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Heavy quasiparticle bands in the underscreened quasiquartet Kondo lattice
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We study the quasiparticle spectrum in an underscreened Kondo-lattice (KL) model that involves a single
spin degenerate conduction band and two crystalline-electric-field (CEF) split Kramers doublets coupled by both
orbital-diagonal and nondiagonal exchange interactions. We find the three quasiparticle bands of the model using
a constrained fermionic mean field approach. While two bands are similar to the one-orbital model, a new gen-
uinely heavy band inside the main hybridization gap appears in the quasiquartet model. Its dispersion is due to ef-
fective hybridization with conduction states, but the bandwidth is controlled by the size of the CEF splitting. Fur-
thermore, several new indirect and direct hybridization gaps may be identified. By solving the self-consistency
equation, we calculate the CEF splitting and exchange dependence of effective Kondo low-energy scale,
hybridization gaps, and bandwidths. We also derive the quasiparticle spectral densities and their partial orbital
contributions. We suggest that the two-orbital KL model can exhibit mixed CEF/Kondo excitonic magnetism.
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I. INTRODUCTION

The Anderson lattice and Kondo lattice (KL) models
provide the basic understanding for strongly correlated f -
electron systems like heavy-fermion metals, superconductors,
and Kondo insulators [1–5]. In the KL model, the charge fluc-
tuations between conduction and f electrons are already elim-
inated leading to conduction electrons that interact through an
effective Schrieffer-Wolff exchange term with a lattice of lo-
calized moments resulting from the total angular momentum
J of the f -electron shell. Their (2J + 1)-fold state degeneracy
is reduced by the action of the crystalline electric field leaving
(for noninteger J ) only twofold-degenerate (e.g., for common
tetragonal symmetry D4h) Kramers doublets or at the most
fourfold-degenerate quartets (in cubic symmetry Oh) as in Ce-
[6,7] or Sm-hexaboride [8] Kondo compounds.

In Kondo lattice studies it is frequently assumed that the
degeneracy of conduction states is the same as that of local-
ized states, leading to a SU(N) internal symmetry of the KL
Hamiltonian. This is reasonable for the N = 2 degeneracy of
a doublet ground state because of the Kramers degeneracy
of conduction electrons when inversion and time-reversal
symmetry are preserved. However, fourfold degeneracy of
conduction states may only appear along symmetry lines or
possibly symmetry planes, but generally not throughout the
whole Brillouin zone. Therefore, for N > 2 this model is
rather artificial. It is nevertheless useful because it is ac-
cessible to a simple constrained mean field approach which
becomes exact in the large-N degeneracy limit [1,9]. This
leads very naturally to hybridized itinerant bands with partly
heavy f character that are described by the simple dispersions
E1,2k = 1

2 (εk + λ) ± 1
2

√
(εk − λ)2 + 4V̄ 2 where λ, V̄ are

self-consistently determined effective f -level position and

hybridization, respectively, the former defining the low-
energy Kondo scale of the system. In the original Ander-
son model, one generally may also have a k-dependent
hybridization V̄k with nodes leading to pseudogap behav-
ior [10,11]. Most of the qualitative understanding of heavy
band and hybridization gap formation and its physical con-
sequences is based on this simple result for the equal de-
generacy or “fully screened” model. This designation stems
from the corresponding impurity model where the local
f moment will be fully screened at low temperature by
the exchange with conduction electrons leading to just an
enhanced Pauli susceptibility. However, even in the fully
screened case (N = 2), many Kondo compounds become
magnetically ordered [12], which is commonly explained as
a rigid heavy band polarization [13–16] in the lattice model.
The type of magnetic order then depends on the filling of
conduction band and strength of Kondo coupling. A more
advanced dynamical mean field theory (DMFT) approach
to KL magnetism beyond the rigid band model is used in
Refs. [17,18].

For application to realistic Kondo systems, in particular Ce
and Yb compounds, the SU(2) model seems oversimplified. In
the case of cubic compounds, the ground state may be a quar-
tet, then more than one hybridization gap may appear, e.g., in
cubic YbB12 [19] or more complicated order than magnetic
is observed as, e.g., in cubic CeB6 [20]. Even in tetragonal
systems, in particular in Yb compounds, the projection to the
SU(2) model for the lowest Kramers doublet is too restrictive
because of a close by first excited CEF Kramers state, forming
a quasiquartet with the ground state. This case is, e.g., realized
in YbRu2Ge2 [21–23] and other Yb and Ce compounds
[24,25] with �6−�7 low-lying quasiquartet. This opens a
new possibility, namely, induced or excitonic magnetic or

2469-9950/2018/98(15)/155121(16) 155121-1 ©2018 American Physical Society

http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevB.98.155121&domain=pdf&date_stamp=2018-10-11
https://doi.org/10.1103/PhysRevB.98.155121


PETER THALMEIER AND ALIREZA AKBARI PHYSICAL REVIEW B 98, 155121 (2018)

even multipolar order due to orbitally nondiagonal exchange
couplings [22].

This extension should also have profound consequences
for the Kondo physics. First, the inclusion of the excited
state implies that we have an underscreening situation with
total number of 2N f states and N = 2 for the conduction
band degeneracy which can drastically change the spectral
properties of hybridized bands [26]. Second, the CEF splitting
should strongly influence the Kondo energy scale which be-
comes dependent on the splitting size, as is well known in the
impurity models [27] and also on the difference in diagonal
and the additional off-diagonal exchange couplings. A most
interesting aspect is the influence of (partial) Kondo screening
on the possible excitonic order in the two-orbital quasiquartet
KL. This requires first a thorough understanding of how the
localized split CEF states turn into quasiparticle bands due
to the Kondo effect. So far, the underscreened KL has been
less extensively investigated. Existing work [28–30] discusses
possible magnetic phases and the ground-state phase diagram
without emphasis on CEF effects. In this work, we perform
a detailed study of a two-orbital underscreened KL model
with quasiquartet CEF states, in particular, in view of its
quasiparticle dispersion, hybridization gaps, CEF-splitting-
dependent Kondo energy scale, and spectral properties. This
is a prerequisite for discussing physical applications like in-
duced (excitonic) magnetism or multipolar order and possible
spin exciton modes in the paramagnetic phase as well as the
broken symmetry phases for such a more realistic Kondo
lattice model.

The paper is organized as follows: In Sec. II we introduce
the quasiquartet KL model and its fermionic representation.
The treatment within constrained mean field theory for the
strongly correlated f -electron limit is presented in Sec. III.
Then, in Sec. IV the quasiparticle bands are derived and their
properties like bandwidths, effective mass, and hybridization
gaps are discussed. Section V introduces the Green’s functions
of the model that give the basis for formulating the self-
consistency requirements and constraints in Sec. VI. The
numerical solutions, in particular spectral properties, are dis-
cussed in Sec. VII and, finally, Sec. VIII gives the conclusions
and outlook on further applications of the model.

II. MODEL OF THE QUASIQUARTET KONDO LATTICE

We investigate the Kondo-lattice (KL) model for a quasi-
quartet system of 4f -CEF states, having in mind Yb3+(4f 13)
or Ce3+(4f 1) Kondo ions with one f hole or electron,
respectively. The doublet constituents of this model CEF
scheme split by an energy �0 = 2� are treated as Kramers
S = 1

2 pseudospins. It is sketched in Fig. 1 and its exchange
interactions with conduction (c) electrons are indicated. A
more detailed discussion based on Ref. [22] is given in Ap-
pendix A. The effect of c-f hybridization and f -f Coulomb
interaction is described by the Anderson lattice model [2].
The Coulomb interaction is the largest energy scale and may
be eliminated by a Schrieffer-Wolff transformation [31]. This
leads to a Kondo-type Hamiltonian with effective antifer-
romagnetic (AF) exchange of strength (gJ − 1)Iex between
the conduction electron spins and the localized 4f moments
which (partly) screen them at low temperature. We consider a

Δ0

2

−Δ0

2

J12

J⊥
1

J⊥
2

Jz
2

Jz
1

kσ k σ

FIG. 1. Sketch of the quasiquartet CEF level scheme consisting
of two Kramers doublets (τ = 1, 2 CEF orbital index, e.g., for �6,
�7) with splitting �0. The various diagonal (J ⊥

τ , J z
τ ) and off-diagonal

(J12) interactions are indicated which scatter conduction electrons
from state (kσ ) to (k′σ ′).

model with only one conduction band but two pseudospins
representing the two lowest 4f Kramers doublets of the
(2J + 1) CEF scheme. Therefore, the degeneracy of con-
duction states is N = 2 whereas there are 2N = 4 localized
quasiquartet states. In the impurity case with just one f site,
such model is termed “underscreened” [28,32] because in
this case (for �0 = 0) the local 4f moment cannot be fully
screened to form a singlet ground state so that a residual
spin S∗ = 1

2 survives, leading to a Curie-type susceptibility
contribution at low temperature. Nevertheless, the Kondo
fixed point and associated local Fermi liquid is stable in the
underscreened case because the residual FM coupling of S∗
to the renormalized conduction states scales logarithmically
to zero [32,33]. This is in contrast to the overscreened case
(more than N conduction channels) where the Kondo fixed
point is unstable leading to non-Fermi-liquid behavior. While
the impurity case is understood there are few treatments for
the underscreened quasiquartet Kondo lattice model, which
is, however, of some practical importance in tetragonal (D4h

symmetry) Ce and Yb compounds. The model is defined by
the Hamiltonian

H = H0 + (gJ − 1)Iex

∑
i

si · Ji , (1)

where gJ is the Landé factor of the lowest total angu-
lar momentum (J) state of Ce3+(4f 1, J = 5

2 ) electron or
Yb3+(4f 13, J = 7

2 ) hole and s the conduction electron spin.
The first part of the Hamiltonian describes noninteracting
conduction electrons and CEF states. When we restrict the
latter to the two lowest Kramers doublet states in Fig. 1, one
may transform it to a fermionic representation as described in
Appendix A according to

