for all orbitals m. This assumption is not strictly valid for any
system size, since in order to carry orbital angular momentum,
the light beam must have a vortex line somewhere, and or-
bitals which are localized near the vortex line will experience
a weaker Rabi frequency than others. In a large enough
system only few orbitals are affected from the vortex, and
our assumption of an m-independent Rabi frequency holds
approximately. The assumption becomes more rigorous if one
considers a Corbino disk geometry, i.e., a disk with a hole in
the center, such that the hole may coincide with the vortex of
the light beam.

Considering the time evolution under H0 in the weakly
detuned limit, δ → 0, the electrons are found to perform Rabi
oscillations between orbitals |n = 0,m〉 and |n = 1,m + �〉
with period T = 2π/�, that is, if initially all electrons were
in the n = 0 level, they will be flipped into n = 1 after a time
t = T/2. A light field that is properly timed, i.e., a π pulse,
will therefore modify the initial N -electron state, |�(0)〉, in
the following way:

|�(T/2)〉 = e−iπH0/�|�(0)〉 =
N∏

i=1

[ã†
i (b̃†i )�]|�(0)〉 ≡ |� ′

qh〉.

(4)

Here, ã
†
i and b̃

†
i denote the operators, which raise the Landau

level index n and the orbital quantum number m:

ã† ≡
∑
n,m

|n + 1,m〉〈n,m|, b̃† ≡
∑
n,m

|n,m + 1〉〈n,m|. (5)

For � = 1, the state defined in Eq. (4) describes a quasihole
excitation similar to the one defined in Eq. (2). However,
Eq. (2) defines the quasihole by applying ladder operators
to the ground state wave function, whereas Eq. (4) uses
projection operators b̃†. The ladder operators differ from the
projection operators by a normalization factor

√
m + 1. The

effect of these normalization factors in the ladder operators is
minor for small systems and vanishes in the thermodynamic
limit, as we show in Appendix. Thus the orbital shift in Eq. (4)
produces a quasihole excitation. In addition to the orbital
shift, the π pulse also increases the Landau level index of
each electron. Such a projection of the Laughlin state and
its excitations into higher Landau levels is a straightforward
generalization, which has been discussed in Refs. [49,50].

Having established that an idealized light pulse creates a
quasihole, we will in the following consider different pro-
cesses that cause decoherence, and that could reduce the
fidelity of our scheme: (a) electron-electron interactions; (b)
spontaneous emission from the excited level, or nonradiative
dissipation (heating).

a. Electron-electron interactions. Since interaction in the
n = 1 Landau level also support a Laughlin-like phase, inter-
actions will not cause decoherence once the full population
has been transferred from one Landau level into the other, that
is to say, the initial and the final state will not be affected by
interactions. However, during the transfer, both Landau levels
are occupied, and interlevel interactions differ significantly
from intralevel interactions, cf. Ref. [45]. A straightforward
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FIG. 3. Fidelity of the quasihole pump. We consider a system of
N = 5 electrons, initially prepared in the ground state of V within
the n = 0 Landau level at total angular momentum Ln. This initial
state �(0) has a large (> 0.99) overlap with the Laughlin state. We
then evolve this state under H0 + VC, and consider the overlap of
the evolved state �(t ) with other trial wave functions, including the
one for the quasihole state. In (a), we plot the maximally attained
overlap between evolved state �(t ) and quasihole state � ′

qh [defined
in Eq. (4) as a function of the detuning δ and the Rabi frequency
�]. In (b), we plot the overlap between �(t ) and different trial wave
functions as a function of time. This includes the overlaps with the
initial state �(0) (blue dashed line), with the quasihole state � ′

qh (red
dotted line), and with the model wave function �model(t ) given in
Eq. (7) (green solid line). Here, we have chosen coupling parameters
� = 0.2e2/εlB and δ = 0.04e2/εlB. Units of time are given as inverts
of �′ = √

�2 + δ2.

strategy to keep the resulting decoherence small is by using
short pulses, that is, by applying a strong Rabi frequency.

To make this assessment more quantitative, we have
numerically simulated the time evolution under H = H0 + VC

for N = 5 electrons, where the single-particle part H0 is
defined in Eq. (3), and VC denotes Coulomb interactions. In
the simulation, we have restricted the Hilbert space to the
two coupled Landau levels, and the angular momentum of the
initial state fixes the quantum number

∑
i (mi − �ni ). For the

initial state �(0), we have chosen the ground state of VC

within the n = 0 level at fixed total angular momentum LN .
This state has large overlap (∼ 0.99) with the Laughlin state.
We then determine the overlap of the evolved state �(t ) with
the state � ′

qh ≡ ∏
i a

†
i f

0
qh�(0), that is, a state obtained from

the initial state by introducing a quasihole and raising the
Landau level index of all electrons. In Fig. 3(a), we plot the
maximally attained overlap during the course of the evolution
as a function of the detuning δ and Rabi frequency �. As a
promising result, we find that the Rabi frequency does not
have to be much larger than the many-body gap for the fidelity
to reach values close to one. We note that the many-body
gap above the Laughlin phase is on the order 0.15e2/εlB.
This value corresponds to 0.3 eV, if we assume a typical
magnetic field strength of 10 T, and use the permittivity of the
vacuum, ε = ε0. Our numerical simulation also shows that the

best choice for the detuning is not at resonance, but at about
δ = 0.05 e2/εlB, that is, for an optical frequency below the
Landau level resonance. The value of the detuning roughly
compensates the interaction energy difference when electrons
are pumped into the quasihole state. Due to a larger total angu-
lar momentum in the quasihole state, the Coulomb repulsion
in this state is decreased, and the many-body resonance is
shifted away from the single-particle value.

b. Spontaneous emission. Spontaneous emission limits the
lifetime of any state above the Fermi level. Therefore we
need to prepare the state of interest in the Landau level at
the Fermi energy. This can be achieved by applying two
subsequent π pulses, as shown in Fig. 2: the first pulse, with
orbital angular momentum � = 1, transfers the electrons into
an excited Landau level, and simultaneously shifts the orbital
quantum number m to m + 1, as discussed above. The second
pulse with � = 0 returns the electrons to the original Landau
level, without changing orbital states. Using sufficiently large
Rabi frequencies, both pulses can operate at large fidelities.
The combination of both pulses then results in a quasihole
excitation within the Landau level at the Fermi surface. With
this scheme, spontaneous emission can only occur during the
pulse duration. To neglect this effect, we have to demand that
the lifetime in the excited level is large compared to the dura-
tion t = π/� of a π pulse. In other words, the coupling has to
be fast compared to the emission rate. In summary, large Rabi
frequencies (on the order of eV) suppress both decoherence
due to interactions or due to spontaneous emission. However,
strong Rabi couplings also lead to nonradiative losses. This
will set a practical limit to the Rabi strength of the pulse, and
thus, to the fidelity of our scheme. A further requirement on
the Rabi frequency is that it is large compared to the disorder
potential, which ensures that the selection rules for orbital
angular momentum are well obeyed.

