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Exact ground states for interacting Kitaev chains
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We introduce a frustration-free, one-dimensional model of spinless fermions with hopping, p-wave supercon-
ducting pairing and alternating chemical potentials. The model possesses two exactly degenerate ground states
even for finite system sizes. We present analytical results for the strong Majorana zero modes, the phase diagram,
and the topological order. Furthermore, we generalize our results to include interactions.
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I. INTRODUCTION

Majorana fermions have attracted a lot of attention over the
last two decades. Motivated by their anticipated future role
[1,2] in quantum computing applications, systems supporting
Majorana zero modes have been widely studied in condensed-
matter physics, culminating in recent experiments [3–9] on
superconductor-semiconductor nanowire systems.

The prime example of a model possessing Majorana zero
modes is the Kitaev chain [10]. It describes spinless fermions
on a tight-binding chain with open boundary conditions,
which are subject to p-wave superconducting pairing with
fermionic parity as symmetry operator. Depending on the
parameters, the system will be either in its trivial or its topo-
logical phase. The latter is marked by a twofold degenerate
ground state, with corresponding zero-energy modes in the in-
sulating gap. The zero modes are Hermitian and normalizable,
localized at the boundaries of the chain, and commute with the
Hamiltonian and anticommute with fermion parity operator,
making them Majorana edge zero modes [11]. Furthermore,
because the two ground states live in the two different symme-
try sectors, hybridization is exponentially suppressed, hence
the fermionic parity is protected by topology. Theoretical
works on disorder [12–19], dimerization [20–23], and interac-
tions [16,17,19,22–34] have shown that the topological phase
is very robust against various perturbations. Furthermore, via
the nonlocal Jordan-Wigner transformation, the Kitaev chain
can be mapped to a transverse-field Ising/XY chain, with
the mentioned perturbations leading to more general spin-1/2
spin chains.

In this paper we propose an inhomogeneous modification
to the Kitaev chain, for which the zero modes and ground
state obtain special properties. It turns out that the Majorana
mode energy in this model becomes exactly zero, even for
finite lattice sizes. This is in contrast with the generic Kitaev
chain in its topological phase, where the energy decays ex-
ponentially with the length of the system. Moreover, we can
obtain the ground states in a simple product form. The latter
is equivalent to the model being frustration free, meaning
all local Hamiltonians are simultaneously minimized when
projected onto the ground-state subspace. We will elaborate

more on this notion later in the paper. Well-known frustration-
free models are the AKLT chain [35,36] and the Kitaev toric
code [37]. There has also been progress concerning spin
chains/Majorana models [31,38]. An overview of homoge-
neous frustration-free XYZ/interacting-Majorana chains was
given in Ref. [39].

Furthermore, we also introduce an interacting frustration-
free model. This is an extension of the noninteracting in-
homogeneous Kitaev chain, obtained by exploiting the local
fermion-parity invariance. For this interacting model, we de-
rive the ground-state energy analytically and give an estimate
on the spectral gap. The exact ground states are inherited
from the noninteracting model, which gives the opportunity to
analytically compute zero-temperature correlation functions.

This paper is organized as follows: In Sec. II we introduce
the noninteracting model with alternating chemical potentials.
We discuss in detail its properties, including the construction
of the exact ground states, strong zero modes, phase dia-
gram, and topological order. In Sec. III we briefly discuss
the construction of exact strong zero modes in the system
with completely inhomogeneous chemical potentials. Finally,
in Sec. IV we return to the alternating setup but include
interactions. The exact, twofold degenerate ground state of
the resulting model is calculated and the phase diagram is
obtained before we end with a conclusion. Technical details
of our derivations are deferred to several appendixes.

II. NONINTERACTING MODEL

We begin by introducing the noninteracting model and
discussing its properties in detail. Interactions will be added
in Sec. IV.

A. Hamiltonian

We consider an open chain of length L supporting spinless
fermions. The creation and annihilation operators on site j are
given by c

†
j and cj respectively, satisfying canonical anticom-

mutation relations {ci, cj } = {c†i , c†j } = 0 and {ci, c
†
j } = δij .
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The number operator on site j is defined as nj = c
†
j cj . The

Hamiltonian of the noninteracting model is given by

H = −
L−1∑
j=1

[t (c†j cj+1 + c
†
j+1cj ) + �(c†j c

†
j+1 + cj+1cj )]

−
L∑

j=1

qj (2nj − 1) + S, (1)

S = 1

2
[q1(2n1 − 1) + qL(2nL − 1)], (2)

where t and � are the hopping and pairing energies respec-
tively. For later use we introduce the parametrization

t = η + η−1

2
, � = η − η−1

2
, (3)

which effectively removes the overall energy scale and thus
reduces the number of parameters by 1. An overall scale can
be reintroduced, not changing anything qualitatively in the
rest of the paper. Furthermore, qj denotes a chemical potential
at lattice site j . Except for Sec. III we will consider the
alternating setup,

qj =
{
q, if j odd,
q−1, if j even.

(4)

Finally we note that the surface term S alters the chemical
potential on the edges. This allows us to rewrite Eq. (1) as
sum of local Hamiltonians,

H =
L−1∑
j=1

hj , (5)

hj = −t (c†j cj+1 + c
†
j+1cj ) − �(c†j c

†
j+1 + cj+1cj )

− qj

2
(2nj − 1) − qj+1

2
(2nj+1 − 1). (6)

The homogeneous system (i.e., qj constant) is equivalent to
the noninteracting point of the model studied in Ref. [31].

For simplicity, we will only consider even system lengths.
Furthermore, we can assume q > 0 and η > 0, since charge
conjugation [cj → (−1)j c†j ] is equivalent to q → −q while
η → −η can be achieved by cj → (−1)j cj . Moreover, we
can restrict q and η to be larger than 1, because inver-
sion (cj → icL−j+1) induces q → q−1 and cj → icj induces
η → η−1.

The total fermion number F = ∑
j nj = ∑

j c
†
j cj is not

conserved by the Hamiltonian. However, the fermionic parity,
i.e., the fermion number modulo 2 is a symmetry of the model,

[H, (−1)F ] = 0, (7)

where (−1)F is the fermionic parity operator.

B. Exact ground states

In general the hj ’s cannot be diagonalized simultaneously,
because [hj , hj+1] �= 0. However, progress can be made in the
frustration-free case. This occurs if there exists a subspace, the
ground-state space, with projector G0, such that every hj is
minimized when projected onto this space, i.e., hjG0 = ε0G0

with ε0 being the smallest eigenvalue of hj . The ground states
of the full Hamiltonian H minimizes each hj independently
and the Hamiltonian H is said to be frustration free. There
are many examples of frustration-free models; possibly the
most well known are the AKLT chain [35,36] and the Kitaev
toric code [37]. An extensive discussion on a frustration-free
system was recently given by Jevtic and Barnett [39]. They
give a systematic derivation of spin chain models with a
factorized ground state, which supports Majorana zero modes.

In this section we will show that the model (1) is frus-
tration free. The determination of the ground-state subspace
requires us to minimize every local Hamiltonian, so we start
by considering the two-site problem. The four states for this
subsystem are |◦◦〉 = |vac〉, |•◦〉 = c

†
j |vac〉, |◦•〉 = c

†
j+1|vac〉,

and |••〉 = c
†
j c

†
j+1|vac〉, where |vac〉 denotes the vacuum state

on the lattice sites j and j + 1. The local Hamiltonians also
preserve fermionic parity, so we can split the system in an
even and an odd sector,

he
j = −1

2

(
qj + q−1

j η − η−1

η − η−1 −qj − q−1
j

)
, (8)

ho
j = −1

2

(
qj − q−1

j η + η−1

η + η−1 −qj + q−1
j

)
, (9)

which act on the basis {|••〉, |◦◦〉} and {|•◦〉, |◦•〉} respec-
tively. For both sectors the eigenvalues are given by ε± =
± 1

2N , with N =
√

q2 + q−2 + η2 + η−2. The corresponding
eigenstates with energy ε− are

∣∣ψe
j

〉 =
(
N + qj + q−1

j

η − η−1

)
|••〉 + |◦◦〉, (10)

∣∣ψo
j

〉 =
(
N + qj − q−1

j

η + η−1

)
|•◦〉 + |◦•〉. (11)

We note that any linear combination of these eigenstates
minimizes the local Hamiltonian hj .

