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Nature of the spin liquid in underdoped cuprate superconductors
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In the present paper, we address a long-standing problem of the magnetic ground state and magnetic
excitations in underdoped cuprates. Modeling cuprates by the extended t − J model, we show that there is a
dimensionless parameter λ which drives quantum magnetic criticality at low doping x. Hence we derive the zero
temperature λ − x phase diagram of the model. It is argued that all underdoped cuprates are close to the quantum
tricritical point x = 0, λ = 1. The three phases “meet” at the tricritical point: (i) Néel antiferromagnet, (ii) spin
spiral with antinodal direction of the spiral wave vector, (iii) algebraic spin liquid. We argue that underdoped
cuprates belong either to the spin-liquid phase or they are on the borderline between the spin liquid and the
spin spiral. We calculate the energy position Ecross of the inelastic neutron scattering response maximum at
q = (π, π ) and compare our results with experiments. We also explain softening of magnons in the intermediate
regime observed in inelastic neutron scattering.
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I. INTRODUCTION

It is widely believed that an understanding of the nature of
magnetic ground state and spin excitations in cuprates is cru-
cial for resolving the problem of high Tc superconductivity.
The most striking physics arises in hole-doped cuprates in the
regime of low doping, where exotic phase transitions between
distinct magnetic states take place. Intricate details of doping-
driven transitions remain elusive and lack a unifying picture.
There are two major cuprate families, La2−xSrxCuO4 (LSCO)
and YBa2Cu3O6+y (YBCO) that are best experimentally stud-
ied in the low doping regime. For a review of experimental
data on magnetic excitations in these compounds see Ref. [1]
and also Refs. [2–4]. While there are numerous material
specific details (dependent on the degree of disorder, number
of CuO2 planes, oxygen chains, etc.), the most prominent and
generic phenomenological observations can be summarized
as follows: (i) A commensurate antiferromagnetic (AFM)
phase persist at very low doping. (ii) An intermediate state
historically called the “spin glass” state arises in the doping
window from a few percent to about 10%. The spin glass
phase is characterized by very small static or quasistatic
magnetic moments. (iii) At higher values of doping, the
static magnetic moment vanishes. (iv) Magnetic response in
the magnetically disordered phase is always incommensurate
and manifests the famous “hourglass” dispersion. (v) The
onset of superconductivity upon increasing of doping always
occurs in the “spin glass” phase.

On the theoretical side, it is widely accepted that the most
important low-energy physics of cuprates is described by the
extended t − J model [5–7]. Magnetic phase diagram of the
t − J model at the classical mean-field level, i.e., disregarding
quantum fluctuations of spins, is well understood [8,9].
Besides doping x, another important parameter is λ ∝ g2m∗,
where g is the hole-magnon interaction constant and m∗ is
the hole’s effective mass. In a lightly doped t − J model,
holes always form small pockets near four nodal points in the

Brillouin zone k0 = (±π/2,±π/2) and k0 = (±π/2,

∓π/2), and m∗ describes curvature of the holon dispersion
near the minima points. The explicit relation of λ to
parameters of the extended t − J model was derived in
Ref. [10] and will be specified later. The zero temperature
λ − x mean-field phase diagram of the model is shown in
Fig. 1(a).

The Lifshitz point at λLP = 1 (at which a transition be-
tween commensurate and incommensurate spin states occurs)
separates two phases: (i) the Néel phase at λ < 1 and (ii)
the static spin-spiral phase at 1 < λ < 2. On the x − λ phase
diagram, the Lifshitz point becomes a Lifshitz line. The direc-
tion of the spin spiral is always antinodal, i.e., Q = (Q, 0) or
Q = (0,Q), and the wave vector of the spiral scales linearly
with doping, Q ∝ x, Ref. [8]. When further increasing the
coupling parameter λ, the system becomes unstable toward
phase separation at λPS = 2, Ref. [9] A possibility of a
noncoplanar state at 1 < λ < 2 has been also considered [9];
however, the noncoplanar phase was ruled out in favour of the
spin-spiral state, see Ref. [11].

In the mean field paradigm resulting in the phase diagram
of the t − J model in Fig. 1(a), quantum fluctuations of spins
are completely ignored. On the other hand, in the vicinity of
the Lifshitz point, quantum fluctuations are strongly enhanced
and can lead to quantum phase transitions. Some 30 years
ago, Ioffe and Larkin considered a seemingly unrelated
problem [12] of a Lifshitz transition in a two-dimensional
(2D) frustrated antiferromagnet (nonitinerant) between the
collinear AFM phase and the spin-spiral phases. Ioffe and
Larkin showed that quantum fluctuations necessarily lead to
a development of a gapped spin-liquid phase in the vicinity
of the Lifshitz point. A frustration by itinerant fermions is
very different from that in nonitinerant systems. Neverthe-
less, in this paper we show that quantum fluctuations in the
t − J model in the vicinity of the classical Lifshitz point
also lead to the spin-liquid phase due to the mechanism
similar to that by Ioffe and Larkin. Hence, the classical
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FIG. 1. Zero temperature phase diagram of a lightly doped ex-
tended t − J model; x is hole doping, λ is an effective fermion-
magnon coupling parameter. (a) Classical phase diagram [9]. (b)
Quantum phase diagram. Strong quantum fluctuations in the vicinity
of the Lifshitz point (λLP) result in a new algebraic spin-liquid phase.

Lifshitz line shown in Fig. 1(a) expands to a finite spin-liquid
region shown in Fig. 1(b). The endpoint of the classical
Lifshitz line at x = 0 becomes a quantum tricritical Lifshitz
point.

In the present paper, we calculate the phase diagram,
analyze properties of the spin-liquid phase, and compare our
results with experimental observations for cuprates. We argue
that cuprates belong to a relatively narrow vertical band near
λ ≈ 1 in the phase diagram Fig. 1(b). In our analysis, we
consider the single-layer model in the absence of disorder.
Therefore, our results are applicable to cuprates at doping
x � 5%. At doping lower than 5%, the spin-spiral physics
in LSCO is driven by disorder [13,14], and in YBCO the
physics is driven by the bilayer character of the compound
[15]. The spin liquid in the t − J model, besides some
similarities, has many differences from the Ioffe-Larkin spin
liquid in frustrated magnets. The most noticeable qualitative
differences are (i) magnetic response in the spin-liquid phase
in the t − J model has a finite spectral weight at low energies
(magnetic pseudogap), in contrast to a fully gapped magnetic
response in the Ioffe-Larkin case, and (ii) the decay of spin-
spin correlation with the distance is different in the two
cases. In the Ioffe-Larkin spin liquid, the correlator decays
exponentially with distance [16]. On the other hand, in the
t − J model spin liquid is algebraic and the correlator decays
as 1/r3.

