
PHYSICAL REVIEW B 98, 155114 (2018)

Broken-symmetry phases of interacting nested Weyl and Dirac loops

Miguel A. N. Araújo1,2 and Linhu Li3
1CeFEMA, Instituto Superior Técnico, Universidade de Lisboa, Avenida Rovisco Pais, 1049-001 Lisboa, Portugal

2Departamento de Física, Universidade de Évora, P-7000-671 Évora, Portugal
3Department of Physics, National University of Singapore, 117542, Singapore

(Received 4 July 2018; published 5 October 2018)

We study interaction-induced broken symmetry phases that can arise in metallic or semimetallic band
structures with two nested Weyl or Dirac loops. The ordered phases can be of the charge or (pseudo)spin density
wave type, or superconductivity from interloop pairing. A general analysis for two types of Weyl loops is given,
according to whether a local reflection symmetry in momentum space exists or not, for Hamiltonians having a
global PT symmetry. The resulting density wave phases always have lower total energy, and can be metallic,
insulating, or semimetallic (with nodal loops), depending on both the reflection symmetry of the loops and the
symmetry transformation that maps one loop onto the other. We extend this study to nested Z2 nodal lines,
for which the ordered phases include also nodal point and nodal chain semimetals, and to spinful Dirac nodal
lines. Superconductivity from interloop pairing can be fully gapped only if the initial double-loop system is
semimetallic.
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I. INTRODUCTION

Since the discovery of topological insulators, band struc-
tures of fermionic systems with nontrivial momentum-space
topology have received much attention in modern condensed
matter physics. Their low-energy description involves Dirac-
like band dispersions, which in some cases imply gap-
less band structures characterized by the presence of nodal
points or lines. Among these are the nodal line semimet-
als (NLSMs) [1,2]. A NLSM has valence and conduction
bands touching along one-dimensional (1D) lines in the
three-dimensional (3D) momentum space, and feature two-
dimensional (2D) “drumhead” surface states surrounded by
the nodal lines [3–7]. Contrary to the well-studied topological
insulating phases and nodal point semimetals, the 1D nodal
lines of NLSMs provide rich topological structures such as
links and knots [8–12], which cannot be described unam-
biguously by a single sign (e.g., the Z2 number) or a integer
(e.g., the Chern number) [13]. On the other hand, a variety of
gapped and gapless topological phases have been predicted
in NLSMs (while possibly breaking certain symmetries).
For example, a spin-orbit interaction can induce 3D Dirac
semimetals from a NLSM [14,15], and periodical driving
such as linear or circular polarized light may induce different
types of nodal points [16–21]. By introducing various types of
extra gapped terms, a NLSM can also be driven into several
different types of topological insulators, including the recently
discovered high-order topological insulators [22,23].

Spontaneous symmetry breaking from interactions in
three-dimensional systems with Weyl/Dirac nodal points or
lines have also been addressed. For single nodal loop (NL)
systems, superconducting and charge (or spin) density wave
instabilities have been investigated using renormalization of
fermionic interactions [24], including also the mean-field
description of the ordered phases [25–27].

Certain symmetries, such as spatial inversion or time re-
versal, imply that Weyl nodes must occur at an even number
of Brillouin zone (BZ) points. Charge and spin density waves,
as well as superconducting phases, which arise from nested
spherical Fermi surfaces (FSs) in doped (or uncompensated)
Weyl/Dirac points have been discussed [28]. Weyl or Dirac
NLs, on the other hand, do not necessarily have to exist in
pairs. Although two-loop semimetals have not yet been found
in nature, pairs of linked NLs (or Hopf-link structures) have
been theoretically proposed [10,11,29]. Furthermore, a class
of NLs protected by a combination of inversion and time
reversal has recently been discussed [30], which carry Z2

monopole charges, and must therefore be created or annihi-
lated in pairs.