In order to find the ground state of the full system we first
look for linear combinations of the eigenstates |ψe,o

j 〉 that can
be written as a product of single-site states. Making the ansatz

∣∣ψe
2k−1

〉 ± x1

∣∣ψo
2k−1

〉 = (x0c
†
2k−1 ± 1)(x1c

†
2k ± 1)|vac〉, (12)

∣∣ψe
2k

〉 ± x0

∣∣ψo
2k

〉 = (x1c
†
2k ± 1)(x0c

†
2k+1 ± 1)|vac〉, (13)

where we distinguish between even and odd sites because of
the alternating nature of the model, the coefficients are found
to be

(x0)2 = N + q + q−1

η + η−1

N + q − q−1

η − η−1
, (14)

(x1)2 = η + η−1

η − η−1

N + q + q−1

N + q − q−1
. (15)

Now, since hj commutes with x0,1c
†
k ± 1 for k �= j, j + 1,

the ground states minimizing all local Hamiltonians and
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consequently the full system are

|�±〉 =
L/2∏
k=1

(x0c
†
2k−1 ± 1)(x1c

†
2k ± 1)|vac〉 (16)

with ground-state energy

E0 = −L − 1

2
N . (17)

Note that for η = 1 the ground state becomes nondegenerate,
as both x0 and x1 diverge and the ground state is a fully filled
state. In Sec. II C we will see that the system possesses strong
zero modes supporting the twofold degeneracy in the ground
state. Moreover, the zero modes indicate that there are no
more linearly independent ground states, i.e., the ground-state
subspace is two dimensional.

At this point we have to note that the model in question
is noninteracting, hence finding the ground state is always
possible. However, this specific factorized form is reserved
for only a small class of models. An alternative, more direct
approach for finding the ground states is discussed in Ap-
pendix A. There the notion of Lindblad operators is employed
to verify that the states in Eq. (16) span the full ground-state
subspace.

As noted above, the Hamiltonian (1) preserves fermionic
parity. However, |�±〉 belong neither to the even nor the odd
parity sector. More explicitly, because (−1)F (x0,1c

†
k ± 1) =

−(x0,1c
†
k ∓ 1)(−1)F , the action of the fermionic parity on the

ground states is (−1)F |�±〉 = |�∓〉. Also, the states are not
orthogonal. However, the linear combinations

|�e〉 = 1√
2(N + M )

(|�+〉 + |�−〉), (18)

|�o〉 = 1√
2(N − M )

(|�+〉 − |�−〉) (19)

belong to the even and odd sector, respectively, and thus are
orthogonal to each other. The coefficients that normalize the
states are

N := 〈�±|�±〉 = [(
x2

0 + 1
)(

x2
1 + 1

)]L/2
, (20)

M := 〈�∓|�±〉 = [(
x2

0 − 1
)(

x2
1 − 1

)]L/2
, (21)

which satisfy N/M = ηL.
The ground states (18) and (19) are locally indistinguish-

able, as can be seen as follows [31]: Consider any local
operators with an even (Oe) and odd (Oo) number of fermion
creation an annihilation operators, supported on a sublattice
1 < j1 < · · · < jk < L, such that jk − j1 = � − 1. Immedi-
ately, we note that 〈�e|Oo|�e〉 = 〈�o|Oo|�o〉 = 0, since Oo

changes the fermionic parity of the states, while |�e,o〉 belong
respectively to the even or odd sector. Furthermore, the even
local operators we can bound as (see Appendix B)

|〈�e|Oe|�e〉 − 〈�o|Oe|�o〉| � K‖Oe‖e−L/ξ , (22)

where ‖Oe‖ is the operator norm [as defined in Eq. (B9)], K

is a constant, small compared to eL/ξ , and

ξ = 1

ln[max(η, η−1)]
> 0 (23)

is the correlation length. Hence it is not possible to distinguish
the two ground states (18) and (19) by measuring local expec-
tation values in a thermodynamically large system.

Finally let us rewrite the system (1) in the form of a spin
chain using the Jordan-Wigner transformation

cj =
j−1∏
k=1

(−σ z
k

)σx
j − iσ

y

j

2
,

c
†
j =

j−1∏
k=1

(−σ z
k

)σx
j + iσ

y

j

2
, (24)

with σ i for i = x, y, z denoting the Pauli matrices. Plugging
this into Eq. (6) results in a XY chain in a transverse field,

hj = − 1
2

(
ησx

j σ x
j+1 + η−1σ

y

j σ
y

j+1 + qjσ
z
j + q−1

j σ z
j+1

)
. (25)

Now it can be confirmed along the lines of Refs. [40,41] that
the system is frustration free for all values of η and q.

C. Strong zero modes

As we saw in the previous section, the model has a twofold
degenerate ground state. This is reminiscent of the two ground
states of the Kitaev chain in its topological phase. The major
difference is that due to the specific tuning of the edge
chemical potential the ground states of the model (1) are
perfectly degenerate and uncoupled for all system sizes. On
the other hand, in a generic noninteracting Kitaev model, the
coupling between the ground states decays exponentially with
the length of the system [10].

The perfect degeneracy of the ground states in the sys-
tem (1) suggests that there exists a single-particle mode T0

with zero energy, mapping one ground state to the other,
i.e., |�o〉 ∝ T0|�e〉. This mode must anticommute with the
fermionic parity operator, [{(−1)F , T0} = 0], mapping one
parity sector to the other. Also it has to commute at least
with the ground-state part of the Hamiltonian. This is what
is sometimes called a “weak” zero mode [42].

In fact, since we are dealing with a noninteracting problem,
the last property can be extended to the full Hilbert space, i.e.,
the zero mode commutes with the full Hamiltonian, [H, T0] =
0. Furthermore, due to particle-hole symmetry these zero
modes are necessarily Majorana modes (T †

0 = T0). In this
section we will derive explicit expressions for these modes,
called strong Majorana zero modes, satisfying the following
properties [11]:

(1) T
†

0 = T0,
(2) {(−1)F , T0} = 0,
(3) [H, T0] = 0,
(4) T

†
0 T0 = T 2

0 = 1.
To do so, we first split the spinless complex fermions into

two Majorana fermions aj = a
†
j and bj = b

†
j per lattice site in

the usual fashion,

cj = aj − ibj

2
, c

†
j = aj + ibj

2
. (26)

The particular choice of the hopping and superconducting
parameters becomes clear in the Majorana representation, in
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which the local Hamiltonian becomes

hj =− i

2

(
ηbjaj+1 − η−1ajbj+1 − qjajbj − q−1

j aj+1bj+1
)
.

(27)

Requiring condition (3), or equivalently [hj , T0] = 0 for all j ,
we find two zero modes of the form

T a
0 = α

L/2∑
j=1

1

η2(j−1)

(
a2j−1 − q

η
a2j

)
, (28)

T b
0 = β

L/2∑
j=1

η2(j−1)(b2j−1 − qηb2j ), (29)

where α and β are normalization factors fixed by condition
(4). Note that by construction they also satisfy the first two
requirements above. Thus T a

0 and T b
0 are indeed strong zero

modes. We stress that these zero modes are exact even for
finite system sizes, in contrast to the modes in a generic
noninteracting Kitaev chain.

Let us also comment on the localization of the zero modes
T a

0 and T b
0 . Obviously they decay with η and η−1 respectively,

localizing them at one of the edges. For η > 1, T a
0 is localized

at the left (j = 1) boundary, while T b
0 lives at the right edge

(j = L). For η < 1 the situation is reversed. Thus for all
η �= 1 we have two strong zero modes localized at the opposite
boundaries. At η = 1 both modes are delocalized and the
ground state becomes singly degenerate.

Finally, in Appendix C we discuss the action of the zero
modes on the ground states. As one would expect the zero
modes map one ground state to the other, i.e., T

a,b
0 |�e〉 =

|�o〉. This confirms that the ground states are in a different
fermion parity sector, since the Majorana zero modes change
the parity by 1.

D. Phase diagram

In the previous section we derived the existence of exact
strong zero modes, supported by the twofold degeneracy of
the ground state. This hints towards a topological supercon-
ductor region in the phase diagram. Also there appears to be
a phase transition at η = 1. In this section we will derive
the spectrum to confirm this picture by examining the gap
throughout the phase diagram. We have to note that, even
though we are interested in finite-size systems allowing for the
presence of edge effects, here we will be considering the gap
in the thermodynamic limit, as only in this limit the system
can become truly gapless. In this section we are interested in
the bulk gap and bulk phase transition.