Following Refs. [8,11], we rely on quantum field theory
formalism. Interestingly, even experimental data indicates that
the field theory is a very natural approach to the problem. In
Fig. 2, we present magnetic dispersion along the (1,0) crystal
axis taken from Ref. [17]. The figure shows combined data
on resonant inelastic x-ray scattering and inelastic neutron
scattering. The data demonstrates three distinct regimes sepa-
rated in Fig. 2 by vertical lines. In the ultraviolet regime, the
dispersion only very weakly depends on doping, practically
doping independent. The independence is consistent with
high temperature NMR data [18]. In the intermediate regime,
there is a significant softening of the magnon dispersion
with doping and the most dramatic doping dependence takes
place in the infrared regime. We set the ultraviolet cutoff
for the field theory q ≈ �q that is the upper edge of the
intermediate regime as shown in Fig. 2. The value of the
cutoff indicated by the data is �q ∼ 0.2(r.l.u) ∼ 1.2/a, where
r.l.u. are reciprocal lattice units and a = 3.81 Å is the lattice
spacing of the square CuO2 plane. In the main text, we will
determine the value of �q theoretically and show that �q
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FIG. 2. Magnetic dispersion along the (1,0) direction. Points
show combined data on resonant inelastic x-ray scattering and inelas-
tic neutron scattering in NdBCO and YBCO at T = 15 K, Ref. [17].
Vertical lines separate three different regimes that we call infrared
regime, intermediate regime, and ultraviolet regime.

is independent of doping. The spin-wave theory works well
at q > �q ; moreover, in this regime the field theory is not
valid and only the spin-wave theory is applicable. On the other
hand, the magnon dispersion is linear in q at q � �q and this
justifies applicability of the field theory. The crossover energy
scale between the intermediate regime and the infrared regime
depends on doping and the change of the regime is related
to the energy Ecross discussed in the experimental review in
Ref. [1]. We calculate values of Ecross for different values of
doping and compare our results with data. In the low doping
limit, x → 0, the size of the “infrared” domain shrinks to zero.
In our analysis, besides the already mentioned publications,
we use some ideas from Refs. [19–22]. We would also like
to mention a recent work, Ref. [23], where an emergence
of topological order in the pseudogap phase was proposed.
This is an interesting possibility; however, Ref. [23] does not
consider magnetic excitations which are of primary interest in
the present work.

The paper is organized as follows. In Sec. II, we review the
procedure for the reduction of the extended t − J model to the
quantum field theory. The new point compared to already pub-
lished results is the doping dependence of magnon speed. In
Sec. III, we evaluate parameters of the field theory, calculate
the dependence (reduction) of magnon speed on doping using
self-consistent Born approximation (SCBA), and compare our
predictions with inelastic neutron scattering data. In Sec. IV,
we explain central ideas of the paper. Here we discuss the
theory of the quantum Lifshitz transition driven by a coupling
between spin excitations and low-energy fermionic modes.
In the same section, we present a magnetic phase diagram
and derive properties of the new spin-liquid phase. Here we
separately consider a simple case of circular holon Fermi
pockets and more realistic case of elliptic pockets. In Sec. V,
we discuss the ultraviolet cutoff for the field theory and
provide quantitative estimates for the “Lindemann criterion”
of quantum melting. In the same section, we calculate Ecross

and compare it with the experimental data. Furthermore, we
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FIG. 3. Holon’s Fermi pockets in underdoped cuprates.

numerically evaluate the phase boundaries in zero temperature
phase diagram. In Sec. VI, we consider the equal time spin-
spin correlator and demonstrate the algebraic decay. Finally,
we summarize our results in Sec. VII.

II. LOW-ENERGY LIMIT OF THE EXTENDED t − J
MODEL: QUANTUM FIELD THEORY

The Hamiltonian of the extended t − J model reads [5–7]

H = −t
∑
〈ij〉

c
†
i,σ cj,σ − t ′

∑
〈〈ij〉〉

c
†
i,σ cj,σ

− t ′′
∑

〈〈〈ij〉〉〉
c
†
i,σ cj,σ + J

∑
〈i,j〉

[
Si · Sj − 1

4
NiNj

]
, (1)

where c
†
iσ (ciσ ) is the creation (annihilation) operator for

an electron with spin σ =↑,↓ at Cu site i; the operator of
electron spin reads Si = 1

2c
†
iασ αβciβ . The electron number

density operator is Ni = ∑
σ c

†
iσ ciσ , where x is the hole dop-

ing, so that the sum rule 〈Ni〉 = 1 − x is obeyed. In addition
to Hamiltonian Eq. (1), there is the no double occupancy
constraint, which accounts for a strong electron-electron on-
site repulsion. Values of parameters slightly vary between dif-
ferent compounds. Typically, J ≈ 125 meV and the hopping
integrals are t ≈ 390 meV ≈ 3J , t ′ ≈ 90 meV ≈ −0.7J , and
t ′′ ≈ 80 meV ≈ 0.6J , see, e.g., Ref. [24] The Fermi surface
of a lightly doped extended t − J model consists of Fermi
pockets shown in Fig. 3 and centered at the nodal points k0 =
(±π/2,±π/2) and k0 = (±π/2,∓π/2). The hole dispersion
can be approximately calculated using SCBA, that is well
known to be very reliable for the single hole problem in the
t − J model. The single hole dispersion can be parametrized
as [25]

εk = β1(γ +
k )2 + β2(γ −

k )2, γ ±
k = 1

2
(cos kx ± cos ky ),

εk ≈ β1
p2

1

2
+ β2

p2
2

2
. (2)

Hereafter we set the lattice spacing equal to unity, a =
3.81 Å → 1. The second line in Eqs. (2) corresponds to the
quadratic expansion of the fermion dispersion along the prin-
ciple axes of the Fermi surface ellipse, Fig. 3, p = k − k0, and

Fermi energy is related to doping as

εF ≈ πβx,

β =
√

β1β2 = 1

m∗ . (3)

Inverse effective masses β1, β2 can be calculated within
the extended t − J model in SCBA approximation and they
significantly depend on t ′ and t ′′, see Ref. [10]. At values of t ′
and t ′′, corresponding to cuprates, the inverse effective mass
is 2J <

√
β1β2 < 2.5J . Hence, the effective mass of a hole is

approximately twice the electron mass, m∗ ≈ 2me.
While the t − J model is the low energy reduction of

the three band Hubbard model, the total energy range in
the t − J model, �ε ∼ 8t ∼ 2J ≈ 3 eV, is still very large.
On the other hand, we are interested in the energy interval
bounded by the top edge of the intermediate regime in Fig. 2,
E � 150−200 meV. Therefore, for our purposes, it is quite
natural to consider the low-energy sector of t − J model. The
effective low-energy Lagrangian was first derived in Ref. [8]
with some important terms responsible for stability of the
spin-spiral ground state missing. The full effective Lagrangian
was derived in Ref. [11]. This approach necessarily requires
an introduction of two checkerboard sublattices, independent
of whether there is a long-range AFM order or the order
does not exist. The two checkerboard sublattices allow us to
avoid a double counting of quantum states in the case when
spin and charge are separated. A hole, which hereafter we
call a holon, does not carry a spin, but it can be located at
one of the sublattices and this is described by the pseudospin
1/2. Due to the checkerboard sublattices the Brillouin zone
coincides with magnetic Brillouin zone (MBZ) even in the
absence of a long-range AFM order. Therefore, there are four
half-pockets in Fig. 3 or two full pockets within MBZ. Finally,
the Lagrangian reads [11]