H = H0 + Hcf + H
(12)
cf ,

H0 =
∑
kσ

εkc
†
kσ ckσ + 1

2
�0

∑
iτσ

(−1)τ f †
iτσ fiτσ ,

Hcf = 1

4

∑
iτ

J z
τ (f †

iτ↑fiτ↑ − f
†
iτ↓fiτ↓)(c†iτ↑ciτ↑ − c

†
iτ↓ciτ↓)

+ 1

2

∑
iτ

J⊥
τ (f †

iτ↑fiτ↓c
↓
i↓ci↑ + f

†
iτ↓fiτ↑c

†
i↑ci↓),

H
(12)
cf = 1

2
J12

∑
iτ

(f †
iτ↓fiτ̄↑c

↓
i↑ci↓ + f

†
iτ↑fiτ̄↓c

↓
i↓ci↑). (2)
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Here, c†kσ create the single-band conduction states with disper-
sion denoted by εk and spin degeneracy by σ =↑,↓, respec-
tively. The second term in H0 describes the 4f quasiquartet
of Fig. 1 with the two constituent Kramers doublets at lattice
sites Ri and with pseudospin index σ =↑,↓. The doublets
are denoted by the orbital index τ = 1, 2 (lower and upper
doublets, respectively). The second term Hcf corresponds to
elastic exchange scattering of c electrons from each doublet
while the third term H

(12)
cf is associated with the inelastic

(off-diagonal) scattering between the orbitally different dou-
blets. Due to tetragonal symmetry, the former is described by
sets of constants J z

τ , J⊥
τ (τ = 1, 2) for exchange parallel and

perpendicular to the tetragonal z axis. For the inelastic term,
J z

12 = 0 and we define J12 ≡ J⊥
12 (for details see Appendix A).

In this work, we restrict to the case where all effective
couplings are antiferromagnetic, although more general cases
are possible (Appendix A). Furthermore, we investigate only
the paramagnetic phase within the constrained mean field
approach. Then, only the set of three transverse exchange
parameters J⊥

τ , J12 contribute to the ground-state energy and
quasiparticle energies within mean field decoupling scheme
[1,9] of H carried out in the following section.

III. CONSTRAINED MEAN FIELD THEORY

For this purpose, we introduce as (nonmagnetic) order
parameter the effective homogeneous hybridization field gen-
eralized from Refs. [1,9] or Refs. [13–16] and defined by

Vτ = 〈V̂iτ 〉 = 〈f †
iτ↓ci↓ + c

†
i↑fiτ↑〉,

Vτ τ̄ = 〈V̂iτ τ̄ 〉 = 〈f †
iτ↓ci↓ + c

†
i↑fiτ̄↑〉. (3)

We set the gauge to Vτ = V ∗
τ and Vττ̄ = V ∗

τ τ̄ and restrict to
the symmetric case Vττ̄ = Vτ̄τ . It is easy to show that V12 =
V21 = 1

2 (V1 + V2). Here, Vτ describes the amplitude of each
f doublet to form a singlet state with a conduction electron at
the same site.

The effect of large f -f Coulomb interaction is to exclude
doubly occupied states for electrons (holes) in the f -electron
Hilbert space. This may be achieved by adding a Lagrange
term according to

Hλ =H +
∑

i

λi

(∑
τ

n̂
f

iτ −1

)
, n̂

f

iτ =
∑

σ

f
†
iτσ fiτσ . (4)

The constraint of single f occupancy is enforced only glob-
ally in the mean field approach. Using Eq. (3), the decoupling
leads to

Hλ
mf = Eλ

0 + H̃ λ
mf

= Eλ
0 +

∑
kσ

εkc
†
kσ ckσ +

∑
kτσ

ελ
0τ f

†
kτσ fkτσ

+
∑
kτσ

V̄τ (f †
kτσ ckσ + c

†
kσ fkτσ ). (5)

Here, we defined

Eλ
0 = 1

2

∑
τ

J⊥
τ V 2

τ + J12V
2

12 − λ, ελ
0τ = λ + (−1)τ

�0

2
,

(6)

furthermore, we introduced the mixed hybridization ampli-
tudes given by(

V̄1

V̄2

)
= −1

2

(
J⊥

1 + 1
2J12

1
2J12

1
2J12 J⊥

2 + 1
2J12

)(
V1

V2

)
. (7)

This transformation expresses the influence of nondiagonal
(inelastic) exchange terms in the singlet formation.

The total ground-state energy (per site, Ns = number of
sites) is then given by

Eλ
gs/Ns = 〈

Hλ
mf

〉/
Ns

= 1

Ns

∑
kσ

εkn
c
kσ + 1

2
�0

(
n

f

2 − n
f

1

)

+ λ
(
n

f

1 + n
f

2 − 1
) + 1

2

(
J⊥

1 V 2
1 + J⊥

2 V 2
2

) + J12V
2

12

− 1

2

∑
τ

(J⊥
τ Vτ + J12V12)

2

Ns

∑
kσ

〈f †
kτσ ckσ 〉, (8)

where we defined

nc
kσ = 〈c†kσ ckσ 〉, nf

τ =
∑

σ

〈f †
iτσ fiτσ 〉, (9)

as the c- and f -electron occupations, respectively. For nonin-
teracting conduction electrons we have nc

kσ = �H (μ − εkσ ),
where μ is the chemical potential and �H the Heaviside
function.

Minimization of the ground-state energy with respect to λ

and Vτ leads to

nf = n
f

1 + n
f

2 = 1,

Vτ = 1

Ns

∑
kσ

〈f †
kτσ ckσ 〉, (10)

which express single occupancy constraint and hybridiza-
tion self-consistency, respectively. Furthermore, minimization
with respect to V12 only gives V12 = 1

2 (V1 + V2) consistent
with the definitions in Eq. (3). Then, introducing the spinors
�

†
kσ = (c†kσ , f

†
1kσ , f

†
2kσ ) we obtain the bilinear mean field

Hamiltonian given by

H̃ λ
mf =

∑
km

�
†
kmĥk�km, ĥk =

⎛
⎝εk V̄1 V̄2

V̄1 ελ
01 0

V̄2 0 ελ
02

⎞
⎠. (11)

We abbreviate � = 1
2�0 so that the effective f -level energies

are ελ
01 = λ − �, ελ

02 = λ + �. Furthermore, ελ
k = εk − λ

will be used.

IV. QUASIPARTICLE BANDS AND STATES

In this section, we discuss the basic properties like dis-
persions, wave functions, hybridization gaps, and effective
masses of the quasiparticle bands which may be found in
closed form from diagonalizing the above bilinear mean field
Hamiltonian.

A. Hybridized dispersions and wave functions

The hybridized quasiparticle dispersions are obtained by
finding the zeros of the characteristic polynomial of ĥk given
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d

d

FIG. 2. Hybridized quasiparticle bands Enk (a) along straight
BZ path M (−π,−π ) − �(0, 0) − M (π, π ) with some direct and
indirect hybridization gaps indicated (Sec. IV B). There are two
different direct hybridization gaps in the two-orbital KL model. The
larger (�d

h1) is determined by the effective hybridization scale V̄ ,
the smaller (�d

h3) by the Kondo scale T ∗. The latter is of the same
size as the indirect gap �in

h3. Parameters are J ⊥
1 = 0.470, J ⊥

2 =
0.767, J12 = 0.2, � = 0.056. Then, the particle-hole-symmetric
case is realized with self-consistently determined V̄1 = V̄2 = 0.183
and setting μ = −0.096 (top of band n = 2). All energies in this
and subsequent figures are given in units of the half-conduction band
with Dc.

by dk(iωn) = det(iωn − ĥ) (ωn is a Matsubara frequency). Its
evaluation leads to

dk(iωn) = (iωn − εk )
(
iωn − ελ

01

)(
iωn − ελ

02

)
− V̄ 2

1

(
iωn − ελ

02

) − V̄ 2
2

(
iωn − ελ

01

)
= (iωn − E1k )(iωn − E2k )(iωn − E3k ). (12)

The three hybridized quasiparticle bands Enk (n = 1, 2, 3) are
obtained from solving dk(iωn) = 0 as

E1k = λ + 1

3
ελ

k + 2 3
√

rk cos

(
φk

3

)
,

E2k = λ + 1

3
ελ

k + 2 3
√

rk cos

(
φk

3
+ 2π

3

)
, (13)

E3k = λ + 1

3
ελ

k + 2 3
√

rk cos

(
φk

3
+ 4π

3

)
.

These relations generalize the simple one f -orbital hybridiza-
tion formula mentioned in the Introduction to the case of a
CEF split two-orbital system. Here, the auxiliary functions
rk, φk are given by

rk =
(

1

3

[
(�2 + V̄ 2) + 1

3
ελ2

k

]) 3
2

,

cos φk = 1

2rk

{
1

3
ελ

k

[
2

9
ελ2

k + (�2 + V̄ 2)

]
− �

(
ελ

k� + δs

)}
,

(14)

where we defined V̄ 2 = V̄ 2
1 + V̄ 2

2 and δs = V̄ 2
1 − V̄ 2

2 . The
three quasiparticle bands Enk are shown in Fig. 2 for a special
parameter set with V̄τ evaluated self-consistently as described

0
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0.8

u2 n(k
) n=1

n=2
n=3

-1 -0.5 0 0.5 1
k/

0
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0.6

0.8

1

v2 n(k
) 

+
 w

2 n(k
)

FIG. 3. Weights for c electrons (top) and total f -electron weight
(bottom) for hybridized quasiparticle bands along [11] M-�-M
direction (cf. Fig. 2). For the central heavy band (n = 3) conduction
state weight u2

3(k) is small and total f weight v2
3 (k) + w2

3 (k) is close
to one. For the upper (n = 1) and lower (n = 2) hybridized bands,
these weights alternate over the BZ.

in Sec. VI. For this figure [and the associated density of states
(DOS) in Fig. 5] we use parameters such that particle-hole
symmetry is preserved. There is a distinctive difference to the
fully screened KL model (one orbital per conduction band): In
the latter, one has only an upper and a lower hybridized band
similar to bands n = 1, 2 in Fig. 2 with E3k missing. In the
present underscreened model with two f orbitals, there is a
third narrow band E3k within the large direct hybridization
gap �d

h1 in Fig. 2. Thus, the present model provides the
existence of a heavy band extending throughout the Brillouin
zone (BZ), contrary to the single f -orbital model where the
heavy mass appears only on the zone center and boundary
alternatively for the two bands.