With the local Hamiltonian in the Majorana language
(27) and recalling the alternating chemical potential (4), the
Hamiltonian can be brought into matrix form,

H = i

2

L∑
j,k=1

ajBjkbk, (30)

B =

⎛
⎜⎜⎜⎜⎜⎝

q η−1

η 2q−1 η−1

. . .
. . .

. . .
η 2q η−1

η q−1

⎞
⎟⎟⎟⎟⎟⎠. (31)

The L × L matrix B is non-Hermitian, and is not necessarily
diagonalizable. However, BBᵀ is Hermitian and the eigen-
values are (2εk )2, with εk the single-particle energies of the
model. Diagonalizing the pentadiagonal BBᵀ is quite trouble-
some. Fortunately, we can construct a symmetric tridiagonal
matrix C, such that BBᵀ = C2, with

C = 1

N

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

γ1 δ−1

δ−1 γ− δ

δ γ+ δ−1

. . .
. . .

. . .
δ γ+ δ−1

δ−1 γL

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

, (32)

where

γ± = η2 + η−2 + 2q±2,

γ1 = q−2 + η2,

γL = q2 + η−2,

δ = qη−1 + q−1η.

(33)

The matrix C can be diagonalized analytically; see Ap-
pendix D. For k = 2πn

L
with n = 1, 2, . . . , L

2 − 1 we find the
eigenvalues

ε±
k = 1

2 (N ±
√

q2 + q−2 + 2 cos k). (34)

Furthermore, there are two additional modes with energies,

ε−
0 = 0, ε+

0 = 1
2N . (35)

Note that all eigenvalues are non-negative, because BBᵀ is
positive semidefinite. The smallest nonzero eigenvalue is

ε−
k=2π/L = 1

2

(
N − (q + q−1) + k2

2(q + q−1)

)
+ O(k4),

(36)
which gives a spectral gap in the thermodynamic limit
(L → ∞) of

�E = 1
2 [N − (q + q−1)]. (37)

From Eq. (37) we see that the gap only vanishes at η = 1
indicating the phase transition. This is depicted in the q-η
phase diagram in Fig. 1. At the phase transition the low-energy
spectrum is quadratic in k, putting the critical model out of
reach for conformal field theories. To clarify the nature of
the phase transition, we consider Fig. 2. In this figure we
show a cut of Fig. 1 along q = 1 (the homogeneous point)
projected onto the μ-� space, i.e., using the conventional
Kitaev parameters [43]. The dashed lines represent the Ising
and XX transitions. The solid line depicts the cut along q = 1.
Clearly, the phase transition at η = 1 occurs at the crossing
of the Ising and XX line. As we discuss in Appendix E, for
general q this crossing can be identified as a transition in the
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1

r�

�r

η

q

FIG. 1. Phase diagram for the noninteracting model in q-η plane.
The localization of the zero modes is indicated in the white squares,
where � and r refer to the left (near site 1) and right (near site L)
edges. The first letter denotes the location of T a

0 , the second of T b
0 . In

Fig. 2 a cut along q = 1 (the homogeneous system) is shown in the
phase space of the Kitaev parameters (μ, �).

Dzhaparidze-Nersesyan-Pokrovsky-Talapov (DN-PT) univer-
sality class [44–46]. Figure 1 also shows the localization of
the zero modes given by � and r in each region, where the first
letter corresponds to T a

0 and the second to T b
0 .

E. Topological order

We have discussed the presence of zero modes, the double
degeneracy of the ground state, and the spectral gap. We
also concluded that the ground states cannot be distinguished
by local measurements. These properties do not come by
surprise, because of the tight connection to the Kitaev chain.
Specifically, at q = 1 the bulk model (1) reduces to the Kitaev
chain, which will be in its topological phase for all η �= 1. It is
then easy to see that we can adiabatically change the system
away from q = 1. Starting at q = 1 for η > 1, we can make
a smooth path to any other η′ > 1 and q > 0 without closing

2

−1

0

1

η = 1

η = ∞

η = 0

Ising

XX

μ/t

Δ/t

FIG. 2. Cut along q = 1 in Fig. 1 embedded in the �/t-μ/t

phase space for the conventional Kitaev chain. The dashed lines
represent the Ising and XX phase transitions. The solid line is the
cut along q = 1. At the phase transition (η = 1) the cut passes
through the intersection of the Ising and XX transition lines, where
the spectrum becomes quadratic at small momenta. Adapted from
Ref. [43].

the gap (see Fig. 1), thus remaining in the topological phase.
The same argument applies to all η < 1.

To support this statement, we consider two topological
invariants: the Z2 invariant [47–49] for class D topological
superconductors, and, since we do not explicitly break time-
reversal symmetry, the Z invariant [50,51] for class BDI.
Z2 invariant: The fermionic parity of the closed system

with twisted boundary conditions (TBCs) is related to the
topological properties of the open system. In general twisted
boundary conditions are implemented by adding the boundary
Hamiltonian

hbound = − �[t (eiϕ1c
†
Lc1 + H.c.) − �(eiϕ2c

†
Lc

†
1 + H.c.)]

− q1

2
(2n1 − 1) − qL

2
(2nL − 1). (38)

Recall that t and � are given by Eq. (3). The open system
corresponds to � = 0. For � = 1 we find periodic bound-
ary conditions (PBCs) for (ϕ1, ϕ2) = (0, 0), and antiperi-
odic boundary conditions (APBCs) for (ϕ1, ϕ2) = (π, π ). In
Ref. [49] it was shown that a different fermionic parity for
the ground states for PBCs and APBCs corresponds to the
topological phase, while equal fermionic parity corresponds
to the trivial phase. In Appendix F we show that the ground
states for PBCs and APBCs are

|�PBC〉 = |�o〉, |�APBC〉 = |�e〉. (39)

The parity of |�e〉 is +1 and the parity of |�o〉 is −1, which
confirms the existence of the topological phase for all η �= 1.
Z invariant: Using the second invariant we will be able to

directly link the topological phase in Fig. 1 to the topological
phase in the conventional Kitaev chain [10].

In Ref. [50] it was shown that for a model in class BDI
there exists a Z invariant in the form of a winding number,

W = − i

π

∫ k=π

k=0

dz(k)

z(k)
, (40)

where z = det[A(k)]/| det[A(k)]|. The matrix A(k) is related
to the rotated BdG Hamiltonian in k space,

UH(k)U † =
(

0 A(k)
Aᵀ(−k) 0

)
. (41)

From the periodic alternating model [i.e., (ϕ1, ϕ2) = (0, 0)
and � = 1 in Eq. (38)] we obtain

Aq (k) = −
(

q t cos(k) + i� sin(k)
t cos(k) + i� sin(k) q−1

)
,

(42)

where the q subscript refers to the alternating model. Direct
evaluation now yields

Wq =
{

1, t > 1,

0, t < 1.
(43)

For the gapped regions (η �= 1) the system is in the upper case,
hence topological. The phase transition η = 1 corresponds to
t = 1, where W is not well defined.

We can also reach this conclusion indirectly, by realizing
that det[Aq (k)] is not dependent on q. In fact, if one would
calculate AKit (k) for the conventional homogeneous Kitaev
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chain, but viewed with a two site unit cell, one would find

det[Aq (k)] = det[Akit (k)]. (44)

Consequently, also Wq = Wkit. This relates the topological
phase for general q to the topological phase for the conven-
tional Kitaev chain. Finally we note that the two invariants are
related by the fact that the Z2 invariant is just the parity of the
Z invariant [50].

III. FULLY INHOMOGENEOUS MODEL

In this section we briefly discuss a model with more
general couplings than the alternating setup (4). Specifically,
we consider completely inhomogeneous couplings ηj and qj ,
i.e., the local Hamiltonian takes the form

hj =− i

2

(
ηjbjaj+1 − η−1

j ajbj+1 − qjajbj − q−1
j aj+1bj+1

)
.

(45)

From the most general ansatz for Majorana zero modes,

T a
0 =

L∑
j=1

αjaj , T b
0 =

L∑
j=1

βjbj , (46)

one finds by requiring [hj , T
a,b

0 ] = 0 for all j that the coeffi-
cients have to satisfy the recursion relations

αj+1 = −qj

ηj

αj , βj+1 = −qjηjβj . (47)

The constants α1 and β1 are fixed by the normalization. We
note that the localization of the modes is not clear a priori.