Within our simulation, we have also studied how the sys-
tem evolves from the initial Laughlin-like state (polarized in
n = 0 at t = 0) into a quasihole state (polarized in n = 1 at
t = π/�′ with �′ ≡ √

δ2 + �2). It is found that at interme-
diate times 0 < t < π/�′ the system evolves through a series
of edgelike excitations. The most relevant edge states, denoted
by � (s), are of the form

� (s) = 1√(
N

s

) ∑
{k1,...,ks }

(−1)
∑s

j=1 kj

s∏
j=1

ã
†
kj

b̃
†
kj

�(0). (6)

Here, the sum is over all s tuples {k1, . . . , ks} with 1 � k1 <

· · · < ks � N , i.e., all ways of choosing s out of N particles.
For s = 0 and s = N , this definition recovers the initial state
�(0) and the quasihole state � ′

qh of Eq. (4). Generally, s

specifies the number of electrons in n = 1, which is equal to
the excess of angular momentum quanta with respect to the
Laughlin value LN . Thus the states � (s) interpolate between
edge and quasihole excitations. By definition, a quasihole
excitation increases the total angular momentum by O(N ),
while an edge excitation is characterized by an increase of
O(1).

We also note that the family � (s) contains only a selection
of edge states, namely those where s electrons are excited
by only one angular momentum quantum. Other edge states
are barely relevant for the dynamics in our system, and
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we can model with high fidelity the system evolution using
only states � (s) with 0 � s � N . Therefore we make the
following ansatz:

�model(t ) =
N∑

s=0

Ns cos

(
1

2
�′t

)N−s

sin

(
1

2
�′t

)s

� (s), (7)

where Ns = (−i)mod(s,2)
√(

N

s

)
. In Fig. 3(b), we plot, for N =

5 electrons, the overlap of the exact state with this model
wave function as a function of time. Despite our choice of
a relatively weak Rabi frequency, � = 0.2e2/εlB, the model
wave function �model(t ) captures the evolution rather well.

This establishes the following picture for our quasihole
pump: during a pumping period, the quasihole state is reached
via a series of edge excitations. Therefore, as shown by
Eq. (7), for large systems, our scheme requires fine-tuning of
the pumping period in order to reach the quasihole state. As a
function of time, the overlap with the quasihole state behaves
like ∼ sin( 1

2�′t )N , so the time window where the evolved
state has large overlap with the quasihole state becomes short
for large N . We note that our simulation has assumed a
rotationally invariant system, and the effect of edge-bending
has been neglected. In a more realistic scenario, states at the
physical edge of the system might be off resonance, and the
term “edge excitation” then refers to the outermost states,
which are still resonant with the optical field.

We note that the scenario here is different from another
mechanism to produce a quasihole that has been discussed in
the context of cold atoms [31], and which is based on a local
repulsive potential. By adiabatically increasing the potential
strength, the Laughlin state is turned into the quasihole state
without involving significant contributions from other states.
In contrast to our scheme, this approach involves a first-order
phase transition which would make the adiabatic evolution
prohibitively slow in the thermodynamic limit. On the other
hand, in small systems, the method provides an intermediate
superposition between Laughlin and quasihole states, which
can be used for interferometric measurements.

The optical scheme makes it possible to induce the quasi-
electron state in a similar manner as for the quasihole. To this
end, we consider an optical pump with angular momentum
l = −1 and follow a similar procedure as outlined above.
An important difference in this case is that the pump cannot
transfer the electron with angular momentum m = 0 to the
higher Landau level due to the absence of the resonantly
coupled state. In contrast, in order to produce the quasielec-
tron wave function, the components of the Laughlin wave
function for which the m = 0 state is occupied should be
destroyed by the quasielectron prefactor. Given the strongly
correlated nature of the Laughlin ground state, this might
appear as a challenge for generating the quasielectron state.
Particularly, in exact diagonalization calculations with finite
number of electrons and using the Laughlin state as the initial
state, the highest value of the overlap which we were able
to obtain with the quasielectron state is 87% (not shown).
However, the overlap can be significantly increased to 99%
(Fig. 4), if we add a repulsive potential acting on the m = 0
state in the lowest Landau level. Such potential excludes

FIG. 4. Fidelity of the quasielectron pump. The setup in this
case is similar to Fig. 3, but the pump photons have orbital angular
momentum l = −1. Moreover, we simulate pumping in the presence
of an additional potential in the lowest Landau level acting on m = 0
state, to initially remove the population of this state (see main text).
(a) We plot the maximally attained overlap with the quasielectron
state during a pumping cycle. (b) We plot the overlap of the time-
evolved state with the quasielectron state (shifted into LL1) � ′

qe

(red dotted line), the Laughlin state �L (blue dashed line), or a
time-dependent model wave function �model(t ) (green solid line).
The coupling parameters are � = 0.4e2/εlB and δ = −0.1e2/εlB.

the m = 0 state from the initial wave function, which thus
deviates from the Laughlin state [Fig. 4(b)]. The addition of
this potential might appear as a mathematical artifact, but it
clearly demonstrates that in the absence of m = 0 (as on an
annulus), the quasielectron wave function can be produced by
our pumping scheme. Moreover, optical methods may even
allow to directly implement such a potential in real experi-
ments. To this end, one could exploit the optical Stark effect
(which is discussed in the next section) using an off-resonant
coupling from the Fermi level (e.g., n = 0) to another Landau
level (e.g., n = −1). If the light beam has angular momentum
l = 1, it will couple levels (n = −1,m) and (n = 0,m + 1),
and the level (n = 0,m = 0) remains uncoupled. Thus the ac
Stark effect shifts the energy of all holes in the n = 0 Landau
level, except for the m = 0 state, and effectively can repel
electrons from this state. The large overlap with the quasi-
electron state, which is achieved in exact diagonalization,
after we implement such potential, shows the promise of our
method for the controlled generation of quasielectrons, and
for manipulating such states. As can be seen from Fig. 4(b),
the model wave function (7) with the appropriate change of
b̃
†
i with b̃i captures the dynamics quite well for this case

as well. The maximum overlap is now attained for detuning
δ = −0.12 e2/εlB, that is, at opposite sign compared to the
quasihole pumping. This is due to the fact that producing
a quasielectron reduces the total angular momentum in the
system, and thus leads to increased Coulomb repulsion. As a
consequence, the many-body resonance is shifted to an optical
frequency above the Landau level gap.
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B. STIRAP spin-flip scheme in GaAs