L = χ⊥
2

�̇n2 − ρs

2
(∇�n)2 +

∑
α

{
i

2
[ψ†

αDtψα − (Dtψα )†ψα]

−ψ†
αεα (P )ψα +

√
2g(ψ†

α �σψα ) · [�n × (eα · ∇)�n]

}
. (4)

Fermions (holons) are described by a spinor ψα with the
pseudospin 1/2, and the vector of staggered magnetization
n normalized as n2 = 1 corresponds to localized spins at
Cu sites. The first line in Eq. (4) is O(3) nonlinear sigma
model that describes spin dynamics, the second line is the
Lagrangian for noninteracting holons. The long covariant
derivatives in Eq. (4) are defined as

P = −i∇ + 1
2 �σ · [�n × ∇�n], (5)

Dt = ∂t + 1
2 �σ · [�n × ∂t �n]. (6)

The index α = 1, 2 enumerates two full holon pockets in
Fig. 3. The term in the bottom line in Eq. (4) describes a
coupling between holons and the staggered magnetization.
Pauli matrices σ in Eq. (4) act on the holon’s pseudospin
and eα = 1/

√
2(1,±1) denotes a unit vector orthogonal to the

face of the MBZ where the holon is located.
Lagrangian Eq. (4) contains five parameters, χ⊥, ρs , β1, β2,

and g. Parameters of a quantum field theory always depend
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on the energy/momentum scale and hence the values of the
parameters are fixed at a particular normalization point. We
use the ultraviolet limit �q discussed in the Introduction as
the normalization point. In the limit x → 0, the σ -model
parameters χ⊥ and ρs coincide with that of the 2D Heisenberg
model on the square lattice, χ⊥ = 1/8J , ρs = J/4 and the
magnon speed

c0 =
√

ρs/χ⊥ =
√

2 J. (7)

The coupling constant is g = Zt , where Z is the holon quasi-
particle residue calculated within the t − J model [25]. For t ′
and t ′′ corresponding to cuprates and even for t ′ = t ′′ = 0, the
coupling constant is always close to g ≈ J .

The most important parameter that drives magnetic quan-
tum criticality in the model is the effective fermion-magnon
coupling strength [11]

λ = 2g2

πρs

√
β1β2

. (8)

Lagrangian Eq. (4) has been analyzed previously in a classical
mean-field approximation. The phase diagram obtained in this
approximation is shown in Fig. 1(a). The collinear AFM state
is stable at λ < 1. At λ > 1, the spin spiral is developing, the
wave vector of the spiral depends linearly on doping, Q ∝ x,
Ref. [8] The direction of the spiral wave vector is antinodal,
i.e., Q ∝ (1, 0) or Q ∝ (0, 1) and at further increasing of
λ a phase separation instability is developing at λPS = 2,
Refs. [9,11]. Taking the values of the field theory parame-
ters corresponding to cuprates, as described in the previous
paragraph, the value of λ is 1 < λ < 1.3 [26]. In theory, one
can vary λ arbitrarily. For example, in the pure t − J model,
t ′ = t ′′ = 0, the value of β2 is very small and hence λ > 2,
the model is unstabe with respect to the phase separation [27].
Within the extended t − J model it is rather hard to make λ

significantly smaller than 1. For instance, using the set of the
t − J model parameters with an unreasonably high value of
t ′′, t = 3J , t ′ = 0, t ′′ = 3J, the SCBA approximation gives
λ ≈ 0.7. This set of parameters is unphysical. For realistic
parameters of cuprates, λ is close to unity and probably
slightly higher than unity. We estimate the interval for the
parameters of cuprates as

0.9 < λ < 1.3. (9)

While there is no experimentally available handle that would
allow one to directly tune parameter λ in a given cuprate
compound, parameter λ is vital for the description of phase
transitions between different magnetic states in cuprates.

III. SOFTENING OF MAGNONS IN THE
“INTERMEDIATE” REGIME

Softening of magnons with doping in cuprates was ob-
served in inelastic neutron scattering a long time ago, see
Refs. [28–30], see also an experimental review in Ref. [1].
This phenomenon still lacks a theoretical explanation. In
this section, we calculate the dependence of the field theory
parameters on doping and, as a byproduct of this analysis,
we explain the softening. The physics discussed in the present
section concerns relatively high energies and it is independent
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FIG. 4. (a) Spectral density of holon’s retarded Green’s function
at k0 = (π/2, π/2) calculated [25] numerically in SCBA. The black
line corresponds to the set of parameters t = 3.1J , t ′ = −0.5J ,
t ′′ = 0.4J , and the red line corresponds to t = 3.1J , t ′ = −0.8J ,
t ′′ = 0.7J . The arrow shows the value of the Fermi energy for the
doping interval 5% � x � 15%. (b) Magnon polarization operator
P �(ω, q ), the double line represents dressed holon Feynman Green’s
function.

of the Lifshitz magnetic criticality that is driven by λ and is
discussed in subsequent sections.

The single hole problem in the t − J model was solved
decades ago using SCBA, and we will skip all technical details
of such calculations. The spectral density of a single holon
retarded Green’s function,

GR (ε, k) = −i

∫
dtd r e−iεt+ikr〈T {c†↑(r, t )c↑(0, 0)}〉,

(10)
is plotted in Fig. 4(a). The spectral density can be
represented as

− 1

π
Im[GR (ε, k)] = Zkδ(ε − εk ) + ρk(ε). (11)

Here Zk is the holon’s quasiparticle residue, εk is the holon’s
dispersion Eqs. (2), and ρk is the the incoherent “tail.” The
incoherent part of the retarded holon’s Green’s function van-
ishes below the Fermi energy, ε < εF , see Fig. 4(a). The in-
coherent tail stretches up to very high energies and is equal to
the energy span of the t − J model �ε ∼ 8t ∼ 24J ≈ 3 eV.
At small doping, the spectral density of Feynman Green’s
function can be expressed in terms of Eq. (11), Ref. [31]

− 1

π
Im[GF (ε, k)] = sgn(ε − εF )Zkδ(ε − εk ) + ρk(ε),

(12)
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where sgn(z) = z/|z| and εF is Fermi energy Eqs. (3). The
incoherent spectral density has positive, ρ (+), and negative,
ρ (−), frequency parts.