As a trivial but instructive special case one can consider
the homogeneous model with qj = q and ηj = η. This model
was originally studied by Hinrichsen and Rittenberg [52–54]
in the context of deformations of XY spin chains. In fact, they
continued the work done by Saleur [55], who discussed a spin
chain model corresponding to the homogeneous fermionic
model introduced in Eq. (45) with η = 1.

In the homogeneous setup Hinrichsen and Rittenberg
showed that the zero modes simplify to

T a =
√

1 − (q/η)2

1 − (q/η)2L

L∑
j=1

(
−q

η

)j−1

aj , (48)

T b =
√

1 − (qη)2

1 − (qη)2L

L∑
j=1

(−qη)j−1bj . (49)

Depending on the parameters the modes are localized on the
same or opposite edges. The phase diagram can be deduced
from the single-particle energies [54],

�k =
√

(qη−1 − eik )(qη−1 − e−ik )(qη − eik )(qη − e−ik )

4q2
,

(50)

for k = 2πn
L

with n = 1, . . . , L − 1, which imply that the
spectral gap closes for η = q or η = q−1. The phase diagram
and the localization of the Majorana zero modes are shown in
Fig. 3.

FIG. 3. Phase diagram for the homogeneous model (45) with
ηj = η and qj = q. The shaded region shows the topological phase,
characterised by the existence of Majorana zero modes on opposite
edges. The notation is as in Fig. 1.

The gapless lines split the phase space into four regions,
each with a different edge mode localization. To understand
which regions are considered topological, we look at the bulk-
boundary correspondence such that we can neglect the surface
terms. Without the fine-tuned surface chemical potential the
model reduces to the Kitaev chain; the phase transition in
the Kitaev chain directly corresponds to the transitions η = q

and η = q−1. The resulting topological phases are shown
as shaded regions in Fig. 3. They are characterized by the
appearance of Majorana zero modes at opposite edges. On
the other hand, in the trivial phases the zero modes appear
on the same edge and are thus not protected against local
perturbations.

We note that the homogeneous model has a richer phase
diagram than the model with alternating chemical potential
we considered in Sec. II. However, we stress that the homoge-
neous model is in general not frustration free.

IV. INTERACTING MODEL

In this section we add interactions to the model from
Sec. II. By a special construction we will make the model
interacting while keeping the ground states in the disentangled
form (16). Consequently, the interacting model will also prove
to be frustration free. There have been recent developments on
frustration-free interacting spinless fermion models [31,39].
We will show that in a specific limit we retrieve the model
in Ref. [31]. Moreover, the twofold degenerate ground state
provides us with the notion of weak zero modes [56]. In the
last part of this section we will discuss the phase diagram of
the interacting model, giving more insight in the topological
order.

A. Hamiltonian

Recall that the noninteracting system left the fermionic
parity invariant, allowing us to split the local Hamiltonian in
even- and odd-parity parts [cf. Eqs. (8) and (9)],

hj = he
jP

e
j + ho

jP
o
j , (51)
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where P
e,o
j project onto the even/odd fermion parity sectors of

the two-site Hilbert space at lattice sites j and j + 1. We can
define two more projectors, one in each sector, via

Q
e,o
j =

(
h

e,o
j + N

2

)
P

e,o
j , (52)

such that Eq. (51) becomes

hj = Qe
j + Qo

j − N
2

. (53)

The projectors (52) annihilate the ground states (16). In terms
of fermionic operators they are explicitly expressed as

Qe
j = −η − η−1

2
(c†j c

†
j+1 + cj+1cj )

− qj + q−1
j

2
(nj + nj+1 − 1)

+ N
4

[1 + (2nj − 1)(2nj+1 − 1)], (54)

Qo
j = −η + η−1

2
(c†j cj+1 + c

†
j+1cj )

− qj − q−1
j

2
(nj − nj+1)

+ N
4

[1 − (2nj − 1)(2nj+1 − 1)]. (55)

In particular, we see that the projectors (52) both contain
a density-density interaction term, which drops out when
considering the combination (53).

On the other hand, the existence of the density-density
interaction in Q

e,o
j points to a way to construct a frustration-

free, interacting system. We set

H int =
∑

j

hint
j ,

hint
j =

√
2
[

cos φ Qe
j + sin φ Qo

j

] − N
cos

(
φ − π

4

)
2

, (56)

where the parameter φ is restricted to 0 < φ < π/2. The
noninteracting model corresponds to the choice φ = π/4. We
stress that by construction the two factorized states Eq. (16)
are the exact ground states of (56) with energy

E0 = − (L − 1) cos
(
φ − π

4

)
2

N . (57)

Moreover, H int is frustration free, and for q = 1 it reduces to
the model discussed in Ref. [31].

Again it is instructive to make the link to spin chains. By
applying the Jordan-Wigner transformation (24) we obtain the
XYZ chain in an alternating magnetic field,

H int = − 1

2

L−1∑
j=1

(
Jxσ

x
j σ x

j+1 + Jyσ
y

j σ
y

j+1 + Jzσ
z
j σ z

j+1

)

−
L∑

j=1

Bjσ
z
j , (58)

where

Jx = ρη + �η−1, Jy = ρη−1 + �η, Jz = �N , (59)

with ρ = cos(φ − π/4) and � = sin(φ − π/4), and

Bj =
{
B0 = ρq − �q−1, if j odd,
B1 = ρq−1 − �q, if j even.

(60)

It turns out that these parameters satisfy the following condi-
tion:

B0B1 = J 2
z + JxJy − Jz

√
(Jx + Jy )2 + (B0 − B1)2. (61)

This shows great resemblance to the frustration-free condition
for homogeneous XYZ chains provided by Refs. [40,41], in
which case the condition becomes B2 = (Jx − Jz)(Jy − Jz).
Thus it seems that the frustration-free condition in the alter-
nating case is indeed given by Eq. (61). It is illustrative to
return to the language of the interacting Kitaev chain,

H = −
∑

j

[t (c†j cj+1 + c
†
j+1cj ) + �(c†j c

†
j+1 + cj+1cj )]

− 1

2

∑
j

μj (2nj − 1) + U
∑

j

(2nj − 1)(2nj+1 − 1),

(62)

where the parameters t , �, μj , and U are nontrivial functions
of q, η, and φ. The chemical potential alternates between the
values

μj =
{
μ0 = μ0(q, η, φ), if j odd,
μ1 = μ1(q, η, φ), if j even. (63)

The condition of the model to be frustration free results
in relations between the parameters t , �, μ0,1, and U . For
example, in Fig. 4 we set t = � which fixes the function
η(φ), which in turn determines the chemical potential and
interaction as functions of q and φ, i.e., μ0,1(q, φ) and
U (q, φ). Inverting the latter relation we obtain the conditions
on the chemical potentials μ0,1(q,U ) for the model to become
frustration free, which is plotted in Fig. 4 for different values
of q. One way to view this result is that given an interaction

0 0.5 1
0

2

4

μ0

μ1

U/t

µj

t

q = 1.0
q = 0.8
q = 0.6
q = 0.4
q = 0.2

FIG. 4. Frustration-free lines in U − μ space for t = �. The
Peschel-Emery line [31,57] for the homogeneous case is given by
the red dashed line. The other lines depict the alternating model.
For every q the two chemical potentials in the system are given as
a function of the interaction U . As an example q = 0.6, U = 0.4 is
explicitly shown; the two chemical potentials are indicated by the
two yellow dots. The vertical lines are guides to the eye, each U

relates to two μj ’s.
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strength U and the chemical potential μ0 on the odd sites we
can determine the inhomogeneity parameter q and thus the
chemical potential μ1 on the even sites. In the homogeneous
case q = 1 we recover the Peschel-Emery line [31,57]. In the
limit q → 0 one of the chemical potentials diverges, and the
other approaches 4U .

B. Weak zero modes

In general, if the ground state is degenerate one can always
find operators mapping one ground state to the other. Some
interacting systems allow for strong zero modes, commuting
with the full Hamiltonian [58–60]. However, in general inter-
actions destroy this feature and only the commutation within
the low-energy sector remains. For the system (56) we already
know the exact form of the zero modes, because for |�e,o〉
we showed that T

a,b
0 |�e〉 = |�o〉 (see Appendix C). However,

in the interacting model we have [H int, T
a,b

0 ] �= 0, thus the
modes T

a,b
0 are weak zero modes as defined in Ref. [56].