We now consider an alternative coupling scheme which is
illustrated in Fig. 2(b). The goal and the general strategy is the
same as in the previous subsection, but instead of selectively
coupling Landau levels, we now achieve the desired momen-
tum transfer via a Raman spin flip process. This approach
avoids the need of an anharmonic Landau level spectrum,
and thus it can be applied to nonrelativistic materials. On
the other hand, coupling different spin manifolds in the con-
duction band to the same level in the valence band requires
the presence of spin-orbit coupling [51,52]. Therefore the
approach in this section is well suited for GaAs, but it cannot
be applied to graphene. One of the Raman beams shall carry
orbital angular momentum, such that the coupling effectively
transfers conduction band electrons from |n = 0,m,↑〉 into
|n = 0,m + 1,↓〉. As discussed before, the angular momen-
tum transfer creates a quasihole state, but now, as an additional
bonus, the final state remains in the n = 0 Landau level, with
only the electron spin being flipped. Given the long spin
lifetimes of the order of nanoseconds, measured for GaAs in
Refs. [43,44], the final state is effectively stable. Moreover,
since the Coulomb interactions are spin-independent, the final
state will not be subject to decoherence due to interactions.
We remark that our approach is robust against sample disor-
der provided the timescale for the optically induced transfer
process is much faster than the characteristic frequency of the
disorder potential.

In order to avoid excitations from the valence band, the
timing of the light fields may follow a STIRAP protocol
(see Ref. [40] for a recent review on STIRAP techniques).
In the standard STIRAP scenario, a particle is transferred
between two stable states, involving two fields that couple
these states to a third radiative level. The characteristic feature
of STIRAP is the fact that, for properly timed fields, full state
transfer is possible without populating the radiative level at
any time. Our case, though, is different from the standard
STIRAP scenario: while we also want to transfer a particle
between two (relatively) stable conduction band states, we
achieve this via a coupling to a filled valence band level.
The scenario is illustrated as case I in Fig. 5. Although this
process involves two electrons, STIRAP can be applied if
we view the process as the transfer of a single hole. This
particle-hole transformation only requires to interchange the
pump and probe fields, and Coulomb interactions between the
electrons simply renormalize the resonance frequencies. Our
situation, however, is more complicated through the presence
of a second scenario, illustrated as case II in Fig. 5. This
case may occur whenever the many-body state is at fractional
filling, such that the couplings also act onto empty orbitals.
This scenario may give rise to undesired excitations from the
valence band. A natural way to avoid these excitations is by
operating far detuned from a single-photon resonance.

In order to achieve high fidelities, the STIRAP protocol
should be characterized by T 
 2π/� � 2π/δ. Here, T

denotes the duration of a STIRAP pulse, which needs to
be significantly longer than a π pulse. However, due to the
spin-independence of Coulomb interactions, there is no need
to keep T small compared to the time scale of interactions, set
by e2/(εlB), where ε = ε0εd. Note that in GaAs, a dielectric

FIG. 5. Distinct cases in the STIRAP scheme. In Case I, the
↑-electron (black ball) is transferred into the empty ↓ state (empty
dotted ball) via a coupling to the filled valence band (VB) level.
Under a particle-hole transformation, this process maps onto a
single-particle process, flipping the spin of the conduction band
(CB) hole, and the standard single-particle STIRAP scenario applies.
In Case II, both CB states are empty, but coupled to a filled VB
state. To avoid Rabi oscillation of the valence band electron, both
couplings �π and �σ must be sufficiently strongly detuned from the
single-photon resonance.

constant εd ≈ 12 suppresses Coulomb interactions by a factor
of 12 compared to graphene. Thus, at a field strength of about
B ≈ 10 T, the energy scale of Coulomb interactions is on
the order of tens of THz, i.e., at femtosecond time scales. In
contrast, the lifetimes of spin excitations is on the order of
nanoseconds, so it is justified to treat both spin levels as stable
levels.

Since the transfer dynamics now involve three different
Landau levels, including the filled valence band Landau level,
its numerical simulation is hard. We restrict ourselves to
simulating a minimal example of the scheme. As plotted in
Fig. 6(a), we truncate the Landau levels to having only 4
states, and load the system with N = 6 electrons. Choosing
the band gap and the Zeeman gap sufficiently large compared
to the Coulomb interactions, the ground state of this system
will be a filled valence band, and two electrons in the spin-
up manifold of the conduction band, forming a “Laughlin”
state of two electrons, i.e., �(z1, z2) ∼ (z1 − z2)3|↑↑〉. If we
wanted to pierce a hole into this state, this would increase the
angular momentum by 2, which is not permitted in our trun-
cated Landau levels. Therefore we simulate only the coherent
transfer part of our scheme, that is, a coupling as shown in
Fig. 6(a), leaving the angular momentum constant. Applying
the STIRAP protocol shown in Fig. 6(b), we evaluate the
fidelity, that is, the overlap of the time-evolved state �(t )
with the target state, �target (z1, z2) ∼ (z1 − z2)3|↓↓〉. As seen
in Fig. 6(c), this fidelity reaches unity, if the Rabi frequency
is sufficiently strong, i.e., �T 
 2π . For the pulse duration
(defined by the FWHM of a Gaussian pulse), we have chosen
T ≈ 415εlB/e2, which for typical magnetic field strengths is
on the order of hundreds of picoseconds. To avoid excitations
from the valence band, the detuning should be larger than the
Rabi frequency, δ > �.
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FIG. 6. Simulation of a many-body STIRAP scheme. (a) Illustration of the STIRAP scheme for which we have performed a numerical
simulation in a minimal system: each Landau level is truncated at m = 3 (4 states), and the total number of electrons is six. For simplicity, we
have considered a coupling at constant angular momentum, i.e., between |m, ↑〉 and |m, ↓〉. Band gap �bg and Zeeman gap �Z are chosen
such that in the absence of the coupling, four electrons fill the valence band, and the remaining 2 electrons polarize in the spin-up manifold
of the conduction band, where they form a N = 2 “Laughlin” state, � ∼ (z1 − z2)3. (b) Applied STIRAP pulses, with the pulse duration
T = 415εlB/e2, that is, on the order of hundreds of picoseconds. The pulse maxima are separated by �t = 250εlB/e2. (c) We simulate the
time evolution for different values of Rabi frequency � and detuning δ, obtaining the valence band filling (occupation per states), and the
overlap with initial state (a N = 2 Laughlin state in the spin-up manifold) and target state (a N = 2 Laughlin state in the spin-down manifold),
as a function of time. In the upper plot of (c), the transfer is poor due to a relatively weak Rabi frequency � = 0.025e2/(εlB), and comparably
strong detuning δ = 0.1e2/(εlB). The plot in the center is for an increased Rabi frequency � = δ = 0.1e2/(εlB), which allows for good transfer,
but excitations from the valence band become relatively large. The lower plot, for � = 0.1e2/(εlB) and δ = 0.3e2/(εlB), leads to good transfer
at low excitation rates.