The magnon polarization operator P �(ω, q) is given by
the fermionic loop shown in Fig. 4(b). The magnon Green’s
function defined on the local AFM background directed along
the z axis reads

�n⊥ = (nx, ny, 0),

�n = (nx, ny,

√
1 − n2

⊥),

D(t, r)δαβ = −i〈T {n⊥,α (t, r)n⊥,β (0, 0)}〉. (13)

The standard expression for magnon Green’s function in a sin-
gle loop approximation reads D(ω, q ) = χ−1

⊥ [ω2 − c2q2 −
P (ω, q) + i0]−1. In what follows, we will separately consider
the magnon’s Green’s function in the two regimes correspond-
ing to the two energy/momentum scales. (i) Ultraviolet scale,
q ∼ �q ≈ 1, ω ∼ c0�q ∼ J ∼ 200 meV, where all slow fluc-
tuations related to magnetic criticality are irrelevant. In this
regime, the magnon’s propagator is

D�(ω, q ) = χ−1
⊥

ω2 − c2
0q2 − P �(ω, q) + i0

, (14)

where we use the “bare” magnon speed c0 = √
2J and the

polarization operator P � is shown in Fig. 4(b). In this regime,
in the polarization bubble P �(ω, q ) only high energy particle-
hole excitations with energies |εk − εF | � � are accounted,
that is emphasized by the superscript �. As we demonstrate
in the present section, the polarization operator P � is re-
sponsible for the reduction of the magnon speed with doping.
The second energy scale corresponds to (ii) intermediate +
infared regimes, which are presented in Fig. 2. The physics
in the case (ii) is related to magnetic criticality, and will be
addressed in following sections. The information about the
ultraviolet physics is incorporated in the low-energy physics
(ii) via renormalized parameters of the Lagrangian (e.g.,
renormalized magnon speed c).

The fermion loop diagram P �, shown in Fig. 4(b), contains
a product of the positive and negative frequency compo-
nents of the fermion Feynman Green’s function Eq. (12).
There are four contributions to the polarization operator: (i)
coherent-coherent P (cc) ∝ ZkZk+q (k < pF , |k + q| > pF ),
(ii) coherent-incoherent P (ci) ∝ Zkρ

(+)
k+q (k < pF , |k + q| is

arbitrary), (iii) incoherent-incoherent P (ii) ∝ ρ
(−)
k ρ

(+)
k+q (both

k and |k + q| are arbitrary), (iv) incoherent-coherent P (ic) ∝
ρ

(−)
k Zk+q (k is arbitrary, |k + q| > pF ).

(i) The coherent-coherent contribution, P (cc), is respon-
sible for the quantum critical physics in the infared regime
and actually it cannot be accurately calculated within the
“simplistic” logic of this section, where we consider only
the high energy behavior. The physics in the infared regime,
ω ∼ εF , where P (cc) plays the central role will be considered
in the next section. Here it is sufficient to estimate P (cc)

at energy equal to our ultraviolet limit, ω ∼ c0�q � εF . A
straightforward calculation similar to that performed in the

next section gives

P (cc) ∼ −8J 2xq2

(
βq2

ω2

)
. (15)

(ii) The coherent-incoherent contribution reads

P (ci)(ω, q) ≈ 4
∑

α=1,2

∫
k<pF

d2k

(2π )2
(g̃k,q)2

×
∫ ∞

c0�q

dy
Zkρ

(+)
k+q(y)

ω − εα
k − y

. (16)

Here α enumerates holon pockets, and the the holon-magnon
vertex g̃k,q is related to gk,q from Ref. [25] as

g̃k,q = √
2ωqgk,q = 4

√
2t

√
2ωq (γkuq + γk+qvq). (17)

The factor
√

2ωq in the vertex g̃k,q is due to a normaliza-
tion. Here we use the standard quantum field theory normal-
ization for the magnon field while Ref. [25] has used the
Schrödinger equation normalization. In the vicinity of a given
Fermi pocket, k ≈ k0 = (π/2,±π/2) and at q < 1 the vertex
Eq. (17) reads

g̃k,q ≈ 4t
√

2Jq1,α , (18)

where q1,α is the component of the momentum orthogonal to
the face of the MBZ in this pocket.

The incoherent component of the holon’s Green’s function
remains approximately constant ρ (+)(y) ≈ (1 − Zk )/8t in the
energy interval 2J � ε � 8t , see Fig. 4(a). The latter estimate
for the incoherent part of the holon’s spectral function follows
from the approximate sum rule Zk + ∫ +∞

0 dωρ
(+)
k (ω) ≈ 1.

We also set Zk = J/t . Hence, from Eq. (16) and Eq. (18) we
find

P (ci)(q) ≈ −32t2q2

(
J

∫ ∞

2J

ρ(y)

y
dy

)[
4

∫
k<pF

d2k

(2π )2
Zk

]

≈ −32t2x q2Zk0

(
J

∫ ∞

2J

ρ(y)

y
dy

)

≈ −4xJ 2q2

(
1 − J

t

)
ln

(
4t

J

)
. (19)

The integral in this formula converges at very high energies,
y ∼ 8t , much higher than the ultraviolet cutoff of the field
theory. This is why calculation of P (ci), Eq. (19) is accurate,
while P (cc), Eq. (15), is only an estimation. At the ultravio-
let cutoff ω = c0�q ≈ 200 meV � εF the coherent-coherent
contribution, Eq. (15), is negligible compared to P (ci) given
by Eq. (19).

(iii) Unfortunately, the incoherent-incoherent contribution,
P (ii), arising from ρ

(−)
k ρ

(+)
k+q cannot be calculated analytically.

Fortunately, this contribution is relatively small, in Ref. [31]
it was estimated numerically as 20–25% of P (ci). It has the
same scaling as P (ci), P (ii) ∝ J 2xq2. The smallness of P (ii)

compared to P (ci) is related to the smalness of ρ (−), see Fig. 4
in Ref. [32].

(iv) The incoherent-coherent contribution, P (ic), scales ap-
proximately as Eq. (15) and is very small due to the same
reasons as that presented in (iii), Refs. [31,32].
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FIG. 5. Magnon dispersion in the intermediate regime,
70 meV < ω < 200 meV, Left panel presents experimental data for
x = 0 (Ref. [33]), x = 0.085 (Ref. [29]), and x = 0.16 (Ref. [30])
(black, red, and magenta dashed lines, respectively). Right panel:
Theoretical magnon dispersion Eq. (23) for the same values of
doping. Shaded regions indicate the “intermediate regime” where
the right and the left panels should be compared.