C. Phase diagram

In this section we discuss the phase diagram of the in-
teracting model (56). Without interactions it was possible to
obtain exact results for the ground-state energy density and
the spectral gap. When adding interactions generically one
loses the analytical expressions for the observables and the
only rescue lies in numerical tools. However, due to the spe-
cific construction for the interacting model, the ground-state
energy can still be found analytically as we saw in Eq. (57).
For the spectral gap there is no analytic solution. Nevertheless,
we can find lower and upper bounds for the gap by using the
min-max principle [61]. This will give an indication for the
gapped and gapless regions in phase space. To confirm these
results, and fill in the remaining blanks we also perform a
numerical analysis.

We start by discussing the bounds on the spectral gap.
Recall that the local Hamiltonians are given by

hint
j =

√
2
[

cos φ Qe
j + sin φ Qo

j

]
. (64)

We are not concerned with the constant term, because we
are interested in the energy gap. Since Qe,o are projection
operators, they are positive semidefinite. We introduce the
notion of operator inequality as A � B if A − B is positive
semidefinite. Two cases have to be distinguished: (i) 0 < φ <

π/4 and (ii) π/4 < φ < π/2. In case (i), we have
√

2 sin φ
(
Qe

j + Qo
j

)
� hint

j �
√

2 cos φ
(
Qe

j + Qo
j

)
. (65)

From Eq. (51) we recognize that Qe
j + Qo

j is nothing but
a local Hamiltonian of the noninteracting model (up to a
constant shift). This allows us to write

√
2 sin φ H � H int �

√
2 cos φ H, (66)

where H int = ∑L−1
j=1 hint

j . Then, the min-max principle tells us
that [61] √

2 sin φ En � Eint
n �

√
2 cos φ En, (67)

where En and Eint
n (n = 1, 2, 3, . . .) are nth eigenvalue of H

and H int, respectively. Since the interacting and the noninter-
acting Hamiltonians share the same ground states annihilated

by all Q
e,o
j , we have

√
2 sin φ �E � �Eint �

√
2 cos φ �E, (68)

where �E = E3 is the energy gap of the noninteracting
system introduced in Eq. (37), while �Eint = Eint

3 is the one
of the interacting system. Repeating the same argument, we
find that the gap in case (ii) is bounded as

√
2 cos φ �E � �Eint �

√
2 sin φ �E. (69)

Concluding, by using the min-max principle we have found
upper and lower bounds on the gap energy for the interacting
system.

From these bounds we can already draw several conclu-
sions. First of all for η �= 1 and φ �= 0, π/2 the system is
gapped. The lower bound is finite, since both sin φ/ cos φ

and �E are positive. Also, for η = 1 the gap has to close,
independent of the interaction (governed by φ). Approaching
this point both the upper and lower bound vanish, since both
are proportional to �E (the noninteracting gap). In the fol-
lowing part we will discuss numerical results to confirm these
statements. Moreover, there are two boundaries (φ = 0, π/2),
that cannot be addressed by the above reasoning. At these
points the lower bound vanishes, while the upper bound is
finite. We will come back to these special points below.

We use a density-matrix renormalization group (DMRG)
algorithm to explore the low-energy spectrum in parameter
space [62–64]. Using finite-size scaling we obtained ground-
state energy and spectral gap in the thermodynamic limit.
Examples of these results (for q = 2) are shown in Figs. 5
and 6. The top figures show that the exact and numerical
findings for the ground-state energy match perfectly.

The bottom panel of Fig. 5 shows the numerical results
for the energy gap �E between the ground states and the
first excited state. For the noninteracting case (φ = π/4) also
the analytic result is depicted by the solid blue line. For the
interacting cases the dashed (dotted) line depicts the lower
(upper) bound on the gap energy, confirming that the gap
lies between the two bounds. As expected, for all interaction
parameters φ the system only becomes gapless at η = 1. This
we can clearly see in the inset, where the gap is depicted
on a logarithmic scale [65]. Also, the lower panel of Fig. 6
confirms that, away from η = 1, the gap does not close for 0 <

φ < π/2. From Fig. 6 we can also deduce what happens when
approaching the extremal cases φ = 0 and φ = π/2. The
bounds do not converge (to zero), nevertheless, the gap closes
when approaching either boundary. The phase diagram of the
interacting model is shown in Fig. 7. The solid line represents
the phase transition, which, as we argue in Appendix E, is in
the DN-PT universality class (like the noninteracting model)
[46]. At the dashed lines the ground state becomes highly de-
generate due to additional symmetry. We stress that the phase
diagram is independent of the inhomogeneity parameter q.

Finally, let us discuss what happens for φ = 0, π/2. In the
phase diagram Fig. 7 they correspond to the dashed black
lines. For these specific parameters only the even or odd
two-site projector [Eq. (52)] is present in the Hamiltonian.
As we will see, this induces an additional symmetry in the
low-energy sector, which in turn raises the ground-state de-
generacy to L + 1. Here we explicitly show the construction
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−1.3

−1.25

−1.2

0

φ = π/6, q = 2
φ = π/4, q = 2
φ = π/3, q = 2

1 1.1 1.2 1.3 1.4 1.5
η

ΔE

1 1.1 1.2 1.3
10−7

10−5

10−3

10−1

FIG. 5. Ground-state energy per lattice site, ε0 = E0/L (top
panel) and spectral gap (bottom panel) as a function of η obtained
numerically (DMRG, bond dimension D = 16, results for system
sizes L = 40, 80, . . . , 160 extrapolated to the thermodynamic limit)
for q = 2 and for three values for the interaction parameter φ. The
noninteracting φ = π/4 results are depicted by blue squares, the
two interacting cases φ = π/6, π/3 by red crosses and green circles
respectively. In the top panel, the analytical results for ground-state
energy are shown as solid lines [see Eq. (57), red and green are
overlapping]. In the bottom panel, the analytical spectral gap for
φ = π/4 is shown as the blue line [Eq. (37)]. The inset shows the
same results on a log scale, to emphasize the gap closing at η = 1.
The lower and upper band are depicted by respectively the dashed
and dotted line [Eqs. (68) and (69)].

of the ground states for φ = π/2, the derivation for φ = 0 is
similar. We consider two different cases q = 1 and q �= 1.

Case 1: q = 1. The local Hamiltonian reduces to the
isotropic Heisenberg term if we rewrite the model in spin
language using Eq. (24),

hint
j = −η + η−1

2
√

2

[
σx

j σ x
j+1 + σ

y

j σ
y

j+1 + σ z
j σ z

j+1

]
. (70)

The Hamiltonian possesses an sl2 symmetry generated by

Sz =
∑

j

σ z
j , S± =

∑
k

σ±
j , (71)

where σ± = σx±iσ y

2 . If we define the fully polarized state
|⇑〉 = |↑↑ . . . ↑〉, then the ground states are given by

|�p〉 = (S−)p|⇑〉, p = 0, 1, . . . , L, (72)

which are the L + 1 states with Stot = L/2.

−1.2

−1

ε0

0 0.1 0.2 0.3 0.4 0.5
10−2

10−1

φ/π

ΔE

η = 1.5, q = 2

FIG. 6. Ground-state energy per lattice site, ε0 = E0/L (top
panel) and spectral gap (bottom panel) as a function of φ obtained
numerically for q = 2 and η = 1.5. The purple triangles depict the
DMRG results, for the ε0 also the analytical results are shown by
the solid line [Eq. (57)]. The lower and upper band are depicted
by respectively the dashed and dotted line [Eqs. (68) and (69)]. The
DMRG calculations were performed with the parameters of Fig. 5.