This has motivated us to address the spontaneous symme-
try breaking from short-range interactions in two-loop band
structures, when the NLs are related through a nesting vector
Q in the BZ. We describe the density wave and superconduct-
ing phases, which can be metallic, semimetallic (with double
NLs), or fully gapped. A systematic analysis for two-band
NL models is given, where the NLs can either satisfy a local
reflection symmetry in the loop plane or not. If a global PT
symmetry exists, then a symmetry operation can relate the two
NLs. These properties combined determine the nature of the
ordered phases. We also study specific four-band models that
have appeared in the recent literature, such as the Z2 NLs, and
NLs arising from perturbed Dirac points. Superconducting
phases arising from pairing of fermions in different loops
are also considered for all cases of singlet and triplet gap
functions in loop space as well as (pseudo)spin space. But
we have restricted our search to order parameters with time-
reversal symmetry (TRS) and fully gapped phases, because
the latter are expected to be more stable. The possibility of
gap functions with a winding number, which break TRS, is
not addressed here.
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The structure of the paper is as follows. In Sec. II we
introduce the local k · p Hamiltonians for two-band Weyl
NLs, which can either satisfy a local reflection symmetry in
the NL plane, or not. The Hubbard interaction and the density
wave order parameters associated with the NL nesting vector
are also introduced. The density wave phases are described
in Sec. III, and Sec. IV is devoted to example models and
to a four-band system that was not included in the general
analysis of the previous sections: the nested Z2 NLs. In
Sec. V, we study spin degenerate Dirac NLs and also NLs
arising from perturbed Dirac points. The superconducting
pairing between nested NLs is studied in Sec. VI. The analysis
is focused on interloop pairing and time-reversal symmetric
order parameters. In Sec. VII we present our conclusions.

II. MODEL

We consider spinless fermions and let τ denote the Pauli
matrices acting on the pseudospin (orbital) degree of freedom.
We assume that the band structure has two degenerate loops.
If the Hamiltonian has PT symmetry, both loops involve the
same Pauli matrices, τa, τb, so that each one can be locally
described by k · p Hamiltonians:

H0(k) = v1(p‖ − po)τa + v2p⊥τb, (1a)

H0(k + Q) = g1v1(p‖ − po)τa + g2v2p⊥τb. (1b)

Here, and throughout the paper, p = h̄k and the subscripts
⊥ (‖) refer to the components perpendicular (parallel) to the
loop plane, and g1(2) are + or − signs. The loops are nested by
the vector Q. We shall refer to the NLs in Eq. (1) as “model-1”
loops. Such NLs are protected by a local reflection [31]
in the loop plane, R = (p⊥ → −p⊥) ⊗ τa . Such a NL can
be topologically characterized by a π Berry phase along a
trajectory enclosing the NL [3,7]. At zero chemical potential,
the system is a semimetal and the FS consists of the two
nested NLs. We shall also take nondegeneracy into account
by considering an energy offset δ between the loops and
make the replacement H0(k) → H0(k) − δ, H0(k + Q) →
H0(k + Q) + δ. For positive δ and zero chemical potential,
the FSs are torus shaped; the one from H0(k + Q) is in the
lower (hole) band, while the FS from H0(k) is in the upper
(electron) band.

However, NLs are not necessarily protected by reflection
symmetry. Here we also consider a more general model of
nested NLs without reflection symmetry. The Hamiltonian
reads

H0(k) = [v1‖(p‖ − po) + v1⊥p⊥]τa + v2p⊥τb, (2a)

H0(k + Q) = [g′
1v1‖(p‖ − po) + g′

2v1⊥p⊥]τa + g2v2p⊥τb,

(2b)

where g′
1(2) are + or − signs. We refer to these as “model-2”

loops. The extra p‖ in the τa term changes the pseudospin
texture near a NL, but does not affect the topological proper-
ties associated with the Berry phase. Examples of both types
of NLs will be given in Sec. II. The above two types of
loops respond differently to the interactions, as shown in the
following sections.

Normally, one should expect that a perturbation arises that
will lift the degeneracy between nested FSs. The perturbation
may result from interactions and, in a normal system, usually
takes the form of some charge or spin wave with the wave
vector Q. Also, superconducting pairing between fermions in
different NLs will be considered.