All in all P � is given by Eq. (19). To account for P (ii)

contribution, we multiply Eq. (19) by an additional factor ∼
1.25, that gives for t/J ≈ 3 the following approximate result:

P �(q) ≈ −8J 2q2x. (20)

Hence the magnon Green’s function Eq. (14) reads

D�(ω, q ) = χ−1
⊥

ω2 − c2
0(1 − 4x)q2 + i0

. (21)

Note that only the coefficient in front of q2 is changing with
doping, the ω-term is not changed since the doping correction
comes from very high energy fluctuations, 8t � ω. From
Eq. (21) we deduce parameters of the effective nonlinear
σ -model in the Lagrangian Eq. (4):

χ⊥ = χ
(0)
⊥ = 1/8J,

ρs = ρ (0)
s (1 − 4x) = J

4
(1 − 4x) . (22)

Hence the magnon speed is reduced with the doping:

c =
√

ρs

χ⊥
= c0

√
1 − 4x. (23)

Softening of magnons in the energy interval 70 meV < ω <

200 meV which we call the intermediate regime was observed
in inelastic neutron scattering [28–30]. To illustrate this in
the left panel of Fig. 5, we present data for LSCO from
Refs. [29,30,33] for doping levels x = 0, x = 0.085, and x =
0.16. In the right panel of Fig. 5, we plot the theoretical dis-
persion Eq. (23) for the same values of doping. The agreement
between theory and experiment in the intermediate regime is
remarkable even at x = 0.16 where the spin-wave velocity
reduction is approximately 40%.

Physics that we have discussed in the present section
concerns relatively high energies and it is irrelevant to Lif-
shitz point magnetic criticality. So, the doping dependence
presented in Eqs. (22) and (23) is only weakly sensitive to
λ. In the interval Eq. (9) it is practically λ-independent.

We have calculated the doing dependence of c(x) and
ρs (x). What can we say about doping dependence of other pa-
rameters of the Lagrangian Eq. (4)? Inverse effective masses
β1 and β2 are slightly dependent on doping. The doping

increases β1 and decreases β2 in such a way that the average
effective inverse mass β = √

β1β2 is approximately doping
independent [27]. Here we disregard the weak doping depen-
dence of β1 and β2. On the other hand, doping dependence of
the coupling constant g is expected to be significant. Due to
the magnon softening Eq. (23) the coupling constant g must
be decreasing with doping. Unfortunately, we do not know
how to perform a reliable calculation of the coupling constant
reduction with doping. In what follows, we will expect that g

varies with doping in such a way that the magnetic criticality
parameter λ defined by Eq. (8) is approximately doping
independent.

IV. MAGNETIC CRITICALITY AT THE LIFSHITZ POINT
AND THE SPIN LIQUID PHASE

We start our analysis of the low-energy infrared regime
+ intermediate regime from the usual collinear AFM state.
The staggered magnetization is directed along the z axis and
we use the standard representation Eq. (14). The dynamics is
described by the effective Lagrangian Eq. (4). To explain our
idea, we first consider circular Fermi pockets and then con-
sider ellipticity of the pockets. This is a conceptual section, so
we derive general equations, but perform specific calculations
only for very small doping x where the calculations can be
done analytically with logarithmic accuracy.

A. Circular Fermi pockets, β = β1 = β2

The magnon Green’s function reads

D(|ω| < �, q < �q ) = χ−1
⊥

ω2 − c2q2 − P F (ω, q ) + i0
,

(24)

Formally this equation is similar to Eq. (14), and the polar-
ization operator is given by the standard loop diagram, as
shown in Fig. 4(b). However, there are two important differ-
ences. (i) Unlike Eq. (14), which contains the bare magnon
speed c0, Eq. (24) contains the renormalized magnon speed
c given by Eq. (23). (ii) Equation (14) contains the ultravi-
olet polarization operator P � which results mainly from the
coherent-incoherent contribution and from the energy scale
up to 24J ∼ 3 eV. On the other hand, Eq. (24) contains the
coherent-coherent polarization operator P F , which is relevant
at the energy scale ε ∼ εF ∼ 20 − 50 meV. We would like to
emphasize again the point explained in the previous section:
although the coherent-coherent contribution [see Eq. (26)] is
crucial for the infrared physics, it is suppressed in the high
energy regime ω ∼ J ∼ � � εF by the parameter O(ε2

F /ω2),
Eq. (15). To further clarify our method, we can say that we
perform a sort of “two-step” renormalization group procedure:
we first calculate correction to the magnon velocity at the
intermediate energy scale and then use the result to evaluate
polarization operator at the infrared energy scale.

The normalization point of our field theory is q = �q ,
ω = c0�q . At the normalization point �n = (0, 0, 1), i.e., �n⊥ =
0. The quantum transversal fluctuation (we assume zero
temperature) of the staggered magnetization at q = ω = 0
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reads

〈�n2
⊥〉 = −2

∑
q<�q

∫
|ω|<c0�q

dω

2πi
D(ω, q ) . (25)

The factor 2 comes from summation over magnon transverse
polarizations. The magnon polarization operator P F reads
(see Ref. [11])

P F (ω, q ) = 2

χ⊥

∑
k,α

f α
k

(
1 − f α

k+q

) [
√

2g(eα · q )]2

ω + εα
k − εα

k+q + i0

+{ω → −ω, q → −q}. (26)

Here f α
k = θ (εF − εα

k ) denotes the zero temperature Fermi-
Dirac distribution for holons in the pocket α. The expression
in the brackets [. . .] is the fermion-magnon vertex that follows
from the bottom line in Lagrangian Eq. (4). Equation (26)
up to the prefactor is the usual 2D Lindhard Function. The
prefactor ∝ q2 is dictated by the Adler’s theorem. After
the Wick rotation from real to imaginary frequency, ω = iξ ,
the polarization operator reads

P F (iξ, q ) = −λc2q2

(
1 − 2

q2
Re

√(
q2

2
+ i

ξ

β

)2

− p2
F q2

)
.

(27)

Here we assume quadratic holon dispersion, εα
k = β p2/2

( p = k − kα
0 ), the Fermi momentum is pF = √

πx. Since
natural scales in Eq. (27) are εF and pF , it is convenient to
express the polarization operator in terms of dimensionless
energy and momentum

q̃ = q

pF

, ξ̃ = ξ

εF

. (28)

Hence the quantum fluctuation Eq. (25) reads

〈�n2
⊥〉 = βx

2πρs

∫ �/pF

0
dq̃F (q̃ ), (29)

F (q̃ ) = q̃

∫ c�/εF

0

dξ̃

γ ξ̃ 2 + q̃2(1 − λr )
, (30)

where γ = πβ2

4c2 x � 1 and

r = Re

{
1 − 1

q̃2

√
(q̃2 + iξ̃ )2 − 4q̃2

}
. (31)

We consider the collinear phase, hence λ < 1. The central
point is that the integral Eq. (29) is logarithmically diverging
in the limit λ → 1. The main contribution to the integral
comes from very small ξ where the function r in Eq. (31) can
be expanded as

r ≈ 1 − |ξ̃ |
q̃
√

4 − q̃2
. (32)