Case 2: q �= 1. The model can be represented as an XXZ

chain with alternating magnetic field,

hint
j = − N

2
√

2

[
η + η−1

N
(
σx

j σ x
j+1 + σ

y

j σ
y

j+1

) + σ z
j σ z

j+1

+ qj − q−1
j

N
(
σ z

j − σ z
j+1

) − 1

]
, (73)

0 π/6 π/4 π/3 π/2

0.5

1

1.5

φ

η

FIG. 7. Phase diagram of the interacting model (56) in η-φ plane.
The solid black line denotes a phase transition in the DN-PT univer-
sality class, while at the dashed black lines the ground state becomes
highly degenerate due to additional symmetry (see main text). The
phase diagram is independent of the inhomogeneity parameter q.
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where we have shifted the spectrum such that we have a zero-
energy ground state. We note in passing that the model shows
a great resemblance to the XXZ model studied in Ref. [66],
which supports Uq (sl2) symmetry. In that case the ground
state is also L + 1-fold degenerate. However, because of the
quantum group symmetry, the excited states also have addi-
tional degeneracies which are not observed in the spectrum
of Eq. (73). Nevertheless, we can still construct the lowering
operator analogous to S− in Eq. (71) to derive the L + 1
ground states.

Note that the polarized state |⇑〉 is still a ground state. We
can define a lowering operator

S̃− =
∑

j

gjσ
−
j , gj =

⎧⎨
⎩

√
1 − q−q−1

N , j odd,√
1 + q−q−1

N , j even.
(74)

The coefficients gj have been obtained recursively ensuring
that hj S̃−|⇑〉 = 0. Since (σ−

j )2 = 0 we see that (S̃−)L+1 = 0.
Furthermore, it turns out that

|�p〉 = (S̃−)p|⇑〉 (75)

for p = 0, 1, . . . , L are ground states. The ground states
(S̃−)p|⇑〉 are nonvanishing. This is because, away from the
phase transition (η = 1), the coefficients gj are strictly pos-
itive, hence there is no destructive interference for p � L,
when acting on a single state (|⇑〉).

We can check that the Hamiltonian still leaves

Sz = Sz/2 (76)

invariant. Since |�p〉 belongs to the Sz = L/2 − p sector,
the ground states are linearly independent. Details of the
construction of this operator and the proof of Eq. (75) are
given in Appendix G.

V. CONCLUSION

In this paper we have investigated frustration-free topolog-
ical systems. Specifically, we studied noninteracting and in-
teracting generalizations of the Kitaev chain, with alternating
chemical potential on the lattice sites. Both introduced models
possess two exactly degenerate ground states of product form.
This allowed us to determine exactly the Majorana zero
modes mapping the ground states onto each other. Only in
the noninteracting case, these modes commute with the full
Hamiltonian, making them strong zero modes. We stress that
due to a fine-tuned boundary term all our results are exact even
for finite systems, which is in contrast to the generic Kitaev
chain where the Majorana edge mode energy only vanishes
exponentially with the system length. For the noninteracting
model we have shown that there is a finite energy gap above
the ground states, except at the phase transition (η = 1) given
by the zero-pairing limit. Hence there exists a smooth path
connecting the inhomogeneous model to the (homogeneous)
Kitaev chain, proving that both are in the same topological
phase. Also, we have shown both analytically and numerically
that the interacting model remains gapped in a certain region,
implying that the interacting model is in the same topological
phase as the corresponding noninteracting model.

In the future it would be interesting to investigate whether
frustration-free models can also be constructed for gen-
uinely interacting systems like Zn clock models [67–71].
It would also be interesting to generalize our interacting
model to include non-Hermiticity. In a recent work, it was
shown that a non-Hermitian one-dimensional spinless p-wave
superconductor can support complex edge modes in addition
to Majorana zero modes [72]. These give rise to a purely
imaginary shift in energy. Future work could be dedicated to
discussing a non-Hermitian extension of the models discussed
in this paper.

ACKNOWLEDGMENTS

We would like to thank E. Ardonne, K. Kawabata, and I.
Mahyaeh for useful comments on the paper. This work was
supported by the Foundation for Fundamental Research on
Matter (FOM), which is part of the Netherlands Organisation
for Scientific Research (NWO), under Grant No. 14PR3168.
H.K. was supported in part by JSPS KAKENHI Grants No.
JP18H04478 and No. JP18K03445. D.S. acknowledges sup-
port of the D-ITP consortium, a program of the Netherlands
Organisation for Scientific Research (NWO) that is funded
by the Dutch Ministry of Education, Culture, and Science
(OCW).

APPENDIX A: LINDBLAD OPERATORS

An alternative approach in finding the ground states of the
noninteracting Hamiltonian is by virtue of Lindblad operators.
Fewer steps are required for deriving that |�±〉 are the ground
states of H ; it is, however, a less transparent method. A similar
approach has been used by Tanaka [73], who discussed a more
general model with interaction, which includes as a special
case the noninteracting model.

Lindblad operators Lj are defined in the context of
nonequilibrium dynamics and govern the dissipation in the
system [74–77]. For certain states |D〉, called dark states in
the quantum optics literature, this dissipation term vanishes,
which is expressed in terms of the Lindblad operators as

Lj |D〉 = 0. (A1)

Here we leave the dissipation picture and use the notion of
dark states to define

Lj = √
g
(
x−1

j cj − xj c
†
j − x−1

j+1cj+1 − xj+1c
†
j+1

)
, (A2)

where g = η2−η−2

N and xj = x0 (x1) for j odd (even). One can
now easily see that the dark states of Lj are given by |�±〉 as
defined in Eq. (16). Furthermore, the Lindblad operators are
chosen such that

H =
∑

j

hj , hj = L
†
jLj − N

2
, (A3)

with hj the noninteracting Hamiltonian in Eq. (6). Hence
we have found two ground states of the Hamiltonian. In the
following we will drop the overall constant N /2.

Assuming that we have no knowledge of the ground-state
degeneracy from zero modes or the like, we still have to show
that we have found all ground states. This can be done by
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Witten’s conjugation argument [78,79]: The model we are
interested in has at least a twofold degenerate ground state
and is given by

H =
∑

j

L
†
jLj . (A4)

Now consider an invertible matrix M, then we can define
L̃j = MLjM−1 such that

H̃ =
∑

j

L̃
†
j L̃j (A5)

has the same number of ground states as H . If we choose

M = [
1 + (

x−1
0 − 1

)
n1

][
1 + (

x−1
1 − 1

)
n2

]
. . .[

1 + (
x−1

1 − 1
)
nL

]
(A6)

then L̃j = √
g(cj − c

†
j − cj+1 − c

†
j+1) and the conjugated

Hamiltonian becomes

H̃ = −2g
∑

j

[c†j cj+1 + c
†
j+1cj + cj+1cj + c

†
j c

†
j+1], (A7)

which is nothing but the Kitaev chain in the limit t = � and
μ = 0, which clearly has two ground states.

APPENDIX B: LOCAL OPERATOR
AND CORRELATION LENGTH

In order to determine the correlation length, we calculate
the equal-time Green function Ge,o(i, j ) = 〈�e,o|c†i cj |�e,o〉.
Note that Ge,o does depend on the specific i and j and not only
on the distance, because translational invariance is broken. If
we define d = |i − j |, the Green function can be written as

Ge,o(i, j ) = xixj(
1 − x4

i

)(
1 − x4

j

)[
η−d

1 ± ηL
+ ηd

1 ± η−L

]
, (B1)

where the upper sign corresponds to Ge(i, j ) and the lower
to Go. Furthermore, xi = x0 for i odd and xi = x1 for i even,
with x0,1 defined in Eqs. (14) and (15), and we have used the
identity

x2
0 + 1

x2
0 − 1

x2
1 + 1

x2
1 − 1

= η2. (B2)

For large L the Green function is proportional to

Ge,o(i, j ) ∝
{
ηd η < 1,

η−d η > 1,
(B3)

which scales as e−d/ξ with the correlation length

ξ = 1

ln[max(η, η−1)]
. (B4)

We note that ξ diverges at the phase transition (η = 1).
Next we show that the difference between the expectation

values of an even local operator Oe with respect to |�e〉 and
|�o〉 satisfies the bound (22). First we recognize that for an
even local operator Oe

[Oe, (−1)F ] = 0, (B5)

and recall that |�−〉 = (−1)F |�+〉. Therefore we can already
infer that

〈�−|Oe|�−〉 = 〈�+|Oe|�+〉, (B6)

〈�−|Oe|�+〉 = 〈�+|Oe|�−〉. (B7)

This simplifies the left-hand side of Eq. (22) to

|N〈�+|Oe|�−〉 − M〈�+|Oe|�+〉|
|N2 − M2|

� N |〈�+|Oe|�−〉| + M|〈�+|Oe|�+〉|
|N2 − M2|

� ‖Oe‖NM + N |〈�+|Oe|�−〉|
|N2 − M2| , (B8)

where N and M are given by Eqs. (20) and (21) respectively.
Here ‖Oe‖ is the operator norm defined as

‖Oe‖ := inf{c : ‖A|φ〉‖ � c‖|φ〉‖ for all |φ〉 ∈ C⊗L}.
(B9)

In the last line we have resolved one of the two correlators.
The other one is more involved. In the following we will
derive an upper bound for |〈�+|Oe|�−〉|, which becomes
a bit intricate because of the inhomogeneous nature of the
system. The estimation hinges on the fact that Oe is a local
operator with a support on � sites.