In addition to the dispersion, it is important to know
the composition of Bloch states in terms of conduction and
localized f states for all wave vectors according to∣∣�n

kσ

〉 = un
kc

†
kσ |0〉 + vn

kf
†
1kσ |0〉 + wn

kf
†
2kσ |0〉, (15)

where n = 1–3 is the band index denoting band Enk and
associated Bloch state |�n

kσ 〉. For these eigenstates of ĥk we
obtain

un2
k = [

V̄ 2
1

(
Enk − ελ

02

) + V̄ 2
2

(
Enk − ελ

01

)]2/
Dn

k,

vn2
k = V̄ 2

1

(
Enk − ελ

02

)2
(Enk − εk )2

/
Dn

k, (16)

wn2
k = V̄ 2

2

(
Enk − ελ

01

)2
(Enk − εk )2

/
Dn

k,

and

Dn
k = (Enk − εk )2

[
V̄ 2

1

(
Enk − ελ

02

)2 + V̄ 2
2

(
Enk − ελ

01

)2]
+ [

V̄ 2
1

(
Enk − ελ

02

) + V̄ 2
2

(
Enk − ελ

01

)]2
.

These coefficients fulfill the normalization condition un2
k +

vn2
k + wn2

k = 1. The c-electron weight u2
nk and total f weight

vn2
k + wn2

k for the three bands are shown in Fig. 3. We note that
the bands n = 1, 2 have partly c or f character which changes
when k moves across the BZ. (cf. Fig. 2). On the other hand,
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the central narrow (heavy) band has predominantly f -electron
character throughout the BZ. Its small dispersion is due to a
small c-electron admixture.

B. Bandwidths, hybridization gaps, and effective masses

Before we solve the central self-consistency problem for
the order parameters V̄τ (or Vτ ), we assume that they are
already known and then discuss certain characteristic features
of the quasiparticle bands like widths and hybridization gaps.
For this purpose, to keep algebraic expressions simple, we
restrict mostly to the symmetric case V̄1 = V̄2 ≡ V̄ with δs =
0 where the spectrum may show particle-hole symmetry for
proper choice of μ such that λ = 0. The condition for its
realization and also the asymmetric situation V̄1 �= V̄2 will be
discussed further in Sec. VII using the numerical results.

We first recall the two hybridized bands E1,2k in the one
f -orbital KL model given in the Introduction. The essential
nontrivial features of this model are (i) a direct hybrization
gap �d

h = 2V̄ resulting from the anticrossing of conduc-
tion band and renormalized f level, (ii) a much smaller
indirect hybridization gap �in

h = 2 V̄ 2

Dc
� �d

h which defines
a new low-energy scale T ∗ = V̄ 2/Dc that is exponentially
small compared to the conduction bandwidth 2Dc (see also
Appendix B). The fermionic quasiparticle picture of the KL
is valid for temperatures much below the characteristic tem-
perature T ∗. The low-energy scale is associated with very flat
bands near the BZ center and boundaries. The corresponding
Bloch states have high effective masses of the order m∗/mc 

Dc/T ∗ � 1 (mc is the bare conduction band mass). The
heavy mass quasiparticles and small (indirect) hybridization
gap govern the low-temperature (T � T ∗) thermodynamic,
transport, and dynamical physical properties of heavy-fermion
metals and Kondo semiconductors [2,5,31].

In the underscreened two-f -orbital model this simple pic-
ture has to be extended due to the appearance of an ad-
ditional heavy (narrow) band within the main hybridization
gap (Fig. 2). The excitation spectrum may now be character-
ized by the following bandwidths Wn and hybridization gaps
�d

h,�
in
h which are energy differences of the three bands Enk at

symmetry k points, e.g., k = 0, Q′ = (π/2, π/2), and Q =
(π, π ). From Table I we get (λ � Dc ) the following

Bandwidths:

Wn=1,2 = EnQ − En0

= Dc + 1

2

(
V̄ 2

Dc

+ �2

Dc

)
− 1

2
Dc

[(
V̄ 2

D2
c

)2

+ �2
0

D2
c

] 1
2

,

W3 = E3Q − E30

= −
(

V̄ 2

Dc

+ �2

Dc

)
+ Dc

[(
V̄ 2

D2
c

)2

+ �2
0

D2
c

] 1
2

.

Here, for convenience we used both �0 and � = �0
2 . For

orbital splitting �0 → 0 we have Wn=1,2 → Dc and W3 → 0.
The overall bandwidth of En=1,2k bands is little affected by �

(as is obvious from Fig. 2), it is always of order Dc. On the
other hand, the width of the narrow central band E3k depends
sensitively on the orbital splitting �0. For a finite dispersion
of E3k, a finite splitting �0 as well as a finite hybridization
V̄ is required. The � dependence of W3 is shown in Fig. 4
(full black line). This genuinely heavy band is a unique aspect
of the quasiquartet KL model. In fact, it directly charac-
terizes the low-energy scale because W3 may be written as
(T ∗ = V̄ 2/Dc )

W3 = −T ∗ + (
T ∗2 + �2

0

) 1
2



{

1
2�0

(
�0
T ∗

)
, �0 < T ∗

�0
[
1 − (

T ∗
�0

)]
, �0 > T ∗ (17)

where we neglected terms of order (�2/Dc ). As shown in
Fig. 4 the orbital splitting �0 must be finite to get a dispersive
central band in Fig. 2. For finite �0 when T ∗ → 0 the central
band degenerates into two flat subbands an energy �0 apart.

From Fig. 2 we also conclude that the band structure of the
quasiquartet model KL exhibits several hybridization gaps,
in contrast to the single-orbital model: three direct gaps �d

hi

and three indirect gaps �in
hi (i = 1–3). For each class, two are

equivalent for the symmetric case when V̄1 = V̄2 and spectral
symmetry holds. We then obtain the following

TABLE I. Typical boundary cutoff values of the hybridized bands (Fig. 2) and associated DOS functions in Fig. 5(a). Here, V̄ 2 = V̄ 2
1 +

V̄ 2
2 , δs = V̄ 2

1 − V̄ 2
2 . In the last column, terms of order ≈(�2/Dc ) are suppressed. Furthermore, λ � Dc is assumed. Particle-hole symmetry is

preserved for δs = 0 and λ = 0.

DOS cutoff General V̄ , δs, � Special: � = 0

Ea = E20 −Dc − (
V̄ 2

Dc
+ �2

Dc

) −Dc − V̄ 2

Dc

E−
b = E2Q − 1

2

(
V̄ 2

Dc
+ �2

Dc

) − 1
2 Dc

[(
V̄ 2

D2
c

)2 + �2
0

D2
c

+ 2 �0δs

D3
c

] 1
2 + λ − V̄ 2

Dc
+ λ

E+
b = E30

1
2

(
V̄ 2

Dc
+ �2

Dc

) − 1
2 Dc

[(
V̄ 2

D2
c

)2 + �2
0

D2
c

+ 2 �0δs

D3
c

] 1
2 + λ λ

E−
c = E3Q − 1

2

(
V̄ 2

Dc
+ �2

Dc

) + 1
2 Dc

[(
V̄ 2

D2
c

)2 + �2
0

D2
c

+ 2 �0δs

D3
c

] 1
2 + λ λ

E+
c = E10

1
2

(
V̄ 2

Dc
+ �2

Dc

) + 1
2 Dc

[(
V̄ 2

D2
c

)2 + �2
0

D2
c

+ 2 �0δs

D3
c

] 1
2 + λ V̄ 2

Dc
+ λ

Ed = E1Q Dc + (
V̄ 2

Dc
+ �2

Dc

)
Dc + V̄ 2

Dc
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FIG. 4. Hybridization gaps and width of quasiparticle bands
Enk (n = 1–3) (Fig. 2) as function of quasiquartet splitting �.
Exchange parameters are J ⊥

1 = J ⊥
2 = 0.7 and J12 = 0.1 with μ =

−0.081. Here, W3 = E3Q − E30 is the central heavy bandwidth (full
black line). Direct hybridization gaps are �d

h2 = E10 − E30 (full blue
line) and �d

h3 = E3Q − E2Q (dashed blue line). Indirect hybridiza-
tion gaps are �in

h1 = E10 − E2Q, the overall indirect gap (full red
line), �in

h2 = E10 − E3Q (dashed red line), and �in
h3 = E30 − E2Q

(dashed-dotted red line). Some gaps behave nonmonotonically as a
function of splitting �.

Direct hybridization gaps:

�d
h1 = E1Q′ − E2Q′ = 2(V̄ 2 + �2)

1
2 ,

�d
h3 = E3Q − E2Q = Dc

[(
V̄ 2

D2
c

)2

+ �2
0

D2
c

] 1
2

= (
T ∗2 + �2

0

) 1
2

≡ E10 − E30 = �d
h2; (18)

Indirect hybrization gaps:

�in
h1 = E10 − E2Q

=
(

V̄ 2

Dc

+ �2

Dc

)
+ Dc

[(
V̄ 2

D2
c

)2

+ �2
0

D2
c

] 1
2


 T ∗ + (
T ∗2 + �2

0

) 1
2 ,

�in
h3 = E30 − E2Q =

(
V̄ 2

Dc

+ �2

Dc

)

 T ∗

≡ E10 − E3Q = �in
h2. (19)

The first direct gap is also valid for the general case V̄1 �=
V̄2 (δs �= 0). For � → 0, �d

h1 ≡ 2V̄ as in the single-f -orbital
KL and �d

h2,3 = T ∗. Thus, in the two-orbital KL there are
also direct hybridization gaps �d

h2,3 which are equal to the
Kondo low-energy scale T ∗. For the calculation of T ∗ in terms
of the microscopic model parameters, the self-consistency
equation (10) under the particle-number constraint for nf has
to be solved. We will do this for general V̄1, V̄2. Then, due
to the lack of spectral symmetry, all three direct as well as
indirect hybridization gaps are inequivalent (Fig. 4).