C. Detecting anyonic properties

In the remainder of this section, we briefly discuss possible
detection schemes for fractional charge and statistics, which
potentially benefit from a method to generate exactly one
quasihole by a pulsed light beam.

a. Fractional charge. A possible charge measurement can
be performed on a Corbino disk. The insertion of flux through
a Corbino disk has been discussed in Ref. [53]. As described
in the previous section, our scheme increases the angular
momentum of the electrons. This shifts them towards the
outer edge in the same way as creation of an additional flux
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through the inner circle of the Corbino disk would do. The
reverse process, which transports charges towards the inner
edge, can be achieved by decreasing the angular momentum
of the electrons.

The confining potential at the edge makes it energetically
favorable for the charge to return to its original position.
This leads to transport through a wire connecting the two
edges of the Corbino disk. However, considering a fractional
quantum Hall system at filling ν = 1/q, q quasiparticles need
to be shifted to the outer edge in order to accumulate a total
electronic charge e. Thus, n pumping cycles are expected to
produce a current of n/q electrons, and the number of pump-
ing cycles serves as a direct measure of the fractional charge.

b. Fractional statistics. The detection of fractional statistics
is possible using interferometers, either of the Fabry-Perot
or the Mach-Zehnder type. Such devices are suited to detect
Aharonov-Bohm phases, as proposed for instance in Ref. [54]
and realized in Refs. [7–9], by measuring the interference of
currents along different paths. In these schemes, the inter-
ference pattern is sensitive to changes of the magnetic field,
which yields the value of the fractional charge. It is also
sensitive to the number of quasiparticle between the different
arms of the interferometer, and from this, the statistical angle
of the excitations can be deduced. However, to extract both
charge and statistical angle from the interference pattern,
exact knowledge about the number of excitations is needed.
Thus our scheme may allow for improved measurements as it
provides individual control over these excitations.

III. LIGHT-INDUCED POTENTIALS:

The previous section has demonstrated that light with
orbital angular momentum can be used to mimic the addition
of a flux, and to produce a quasiparticle excitation. In the
present section, we will not be concerned with the production
of the excitation, but we will be interested in ways to stabilize
and control the quasiparticle. Specifically, we will consider
an optical potential which locally repels the electrons and
thereby traps a quasihole. Providing a trapping scheme for
quasiparticles is particularly relevant for ultra-clean systems
where the disorder landscape might be too weak to localize
excitations.

A major concern addressed in this section is the finite
width of the optical potential, in contrast to δ-like potentials
which have been studied earlier in the context of cold atoms
[31,32]. A numerical investigation shows that a potential
with small but finite width is even better suited for trapping
quasiholes than a pointlike potential. However, the gap above
the quasihole state is found to decrease when the potential
becomes broader than the magnetic length. Since the optical
wavelength is usually larger than the magnetic length, we will
present some ideas to achieve subwavelength potentials using
a three-level coupling.

Given the flexibility of optical potentials, they appear to
be particularly well suited for moving the quasihole. Thus an
optical trap for quasiholes may provide a tool for braiding
anyonic excitations. To demonstrate that ability, we show that,
when the potential is moved on a closed contour, the wave
function acquires a Berry phase proportional to the fractional
charge of the quasihole. The calculations and discussions in

this section hold for both nonrelativistic systems and for Dirac
materials.

A. Alternating-current Stark shift

The mechanism which provides the desired optical poten-
tial is ac Stark shift. The ac Stark shift is routinely used to trap
cold atoms in optical lattices. Recently, it has been suggested
to trap Dirac electrons in graphene by exploiting ac Stark shift
[55]. In a GaAs quantum well, this shift can be produced by
optically pumping below the band gap [56]. Alternatively, if
the system is coupled to a cavity, an enhanced Stark shift can
be achieved using a resonance of the cavity [57]. In general,
the energy shift �E experienced by the electronic energy
in a laser field E(r, t ), is given by �E = d · E(r, t ), where
d = α[Ex (r, t ), Ey (r, t )] is the dipole moment induced by
the field. The polarizability α is inversely proportional to the
detuning � from the closest resonance. With this, the optical
potential reads

Vopt ∝ I (z)

�
, (8)

where I (z) is the laser intensity in the complex plane, assumed
to be constant in time. In the following, we will consider
a Gaussian beam, that is, an optical potential V

(ξ,w)
opt (z) =

( lB
w

)
2
Vopt,0 exp[|z − ξ |2/w2], characterized by the position of

the beam focus ξ , the width w of the beam, and an potential

strength V0. The prefactor ( lB
w

)
2

normalizes the intensity such

that limw→0 V
(ξ,w)

opt (z) = Vopt,0δ(z), with δ(z) being the Dirac
distribution.

For the purpose of trapping a quasihole, it is necessary
that the strength of the potential compensates the energy gap
above the Laughlin state. Thus the relevant energy scale is
given by the Coulomb energy e2/(εlB), with the magnetic
length lB representing the typical length scale relevant for the
quantum Hall physics. This length scale determines the size
of an electronic orbital, but also of defects like quasiparticles
and quasiholes. If B̃ is the magnetic field strength in tesla,
lB = 26 nm/

√
B̃. For a magnetic field of 9 T, and with a

dielectric constant εd = 12 (as in GaAs), this energy scale is
on the order of 150 meV, and a typical gap will be on the
order of 15 meV. An early measurement in GaAs [56] has
obtained an ac shift of 0.2 meV was with a laser intensity of
8 MW/cm2.

Apart from the energy scale, also the length scale of the
potential plays an important role. With the size of a quasihole
being on the order of the magnetic length, we expect that the
length scale of a trapping potential should not significantly
exceed this scale. However, the minimum length scale of an
optical potential is limited by the wavelength of the light,
which in the visible regime is on the order of hundreds of
nanometers. In contrast, for magnetic field strengths on the
order of a few teslas, the magnetic length is only a few
nanometers. We will thus need to evaluate whether a potential
with finite width w 
 lB is still suited to trap quasiholes.

B. δ-like potentials

Before considering the case of finite-width potentials, we
verify that a pointlike potential (w = 0) gives rise to the
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desired excitations. This becomes obvious when we look
at the parent Hamiltonian of the Laughlin state, that is, at
some model interactions Vparent for which the Laughlin wave
function �L is the densest zero-energy eigenstate. Such parent
Hamiltonian is given in terms of Haldane pseudopotentials
Vm, specifying the interaction strength between two electrons
at relative angular momentum h̄m. In the 1/3-Laughlin state,
all pairs of electrons have relative angular momentum 3h̄, so
the Laughlin state has zero energy in a model Hamiltonian
with Vm = 0 for m � 3. Since for spin-polarized fermions the
relative angular momentum cannot be even, a Hamiltonian
with only a single nonzero pseudopotential, V1, provides a
parent Hamiltonian for the Laughlin state. It follows that
the quasihole state f

ξ
qh�L becomes the densest zero-energy

eigenstate of Vparent + V0δ(ξ ), when the potential strength
exceeds a critical value. To see this, we note that the quasihole
state carries the same anticorrelations between the electrons as
the Laughlin state, but at the same time has vanishing density
at position ξ .