Evaluation of the ξ̃ integral in Eq. (30) results in

F (q̃ ) = θ (4 − q̃2)
√

4 − q̃2 ln

(
1

1 − λ

)
+ f (q̃ ) , (33)

where f (q̃ ) only weakly depends on λ. The q̃-integration in
Eq. (29) is straightforward

〈�n2
⊥〉 = βx

2ρs

ln

(
1

1 − λ

)
+ φ(λ, γ ) , (34)

where again φ(λ, γ ) is nonsingular and only weakly depends
on λ near λ ≈ 1. In the limit x → 0, we should recover the
result for the 2D Heisenberg model, hence 〈�n2

⊥〉 = φ(γ →
0, λ) ≈ 0.8. In the rest of the section, we will assume that
φ(γ, λ) ≈ φ is approximately constant. The logarithmic sin-
gularity in Eq. (34) at λ → λLP = 1 is of central importance.
The singularity indicates an instability of the AFM state when
λ is sufficiently close to unity. The singularity is similar to
the logarithmic divergence of transversal spin fluctuations
in Ioffe-Larkin at the Lifshitz point in frustrated magnets
[12,16]. In addition, the singularity is also analogous to the
logarithmic divergence in 2D Heisenberg model at finite tem-
perature [34]. The doping x in this case plays a role of an
effective temperature. The divergence indicates the quantum
phase transition to the disordered spin liquid phase.

There is a critical value of the fluctuation

〈�n2
⊥〉c ∼ 1 (35)

that is sufficient to destroy the long-range AFM order. This is
a sort of Lindemann criterion for quantum melting. We will
discuss value of 〈�n2

⊥〉c later. Now we consider the problem
conceptually. To find the critical value λc1 < 1 for transition
to the spin-liquid phase, we only need to equate the right-hand
side of Eq. (34) to 〈�n2

⊥〉c. This gives

1 − λc1 ∝ exp

[
−2ρs (〈�n2

⊥〉c − φ)

βx

]
. (36)

Formula Eq. (36) determines the left boundary on the phase
diagram Fig. 1(b). Note that Eq. (36) is valid only at very small
x. For realistic x, one needs a numerical calculation performed
later.

In the spin-liquid phase at λ > λc1, the magnon gap � is
opened [12,16] and hence the Green’s function Eq. (24) is
transformed to

D(iξ, q ) = − χ−1
⊥

ξ 2 + c2q2 + �2 + P F (iξ, q )
. (37)

In essence, � is the Lagrange multiplier L → L + �2(�n2
⊥ −

〈�n2
⊥〉c ) that has to be determined from the condition

〈�n2
⊥〉c = 2

∑
|q|<�q

∫
|ξ |�c�q

dξ

2π

χ−1
⊥

ξ 2 + c2q2 + �2 + P F (iξ, q )
.

(38)

By construction, the gap � vanishes at λ = λc1.
It is instructive to calculate � exactly at the Lifshitz point,

λ = 1. Performing calculations by analogy with Eqs. (29)–
(34), one finds with logarithmic accuracy

�λ=1(x) ∝ exp

[
−ρs (〈�n2

⊥〉c − φ)

βx

]
. (39)

We stress again that here we assume the limit of very small
x. For realistic x, we will perform numerical calculation in
Sec. V.
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Now we consider the case λ > 1. At at a fixed doping x

and at a sufficiently large λ = λc2 > 1 the spin-liquid phase
becomes unstable toward condensation of static spin spiral,
see phase diagram in Fig. 2(b). The instability manifests as a
pole in the Green’s function Eq. (37) at ξ = 0. At ξ = 0 the
denominator in Eq. (37) is

D−1(0, q ) ∝ �2 + c2q2[1 − λ
(
1 − Re

√
q2 − 4p2

F

)]
. (40)

The inverse propagator has a minimum at q = 2pF . Hence
the instability of the spin liquid with respect to the static spin-
spiral condensation is determined from the condition that the
denominator of the magnon propagator equal to zero at q =
2pF ,

�2 − 4c2p2
F (λ − 1) = 0 . (41)

The critical line λc2 can be found by solving Eq. (41) together
with Eq. (38). Solving these equations in logarithmic approx-
imation at very small x we find

λc2 − 1 ∝ exp

(
−2ρs (〈�n2

⊥〉c − φ)

βx

)
. (42)

There are three points to note. (i) While � is zero at the left
borderline of the spin-liqud phase, λ = λc1, the gap is nonzero
at the right borderline λ = λc2, see Fig. 2(b). However, in this
case, � is not the real magnon gap, the magnetic pseudogap
corresponds to the distance from the real ω-axis to the nearest
pole in magnon’s Green’s function. Since at the phase bound-
ary λc2 the magnon’s Green’s function acquires a pole at zero
frequency, the spin excitation gap is zero in agreement with
the Goldstone theorem. (ii) At λ > λc2, the static spin-spiral
with the wave vector Q = 2pF condenses

�n = A[ �e1 cos(Q · r) + �e2 sin(Q · r)] . (43)

Close to the phase transition line the amplitude A is very
small. (iii) Direction of the spiral wave vector Q can be ar-
bitrary. This is because for circular Fermi pockets considered
in this subsection our field theory “does not know” about the
lattice orientation.

B. Elliptic Fermi pockets

To describe a situation relevant to cuprates, we consider
elliptic Fermi pockets stretched along the face of the MBZ,
see Fig. 3. We still use the parabolic approximation, the
second line in Eqs. (2), β1 > β2. The magnon polarization
operator in the case of elliptic pockets could be obtained from
Eq. (27) by performing rescaling of q1,2 in Eq. (26). Hence the
dimensioneless polarization operator r (iξ, q ) in Eqs. (30) and
(32) should be replaced by

q2λr → λ
(
q2

1 ra + q2
2 rb

) = λp2
F

(
q̃2

1 ra + q̃2
2 rb

)
,

rμ={a,b} = Re

{
1 − 1

q̃2
μ

√(
q̃2

μ + iξ̃
)2 − 4q̃2

μ

}
, (44)

where the effective Fermi momentum pF = √
πx remains the

same and we define

q̃2
a =

√
β1

β2
q̃2

1 +
√

β2

β1
q̃2

2 , q̃2
b =

√
β1

β2
q̃2

2 +
√

β2

β1
q̃2

1 . (45)

The calculation of the Néel–spin-liquid phase boundary
line λc1 is analogous to the case of circular Fermi pockets
presented in the Sec. IV A. Eq. (36) is replaced by

1 − λc1 ∝ exp

[
−2ρs (〈�n2

⊥〉c − φ)

βxf (β1, β2)

]
, (46)

where f (β1, β2) is a smooth symmetric function that only
weakly depends on the ratio β1/β2, for circular pockets
f (β, β ) = 1. So here the ellipticity does not result in a sig-
nificant effect.