First of all, notice that there are L − � sites for which |�±〉
commutes with Oe, therefore we can reduce

〈�+|Oe|�−〉 = C1
[(

x2
0 − 1

)(
x2

1 − 1
)]L/2−��/2+1�

× 〈�̃+|Oe|�̃−〉, (B10)

where

C1 = max
(
x2

0 + 1, x2
0 − 1

)
max

(
x2

1 + 1, x2
1 − 1

)
, (B11)

and �·� is the floor function. Both the constant and the floor
are a result of the alternating pattern in the model. They only
contribute marginally to magnitude, but for completeness we
will keep them in. Furthermore, �̃± are the ground states
reduced to i ∈ [j1, jk].

Using the Schwarz’s inequality we obtain

|〈�̃+|Oe|�̃−〉|2 � 〈�̃+|�̃+〉〈�̃−|O†
eOe|�̃−〉

�
(
C2

[(
x2

0 + 1
)(

x2
1 + 1

)]� �
2 �‖Oe‖

)2
,

(B12)

with

C2 = max
(
x2

0 + 1, 1
)

max
(
x2

1 + 1, 1
)
. (B13)

Plugging this all in yields

N |〈�+|Oe|�−〉| � NMC3

((
x2

0 + 1
)(

x2
1 + 1

)
(
x2

0 − 1
)(

x2
1 − 1

)
)��/2�

‖Oe‖

= NMC3η
2��/2�‖Oe‖, (B14)
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using Eq. (B2) and defining C3 = C1C2

(x2
0 −1)(x2

1 −1)
. Hence we find

|〈�e|Oe|�e〉 − 〈�o|Oe|�o〉|

� (1 + C3η
2��/2�)‖Oe‖

|ηL − η−L|
≈ (1 + C3η

2��/2�)‖Oe‖e−L/ξ , (B15)

where we have used N/M = ηL and ξ is defined in Eq. (B4).
For η �= 1 and l � L (i.e., Oe local) the numerator is small
compared to eL/ξ . Hence Eq. (B15) vanishes for large sys-
tems.

APPENDIX C: ACTION OF ZERO MODES

In this appendix we will explicitly derive that T a
0 (analo-

gously one can show this for T b
0 ) maps one ground state to the

other, i.e., T a
0 |�e〉 ∝ |�o〉.

Before we proceed with the derivation let us note that

x1
(
x2

0 − 1
)

x2
1 + 1

= x0qη−1, (C1)

which we will need later on.
Suppose |�e〉 = ∑

j λjaj |�o〉, then 〈�o|aj |�e〉 = λj ,
because a2

j = 1. Here we have assumed 〈�o|ajak|�o〉 =
0 for j �= k, which is true because 〈�±|ajak|�±〉 =
〈�±|ajak|�∓〉 = 0 due to the specific construction of the
ground states.

And we define the shorthand notation |(±)j 〉 = (xj c
†
j ±

1)|vac〉 (with xj = x0,1 depending on parity), such that for
instance |�+〉 = |(+ + · · · +)〉. Using this notion

cj |�±〉 = (−1)j−1|(∓ ∓ · · · ∓)〉(xj )|vac〉j |(± ± · · · ±)〉,
(C2)

c
†
j |�±〉 = (−1)j−1|(∓ ∓ · · · ∓)〉(±c

†
j )|vac〉j |(± ± · · ·±)〉,

(C3)

which in turn yields

〈�±|cj |�±〉 = 〈�±|c†j |�±〉

= ±xj (−1)j−1
j−1∏
k=1

(
x2

k − 1
) L∏

l=j+1

(
x2

l + 1
)
,

(C4)

〈�∓|cj |�±〉 = −〈�∓|c†j |�±〉

= ∓xj (−1)j−1
j−1∏
k=1

(
x2

k + 1
) L∏

l=j+1

(
x2

l − 1
)
.

(C5)

Recall that aj = cj + c
†
j [from Eq. (26)] and |�e,o〉 =

1√
2(N±M )

(|�+〉 ± |�−〉) (from Eqs. (18) and (19)) such that

〈�o|aj |�e〉 = 2xj (−1)j−1

√
N2 − M2

j−1∏
k=1

(
x2

k − 1
) L∏

l=j+1

(
x2

l + 1
)

= 2xj (−1)j−1

√
N2 − M2

N

x2
j + 1

j−1∏
k=1

x2
k − 1

x2
k + 1

. (C6)

If j is odd then

λj = 2√
1 − η−2L

x0

x2
0 + 1

(
−

√(
x2

0 − 1
)(

x2
1 − 1

)
(
x2

0 + 1
)(

x2
1 + 1

)
)j−1

= 2√
1 − η−2L

x0

x2
0 + 1

(−η−1)j−1, (C7)

using Eq. (B2). For even j we get

λj = − 2√
1 − η−2L

1

x2
0 + 1

x1
(
x2

0 − 1
)

x2
1 + 1

(−η−1)j−2

= 2√
1 − η−2L

x0

x2
0 + 1

[−qη−1(−η−1)j−2], (C8)

using Eq. (C1). Comparing these results to Eq. (28) we
conclude that λj = Kαj , for some constant K . Finally, we
check that the λj ’s are normalized correctly:

〈�e|�e〉 =
∑

j

λ2
j = 4x2

0(
x2

0 + 1
)2

η2 + q2

η2 − η−2
. (C9)

By simply plugging in x0 one can verify that this equals unity.
Hence T a

0 maps one ground state to the other, up to an overall
phase. For T b

0 one can do a similar derivation.

APPENDIX D: SPECTRUM

In this appendix we derive the spectrum for the noninteract-
ing model. The first eigenvalue we have already encountered,
since there is a zero-energy mode in the system. The other
eigenvalues we find by diagonalizing C in Eq. (32). We use
the following ansatz for the eigenstates of C:

T a
k (2l − 1) = αeik(2l−1) + ᾱe−ik(2l−1), (D1)

T a
k (2l) = βeik(2l) + β̄e−ik(2l). (D2)

Note that we have taken this two-site periodicity, suitable for
the diagonalization of the Hamiltonian with the alternating
chemical potential. Using this ansatz we obtain the following
equations for the bulk spectrum:(

γ+ − 2ε(k) δe−ik + δ−1eik

δeik + δ−1e−ik γ− − 2ε(k)

)(
α

β

)
= 0, (D3)

which is satisfied if the determinant of the matrix vanishes,
resulting in the following eigenvalues:

ε±(k) = 1
2 (N ±

√
q2 + q−2 + 2 cos(k)). (D4)

It is important to note that we have not yet specified anything
for k. If the system were periodic, we would find k = 2πn

L
for

n ∈ {0, . . . , L
2 − 1}.

In the open system to find a constraint on k we have to
study the boundary conditions. To do so we return to C2 =
BBᵀ, because it offers four boundary equations, which we
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need to set the four free parameters (α, ᾱ, β, β̄):

(
δ−2 + γ 2

1 − ε2 (γ1 + γ−)δ−1 1 0

(γ1 + γ−)δ−1 δ−2 + δ2 + γ 2
− − ε2 (γ+ + γ−)δ 1

)

×

⎛
⎜⎝

T (1)
T (2)
T (3)
T (4)

⎞
⎟⎠ = 0, (D5)

(
1 (γ+ + γ−)δ δ−2 + δ2 + γ 2

+ − ε2 (γ+ + γL)δ−1

0 1 (γ+ + γL)δ−1 δ−2 + γ 2
L − ε2

)

×

⎛
⎜⎝

T (L − 3)
T (L − 2)
T (L − 1)

T (L)

⎞
⎟⎠ = 0, (D6)

where we have dropped the superscript (a) and subscript (k)
for brevity. Plugging in the ansatz gives a 4 × 4 matrix. The
determinant of this matrix vanishes when k = 2πn

L
with n ∈

{1, . . . , L
2 − 1}. For k = 0 the determinant also vanishes, but

that occurs because the ansatz eigenfunction becomes trivial.
Therefore, we can only determine 2(L/2 − 1) = L − 2 eigen-
values from C directly. Adding the zero mode gives us L − 1
eigenvalues. It turns out we can construct the remaining mode
explicitly. The following Majorana modes satisfy [H, T

a,b
N /2] =

±N
2 T

a,b
N /2:

T a
N /2 = α1

L/2∑
j=1

(−q−2)j−1

(
a2j−1 + η

q
a2j

)
, (D7)

T b
N /2 = β1

L/2∑
j=1

(−q−2)j−1

(
b2j−1 + 1

qη
b2j

)
, (D8)

therefore the final eigenvalue is N /2.