In the rest of the paper we shall set to unity the velocity
prefactors in the Hamiltonians (1) and (2), as they are not
really necessary for the analysis that follows.

III. DENSITY WAVE PHASES

A. Interaction and mean-field theory

We introduce a Hubbard interaction,

Û = U
∑

r

n̂1(r)n̂2(r), (3)

where the indices 1,2 refer to the orbital degree of freedom.
Doing a mean-field theory decoupling, the interaction takes
the form

ÛMF = U
∑

r

[〈n1(r)〉n̂2(r) + n̂1(r)〈n2(r)〉

− 〈n1(r)〉〈n2(r)〉]. (4)

A pseudospin density wave (PSDW) phase with the same
nesting wave vector Q is characterized by

〈nj (r)〉 = 1
2n + m̄(−1)j cos(Q · r), (5)

where m̄ is the amplitude and j = 1, 2. Although this type
of ordering describes an imbalance in orbital occupation, it
is not a charge density wave (CDW) because the charge at
site r is spatially constant, n. Omitting the factor (−1)j , a
true CDW is obtained. We introduce the annihilation operator
ψ̂j (r), at point r, with pseudospin index j . Then, Eq. (4) can
be rewritten as

Ûeff = Un

2

∑
r

[ψ̂†
1 (r)ψ̂†

2 (r)]τ0

(
ψ̂1(r)
ψ̂2(r)

)

+Um̄
∑

r

cos( Q · r)[ψ̂†
1 (r)ψ̂†

2 (r)]τ3

(
ψ̂1(r)
ψ̂2(r)

)

= Un

2

∑
k

(ĉ†k,1ĉ
†
k,2)τ0

(
ĉk,1

ĉk,2

)

+ Um̄

2

∑
k

[
(ĉ†k+Q,1ĉ

†
k+Q,2)τ3

(
ĉk,1

ĉk,2

)

+ (ĉ†k,1ĉ
†
k,2)τ3

(
ĉk+Q,1

ĉk+Q,2

)]
. (6)

Replacing τ3 → τ0 in Eq. (6), we can describe a true CDW.
We write the effective Hamiltonian Heff (k) matrix in oper-

ator basis (ĉk,1, ĉk,2ĉk+Q,1, ĉk+Q,2) ≡ (ck ck+Q) and introduce
a factor 1

2 to avoid double counting of momenta in the BZ:

Ĥeff = 1

2

∑
k

(c†k c†k+Q)Heff (k)

(
ck

ck+Q

)
, (7)

Heff (k) =
(

H0(k) Um̄τα

Um̄τα H0(k + Q)

)
, (8)
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where α = 0 for CDW, or α = 3 for PSDW. The mean-field
equations for this Hamiltonian are derived in Appendix B.

The effective Hamiltonian Eq. (8) is by no means restricted
to the case of a local interaction as in Eq. (3). A nearest-
neighbor interaction, for instance, would produce an effective
Hamiltonian of the same form, but where the bare interaction
parameter would be multiplied by a Q-dependent form factor
which could still be denoted by “U”. The nesting property of
the Fermi surface leads to a divergence of the susceptibilities
in momentum space at the nesting wave vector [32]. This
always leads to a density wave with momentum Q, described
by the mean-field couplings 〈ĉ†kĉk+Q〉, and the relevant inter-
action “U” would be the Fourier component of the interaction
for the nesting wave vector.

B. Model-1 loops

We now introduce the Pauli matrices tμ operating in loop
space (k, k + Q). For type-1 models the unperturbed double-
loop Hamiltonian has the form

H 0
eff (k) = (p‖ − po)tiτa + p⊥tj τb − δ t3, (9)

where i, j can only take values 0 or 3. The effective Hamilto-
nian (8) can be written as

Heff (k) = H 0
eff (k) + Um̄ t1τα. (10)

Suppose that δ = 0, that is, degenerate loops at perfect com-
pensation. It is clear that if the perturbing term Um̄t1τα

anticommutes with only one term of H 0
eff (k) then the re-

sulting system still is a double-NL semimetal. On the other
hand, if Um̄t1τα anticommutes with H 0

eff (k) then the resulting
system is a gapped insulator, and if [Um̄t1τα,H 0

eff (k)] = 0
then the original loops are shifted and a metallic phase arises
with torus-shaped FSs, one of them hole-like, and the other
electron-like.