The scenario of a δ potential has been studied before in
greater detail in the context of cold atoms [31,32]. In these
systems of neutral particles, which can be brought into the
fractional quantum Hall regime by artificial gauge fields, the
cyclotron frequency is on the order of the trap frequency (∼10
Hz), resulting in a magnetic length lB = √

h̄/(Mωc) on the
order of micrometers, with M being the mass of the atoms.
Due to this different length scale, finite-width effects can
indeed be neglected in these artificial systems.

C. Finite-width potentials

To study the role of the finite potential width w, we turn to
numerical diagonalization methods, by which we obtain the
ground state of VC + V

(ξ,w)
opt for different laser positions ξ and

different beam widths w. Generally, we find large overlaps
of these states with the Laughlin quasihole state f

ξ
qh�L, even

when the beam becomes as broad as (or even broader than) the
electronic cloud. In our numerics, we have considered both
disk and torus geometries which we discuss separately below.

a. Torus. The torus geometry is convenient because due
to its compact nature no trapping potential is required to
confine the electrons. Since the torus has no edge, this ge-
ometry is well suited for studying the bulk behavior of large
systems for which deformations at the edge are irrelevant.
Interestingly, on the torus, the ground state of VC + V

(ξ,w)
opt is

almost independent of w. The overlap with the exact Laughlin
quasihole state [58] takes large values close to 1, cf. Table I.
While this result shows that the finite potential width does
not modify the quasihole state in the bulk, we also find that
the energy gap above the quashihole states is quite sensitive
to the width of the beam (see Fig. 7). Up to a certain value,
of the order of the magnetic length, a finite potential width
is found to increase the stability of the quasihole. However,
the gap starts to decrease when the beam width exceeds the
magnetic length. This result can be understood by noticing
that also the quasihole has a finite size of the order of the
magnetic length, and the formation of a quasihole reduces
the energy due to the optical potential most efficiently when
the spatial overlap between quasihole and potential becomes

TABLE I. Overlaps between Laughlin quasihole state, and
ground state of VC + V

(ξ,w)
opt on disk and square torus, for different

w. Parameters on the torus: V0 = 1, ξ = 0, and on the disk: V0 =
10, ξ = 2. On the torus, exhibiting three (quasi)degenerate ground
states, overlap refers to the three (equal) eigenvalues of the 3 × 3
overlap matrix.

w/lB Overlap on torus Overlap on disk
N = 7 N = 8

Nφ = 22 84 � L/h̄ � 92

0 0.9884 0.9450
3 0.9885 0.9552
6 0.9851 0.9409

largest. Obviously, in broader potentials, a quasihole becomes
less efficient for reducing potential energy.

b. Disk. The disk, though the most natural geometry to
study quantum Hall physics, suffers strongly from finite-size
effects. Even the concept of a filling factor is not defined on
an infinite disk because each Landau level contains an infinite
amount of states. It is necessary to assume a trapping poten-
tial which controls the electron density. A realistic trapping
potential consists of hard walls, so the potential is flat in
the entire system, except for the edge, where the potential
energy steeply increases. Effectively, such potential puts a
constraint on the Hilbert space, as it restricts the orbitals to
those which fit into the flat region. This means that angular
momenta beyond a certain value are not available anymore.
Since we are interested in the Laughlin state (with angular
momentum LN ), and in its quasihole excitation (increasing
the angular momentum by up to N quanta), we will assume
that the trap effectively truncates the Hilbert space at LN + N .
Therefore we perform the exact diagonalization study within
a space of Fock states of angular momentum LN � L �
LN + N . This choice yields the quasihole state as the only
zero-energy eigenstate if the parent Hamiltonian is applied,
that is, for a pointlike potential V

(ξ,w=0)
opt and pseudopotential

interactions Vm ∼ δ1,m.
Importantly, we find that Coulomb interactions do not

significantly alter the scenario. Comparing the exact Laughlin

FIG. 7. Gap above the quasihole state on a torus. We plot the
energy gap above the three degenerate quasihole states on a square
torus in the presence of an optical potential V

(ξ,w)
opt , as a function of

the potential width w. The N electrons are confined in the n = 0
Landau level, generated by the presence of N� = 3N + 1 magnetic
fluxes.
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FIG. 8. Calibrating the quasihole position on the disk. By ne-
glecting the trapping energy, long-range interactions lead to a shift of
the radial position r of the quasihole towards the center. The plotted
curve is used to calibrate the true quasihole position r as a function of
the parameter |ξ |, specifying the maximum of the optical potential,
for N = 8 electrons.

quasihole state and the ground state of VC + V
(ξ,w)

opt , we obtain
an overlap of about 0.95 for N = 8. Strikingly, the potential
width w has only a minor effect on these numbers if the
potential is chosen sufficiently strong, see Table I.

There is, however, a notable consequence of finite-range
interactions appearing in our numerics on the disk: the quasi-
hole position does not exactly coincide with the position of
the optical potential anymore, as seen in Fig. 8. Although
this observation seems to be an artifact because we neglect
the trap, it will be important to take it into account when
determining the quasihole charge, as discussed in the next
section. To this end, the data in Fig. 8 are needed to calibrate
the quasihole position.

Energetic arguments explain the mismatch between the
quasihole position and potential minimum: shifting the quasi-
hole towards the center increases the angular momentum,
and thereby reduces the energy of long-ranged interactions.
A realistic trapping potential would compensate this effect
by penalizing the angular momentum increase, but this term
is missing in our numerical study. If Coulomb interactions
are replaced by the short-ranged pseudopotential model, the
quasihole position coincides with the potential minimum. In
this case, the interaction energy is zero, and shifting the
quasihole cannot lead to an interaction energy gain.

D. Realization of subdiffraction potentials

In the previous section, we showed that the manipulation of
anyons profits from potentials of width w ∼ lB . This requires
a subdiffraction addressability which can be achieved by
employing techniques analogous to the ones used in ultracold
atoms [59,60]. The basic idea is to use three energy levels
which provides much more flexibility than just the two-level
scheme used to induce ac Stark shift. As an example we
consider GaAs, for which we can use the level scheme shown
in Fig. 9(a), in analogy to Fig. 5 used for the STIRAP. The
scheme consists of two spin levels in the conduction band

FIG. 9. Subdiffraction potentials. (a) Engineering a subdiffrac-
tion potential via three-level coupling. An ⇑ hole at the Fermi level
(empty dotted ball) experiences an attractive potential by coupling to
the electrons (black balls) in the ↓ level of the conduction band and
in the valence-band state |v〉. A particle-hole transformation relates
this process to the standard single-particle EIT scenario, applied to a
single hole. Although the laser fields do not induce a direct potential
for ↑ electrons, the attractive potential for ⇑ holes results in an
effective repulsive potential for the ↑ electrons. (b) We show a 1D cut
through the potential V (z) and the laser fields �c(z) and �p . Even
though �c is diffraction limited, we can achieve a subdiffraction
V (z) by working with max[�c(z)] 
 �p .

and one level in the valence band. We now choose the Fermi
energy through the upper spin level ↑, so both the ↓ level and
the valence band are occupied. The two-electron system can
be mapped onto a single-particle problem via particle-hole
transformation, and a repulsive potential on ↑ electrons will
be achieved by engineering an attractive potential for ⇑ holes.
Therefore we operate at the two-photon detuning δ⇓ < 0.