Corresponding to the flat parts of the dispersions we may
also introduce effective renormalized quasiparticle masses

m∗
n (n = 1–3) in relation to the underlying unhybridized tight-

binding model with a band mass mb = h̄2kF

Dc
. We obtain

m∗
1,2

mb

=
(

Dc

V̄

)2

= Dc

T ∗ ,
m∗

3

mb



(

V̄

�

)2

= T ∗Dc

�2
, (20)

and therefore

m∗
3

m∗
1,2

=
(

T ∗

�

)2

, (21)

Thus, in the two-orbital model two types of heavy renor-
malized quasiparticle masses appear: (i) the m∗

1,2 effective
mass of upper/lower hybridized partly heavy bands which are
analogous to the one orbital model; (ii) the type m∗

3 effective
mass of the central globally heavy band that appears only
in the two-orbital model. The latter depends strongly on �;
it increases with decreasing CEF splitting and diverges for
� = 0 leading to a flat unhybridized band. Any small residual
quasiparticle interactions beyond the present mean field treat-
ment will then localize these states into a twofold-degenerate
unscreened localized spin moment which is naturally expected
for the present underscreened case. Thus, the CEF splitting
which completely suppresses the underscreening for � � T ∗
is necessary to stabilize the itinerancy of the central quasipar-
ticle band. In fact, its width and mass increase or decrease
with increasing �, respectively. We give a simple estimate for
the localization due to renormalized quasiparticle interaction
denoted U ∗, assumed positive here. The scale of the latter
is estimated from fluctuation expansion beyond mean field
solution for the one-orbital Anderson lattice model [34]. In the
present Kondo limit, it is equivalent to U ∗ = (Iex/Dc )T ∗. The
central narrow band will stay itinerant as long as W3 � U ∗.
This is approximately the case when �0 > (Iex/Dc )T ∗. For
much smaller �0, W3 will shrink rapidly (Fig. 4) and local-
ization to a residual spin S∗ = 1

2 will occur. As mentioned in
Sec. II, S∗ is weakly coupled to the remaining heavy band
states and their coherent Fermi-liquid behavior is preserved.
Eventually, the effective intersite interactions in the lattice will
lead to magnetic order of residual spins.

V. RENORMALIZED GREEN’S FUNCTIONS
AND SPECTRAL FUNCTIONS

The determination of Lagrange parameter λ (the effec-
tive f -level position) from the self-consistency equation and
chemical potential μ from the particle-number constraint is
facilitated by the use of spectral functions. They may be com-
puted from the Green’s function matrix (in c, f1, f2 orbital
space) of the model which is defined by

Ĝk(iωn)= (iωn−ĥk )−1 =
⎛
⎝Gc A1 A2

A1 Gf 1 B

A2 B Gf 2

⎞
⎠

k,iωn

. (22)

Each element may be given explicitly or in terms of its
bare Green’s function element (which is nonzero only for
the diagonal) and the renormalized conduction electron
Green’s function Gc(iωn). Alternatively, the elements may be
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presented in explicit form as [using dk(iωn) from Eq. (12)]

Gc(iωn) = (
iωn − ελ

01

)(
iωn − ελ

02

)/
dk(iωn),

Gf 1(iωn) = [
(iωn − εk )

(
iωn − ελ

02

) − V̄ 2
2

]/
dk(iωn), (23)

Gf 2(iωn) = [
(iωn − εk )

(
iωn − ελ

01

) − V̄ 2
1

]/
dk(iωn)

for the diagonal part and likewise for the off-diagonal terms:

A1(iωn) = V̄1
(
iωn − ελ

02

)/
dk(iωn),

A2(iωn) = V̄2
(
iωn − ελ

01

)/
dk(iωn), (24)

B(iωn) = V̄1V̄2/dk(iωn).

The latter describe the mixing of orbital dynamics due to the
Kondo interaction term. The pole structure of d−1

k (iωn) is
determined by the three quasiparticle energies [Eqs. (12) and
(13)]. The above form is therefore appropriate when, e.g., one
wants to calculate the dynamic magnetic susceptibility or opti-
cal conductivity in terms of quasiparticle excitation energies.
For the moment we are only interested in the orbitally pro-
jected density of states (DOS) functions. For this purpose, the
use of explicit quasiparticle bands may be circumvented, as
was demonstrated already for the one-orbital KL model [1,9].
In this case, we can employ the following representations of
diagonal Green’s function elements:

Gc(iωn) = G0
c[iωn − �c(iωn)] = 1

[iωn − �c(iωn)] − εk
,

Gf τ (iωn) = G0
f τ (iωn) + V̄ 2

τ(
iωn − ελ

0τ

)2 Gc(iωn), (25)

�c(iωn) = �τ

V̄ 2
τ

iωn − ελ
0τ

(τ = 1, 2)

where G0
c (iωn)= (iωn−εk )−1 and G0

f τ (iωn)= (iωn−ελ
0τ )−1

are the bare conduction electron and f -electron Green’s
functions and �c(iωn) is the conduction electron self-energy
due to the Kondo interaction. The nondiagonal parts may be
represented as

Aτ (iωn) = V̄τ(
iωn − ελ

0τ

)Gc(iωn),

B(iωn) = V̄1V̄2(
iωn − ελ

01

)(
iωn − ελ

02

)Gc(iωn). (26)

Thus, all Green’s function elements of Eq. (22) may be
expressed by the renormalized conduction electron Gc(iωn)
which contains the Kondo interaction effect via �c(iωn).
Then, all spectral functions and generalized DOS functions
can be calculated with

ρ̂(iωn) = − 1

π
Im

1

Ns

∑
k

Ĝ(kiωn)iωn→ω+iη. (27)

Using Eqs. (25) and (26), this can eventually be expressed via
the bare conduction electron DOS ρ0

c (ω) = (1/Ns )�kδ(ω −
εk ). There are two straightforward model expressions for this

quantity:

SQ-DOS: ρ0
c (ω) = 1

2Dc

�H (Dc − |ω|),

TB-DOS: ρ0
c (ω) =

(
4

π2

)
K

(
1 − ω2

D2
c

)
1

2Dc

�H (Dc − |ω|).

(28)

The first is a constant square box DOS ρ0
c = 1/2Dc within the

interval |ω| � Dc (2Dc = bare conduction bandwidth). The
second possibility corresponds to the DOS of the 2D nearest-
neighbor (NN) tight-binding (TB) model also used for the
dispersion in Fig. 2, namely, εk = −(Dc/2)(cos kx + cos ky ).
Due to the (complete) ellliptic function K (x) (of the first kind)
it has a logarithmic van Hove singularity at ω = 0 (x = 1).
Then, using Eqs. (25) and (26), all components of Eq. (27)
may be expressed by ρc(ω) and �c(ω). One obtains

ρc(ω) = ρ0
c [ω − �c(ω)],

ρf τ (ω) = V̄ 2
τ(

ω − ελ
0τ

)2 ρc(ω),

ρf (ω) =
∑

τ

ρf τ (ω),

ρAτ (ω) = V̄τ(
ω − ελ

0τ

)ρc(ω). (29)

For special parameters (e.g., Figs. 2 and 5) the DOS functions
may have the spectral symmetries ρc,f (ω) = ρc,f (−ω) and
ρτ (ω) = ρτ̄ (−ω) (see Sec. VII). The partial f -DOS ρf τ and
“hybridization DOS” ρAτ are derived from the renormalized
ρc by multiplication with (singular) prefactors. Therefore,
we first discuss the renormalized conduction electron DOS
itself. For the square DOS model of Eq. (28) it is shown in
Fig. 5(a). The two hybridization gaps and the central band are
clearly visible. The cutoff energies of the bands (DOS and
hybridization gap boundaries) are designated in analogy to
the single-f -orbital KL model [9]. They are summarized in
Table I (see also Fig. 2). The limits in the last column are
for � → 0, i.e., the degenerate f quartet. In this case, E+

b =
E−

c = λ are degenerate because the central E3k quasiparticle
band is dispersionless in agreement with Eqs. (17) (W3 = 0).

The more physically relevant (total) f -DOS is shown
in Figs. 5(b) and 5(c), obtained by using Eq. (29) with
square-DOS (b) or TB-DOS (c) models, respectively. The
typical DOS singularities at the main hybridization gap
boundaries E−

b , E+
c are visible for V̄1 = V̄2 = V̄ . They result

from the flat portions of the lower/upper hybridized bands
En=1,2(k) in Fig. 2. Furthermore, the overall flat central band
E3(k) produces a strong narrow f -DOS peak around λ whose
width is given by Eq. (17). It has mostly contributions from
f1, f2 states (Fig. 3) which are shown as dashed lines in
Figs. 5(b) and 5(c). The according DOS for the alternative TB
model (which really corresponds to Figs. 2 and 3) is shown
in Fig. 5(c). Because of the van Hove singularity, the DOS
of the central band E3(k) shows additional structure., but
essentially the qualitative bandwidths and hybridization gaps
are unchanged.
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FIG. 5. Renormalized c- and f -DOS for parameters J ⊥
1 = 0.470, J ⊥

2 = 0.767, J12 = 0.2, � = 0.056, same as in Fig. 2. Then, the
particle-hole-symmetric case is realized with self-consistently determined V̄1 = V̄2 = 0.183 and setting μ = −0.096, corresponding to λ = 0.
(a) Renormalized conduction electron DOS [Eq. (29)] for square and TB DOS models [Eq. (28)]. (b) Renormalized partial and total f -DOS
based on square DOS model of ρ0

c (ω). (c) Same quantities based on TB DOS model. (In all figures, the notation a,b,c is from left to right and
top to bottom.)