APPENDIX E: PHASE TRANSITION

Here we show that the phase transition at η = 1 is in the
DN-PT universality class. First we will address the noninter-
acting problem, and then also consider the interactions. We
use the results for the staggered XXZ chain,

H = − 1

2

L∑
j=1

(
σx

j σ x
j+1 + σ

y

j σ
y

j+1 + �σ z
j σ z

j+1

+ 2[h + (−1)jhs]σ
z
j

)
. (E1)

In Ref. [46] it was shown that there is a DN-PT phase
transition at

h =
√

h2
s + 1 − �. (E2)

For the noninteracting model with PBCs, then we can read
from Eq. (25) that at criticality [η = 1, recall Eq. (4)]

h − hs = q

h + hs = q−1

}
⇒ h = (q−1 + q )/2,

hs = (q−1 − q )/2.
(E3)

Thus with J = 1 and � = 0 we see that Eq. (E2) is satisfied,
i.e., the model is precisely at the DN-PT transition. Similarly,

when including interaction the phase transition still occurs at
η = 1. From Eqs. (58)–(60) we can derive that

h = cot φ (q−1 + q ),

� = (cot φ − 1)(q−1 + q ), (E4)

hs = q−1 − q,

where an overall factor of
√

2 sin(φ) has been taken out. Thus
the condition (E2) is also satisfied for the interacting model.

APPENDIX F: GROUND STATE FOR PBCs AND APBCs

Following Appendix D in Ref. [49] we derive the ground
states for PBCs and APBCs. From Eq. (16) we define

A±
L =

L/2∏
k=1

(x0c
†
2k−1 ± 1)(x1c

†
2k ± 1), (F1)

such that |�±〉 = A±|vac〉. Subsequently

Ae
L = A+

L + A−
L, Ao

L = A+
L − A−

L, (F2)

which implies |�e,o〉 = 1√
2(N±M )

Ae,o|vac〉.
We will now prove that |�o〉 (|�e〉) is the ground state for

PBCs (APBCs). The open chain we studied in Sec. II is closed
by adding a boundary term, as we saw in Eq. (38). For PBCs
and APBCs we can identify

hbound = hL (F3)

with hL as in Eq. (6), which acts on site L and L + 1 ≡ 1.
For PBCs we can identify cL+1 = c1. Therefore, hbound is
minimized by (x1c

†
L ± 1)(x0c

†
1 ± 1)f (c†2, . . . , c

†
L−1), where f

is some polynomial. Rewriting

A±
L = A±

L−1x1c
†
L ± A±

L−1 = −x1c
†
LA∓

L−1 ± A±
L−1 (F4)

brings c
†
L next to c

†
1. Next we note that

Ao
L = (x1c

†
L + 1)A+

L−1 − (x1c
†
L − 1)A−

L−1

= (x1c
†
L + 1)(x0c

†
1 + 1)(. . .)

− (x1c
†
L − 1)(x0c

†
1 − 1)(. . .), (F5)

with (. . .) some polynomial in c
†
2, . . . , c

†
L−1. Therefore

Ao
L|vac〉 minimizes hbound, so the ground state for PBCs is

|�o〉.
For APBCs c

†
L+1 = −c

†
1, so hbound is minimized by

(x1c
†
L ± 1)(−x0c

†
1 ± 1)f (c†2, . . . , c

†
L−1). Using Eq. (F4) we

recognize

Ae
L = −(x1c

†
L − 1)A+

L−1 − (x1c
†
L + 1)A−

L−1

= −(x1c
†
L − 1)(x0c

†
1 + 1)(. . .)

− (x1c
†
L + 1)(x0c

†
1 − 1)(. . .), (F6)

concluding that |�e〉 is the ground state for APBCs.

APPENDIX G: ODD PROJECTOR

In this appendix we derive the ground states of the Hamil-
tonian in Eq. (73). It is known that there are L + 1 unique
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ground states [80,81]. For notational convenience we rewrite

hint
j = − N

[
cos(θj )

(
σx

j σ x
j+1 + σ

y

j σ
y

j+1

) + σ z
j σ z

j+1

+ sin(θj )
(
σ z

j − σ z
j+1

) − 1
]
, (G1)

where we used that

cos(θj )2 + sin(θj )2 = (η + η−1)2 + (
qj − q−1

j

)2

N 2
= 1.

One can easily check that the polarized state |⇑〉 is one of the
ground states of the system, H |⇑〉 = 0. We claim that all the
ground states are given by

|�p〉 = (S̃−)p|⇑〉, (G2)

for p = 0, 1, . . . , L with S̃− defined in Eq. (74), such that
H |�p〉 = 0.

In order to prove this statement we need the following two
conditions:

H S̃−|⇑〉 = [H, S̃−]|⇑〉 = 0, (G3)

[[H, S̃−], S̃−] = 0. (G4)

To derive this, we plug Eq. (74) into Eq. (G3) resulting in the
following constraint on gj :

gj cos(θj ) = gj+1[1 − sin(θj )] (G5)

is satisfied by

gj+1 = 1 + sin(θj )

cos(θj )
gj = N + qj − q−1

j

η + η−1
gj . (G6)

Choosing g1 =
√

1 − q−q−1

N results in Eq. (74), which proves
Eq. (G3). Finally, simply writing out the commutator

[[
hj , gjσ

z
j + gj+1σ

z
j+1

]
, gjσ

z
j + gj+1σ

z
j+1

]
(G7)

and plugging in gj verifies Eq. (G4).

Now suppose |�p〉 and |�p+1〉 are ground states of H . For
p = 0 this is true, because of H |⇑〉 = 0 and Eq. (G3). Using
Eq. (G4)

0 = [[H, S̃−], S̃−]|�p〉
= (

H (S̃−)2 − 2S̃−H S̃− + (S̃−)2H
)|�p〉

= H |�p+2〉 − 2S̃−H |�p+1〉 + (S̃−)2H |�p〉
= H |�p+2〉. (G8)

Hence also |�p+2〉 is a zero-energy ground state of H , and
therefore by induction all |�p〉 are ground states. Next, we
note that (σ−

j )2 = 0, and therefore (S̃−)L+1 = 0, allowing for
finite (S−)p for p = 0, 1, . . . , L.

Finally, we have to prove that (a) all |�p〉 exist and (b) we
have found a complete ground-state basis.

(a) For the first point we note that gj > 0 for all j , therefore
(S−)p is a non-negative matrix and (S−)p �= 0 for p � L.
Hence, the states |�p〉 are nontrivial (i.e., ‖|�p〉‖ > 0).

(b) For the second point we observe that Sz|�p〉 = (L/2 −
p)|�p〉, with Sz as in Eq. (76). In other words, all |�p〉 belong
to different Sz sectors. Proving the completeness is equivalent
to showing that the ground state |�p〉 is the unique ground
state in the respective Sz sector. Given that Sz commutes with
the Hamiltonian, the Hamiltonian matrix (H) becomes block
diagonal in the Sz basis. Each block (Hp) corresponds to a
fixed Sz sector. In Eq. (G1) we note that only the cos(θj )
terms gives rise to off-diagonal terms in Hp, with a strictly
negative coefficient −(η + η−1). Because σx

j σ x
j+1 + σ

y

j σ
y

j+1
corresponds to a non-negative matrix, the off-diagonal ele-
ments of the matrix are nonpositive. Note that we are allowed
to add a constant term, making the full matrix nonpositive.
Since Hp is Hermitian, irreducible, and nonpositive, the
Perron-Frobenius theorem tells us that the ground state is
nondegenerate [82]. �
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