Importantly, for λ > 1 the ellipticity results in a qualitative
effect. It pins the wave vector of the spin spiral to the antinodal
direction, Q = (Q, 0) or Q = (0,Q). To see this, one has
again to write down the denominator of the magnon Green’s
function in the spin-liquid phase, similar to Eq. (40), but
with an account of anisotropic polarization operator Eqs. (44).
Then for the nodal direction, Q = Q/

√
2(1,±1), the denom-

inator has a minimum at

Q = 2pF

(
β2

β1

)1/4

, (47)

and the instability condition Eq. (41) is replaced by

�2 − 4c2p2
F

√
β2

β1
(λ − 1) = 0 . (48)

On the other hand, for the antinodal direction, Q = (Q, 0)
or Q = (0,Q), the denominator has a minimum at the wave
vector

Q = 2pF√
1
2

(√
β1

β2
+

√
β2

β1

) , (49)

and the instability condition reads

�2 − 4c2p2
F (λ − 1)

2√
β1

β2
+

√
β2

β1

= 0 . (50)

This condition is satisfied at a smaller value of λ than the
diagonal spin-spiral condition Eq. (48). Hence the spin spi-
ral always condensates in the antinodal direction. The wave
vector is given by Eq. (49), but this equation is valid only at
very small x.

In spite of the pinning of the spin-spiral direction the spin-
liquid borderline is not changed much compared to Eq. (42).
Taking into account the Fermi pocket ellipticity, the equation
for the critical line reads

λc2 − 1 ∝ exp

(
−2ρs (〈�n2

⊥〉c − φ)

βxf (β1, β2)

)
. (51)

V. ULTRAVIOLET CUTOFF, LINDEMANN CRITERION,
NUMERICAL CALCULATIONS, AND COMPARISON

WITH EXPERIMENT

A. Ultraviolet cutoff

Let us first determine �q . At zero doping, x = 0, Eq. (25)
reads

〈�n2
⊥〉 = 2

χ⊥

∫ �q

0

d2q

(2π )2

∫ c0�q

−c0�q

dξ

2π

1

ξ 2 + c2
0q

2
. (52)
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This corresponds to the usual 2D Heisenberg model on the
square lattice where we know well that the staggered magne-
tization is 〈Sz〉 ≈ 0.30. This corresponds to 〈2Sz〉 = 〈nz〉 ≈
1 − 1

2 〈�n2
⊥〉 ≈ 0.6. Hence at 〈�n2

⊥〉 = 0.8. The upper limit of
integration in Eq. (52) must be tuned to reproduce this value.
From here we find

�q ≈ 1.2 = 0.19(r.l.u) . (53)

This is the value of �q for crossover from the intermediate
regime to the ultraviolet regime that was first introduced in
Fig. 2 based on experimental data.

B. Lindemann criterion

The concept of the critical value of magnetic fluctuation is
defined by Eq. (35). Here we quantify the value of 〈n2

⊥〉c, the
Lindemann criterion. This value depends on dimensionality
and probably on some details of fluctuations. In Ref. [16],
comparing the field theory with density matrix renormal-
ization group (DMRG) calculations, we found that for 1D
integer spin Haldane chain 〈n2

⊥〉c ≈ 0.6. Interestingly, the
renormalization group in this case gives 〈n2

⊥〉c = 1, Ref. [35],
although DMRG is more reliable. In the same paper [16], we
argue that for 2D Ioffe-Larkin spin liquid

〈n2
⊥〉c ≈ 1 . (54)

Here we would like also make a comparison of our ap-
proach with Takahashi’s modified spin-wave theory [34] or
Schwinger boson mean field technique [36]. For 2D Heisen-
berg model at nonzero temperature T , these methods work
reasonably well. In this case, the equation similar to Eq. (25)
reads

〈�n2
⊥〉c = 2

χ⊥

∫ �q

0

1

ωq

(
1

eωq/T − 1
+ 1

2

)
d2q

(2π )2
. (55)

Here ωq =
√

c2
0q

2 + �2
T , �T is the temperature related “gap.”

At T � J we can rewrite Eq. (55) as

〈�n2
⊥〉c = 4T

πJ
ln

(
T

�T

)
+ 2

√
2

π

∫ �q

0
dq. (56)

The second term in this equation is the zero-temperature
quantum fluctuation and, according to the discussion in the
previous paragraph, this term is approximately equal to 0.8.
On the other hand according to Ref. [34] the finite T gap
is �T ∼ T e−2πρ

(r )
s /T , where ρ (r )

s ≈ 0.17J is the renormalized
spin stiffness for the 2D Heisenberg model. Substitution of
�T in Eq. (56) gives 〈�n2

⊥〉c ≈ 2. This is the expected result
since the Takahashi’s modified spin-wave theory implicitly
assumes the leading order expansion 〈nz〉 = 〈

√
1 − �n2

⊥〉 ≈
1 − 1

2 〈�n2
⊥〉 and equating 〈nz〉 to zero. This immediately gives

the above condition. The value of 〈�n2
⊥〉 > 1 looks strange

keeping in mind the constraint n2 = 1. The large fluctuation is
a byproduct of linearization, which one necessarily does when
working with strong fluctuations. It is known that for the 2D
Heisenberg model at T �= 0 the method works reasonably well
for the correlation length [37]. However, when applied to a
disordered system at zero temperature, the method gives the
strange result that the physical gap is 2�T , Ref. [36]. In this
case, �T is just an infrared cutoff unrelated to temperature.
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FIG. 6. Zero temperature λ − x phase diagram of the modified
t − J model. The range of λ corresponding to cuprates is given by
Eq. (9).

Moreover, application of the criterion 〈n2
⊥〉c = 2 to the Ioffe-

Larkin spin liquid in 2D J1 − J3 model and to 1D Haldane
spin chain gives results completely inconsistent with numerics
[16]. Therefore, in the present work we use the criterion
Eq. (54).

C. Numerical calculations and comparison
with experimental data

As soon as the ultraviolet cutoff Eq. (53) and the quantum
melting criterion Eq. (54) are fixed, we can find the phase
diagram by solving numerically Eqs. (38) and (50). The phase
diagram resulting from this calculation is presented in Fig. 6.