VI. SELF-CONSISTENCY RELATION AND CONSTRAINTS

The DOS functions of Sec. V may be used to express
particle-number constraints and self-consistency condition as

N

∫ μ

−∞
ρc(ω)dω = nc,

N

∫ μ

−∞
ρf (ω)dω = nf ≡ 1,

N

∫ μ

−∞
ρAτ (ω)dω = Vτ ,

(30)

where N = 2 is the doublet pseudospin degeneracy. These are
four equations which determine μ, λ, V̄1, V̄2 (or V1, V2). To
gain some insight it is useful to investigate analytical approx-
imate solutions of these implicit equations. For simplicity we
use the square DOS model in for ρ0

c (ω) in Eq. (28). It has
the advantage that the self-consistency equation (10) can be
expressed as an algebraic equation and the Kondo scale T ∗
depends smoothly on μ. We restrict to the symmetric case
(V̄1 = V̄2, λ = 0) with nc < 1.

From the first of Eq. (30) one obtains the conduction
electron number nc(ω). It is shown further below in Fig. 6(a)

where it has linear behavior in ω aside from the two small
plateaus caused by the hybridization gap �d

h2,3 of Eq. (18).
Up to the plateau energy we have [nc = nc(μ)]

μ = (nc − 1)Dc −
(

V̄ 2

Dc

+ �2

Dc

)
. (31)

For the symmetric case according to Fig. 5(a), nc = 1 −
W3/(2Dc ) holds. For this value of nc when the conduction
states of the lower band are filled Eq. (31) leads indeed,
together with Eq. (17), to μ = E−

b , i.e., the chemical potential
is pinned to the upper edge E−

b of the E2k band where
nf (μ) = 1 [Figs. 6(a) and 6(b)]. Assuming � � T ∗ we may
approximate nc = 1 − �2/(T ∗Dc ). For smaller nc, the chem-
ical potential drops below the edge (E−

b − μ > 0) [Figs. 6(a)
and 6(b)].

Now, we describe the essential procedure how the value
of λ − μ may be approximately obtained from the self-
consistency equation [last in Eq. (30)]. It may be written as

Vτ = NV̄τ

2Dc

ln
μ − λ − (−1)τ�

Ea − λ − (−1)τ�
≡ NV̄τ

2Dc

Fτ . (32)
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FIG. 6. (a) Integrated conduction and f -electron DOS nc(ω)
(full black line), nf (ω) (full blue line) for the symmetric case
(parameters as in Fig. 5). By the constraint the chemical potential
μ = E−

b lies near the upper edge [see (b)] of lower quasiparticle
band such that nf (μ)/N = 1

2 . Here, we are also below and close
to half-filling nc(μ)/N = 1

2 . When μ (or nc) decreases, the DOS gap
structure (dashed lines) is dragged along to lower energy to keep the
f occupation nf (μ)/N = 1

2 fixed (see also Fig. 12). (b) Position of
chemical potential with respect to upper edge E−

b of lower band.

Here, we defined the auxiliary function

Fτ (μ, λ) =
∫ μ

−∞

ρ̂c(ω)(
ω − ελ

0τ

)

 ln

λ − μ + (−1)τ�

(Dc + μ) + λ − μ + (−1)τ�



{

ln λ−μ−�

Dc
(τ = 1),

ln λ−μ+�

Dc
(τ = 2),

(33)

where in the first approximation we used Ea 
 −Dc, the
second approximation holds for λ, |μ|,� � Dc. In F1, F2 we
must have λ − μ > � by definition. Using the transformation
given by Eq. (7), we get the matrix self-consistency equation

(
(Nρ0)F1 − a1

A
− b

A

− b
A

(Nρ0)F2 − a2
A

)(
V̄1

V̄2

)
= 0. (34)

It implies a relation between the two effective hybridizations
given by

V̄ 2
1 = RV̄ 2

2 , R = (Nρ0)F2A − a1

(Nρ0)F1A − a2
, (35)

where from now on we use the definitions

aτ = − 1
2

(
J⊥

τ + 1
2J12

)
,

b = − 1
4J12,

A = a1a2 − b2 = 1
4

[
J⊥

1 J⊥
2 + 1

2J12(J⊥
1 + J⊥

2 )
]
,

B = 1
2 (a1 + a2) = − 1

2

[
1
2 (J⊥

1 + J⊥
2 ) + 1

2J12
]
. (36)

The solution for λ − μ is then defined by the (secular) self-
consistency equation, i.e., the vanishing of the matrix deter-
minant function F (λ − μ; �) given by

F (λ − μ,�) = (Nρ0)2(a1a2 − b2)F1F2

− (Nρ0)(a1F1 + a2F2) + 1 = 0. (37)

This is the fundamental equation for the problem which deter-
mines λ − μ, the effective f -level position above the Fermi
energy. It adjusts itself such that the nf = 1 constraint is
respected. We may obtain the explicit solution in the simplest
special case with � = 0, J⊥

1 = J⊥
2 = J⊥, and J12 = 0 where

we get the approximate (|μ| � Dc ) result

T ∗(0) : = T ∗
0 = Dc exp

(
− 2

g

)
, g = (Nρ0)J⊥. (38)

Here, T ∗
0 is the Kondo temperature of each individual doublet

since we assumed they are decoupled (J12 = 0). More general
cases are treated in Appendix B. In the most general situation,
the self-consistency equation can be solved for λ − μ only
numerically. For large � it has a unique solution (Fig. 7), for
smaller � there are two solutions. The larger is the physical
one because it corresponds to lower KL ground-state energy
and also connects adiabatically to the unique solution for
larger � [Fig. 7(b)]. To extract the Kondo scale T ∗(�) for
the general asymmetric case from the numerical solution of
Eq. (37) for λ − μ we subtract the effect of � on λ − μ

[Fig. 7(b)] according to (see also Appendix B)

λ − μ = � + T ∗(�). (39)

Likewise, we may then also compute the effective hybridiza-
tions V̄τ . They are obtained by using V̄ 2

1 = RV̄ 2
2 [Eq. (35)]

together with the constraint nf = 1 [Eq. (29)] for the f -
electron occupation. The latter may be expressed as

nf = Ĝ1V̄
2

1 + Ĝ2V̄
2

2 = 1. (40)

From the two relations we finally obtain

V̄ 2
1 = R

Ĝ2 + RĜ1
, V̄ 2

2 = 1

Ĝ2 + RĜ1
, (41)
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FIG. 7. Self-consistency function F (λ−μ; �). (a) For �=0.06,
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with R given by Eq. (35). In these expressions we defined
Ĝτ = (Nρ0)Gτ with Gτ obtained from

Gτ (μ, λ)

=
∫ μ

−∞

ρ̂c(ω)(
ω − ελ

0τ

)2 dω

= Dc + μ

[λ − μ + (−1)τ�][(Dc + μ) + λ − μ + (−1)τ�]



{

1
λ−μ−�

(τ = 1),
1

λ−μ+�
(τ = 2),

(42)

where again the approximation holds for λ, |μ|,� � Dc.
Without splitting (� = 0) and equal couplings J⊥

1 = J⊥
2

this leads to R = 1 and then the symmetric case V̄ 2
1 = V̄ 2

2
is realized. In general, for a ratio of J⊥

2 /J⊥
1 > 1 there is

always a value of �cr > 0 for which the symmetric case
occurs (Fig. 8). The original hybridization order parameters
V1, V2 of Eq. (10) may be obtained from the relation Vτ =
(NV̄τ /2Dc )Fτ . With λ − μ and V̄τ determined the spectral
functions of Eq. (29) with the proper self-consistent energy
scales can be determined. As a last step, nc(μ) may be
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cr

V
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V
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FIG. 8. Self-consistent effective hybridizations V̄1 (black), V̄2

(red) as function of quasiquartet splitting. In all cases, J12 = 0.1.
J ⊥

1 = J ⊥
2 = 0.7 (full line); J ⊥

1 = 0.7, J ⊥
2 = 0.6 (dashed line); J ⊥

1 =
0.6, J ⊥

2 = 0.7 (dashed-dotted line). In the latter case, the upper level
has stronger exchange coupling J ⊥

2 > J ⊥
1 , therefore, there must be

a crossing of V̄1, V̄2 for a special finite �cr . For J ⊥
1 = J ⊥

2 = 0.7
and � = 0 (symmetric V̄1 = V̄2 case) we note the agreement of
T ∗ = V̄ 2/Dc 
 0.08 with Fig. 9.

obtained by numerical integration of the first equation in
Eq. (30). In order to satisfy the nf = 1 constraint, the effective
f -level position adjusts itself such that the chemical potential
μ always lies close to the upper edge E−

b of the lower (n = 2)
band for nc < 1 as shown in Figs. 6(a) and 6(b).

Finally, we give a closed expression for the ground-state
energy in terms of the self-consistently determined λ, order
parameters V̄τ , and auxiliary quantities discussed above. Us-
ing Eq. (8) we can write Eλ

gs as

Eλ
gs/Ns = (Nρ0)Kb − �(Nρ0)

[
V̄ 2

1 G1 − V̄ 2
2 G2

]
− 1

2 (Nρ0)2
[(

J⊥
1 + 1

2J12
)
F 2

1 V̄ 2
1

+ (
J⊥

2 + 1
2J12

)
F 2

2 V̄ 2
2

]
− 1

2 (Nρ0)2J12F1F2V̄1V̄2. (43)

In the first term we introduced another auxiliary function for
the total energy of the renormalized conduction band as given
by

Kb(μ) =
∫ μ

−∞
ρ̂c(ω)ω dω = 1

2

(
μ2 − E2

a

)
. (44)

The ground-state energy of the uncoupled system without
exchange terms is obtained as

Egs0/Ns = 1
2

[(
Nρc

0

)(
μ2 − D2

c

) − �
]
, (45)

and serves as a reference for the (negative) energy gain
δEgs (�; μ)/Ns = (Eλ

gs − Egs0)/Ns due to the KL quasiparti-
cle formation. For the most simple case with only the ground
state active (J⊥

2 = J12 = 0) we obtain, using Ea 
 −(Dc +
T ∗) the result δEgs/Ns = −T ∗[1 + ln(Dc/T ∗)], therefore,
the Kondo energy gain is of order T ∗.
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T
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c

FIG. 9. Kondo energy scale T ∗ as function of quasiquartet split-
ting. In all cases J12 = 0.1. (a) J ⊥

1 = J ⊥
2 = 0.7 (black line); J ⊥

1 =
J ⊥

2 = 0.6 (magenta line); J ⊥
1 = 0.7, J ⊥

2 = 0.6 (red line); J ⊥
1 =

0.6, J ⊥
2 = 0.7 (blue line); the latter two have to be degenerate for

� = 0.