Moreover, we use two laser fields: a strong �c(z), which
is position dependent [for the easiness of presentation we fix
it to �c(z)2 = �2

0(1 − exp[|z − ξ |2/w2])], and a weaker �p,
which is homogeneous in space. The Hamiltonian reads

Hal =
⎛
⎝ δ⇓ 0 �c(z)

0 0 �p

�c(z) �p �

⎞
⎠ (9)

in the bare hole-state basis: {|⇓〉, |⇑〉, |v〉}. For |δ⇓| � �p,
which ensures that we can consider δ⇓ perturbatively, and
for an appropriate preparation scheme [60,61], the internal
state of a hole can be described using a dark state |D〉 =

�c (z)√
�2

p+�c (z)2
|⇑〉 − �p√

�2
p+�c (z)2

|⇓〉. From the form of |D〉, we

see that the hole experiences an attractive potential V (z) =
δ⇓

�2
p

�2
p+�c (z)2 , which for �0 
 �p can have subdiffraction

width ws = w/s characterized by the enhancement factor
s ∼ �0/�p and the depth V0 = δ⇓.

Assuming that we can describe our system using three
levels, the available depth of the trap is mainly limited by (i)
the validity of the rotating wave approximation and (ii) the
coupling to the short-lived intermediate level. The (i) limita-
tion constrains the strength of �c(z) to �0 � �bg. Together
with �p 
 V0 and s = �0/�p, we get that s � �0/V0 �
�bg/V0. For �bg ∼ 1.5 eV, �0 ∼ 0.5 eV, and V0 ∼ 15 meV,
we see that enhancement factors s on the order of 10 are
within a reach. The losses in (ii), lead to the broadening of

the trapping potential by γv
V 2

0
�2

p
� γv , which [compared with
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the depth of the potential V0] is negligible for the lifetimes
τv = 1/γv on the order of 10 ps. Note that in contrast to
ultracold atoms [60–63], the kinetic energy is quenched in
a magnetic field, and therefore nonadiabatic corrections to
the Born-Oppenheimer potentials [61,62] are negligible. This
relaxes some of the constraints posed on the possible trapping
depths. We leave a more detailed analysis, beyond the esti-
mates presented here, for the future work. Finally, in the case
of graphene, we envision similar possibilities: for example,
one can use other filled Landau levels as the additional two
levels in the ladder or lambda three-level scheme.

E. Moving a quasihole

In the remaining part of this section, we consider an optical
potential which is moved on a closed loop. As a quasihole is
trapped by the potential, this procedure is expected to imprint
a Berry phase onto the wave function, which is proportional to
the charge of the quasihole. Thus, by calculating the quasihole
charge from the Berry phase, we will verify that moving the
optical potential is suited to move an excitation. By consider-
ing short-range interactions instead of Coulomb interactions,
finite-size effects become small, and the fractional charge
matches with the value 1/3, expected for a thermodynamically
large Laughlin system. We will also compare an idealized adi-
abatic evolution, restricted to the ground-state Hilbert space,
with the true dynamic evolution. This establishes the maximal
speed with which the potential should be moved.

a. Relation between Berry phase and charge. If the position
ξ of a single charge q is moved, the wave function �(ξ )
will pick up a Berry phase γ = ∮

dξ 〈�(ξ )|�ξ |�(ξ )〉, and
this phase is proportional to the magnetic flux through the
enclosed area A times the value q of the electric charge. This
relation is normalized such that the electron charge e acquires
a Berry phase γ = 2π when it encircles one flux. In a constant
magnetic field, with the magnetic length defined such that an
area 2πl2

B contains one flux quantum, we have the relation

q

e
= γ

l2
B

A
. (10)

Thus, by studying the phase of the wave function upon
moving the quasihole, we can extract the electric charge of
the excitation.

b. Results from adiabatic evolution. We have performed
such calculation using the disk geometry with N = 8 elec-
trons. We considered a Hamiltonian H = Vint + V

(ξ,w)
opt , where

the interactions Vint are either Coulomb interactions or the par-
ent Hamiltonian of the Laughlin state. For the optical potential
V

(ξ,w)
opt , we considered a finite width w up to 3lB as well as the

limit w → 0. Our results are plotted in Fig. 10. Importantly,
in case of the ideal interactions from the pseudopotential
model, the width of the optical potential has a minor effect
on the Berry phase, or, respectively the measured charge of
the quasihole. Both, for a pointlike potential and for a broad
beam (w = 3lB), the quasihole charge is almost independent
of the quasihole position, as it should be in a quantum liquid.
Moreover, the value of the charge is close to the expected
value 1/3. The accuracy of this result despite the small system
size is due to the particular choice of interactions. As the
pseudopotential model has short-range interactions, finite-size

0 0.5 1 1.5 2
0

0.1

0.2

0.3

0.4

0.5

 , pseudopotentials

, Coulomb
, Coulomb

 , pseudopotentials

FIG. 10. Charge of Laughlin quasihole. We plot the charge q of a
quasihole in a system of N = 8 electrons on the disk as a function of
radial quasihole position r . The total angular momentum is restricted
to the Laughlin regime, LN � L � LN + N , and the Hamiltonian
consists of interactions Vint and an optical potential V

(ξ,w)
opt , of width

w and focused at position ξ . We have tuned the radial position |ξ |/lB
of the optical potential from 0.1 to 2, and obtained the corresponding
radial position position r of the quasihole. The potential is then
moved on a circle around the origin, which leads to a Berry phase
that we evaluate using the static method of Eq. (11) for 200 discrete
steps. We consider both Coulomb and pseudopotential interactions,
the latter providing a parent Hamiltonian for the Laughlin state.
We compare pointlike potentials (w = 0) and finite-width potentials
(w = 3lB). Independently of the potential width, the system with
pseudopotential interactions agrees well with the expected value
q/e = 1/3, whereas finite-size effects spoil the numerical value in
the system with Coulomb interactions.

effects are much weaker than in the long-range Coulomb
case. For Coulomb interactions, the charge as a function of
quasihole position is found to be > 0.4e, that is, it differs sig-
nificantly from e/3. Surprisingly, in the presence of Coulomb
interactions, the results for the finite-width potential are closer
to the ideal value 1/3.