Next we establish a criterion based on how a unitary trans-
formation maps one loop onto the other. If the Hamiltonian
has PT symmetry, one can always find a rotation through a
Pauli matrix τβ that maps one model-1 loop at k into the other
at k + Q:

H0(k) = τβH0(k + Q)τβ. (11)

It is then convenient to apply a unitary transformation to the
effective Hamiltonian in Eq. (8) according to

AHeff (k)A† =
(

H0(k) − δ Um̄τατβ

Um̄τβτα H0(k) + δ

)
, (12)

A =
(

1 0
0 τβ

)
. (13)

The energy spectrum can be obtained by performing appro-
priate rotations on the matrix (12), as shown in Appendix A.
We list all the four possibilities as follows.

(1) If τατβ = 1, the spectrum reads

E = ±
√

(p‖ − po)2 + p2
⊥ ±

√
U 2m̄2 + δ2 (14)

(uncorrelated ± signs). In this case, H0(k) = ταH0(k + Q)τα .
The density wave produces a “level repulsion” effect by

introducing (increasing) an energy splitting between the de-
generate (nondegenerate) NLs. The density wave phase has
two toroidal FSs, one hole-like and one electron-like.

(2) In the case where τατβ ∝ τa , the energy spectrum is

E2 = (p‖ − po)2 + p2
⊥ + U 2m̄2 + δ2

± 2
√

(p‖ − po)2(U 2m̄2 + δ2) + p2
⊥δ2, (15)

which yields two NLs at p⊥ = 0, p‖ = po ± √
U 2m̄2 + δ2.

As p‖ can only take a positive value, the loop with the minus
sign will shrink into a point and vanish when

√
U 2m̄2 + δ2

becomes larger then po.
(3) For τατβ ∝ τb we get

E2 = (p‖ − po)2 + p2
⊥ + U 2m̄2 + δ2

± 2
√

p2
⊥(U 2m̄2 + δ2) + (p‖ − po)2δ2. (16)

This spectrum also gives two NLs, given by p‖ = po, p⊥ =
±√

U 2m̄2 + δ2. Unlike the previous case, these two loops
only move along the p⊥ direction when tuning U or δ, while
their radii remain unchanged.

(4) For the case τατβ ∝ τc( �=a,b) we have

E2 = U 2m̄2 + [
√

(p‖ − po)2 + p2
⊥ ± δ]2, (17)

which is then fully gapped. This is the case where H0(k) =
−ταH0(k + Q)τα .

At half filling (zero chemical potential), all the above en-
ergy dispersions lead to a lowering of the energy for Um̄ �= 0,
so the density wave phase is energetically favorable. In a sin-
gle NL, the density of states vanishes linearly at the chemical
potential, so the broken symmetry phase appears only for U

above a finite critical value, Ucr . In any case if the phase
transition is second order, then U → U+

cr ⇒ m̄ → 0. The
PSDW cases occur for U > Ucr > 0 but the CDW ordering
requires negative U < Ucr < 0, hence an attractive interaction
(see Appendices B and C).

From Eq. (11) we see that ταH0(k)τα = τατβH0

(k + Q)τβτα , and therefore the density wave phase is a
nodal line semimetal if

H0(k) �= ±ταH0(k + Q)τα, (18)

where α = 0 for CDW, or α = 3 for PSDW.
For model-1 loops we can make the following observations

regarding symmetry. The Hamiltonian (12) for δ = 0 is chiral
as it anticommutes with the operator τc �=a,b, and contains the
degenerate NLs. This chiral symmetry can be broken by a
term of the following forms: (i) tμτc which may fully gap
the spectrum, or yield a semimetal, depending on its exact
form; (ii) tμτ0 which shifts the original loops and leads to a
metallic spectrum. On the other hand, a term of the form tj τa

or tj τb (j = 1, 2, 3) preserves the chiral symmetry and yields
the NL semimetal even if δt3 �= 0 is already present, as shown
in Appendix A.