VII. NUMERICAL SOLUTION FOR THE
SELF-CONSISTENCY RELATION AND SPECTRAL

FUNCTIONS

The general self-consistency equation (37) has no closed
solution for the central quantity λ − μ, except in the simplest
case � = 0 (see Appendix B). Since the dependence of Kondo
lattice properties on the quasiquartet splitting is an important
issue of this work, we now have to solve it numerically.
This means we are looking for the root λ(�) − μ of F (λ −
μ,�) = 0 [Eq. (37)]. Alternatively, one may solve directly
for T ∗(�) via the iterative equation (B4). The function F (λ −
μ,�) is shown in Fig. 7 for sets of exchange (J⊥

1 , J⊥
2 , J12)

and fixed � [Fig. 7(a)] and for fixed exchange set and various
� [Fig. 7(b)]. The (λ − μ) position of the zero gives the
Kondo scale [Eq. (39)] and determines the self-consistent
solution for V̄τ using Eq. (41).

The resulting Kondo low-energy scale T ∗(�) is shown
in Fig. 9 for various exchange parameter sets as function
of �. As expected, it decreases with increasing quasiquartet
splitting because the spin-flip processes (elastic within excited
�7 level and inelastic between �6 ↔ �7) will be suppressed.
On the other hand, for the real quartet case � = 0 the Kondo
scale T ∗ becomes symmetric with respect to J⊥

1 , J⊥
2 [red and

blue curves in Fig. 9(a)].
When T ∗ or likewise λ − μ is known, the effective hy-

bridizations V̄τ which determine quasiparticle bands and spec-
trum can be calculated. It is shown in Fig. 8 for essentially the
same parameters as in Fig. 9. Their relative size of V̄1 (black)
and V̄2 (red) depends crucially on the order of J⊥

1 , J⊥
2 . For

J⊥
1 > J⊥

2 we naturally have V̄1 > V̄2 already at � = 0 and
their difference increases slightly with increasing � (dashed
lines). For J⊥

1 = J⊥
2 degeneracy at � = 0 must occur. But, in

both cases for finite � we have always V̄1 > V̄2, which will
lead to an asymmetric spectrum as discussed below. The most
interesting case is J⊥

2 > J⊥
1 , i.e., when the excited �7 has a

larger exchange coupling than the ground state �6. Therefore,
when � = 0 we must also have V̄2 > V̄1. Because the Kondo
effect for the excited state decreases rapidly for increasing

0 0.2 0.4 0.6 0.8 1
0

0.01

0.02

0.03

0.04

0.05

T
* /D

c

0.01
0.02
0.04

FIG. 10. (a) Variation of T ∗ with θ = tan−1(J ⊥
2 /J ⊥

1 ) for various
CEF energies � and J ⊥ = 0.6, J12 = 0.1 (J ⊥

1 = J⊥ cos θ, J ⊥
2 =

J⊥ sin θ ). For � = 0 due to degenerate upper/lower level the curve
is symmetric around θ = π

4 or J ⊥
2 = J ⊥

1 . For increasing � the
influence of the upper level on the Kondo effect is progressively
reduced, Therefore, T ∗ → 0 for θ → π

2 , (J ⊥
1 → 0).

� so must V̄2, then necessarily a crossing of both curves
where V̄1 = V̄2 at a special value �cr that depends on the set
(J⊥

1 , J⊥
2 , J12). At this value the spectrum may be symmetric

for a proper choice of the chemical potential (Fig. 5).
Using these self-consistent values of λ, V̄τ we may cal-

culate the quasiparticle bands from Eq. (13), with a special
particle-hole-symmetric example given in Fig. 2. Its main
heavy band features are characterized by the bandwidths and
hybridization gaps given in Sec. IV B. For the general band
structure the most important ones are depicted in Fig. 4 as
function of �. For this case, J⊥

1 = J⊥
2 and the band structure

will be asymmetric for � > 0. We can clearly see that the
bandwidth W3 of the central E3k heavy band first increases
quadratically and then linearly with � compatible with by
Eq. (17) (full black line). The evolution of the direct gaps
is shown by the red curves and the indirect gaps by blue
curves. We observe that one direct and indirect gap show
nonmonotonic behavior which is even more pronounced when
J⊥

1 �= J⊥
2 . Note that �d

h2,3 and �in
h2,3 are never equal because

the particle-hole symmetry is absent for all �, however, for
J⊥

2 > J⊥
1 they may show a crossing similar to V̄1, V̄2 in Fig. 8.

The exchange parameters (J⊥
1 J⊥

2 , J12) of the model are
an independent set (Appendix A) that correspond to the
CEF parameters. Therefore, one should also know how the
low-energy Kondo scale T ∗ changes with, e.g., the ratio
of upper/lower level exchange J⊥

2 /J⊥
1 (Fig. 10). For this

purpose we use the polar parametrization J⊥
1 = J⊥ cos θ ,

J⊥
1 = J⊥ sin θ discussed in the Appendix A. Here, θ

varies in the interval [0, π
2 ] corresponding to the change

from J⊥
1 = J⊥, J⊥

2 = 0 to J⊥
1 = 0, J⊥

2 = J⊥. For � = 0
upper/lower level are degenerate and therefore T ∗(θ ) must
be symmetric around θ = π

4 or J⊥
2 = J⊥

1 . When � increases,
the upper level contributes progressively less to the effective
hybridization and, therefore, together with the complete
decoupling of the lower level for θ → π

2 , (J⊥
1 → 0) we

observe T ∗ → 0 in Fig. 10. For increasing J12 the minimum
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FIG. 11. Renormalized f -DOS of quasiparticles for various
asymmetric cases without particle-hole symmetry. (a) J⊥

1 = 0.4,

J ⊥
2 =0.8, J12 =0.2, �=0.06, μ = −0.04, (b)J ⊥

1 =0.6, J ⊥
2 =0.8,

J12 = 0.2, � = 0.06, μ = −0.08. When the ratio J ⊥
2 /J ⊥

1 decreases
and � grows the central band DOS shifts to larger energies, increas-
ing the left (�in

h3) and decreasing the right (�in
h2) hybridization gap.

The width of the central band also increases with �.

in T ∗(θ ) becomes less pronounced and essentially vanishes
for the isotropic case J12 = J⊥.

We discussed already basic features of the spectral function
in the case that particle-hole symmetry of the original TB
band or square DOS model is preserved. This requires special
conditions for the self-consistent solution: first we must have
V̄1 = V̄2, i.e., equal effective hybridization strength. This can
only be achieved either for � = 0 or by fine tuning the CEF
energy � to a special value �cr depending on the exchange
parameter set J⊥

1 , J⊥
2 , J12. For this value, the curves of V̄1(�)

and V̄2(�) cross (Fig. 8) which is only possible if J⊥
2 > J⊥

1 .
Furthermore, since the hybridization of bands happens around
the effective f -level position λ we must tune λ = 0 by setting
the chemical potential to μ = −(� + T ∗) to achieve the full
particle-hole symmetry of quasiparticle bands as depicted in
Figs. 2 and 5.

Therefore, the symmetric case requires rather special con-
ditions to be realized. In the case of general size of exchange
constants and CEF splitting, the total f spectrum will be

-0.7 -0.6 -0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2

0

20

40

60

80

100

D
c·

f(
)

 = -0.5
-0.3
-0.096

E
b
-

FIG. 12. Evolution of total f -quasiparticle-DOS with chemical
potential μ starting from the symmetric case μ = −0.096 (nc 
 1)
via μ = −0.3 to μ = −0.5 (nc 
 0.5). Exchange and CEF parame-
ters like in Figs. 5 and 6. As μ moves to the left, the quasiparticle
DOS is dragged along to fulfill the nf = 1 constraint. Therefore, μ

is always pinned in the lower f -DOS peak just below E−
b [connected

by thick dashed line, cf. Fig. 6(b)]. The red and black spectra have
an ordinate offset of 30 units for clarity.

quite asymmetric and also the interchange symmetry f1 ↔ f2

visible in Fig. 5 will be lost. We present a few characteristic
examples for the general case in Fig. 11 (and also Fig. 12)
for the underlying square-DOS conduction electron model.
In Fig. 11(a) we have J⊥

2 > J⊥
1 and � still sufficiently small

such that V̄2 > V̄1. Therefore, the upper hybridization gap will
be larger as compared to the lower gap. While the lower and
upper bands are still roughly symmetric, the central heavy
band is now quite asymmetric because it has shifted out of
the center of the overall hybridization gap which would cor-
respond to �in

h1 = E10 − E2Q in the TB model. In Fig. 11(b)
we still have the case J⊥

2 > J⊥
1 but now � is sufficiently large

to achieve already the inverse relation V̄1 > V̄2. Therefore, the
lower hybridization gap has now become larger than the upper
one because the central band is shifted towards the upper
band. As a consequence, the skewing of f1, f2 distribution
is now opposite to that in Fig. 11(a). Thus, by varying � or
the ratio J⊥

2 /J⊥
1 (i.e., θ ), one may shift the central heavy band

more or less continuously through the overall hybridization
gap and also change its width W3. For the case J⊥

1 > J⊥
2

we will have V̄1 � V̄2 and therefore the lower hybridization
gap dominates while the upper one becomes very narrow.
Roughly the upper and central bands have merged into one
band separated by a large gap from the lower one. This
resembles now the one-orbital case except that the lower and
combined upper DOS parts are very asymmetric.