It is even more instructive to calculate the “gap” � defined
by Eq. (37). The gap is determined from a numerical solution
of Eq. (38). At ω = �, the magnetic response is maximum
at q = 0, which for neutron scattering corresponds to q =
(π, π ). Therefore, � is identical to Ecross usually determined
in neutron scattering [1]. The value of � depends on λ at a
given doping x, for instance it vanishes at the transition line
from the spin liquid to the AFM phase. However, at λ > 1
the dependence �(λ) is rather weak, this even includes the
transition line from the spin liquid to the spin-spiral state.
In this region, it is sufficient to calculate �(λ = 1) ≈ Ecross.
The result of this calculation is shown in Fig. 7 by the
black solid line. There is an uncertainty in our calculations
that is worth mentioning. In our calculation, we assume that
the coupling constant g defined in Eq. (4) is momentum
independent. Within the t − J model, the coupling constant
is g = t

√
ZkZk+q. At small q we obtain g = tZ, where Z =

Z(π/2,π/2). At doping x ∼ 0.1 the Fermi momentum pF =√
πx ∼ 0.6 and the typical value of momentum responsible

for fluctuations, q ∼ 2pF , is quite large. At these values
of momentum, the dependence of the quasiparticle residue
on momentum becomes significant. Fitting numerical data
obtained in SCBA we found that

Zk ≈ Zzk , zk = 1 − 0.3
εk

J
, (57)

where εk is given by Eqs. (2). Within the range of parameters
corresponding to cuprates, the coefficient in the fit varies
between 0.25 and 0.35. We take 0.3 as some effective value.
The fit Eqs. (57) is valid when Zk � 0, otherwise Zk = 0. To
account for the residue momentum dependence the expression
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FIG. 7. Ecross versus doping. The black solid line shows the cal-
culation without account of the momentum dependence of the holon
residue. The blue solid line shows the calculation with an account
of the holon residue momentum dependence. The range between
these lines indicates the theoretical uncertainty of our calculation.
Experimental data are shown by symbols [1,38–41]. Theoretical
curves correspond to λ = 1, however, dependence of Ecross on λ

is weak. Symbols at x < 5% correspond to LSCO (grey region),
where physics is driven by localization. Comparison of theoretical
calculations and experimental data at doping x < 5% is less justified.

under the sum
∑

k,α in the polarization operator Eq. (26)
should be multiplied by zkzk+q and all other formulas are
unchanged. The gap � calculated with account of zk is plotted
in Fig. 7 by the blue solid line. The range between the black
and the blue line indicates the theoretical uncertainty of our
calculation. Symbols in Fig. 7 display experimental data. The
agreement between the theory and the experiment is exciting.
Our approach grasps the essential physics of the problem.

VI. SPIN-SPIN CORRELATION FUNCTION IN THE
ALGEBRAIC SPIN-LIQUID PHASE

Here we consider the equal time spin-spin correlator,

C(r ) = 〈�n(r ) · �n(0)〉. (58)

There are two main messages of this section. (i) The correlator
decays at the typical scale r ∼ 1/pF ∼ 1/

√
x. This is true

even in the limit when the gap is exponentially small, Eq. (39).
(ii) There is a long-distance tail of the correlator which decays
as 1/r3, so the spin liquid is algebraic.

Following Ref. [16], we represent the correlator as

C(r ) ≈ 1 + P − R + ..., (59)

where

P (r ) = 〈n⊥(r ) · n⊥(0)〉, R = P (0) = 〈n2
⊥〉. (60)

The two-point correlator is normalized such that C(0) = 1. In
the spin-liquid phase, the correlation function should vanish at
large distances, C(r → ∞) → 0 and P (r → ∞) → 0. This
condition is consistent with Eq. (59) if we truncate the asymp-
totic expansion in Eq. (59), keeping only the terms explicitly
presented there. The explicit expression for P immediately
follows from Eq. (37):

P (r ) = 1

πχ⊥

∫ �q

0
dq q

∫ c�q

0

dξ

2π

J0(qr )

ξ 2 + �2 + P F (iξ, q )
.

(61)

FIG. 8. Spin-spin equal time correlation function C(r, t = 0) =
〈n(r ) · n(0)〉 at the Lifshitz point, λ = 1. Here we take circular Fermi
pockets, β/J = 2, doping x = 0.1.

Here J0 is the Bessel function. Note that in this section,
for simplicity we consider circular Fermi pockets. At r = 0
formula Eq. (61) is identical to Eq. (38).

The algebraic behavior of the correlator originates from
the nonanalytic dependence on ξ in the polarization operator
Eq. (32). Here we calculate the correlator at the Lifshitz point,
λ = 1. Evaluation of the ξ integral in Eq. (61) in the limit
� → 0 with logarithmic accuracy gives

P (r ) = β

2π2ρs

∫ 2pF

0
dq

√
4p2

F − q2

× ln

(
1 + c2

�2
q

√
4p2

F − q2

)
J0(qr ). (62)

From here we come to the conclusions formulated in the
beginning of the section. (i) The correlator P and hence the
correlator C decays at the typical scale about r ∼ 1/pF ∼
1/

√
x. (ii) There is a long-distance tail of the correlator which

decays as 1/r3, so the spin liquid is algebraic.
We evaluate the long-distance asymptotics, r → ∞, in

Eq. (62) using the stationary phase approximation. The lead-
ing contribution to the integral comes from the endpoints
of the integration, q = 0 and q = 2pF . Performing Tailor
expansion of the logarithm in Eq. (62), in the vicinity of the
endpoints we obtain that the asymptotics contain a power tail
1/r3 as well as the oscillating power tail ∝ cos 2pF r

r5/2 , a sort of
Friedel oscillations. The 1/r3 asymptotics is due to the left
endpoint q = 0 and the oscillating part of the asymptotics is
due to the right endpoint q = 2pF of the integration. However,
the oscillating power tail is present only in the case of the
circular Fermi pockets. In fact, the oscillations are strongly
suppressed for elliptic pockets (some algebraically decaying
oscillations survive for the nodal direction), while the points
(i) and (ii) are generic. Equation (62) is valid only at a very
small doping x where the logarithmic approximation makes
sense. On the other hand, numerical integration in Eq. (61) is
straightforwrd. The correlator C(r ) calculated by performing
numerical integration at x = 0.1 in Eq. (61) is plotted in
Fig. 8.
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VII. CONCLUSION

In the present paper, we demonstrate that there is a hidden
dimensionless parameter λ, which drives quantum magnetic
criticality in the extended t − J model at low doping x. Using
an effective field theory, we study the zero temperature λ − x

phase diagram of the model. The phase diagram is shown
schematically in Fig. 1(b) and quantitatively in Fig. 6. The
most important feature of the phase diagram is the quantum
tricritical Lifshitz point at x = 0, λ = 1. We calculate param-
eters of the effective theory using SCBA. Using this approx-
imation, we show that underdoped cuprates are close to the
quantum tricritical point. The three phases “meet” at the tri-
critical point: Néel antiferromagnet, spin spiral with antinodal
direction of the spiral wave vector, and algebraic spin liquid.

We believe that underdoped cuprates belong either to the spin-
liquid phase or they are on the borderline between the spin
liquid and the antinodal spin spiral. We study properties of the
spin-liquid phase and demonstrate algebraic decay of equal
time spin-spin correlation. We calculate the energy position
Ecross of the inelastic neutron scattering response maximum at
q = (π, π ) and compare our results with experiments. Theo-
retical curves and experimental data are displayed in Fig. 7.
We also explain softening of magnons in the intermediate
regime observed in inelastic neutron scattering, see Fig. 5.
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