C. Model-2 loops

As we shall see, the criteria (18) do not always apply to
model-2 loops. The type-2 loop Hamiltonian at k is (omitting
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velocity prefactors)

H0(k) = (p‖ − po + p⊥)τa + p⊥τb, (19)

and the loop at k + Q can always be related to that in k by
either (i) a rotation through a Pauli matrix if g′

1g
′
2 = 1 in

Eq. (2), or (ii) a reflection in the loop plane if g′
1g

′
2 = −1. If

(i) holds, then one can again rotate the effective Hamiltonian
according to Eqs. (12) and (13), and the resulting spectra can
be obtained from Eqs. (14)–(17) for model-1 loops, with the
replacement p‖ − po → p‖ − po + p⊥. But in case (ii) the
two NLs can be related through a reflection in the NL’s plane,

H0(k) = RH0(k + Q)R†, (20a)

R = (p⊥ → −p⊥)τβ, (20b)

which corresponds to the following cases, depending
on τβ :

H0(k + Q)

= (p‖ − po − p⊥)τa − p⊥τb ≡ H0(−k⊥), β = 0;

= (p‖ − po − p⊥)τa + p⊥τb, β = a;

= [−(p‖ − po) + p⊥]τa − p⊥τb, β = b;

= [−(p‖ − po) + p⊥]τa + p⊥τb, β = c �= a, b. (21)

We apply the same rotation to the effective Hamiltonian, using
Eqs. (12) and (13):

AHeff (k)A† =
(

H0(k) Um̄τατβ

Um̄τβτα H0(−k⊥)

)
. (22)

For finite δ one cannot write the energy dispersion in closed
form. We analytically deal with the degenerate case at perfect
compensation, δ = 0, below, and show numerical results for
nonzero δ in Fig. 1. The figure shows the two inner bands of
Hamiltonians (23), (25), (27), and (29) in the two-dimensional
space of (p‖, p⊥). A NL for Um̄ = δ = 0 then looks like a
Dirac cone at point (po, 0). The splitting of the original NLs
can be seen as the appearance of two Dirac cones in the plot.
For finite δ, the Dirac cone axis is tilted.

Similarly to the discussion for model-1 loops, we also list
all the four possibilities.

(1) If τατβ = 1,

AHeff (k)A† = (p‖ − po)τa + p⊥t3τa + p⊥t3τb

+Um̄ t1 − δt3. (23)

For δ = 0 (perfect compensation) the spectrum obeys

E2 = p2
⊥ + [

√
p2

⊥ + (Um̄)2 ± (p‖ − po)]2, (24)

which has two nodal lines for p⊥ = 0 and p‖ − po = ±Um̄.
By turning on δ, the two NLs are tilted along the p⊥ direction,
and move along the p‖ direction, as shown in Fig. 1(a). It can
also be seen from Eq. (23) that if p⊥ = 0 the dispersion re-
lation has two nodal lines: |p‖ − po| = √

U 2m̄2 + δ2. There-
fore, one of the loops will shrink into the origin as p‖ → 0
when δ2 + U 2m2 → p2

0, and become gapped for larger δ.
(2) If τατβ ∝ τa ,

AHeff (k)A† = (p‖ − po)τa + p⊥t3τa + p⊥t3τb

+ εkαaUm̄ t2τa − δt3. (25)

FIG. 1. The energy dispersion of the two inner bands of
the spectrum. Panels (a)–(d) correspond to the four cases in
Eqs. (23), (25), (27), and (29), respectively. The energy offset δ is
(a1)–(d1) δ = 0; (a2)–(d2) δ = 0.5; and (a3)–(d3) δ = 1. The other
parameters are po = 1 and Um̄ = 0.5.