We mostly considered the case for slightly less than
half-filling nc < 1. For such case, the chemical potential
is pinned very close to the upper edge E−

b of the lowest
band to satisfy the constraint nf = 1 [Fig. 6(a)]. When μ

is decreased, one always stays in a metallic situation with
the distance E−

b − μ behaving nonmonotonically [Fig. 6(b)].
The systematic change of the quasiparticle f -DOS with
μ, starting from the symmetric case (close to half-filling
nc ≈ 1) is presented in Fig. 12. It demonstrates that shifting
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the chemical potential to lower values, i.e., reducing the
conduction band filling nc, the hybridized quasiparticle
spectrum is dragged along with μ to lower energies such that
the chemical potential remains pinned in the DOS peak of the
lowest band in accordance with Fig. 6(b). In this way, the f

constraint nf = 1 is respected at each band filling nc.

VIII. CONCLUSION AND OUTLOOK

In this work, we gave a detailed investigation of the quasi-
particle spectrum of the underscreened quasiquartet Kondo
lattice and the related heavy band structure and associated
effective hybridization gaps. A two-orbital model representing
Kramers doublets slightly split by a CEF as is frequently
found in tetragonal Ce or Yb compounds has been used. We
started from an exchange model where f -charge fluctuations
are already completely suppressed and single f (electron or
hole) occupancy is realized. A fermionic representation of
the f conduction electron exchange is employed and the
interacting model is treated within a constrained mean field
theory that ensures the single f occupancy.

We derived the effective heavy quasiparticle bands and
their partial DOS functions. The two-orbital KL model with
N = 2 degeneracy of conduction band and 2N localized
states has much richer features than the single-orbital KL
model. First, there is in addition a characteristic central heavy
band which lies inside the main hybridization gap. It consists
mainly of a superposition of the two f states with a small ad-
mixture of conduction states that is responsible for the overall
dispersion of the central band. The width of this band is itself
of the order W3 = (T ∗2 + �2

0)
1
2 − T ∗ making it a genuinely

heavy band of mostly f character. This is in contrast to the
upper and lower bands which change their character from light
conduction states to heavy hybridized f states and vice versa
when traversing the Brillouin zone. Furthermore, due the cen-
tral heavy band there are now in general three different direct
and indirect hybridization gaps, as opposed to just one of
each in the single-orbital model. In particular, the two-orbital
model has now also a direct hybridization gap of the order of
the Kondo scale T ∗. A rather surprising result is the depen-
dence of the central heavy bandwidth on the CEF splitting �.
Although the dispersion of the latter is due to the hybridization
with c states, it will be nonzero only for finite CEF splitting
�. In other words, for � = 0 the central band will collapse to
a flat band which will be localized into a “leftover” spin by
residual quasiparticle interactions. This is an inevitable and
natural consequence of the underscreened model.

The dependence of T ∗, the effective hybridizations V̄τ ,
and the associated quasiparticle bandwidth and hybridization
gaps on the CEF splitting have been investigated for various
parameters of the exchange model. The latter is characterized
by two (orbital) diagonal and one off-diagonal exchange
constants which are derived from the CEF states. As ex-
pected, the increase of � decreases T ∗ due to the reduction
of the effective hybridization of the upper doublet when �

increases. This also explains the reduction of T ∗ when the
ratio J⊥

2 /J⊥
1 = tan θ is tuned from small to large values.

The central heavy band in the underscreened KL model is
also evident in the various partial DOS spectra. In general, the
spectrum is asymmetric with respect to the effective f -level

position at λ, i.e., the central band is placed off center in the
overall hybridization gap between the lower and upper bands.
Also, the distribution of f1, f2 orbital weights is asymmetric.
This situation prevails for any � in the case that J⊥

2 < J⊥
1 .

In the opposite case J⊥
2 > J⊥

1 there exists a critical �cr

where the effective hybridizations become equal. Then, with
a suitable choice of chemical potential (such that λ = 0) or nc

the quasiparticle spectrum may become symmetric in energy.
In any case, the upper band edge of the lower quasiparticle
band must stay pinned to the chemical potential to ensure
the single (electron or hole) f occupancy. Then, the central
and upper bands must stay unoccupied. This is due to the
total suppression of charge fluctuations in the present two-
orbital KL model. An analogous Anderson lattice-type model
where only the total nf + nc occupancy must be preserved
allows for c-f charge fluctuations. In this case, with suitable
tuning of parameters one could also shift the Fermi level
more easily into the central genuinely heavy band. This
would also apply to the two-orbital KL model with magnetic
polarization.

The interest in this model stems mainly from possible
applications to magnetic order in Kondo-lattice compounds.
Our detailed investigation of quasiparticle structure lays the
foundation for considering this question more realistically
than in the canonical but oversimplified one-orbital KL model.
For the magnetism, the influence of excited CEF levels in
practice always has to be taken into account. We may spec-
ulate how to approach it in the framework of the present
model theory: In the one-orbital KL model, the true ground
state may exhibit ferromagnetic (FM) or antiferromagnetic
order, depending on conduction band filling [9,14,35]. In this
case, the magnetism appears simply due to the rigid band
splitting of hybridized bands into (pseudo)spin-up and -down
bands with an ensuing polarization of bands that generates
the moment. In the present two-orbital KL model, there is an
interesting alternative possibility. Because we have two CEF
split f Kramers doublets with a nondiagonal exchange (J12)
with conduction electrons, it is possible to develop excitonic
(induced) magnetism involving the two orbitals. This may be
investigated by either directly breaking the (pseudospin) sym-
metry and minimize the ground-state energy with respect to
the possible magnetic order parameters, as in the one-orbital
KL model. Or, one may investigate the magnetic response in
the paramagnetic phase to find channels for the instability.
Furthermore, one may study the dynamic magnetic response
to see whether the magnetism appears via the softening of a
mixed CEF/Kondo spin-exciton mode. The detailed investiga-
tion of the excitation spectrum in this work provides the solid
foundation for such analysis.
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APPENDIX A: FERMIONIC REPRESENTATION
OF THE QUASIQUARTET CEF STATES

AND KONDO EXCHANGE MODEL

In this Appendix, we give the schematic derivation of
the fermionic representation of Hamiltonian in Eq. (2) from
the original Kondo exchange Hamiltonian in Eq. (1). In the
latter, the 4f -charge fluctuations present in the underlying
Anderson-type model are already eliminated by a Schrieffer-
Wolff transformation [31] for the limit Uff � Dc where
Uff is the Coulomb repulsion of localized 4f states and
2Dc the conduction bandwidth. Then, the degrees of free-
dom are the conduction electrons and CEF split 4f states
resulting from the spin-orbit ground-state multiplet (J = 5

2 )
for Ce3+(4f 1) and (J = 7

2 ) for Yb3+(4f 13) single-electron
and hole-type cases, respectively. In a tetragonal environment
for, e.g., frequently realized 122 structure of heavy-fermion
compounds, the action of the CEF with D4h symmetry splits
the (2J + 1)-fold degenerate 4f multiplets into a series of
three (Ce) or four (Yb) Kramers doublets belonging to either
�6 or �7 representation of D4h (naturally this means that
mixed multiple representations must occur). It may happen,
in particular in Yb compounds like, e.g., YbRu2Ge2 [21,22],
when the two lowest doublets of �6 and �7 symmetry are
close in energy compared to the overall CEF splitting, thus
forming a “quasiquartet” state (in cubic symmetry Oh they
would combine to a true �8 quartet as for YbB12 [19,36] or
CeB6 [6,7]). We focus here on the Yb case when both �6,
�7 appear twofold, therefore, their wave functions are linear
superpositions of free 4f in states |JM〉 (|M| � J ) whose
coefficients depend explicitly on the CEF parameters due to
the mixing of each pair of representations.

As discussed in Ref. [22], the quasiquartet �6-�7 pair can
be represented as

|�6±〉 = α11

∣∣ ± 7
2

〉 + α12

∣∣ ∓ 1
2

〉
,

|�7±〉 = β11

∣∣ ∓ 5
2

〉 + β12

∣∣ ± 3
2

〉
, (A1)

where the pseudospin σ ≡ σz = ±1(≡ ±) represents the
twofold Kramers degeneracy due to time-reversal invariance.
We assume without loss of generality that �6 is the lower
and �7 the upper doublet split by an energy �0. The CEF
energies may then be defined symmetrically as E6 = −�0

2

and E7 = +�0
2 . Because the CEF states are those of single

4f electrons (Ce3+, 4f 1) or holes (Yb3+, 4f 13) they may be
represented as

|�6σ 〉 = f
†
1σ |0〉; |�7σ 〉 = f

†
2σ |0〉, (A2)

where the “orbital” index τ = 1, 2 corresponds to �6,�7,
respectively. Here, |0〉 = |f 0, J = 0〉 or |f 14, J = 0〉 is the
vacuum or reference state corresponding to the empty or
full 4f shell from which f †

τσ creates an electron or hole,
respectively. The fermionic representation is then given by

HCEF = −�0

2

∑
iσ

(f †
i1σ fi1σ − f

†
i2σ fi2σ ). (A3)

To express the exchange interactions of the Kondo term in
fermionic variables, it is also helpful to introduce the pseu-

dospins of the CEF Kramers doublets via the relation [22]

Sα
ττ ′ = 1

2

∑
σσ ′

f †
τσ σ̂ α

σσ ′fτ ′σ ′ , (A4)

where σ̂ α (α = x, y, z or ±, z) are the Pauli matrices for
the S = 1

2 Kramers pseudospins for both orbitals τ = 1, 2.
Explicitly, this translates into

Sz
ττ = 1

2 (f †
τ↑fτ↑ − f

†
τ↓fτ↓), S+

ττ = f
†
τ↑fτ↓, S−

ττ = f
†
τ↓fτ↑,

Sz
τ τ̄ = 1

2 (f †
τ↑fτ̄↑ − f

†
τ↓fτ̄↓), S+

τ τ̄ = f
†
τ↑fτ̄↓, S−

τ τ̄ = f
†
τ↓fτ̄↑.