The important conclusion which we draw from Fig. 10 is
that the finite width of the optical potential does not appear
as a limiting factor for a charge measurement by moving the
potential. In other words, the observed behavior suggests that
even if the optical trap is much wider than the actual size of
a quasihole, the quasihole still follows the contour described
by the moving potential, and despite their broad width optical
potentials can be used for moving and braiding anyons.

The results shown in Fig. 10 were obtained from an
“adiabatic” simulation, that is, we actually did not simulate
the dynamics of the system while the potential is moved, but
we assumed that for any potential position the system remains
in its ground state. Thus we simply determine the ground
state �n at different quasihole positions Reiϕn = Rein�ϕ , and
obtain the phase difference between subsequent states from
their overlap. Summing up all phase differences along the
contour gives the Berry phase

γ =
∑

n

Im(〈�n+1|�n〉 − 1). (11)
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In this approach, it is important to fix the global gauge.
In our case of a nondegenerate ground state, the possible
global gauge transformations are U(1) rotation. Since we
compare eigenvectors obtained from two different diagonal-
ization procedures, we have to assure that the global gauge
remains the same. This can be done by demanding that a
certain component of the state vector is real and positive [64].
However, this procedure requires that some assumptions and
conditions hold: of course, any state along the path needs to
have a nonzero overlap with this reference state. Moreover,
one must ensure that, after discretization of the parameter
space, the global gauge transformation does not remove the
Berry phase. We can achieve this by choosing a reference
component which does not gain a phase when the potential
is moved. It is easy to find such a component, since we know
that the quasihole is described by a wave function of the type∏

i (zi − ξ )�. This means that the part of the wave function
given by

∏
i zi� is not affected by the quasihole position. Any

component, which has nonzero overlap with this expression,
can be used as a reference component, that is, any occupied
Fock state with angular momentum L = LN + Nh̄.

c. Dynamical evolution. In the remainder, we com-
pare the “adiabatic” approach with a dynamic one. In the
dynamic approach, we really simulate the time evolution of
the system while the potential is moved, without assuming
adiabaticity of the process. Of course, the dynamic approach
is much more costly, as it requires full diagonalization of the
Hamiltonian, whereas in the static approach only the ground
state is needed. But there are some conceptual advantages
of the dynamic method: first, this method yields the overlap
between the initial and final state, which provides a measure
for the adiabaticity of the process. From this, one can also
obtain information about how fast the optical potential may
be varied. Second, the dynamic method does not require the
gauge fixing procedure described above.

For our dynamical simulation we discretize time, and
define Hn as the Hamiltonian with the optical potential Vopt

at position Reiϕn . We then evolve for short periods �t under
Hn, applying the evolution operator Un = exp (iHn�t ) to the
quantum state, and afterwards we quench from Hn to Hn+1.
Starting from �0, the ground state of H0, we reach a final state
� = ∏nmax

n=1 Un�0, where nmax = 2π/�ϕ − 1. If the process
were adiabatic, the initial and final state would only differ by a
phase 〈�|�0〉 = eiφ . This phase now consists of a dynamical
contribution φT , determined by the energy of the state, and
the Berry phase γ . In the particular case of a circular rotation
around the origin, the energy does not change, and φT = E0T

where T = nmax�t . Thus the Berry phase is obtained by

γ = Im(ln〈�|�0〉) − E0nmax�t. (12)

If the duration of a time step �t is of the order of 1/�E,
where �E is the energy gap, the dynamic method produces
exactly the same result as the adiabatic one. Interestingly,
even for much shorter time steps, the system still behaves
adiabatically in the sense that its overlap with excited states
remains negligible, and the initial and final states remain the
same up to a phase difference. However, this phase difference
acquires some errors, in the sense that it differs from the adi-
abatic value. This behavior is demonstrated in the data shown

10-1 100 101
10-4

10-2

100

FIG. 11. Deviations from adiabatic process due to finite times.
We compare two types of errors occurring if the quasihole is not
moved adiabatically, as a function of the time step duration �t

(in units h̄εlB/e2). The red curve shows the relative phase error,
defined as �γ /γad. Here, �γ is the difference between the adiabat-
ically obtained Berry phase γad via Eq. (11), and the value obtained
dynamically using Eq. (12). The blue curve shows the quantum state
error, defined as 1 − |〈initial state|final state〉|, that is, the amount of
norm which becomes excited during the evolution. The state error is
low (< 10−3) for time steps �t > 0.5, while a similar phase error
can only be achieved by significantly longer time steps �t > 15.

in Fig. 11 for a system of N = 5 electrons with Coulombic
interactions and an optical potential of width w = 3lB. This
finding suggests that a quasihole can be moved relatively fast
without energetically exciting the system, but this yet does not
guarantee an adiabatic phase evolution.

IV. SUMMARY

We have proposed several optical tools which can provide
microscopic control over excitations in integer or fractional
quantum Hall systems. In Sec. II, we have developed ideas for
a quasiparticle pump, based on interactions between electrons
and photons with orbital angular momentum. For graphene,
empty and filled Landau levels can optically be coupled as dis-
cussed in Sec. II A. For GaAs, a spin-flip Raman coupling is
possible, see Sec. II B. We have applied a STIRAP scheme on
this many-body scenario, which allows avoiding decoherence.
Our techniques to create individual quasiparticles are robust
against disorder and can give rise to novel ways of measuring
fractional charge and statistics. A possible application within
a Corbino disk geometry is given in Sec. II C.

In Sec. III, we have discussed different strategies for opti-
cally trapping a quasihole. We have studied the role played by
the potential width for the stability of the trap. Even shallow
potentials are found to support quasihole states, but the gap
above the quasihole state is largest when the width is on the
order of the magnetic length. A simple way of achieving an
optical potential is based on the ac Stark shift, but the potential
width, limited by the wavelength, exceeds the ideal length
scale. Improvements are possible using a three-level coupling
scheme, where for the prize of a weaker trap the potential
width can be brought below the diffraction limit. We have
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also simulated the system dynamics in a moving potential,
showing that such a process imprints a Berry phase in the
electronic wave function according to the fractional charge
of the quasihole. The optical potentials thus might become
useful for braiding quasiparticles, which is the operation
on which future topological quantum computers might be
based on.