For δ = 0 (perfect compensation) the spectrum obeys

E2 = (p‖ − po)2 + 2p2
⊥ + (Um̄)2

± 2
√

(p‖ − po)2(p2
⊥ + U 2m̄2) + p2

⊥U 2m̄2, (26)

which, for δ = 0, has the same two nodal lines as in the pre-
vious case, and behavior of these lines with nonzero δ is also
identical. However, these loops show a quadratic dispersion
along the p⊥ direction, as shown in Fig. 1(b).

(3) If τατβ ∝ τb,

AHeff (k)A† = (p‖ − po)τa + p⊥t3τa + p⊥t3τb

+ εkαbUm̄ t2τb − δt3, (27)

E2 = p2
⊥ + (

√
(p‖ − po)2 + U 2m̄2 ± p⊥)2, (28)

which is a fully gapped insulator, and remains gapped with
nonzero δ [Fig. 1(c)].
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(4) If τατβ ∝ τc( �= a, b),

AHeff (k)A† = (p‖ − po)τa + p⊥t3τa + p⊥t3τb

+ εkαcUm̄ t2τc − δt3, (29)

which for δ = 0 has the spectrum

E2 = (p‖ − po)2 + 2p2
⊥ + U 2m̄2

± 2p⊥
√

(p‖ − po)2 + 2U 2m̄2 (30)

with two nodal lines at p‖ − po = 0 and
√

2p⊥ = ±Um̄.
Unlike the nodal lines in the first two cases, these two are
tilted along p‖ and move away from each other along p⊥ for
δ �= 0.

IV. EXAMPLE MODELS

In this section we investigate the density wave phases in
several specific lattice models which have been widely studied
in the literature. The examples in Secs. IV A and IV B fall
into the two types of NLs discussed in previous sections. The
remainder of this section will be devoted to models beyond
the simplest two-band cases.

A. A model-1 loop example

A lattice model with two “model-1” loops can be described
by the Hamiltonian

H0(k) = (cos kx + cos ky − m)τa + cos kzτb. (31)

When |m| < 2, the system has two NLs at cos kx + cos ky −
m = 0, in two parallel planes kz = ±π/2. They are nested by
the vector Q = (0, 0, π ), and can be mapped to each other as

H0(k) = τaH0(k + Q)τa. (32)

Introducing a Hubbard interaction, the effective Hamiltonian
can be written as

Heff (k) = (cos kx + cos ky − m)t0τa + cos kzt3τb

+Um̄ t1τα. (33)

We analyze first the CDW case (τα = τ0). Following the
discussion in the previous section, this condition corresponds
to the second case in Sec. III B, where each NL gets split into
two. Indeed, from the commuting relations between different
terms, we can obtain the energy dispersion as

ECDW = ±
√

cos2 kz + [cos kx + cos ky − m ± Um̄]2, (34)

and the split NLs are given by

cos kz = 0, and cos kx + cos ky = m ± Um̄. (35)

In the PSDW case (τα = τ3), different choices of a and b

in Eq. (31) will lead to different phases of the system. In such
case, the effective Hamiltonian reads

Heff (k) = (cos kx + cos ky − m)t0τa + cos kzt3τb

+Um̄ t1τ3, (36)

and the possibilities are summarized in Table I, and listed
explicitly as follows.

TABLE I. Possibilities for τa, τb matrices in the loop model (31).
And the resulting different outcomes of the PSDW phase.

a\ b 1 2 3

1 X loops gapped
2 loops X gapped
3 metal metal X

In the case of τa = τ3, the energy spectrum reads

EPSDW = ±
√

(cos kx + cos ky − m)2 + cos kz
2 ± Um̄

(37)

with uncorrelated ± signs. This is the first case in Sec. III B,
and the ordered phase is metallic.

If a, b �= 3, the spectrum reads

E2
PSDW = (cos kx + cos ky − m)2 + (cos kz ± Um̄)2,

(38)

where each original NL splits into two with different kz, as in
the third case in Sec. III B.