(A5)

Here, the pairs (τ τ̄ ) are defined as either (1,2) or (2,1).
The original Kondo Hamiltonian resulting from the

Schrieffer-Wolff transformation comprises all (2J + 1) states
of the relevant 4f multiplet of total angular momentum J . It
can be written as [37]

Hex = (gJ − 1)Iex

∑
i

si · Ji

= 1

2
(gJ − 1)Iex

∑
i

[J+
i c

†
i↓ci↑

+ J−
i c

†
i↑ci↓ + J z

i (c†i↑ci↑ − c
†
i↓ci↓)], (A6)

where c
†
Iσ creates a conduction electron at lattice site i, J α

i are
the components of the 4f total angular momentum operator.
Furthermore, Iex is the bare (physical) spin exchange constant
(assuming the convention Iex > 0 for antiferromagnetic ex-
change) and gJ the Landé factor to project it to the J multiplet.
Since we want to restrict to the lowest two doublets, we can
express the Jα operators in this subspace by the pseudospin
operators (A4) of these doublets according to

J z = cz
11S

z
11 + cz

22S
z
22,

J± = c11S
±
11 + c22S

±
22 + c12

1√
2

(S±
12 + S±

21). (A7)

The nondiagonal terms ∼c12 are important as they lead to
inelastic transitions between the split doublets, thus coupling
the Kondo screening of both pseudospins. The linear trans-
formation coefficients may be directly obtained from the CEF
wave functions of the original �6,�7 states by the relations

cz
11 = 7 − 8α2

12, cz
22 = −5 + 8β2

12,

c11 = 4α2
12, c22 = 4

√
3β12

√
1 − β2

12,

c12 =
√

7
√(

1 − α2
12

)(
1 − β2

12

) +
√

30α12β12,

(A8)

where the normalization conditions α2
11 + α2

12 = 1 and β2
11 +

β2
12 = 1 have been applied. Using the equivalence of Eq. (A7)

and Eqs. (A4) and (A5) in the Hamiltonian of Eq. (A6), we
finally arrive at the effective quasiquartet Kondo interaction
Hex = Hcf + H

cf

12 in Eq. (2). Furthermore, adding the CEF
potential of Eq. (A3) and the bare conduction electron part
leads to the total model Hamiltonian H of Eq. (2). The
interaction constants in this model can then be expressed
[22] by the bare sf exchange constant and the coefficients in
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Eq. (A8) according to [J0 = (gJ − 1)Iex]

J⊥
1 = c11J0, J⊥

2 = c22J0, J12 = 1√
2
c12J0,

J z
1 = cz

11J0, J z
2 = cz

22J0, J z
12 = 0. (A9)

The vanishing of J z
12 is a symmetry property independent of

CEF wave-function coefficients. It is obvious from Eq. (A1)
since the �6,�7 doublets do not contain |JM〉 states with
equal M . The overall sign of these constants (positive for AF
and negative for FM) depends on the sign of the bare spin
exchange Iex , the size of gJ , and the sign of CEF derived
coefficients in Eq. (A8). In the main text, we will restrict to the
case of only positive (antiferromagnetic) effective exchange
constants and sometimes use the polar parametrization J⊥

1 =
J⊥ cos θ , J⊥

1 = J⊥ sin θ with

J⊥ = J0
(
c2

11 + c2
22

) 1
2 , tan θ = c22

c11
=

√
3
β12

α2
12

√
1 − β2

12.

(A10)

The above relations map the microscopic independent pa-
rameters (J0, α12, β12) to the independent in-plane exchange
model sets (J⊥

1 , J⊥
2 , J12) or (J⊥, θ, J12). The out-of-plane

exchange parameter sets (J z
1 , J z

2 ) are then fixed by the α12, β12

values corresponding to the in-plane set.
The fermionic representation for the exchange model of

Eq. (2) has been derived starting from the mapping in
Eq. (A2). The latter is possible only for reference (vacuum)
states |0〉 which are fully symmetric such that total angular
momentum J = 0. This is always the case for Ce3+ or Yb3+

with reference states corresponding to the empty (4f 0) or
full (4f 14) shell, respectively. Furthermore, it can be used
for the nearly half-filled case of Eu2+ and Sm3+ which also
have reference states (4f 6) with J = 0 [38,39]. However,
for arbitrary occupation of the f shell, the representation of
CEF states with Fermi operators is not possible and more
general Hubbard or “standard basis” operators [40] with more
complicated commutation relations have to be employed.

APPENDIX B: APPROXIMATE EXPRESSION
FOR THE LOW-ENERGY SCALE T ∗(�)

The low-energy scale T ∗(�) [Eq. (39)] is determined
by the solution of the self-consistency equation (37) which
can generally be solved only numerically. In the simplest
case (� = 0, J1 = J2, J12 = 0), T ∗

0 = T ∗(0) reduces to the
expression of the Kondo temperature in Eq. (38). We can
also give a closed expression of T ∗

0 for the general exchange
model. For � = 0 we have F1 = F2 ≡ F0 with F0 = ln[(λ −
μ)/Dc] and then Eq. (37) reduces to

(Nρ0)2(a1a2 − b2)F 2
0 − (Nρ0)(a1 + a2)F0 + 1 = 0. (B1)

Using Eq. (36) this self-consistency equation has two possible
closed solutions which are given by (|μ| � Dc )

F0 = ln[(λ − μ)/Dc]

= − 1(
Nρc

0

)∣∣A
B

∣∣
[

1 ∓
(

1 − A

B2

) 1
2
]

≡ − 2

g̃⊥
,

T ∗
0 = λ − μ = Dc exp

(
− 2

g̃0
⊥

)
, (B2)

where the effective Kondo coupling strength is then given by

g̃0
⊥ = (

Nρc
0

) 2
∣∣A
B

∣∣
1 − (

1 − A
B2

) 1
2

= (
Nρc

0

) J⊥2
av + J̄⊥J12(

J̄⊥ + 1
2J12

) − 1
2

[
(J⊥

1 − J⊥
2 )2 + J 2

12

] 1
2

. (B3)

Here, we defined the two types of orbital-averaged exchange
as J⊥

av = (J⊥
1 J⊥

2 )
1
2 and J̄⊥ = 1

2 (J⊥
1 + J⊥

2 ). Note that of the
above two solutions we use only (−) because it has the larger
effective coupling g̃⊥ and hence the largest Kondo energy
scale and therefore the lowest ground-state energy. The (−)
solution corresponds also to the largest value of λ − μ in
the graphical solution plot of Fig. 7(b). In the special case
of J12 = 0 of two decoupled doublets one can show that
g̃⊥ = max(J⊥

1 , J⊥
2 ) and, furthermore, if both are equal then

we recover Eq. (38). In the true quartet case (J⊥
1 = J⊥

2 =
J12 ≡ J⊥) with SU(4) symmetry we obtain g̃⊥ = (2Nρc

0 )J⊥
and the corresponding larger Kondo scale T ∗

0 due to 2N = 4
degeneracy.

It is also possible to give an approximate closed expression
for T ∗(�). Using Eq. (39) we may, after some algebra,
reformulate the self-consistency in Eq. (37) as

T ∗(�) = Dc exp

(
− 2

g̃⊥(T ∗,�)

)

− 2

g̃⊥(T ∗,�)
= (Nρ0)a2 ln Dc

�0+T ∗ + 1

(Nρ0)2A ln Dc

�0+T ∗ + (Nρ0)a1
. (B4)

This is still equivalent to Eq. (37). It has the form appropriate
for iterative solution for T ∗(�). If we stop after the first
iteration step, i.e., replacing T ∗(�) → T ∗

0 at the right-hand
side, we get an approximate closed expression

T ∗(�) = Dc exp

[ (Nρ0)a2 ln Dc

�0+T ∗
0

+ 1

(Nρ0)2A ln Dc

�0+T ∗
0

+ (Nρ0)a1

]
, (B5)

where T ∗
0 is given by Eqs. (B2) and (B3) and the exchange

parameters a1, a2, A in Eq. (36). This approximation formula
works well when T ∗(�) dependence is not too rapid such that
the first iteration is sufficient. This is the case for J⊥

1 � J⊥
2

when the Kondo effect is dominated by the lower doublet
and the upper one has moderate influence. For the opposite
case J⊥

2 � J⊥
1 , T ∗(�) decays rapidly with � (see Fig. 9);

the approximate formula gives a too rapid decrease with �

as compared to the numerical solution of Eq. (37) or (B4).
The fundamental quantity in the constrained mean field

theory is λ (or λ − μ), the position of the effective f level
which is adjusted to constrain (on the average) to the Hilbert
space with occupation nf = 1. For � = 0, the value of λ −
μ corresponds directly to the Kondo energy scale T ∗. For
nonzero � the definition of the latter is not unambiguous.
One way is to subtract directly the CEF energy according
to Eq. (39), another way is to define it as T ∗ = V̄ 2/Dc via
the hybridization gaps in the symmetric case as discussed in
Sec. IV B. Here, we discuss the connection between the two
definitions. Using Eqs. (41) and (42) and assuming T ∗ from
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Eq. (39), we obtain the relation

V̄ 2

Dc

= T ∗
(

1 + �0
T ∗

1 + R
1+R

�0
T ∗

)
. (B6)

In particular, then, for � = 0 always V̄ 2

Dc
= T ∗

0 as given by
Eqs. (B2) and (B3). For the general symmetric case when
� = �cr we have V̄1 = V̄2 or R = 1. When �cr/T ∗ � 1, the

above equation then leads to

V̄ 2

Dc

= T ∗ + � = λ − μ (B7)

consistent with the relation in Eq. (39). In the opposite limit
�cr/T ∗ � 1, the upper level influence on T ∗ is negligible

and indeed from Eq. (B6) we get T ∗ = V̄ 2
1

Dc
. Therefore, both

definitions of T ∗ are consistent in the cases where they can be
applied simultaneously.
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