In summary, our manuscript advances quantum-optical
tools for engineering and manipulating quantum Hall sys-
tems. In previous work, optical driving near a Landau level
resonance has been suggested as a tool for engineering novel
quantum Hall states [45]. Here, we have applied similar ideas
in order to control bulk excitations of a quantum Hall system.
Other interesting aspects of optically coupled Landau levels
regard quantized dissipation rates [65], or optically induced
electron localization [66].
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APPENDIX: LADDER OPERATORS VERSUS
PROJECTION OPERATORS IN THE DESCRIPTION

OF A QUASIHOLE

Whether implemented as a π pulse or as a STIRAP
process, the optical pumping described in Sec. II shifts an
electron from orbital m in the Landau level at the Fermi
surface to orbital m + 1 in an empty Landau level above the
Fermi surface. In the STIRAP scheme (Sec. II B), the Landau
level shift is just a spin flip, so it does not modify the spatial
wave function. In the π -pulse scheme (Sec. II A), the Landau
level excitation produced by the first pulse is removed by a
second pulse. So in both cases, the only effect of the pump
on the spatial wave function is to modify the orbital of each
electron. This effect can be described by projection operators
b̃†: b̃†|m〉 = |m + 1〉. As seen from Eq. (2), shifting the orbital
of all electrons produces a quasihole, but in Eq. (2) these shifts
are produced by the ladder operators b† which also change the
norm of the state, b†|m〉 = √

m + 1|m + 1〉. In this appendix,
we analyze the role played by these normalization factors for
the many-body wave function.

For a single Slater determinant, the normalization factors
are irrelevant, as they are removed by normalizing the many-
body state vector. Therefore the optical pumping is exactly
the procedure which creates a hole within an integer quantum
Hall state. Fractional quantum Hall states, however, consist
of many Slater determinants, and each Slater determinant
may obtain a different normalization factor. Then, the overall
normalization of the many-body state does not fully remove
the normalization factors introduced by the ladder operators.

TABLE II. Overlap O = |〈�qh|�̃qh〉| between Laughlin quasi-
hole states produced from Eq. (A2) and from Eq. (A3).

N 5 6 7 8 9 10 11

O 0.9792 0.9763 0.9760 0.9769 0.9779 0.9786 0.9789

Instead, these factors will change the weight of each partici-
pating Slater determinant.

To quantify this change, let us denote the Slater determi-
nants by |α〉. Each Slater state bijectively maps onto the Slater
state |α̃〉, in which all orbital quantum numbers are increased
by one, m

(α)
i ↔ m

(α̃)
i = m

(α)
i + 1. We write a generic initial

state as

|�(0)〉 =
∑

α

cα|α〉, (A1)

with normalized coefficients,
∑

α |cα|2 = 1. The final state
then reads

|�(T )〉 ≡ |�̃qh〉 =
(

N∏
i=1

b̃
†
i

)∑
α

cα|α〉 =
∑

α

cα|α̃〉, (A2)

In contrast, the quasihole state as defined in Eq. (2) is given
by

|�qh〉 = N
(

N∏
i=1

b
†
i

) ∑
α

cα|α〉

= N
∑

α

√√√√ N∏
i=1

(
m

(α)
i + 1

)
cα|α̃〉. (A3)

Denoting Bα ≡
√∏N

i=1(m(α)
i + 1), the normalization factor of

the quasihole state reads N = (
∑

α |cα|2B2
α )−1/2. From this,

the overlap between �̃qh and �qh is obtained as

|〈�qh|�̃qh〉| =
∑

α |cα|2Bα√∑
α |cα|2B2

α

= 〈B〉0√
〈B2〉0

=
√

〈B〉2
0

〈B〉2
0 + var(B )

. (A4)

In the last equality, the brackets 〈· · · 〉0 denote the quantum
average of Bα with respect to state |�(0)〉, and the variance
of B is taken with respect to the probability distribution
described by |�(0)〉. Physically relevant states are sharp in
total angular momentum, and it follows that var(B ) � 〈B〉2

0,
so the overlap is on the order of 1. We have numerically
checked this for the Laughlin state in Table II, confirming
that the two different quasihole states |�qh〉 and |�̃qh〉 are
approximately the same (with overlap ∼0.98). Notably, their
overlap grows with the system size.

As a final remark, we note that the conventional definition
using the ladder operators is particularly appealing in terms
of first-quantized wave functions, as the quasihole insertion
simply leads to a prefactor, without modifying the structure
of the polynomial wave function. On the other hand, from a
second quantized point of view, the projector definition seems
more natural as it leaves the coefficients cα unchanged.
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[28] Z. Papić, R. S. K. Mong, A. Yazdani, and M. P. Zaletel, Phys.
Rev. X 8, 011037 (2018).

[29] M. R. Matthews, B. P. Anderson, P. C. Haljan, D. S. Hall,
C. E. Wieman, and E. A. Cornell, Phys. Rev. Lett. 83, 2498
(1999).

[30] M. F. Andersen, C. Ryu, P. Cladé, V. Natarajan, A. Vaziri,
K. Helmerson, and W. D. Phillips, Phys. Rev. Lett. 97, 170406
(2006).

[31] B. Paredes, P. Fedichev, J. I. Cirac, and P. Zoller, Phys. Rev.
Lett. 87, 010402 (2001).

[32] B. Juliá-Díaz, T. Graß, N. Barberán, and M. Lewenstein, New
J. Phys. 14, 055003 (2012).

[33] T. Graß, B. Juliá-Díaz, and M. Lewenstein, Phys. Rev. A 86,
053629 (2012).

[34] N. R. Cooper and S. H. Simon, Phys. Rev. Lett. 114, 106802
(2015).

[35] F. Grusdt, F. Letscher, M. Hafezi, and M. Fleischhauer, Phys.
Rev. Lett. 113, 155301 (2014).

[36] B. Wang, F. N. Ünal, and A. Eckardt, Phys. Rev. Lett. 120,
243602 (2018).

[37] M. Raciunas, F. N. Unal, E. Anisimovas, and A. Eckardt,
arXiv:1804.02002.

[38] R. O. Umucalılar and I. Carusotto, Phys. Rev. A 96, 053808
(2017).

[39] P. A. Ivanov, F. Letscher, J. Simon, and M. Fleischhauer, Phys.
Rev. A 98, 013847 (2018).

[40] N. V. Vitanov, A. A. Rangelov, B. W. Shore, and K. Bergmann,
Rev. Mod. Phys. 89, 015006 (2017).

[41] T. H. Hansson, M. Hermanns, and S. Viefers, Phys. Rev. B 80,
165330 (2009).

[42] A. E. B. Nielsen, I. Glasser, and I. D. Rodríguez, New J. Phys.
20, 033029 (2018).

[43] J. M. Kikkawa and D. D. Awschalom, Phys. Rev. Lett. 80, 4313
(1998).

[44] Y. Ohno, R. Terauchi, T. Adachi, F. Matsukura, and H. Ohno,
Phys. Rev. Lett. 83, 4196 (1999).

[45] A. Ghazaryan, T. Graß, M. J. Gullans, P. Ghaemi, and
M. Hafezi, Phys. Rev. Lett. 119, 247403 (2017).
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