Finally, when τb = τ3, the spectrum takes the form

E2 = (cos kx + cos ky − m)2 + cos kz
2 + U 2m̄2. (39)

Thus the system is fully gapped by a nonzero Um̄ and
becomes an insulator, as in the fourth case in Sec. III B.

B. A model-2 loop example

By including cos kz in the τa term in Eq. (31), we obtain a
system with “model-2” loops, described by

H0(k) = (cos kx + cos ky + cos kz − m)τa + cos kzτb.

(40)

This system has two parallel NLs with kz = ±π/2 when
−2 < m < 2. The continuous approximation for these two
loops, as in Eqs. (2), satisfies g′

1 = 1 and g2 = g′
2 = −1. Thus,

the effective Hamiltonian including the Hubbard interaction is
given by

Heff = (cos kx + cos ky − m)t0τa + cos kzt3τa

+ cos kzt3τb + Um̄t1τα. (41)

For the CDW case (τα = τ0), the spectrum reads

E2
CDW = [cos kx + cos ky − m ±

√
U 2m̄2 + cos2 kz]

2

+ cos kz
2; (42)

TABLE II. Possibilities for τa, τb matrices in the loop
model (40). And the resulting different outcomes of the PSDW
phase.

a\ b 1 2 3

1 X loops gapped
2 loops X gapped
3 loops loops X
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thus each of the original NLs splits into two. The new NLs are given by

cos kz = 0, cos kx + cos ky = m ± Um̄. (43)

In the case of PSDW ordering (τα = τ3), there are three possible outcomes as summarized in Table II. In the case of τa = τ3,
the energy spectrum reads

E2
PSDW = (cos kx + cos ky − m)2 + 2 cos2 kz + U 2m̄2

± 2
√

(cos kx + cos ky − m)2[cos2 kz + U 2m̄2] + (Um̄ cos kz)2, (44)

where each NL splits into two as in the second case in
Sec. III C. The condition of the NLs is the same as for the
CDW case; however, as discussed in the previous section
[Fig. 1(b)], these NLs have a quadratic dispersion along kz.

If τb = τ3 then the spectrum reads

E2
PSDW = [cos kz ±

√
U 2m̄2 + (cos kx + cos ky − m)2]2

+ cos2 kz, (45)

which is an insulating phase as in the third case in Sec. III C.
The remaining possibility, a, b �= 3, where the spectrum

reads

E2
PSDW = (cos kx + cos ky − m)2 + 2 cos2 kz + U 2m̄2

± 2 cos kz

√
(cos kx + cos ky − m)2 + 2U 2m̄2,

(46)

yields two NLs given by

cos kz = ±Um̄/
√

2, cos kx + cos ky = m. (47)

This is the splitting along kz, as in the fourth case in Sec. III C.
Finally, if we add an extra term Hδ = δ sin kzτ0 to the original
Hamiltonian of Eq. (40), we can induce an energy offset δ

of the two original NLs, and tilt the resulting NLs after the
Hubbard interaction is introduced.

C. Nested Z2 NLs

We have hitherto considered examples of two-band
NLSMs, which verify our results for general two-band mod-
els. If an extra degree of freedom, say, a (pseudo)spin-1/2
subspace, is introduced, the Hilbert space is enlarged and
the possibility of nodal lines carrying a Z2 monopole charge
arises, which must be created in pairs [30]. It is beyond the
scope of this paper to extend the general analysis of Sec. III.
Instead, we explicitly consider a recent four-band model for
Z2 NLs [30] and study density wave order due to nesting. The
model reads

H0(k) = sin kxτ0σ1 + sin kyτ2σ2 + sin kzτ0σ3 + mτ1σ1,

(48)

and has the spectrum

E2
0 (k) = (

√
sin2 kx + sin2 ky ± m)2 + sin2 kz. (49)

There are eight NLs, centered at momenta k with Cartesian
components ki = 0, π for i = x, y, z. We introduce a Hub-
bard interaction in four-dimensional space assuming that the

repulsion exists between the two orbitals in subspace of σ :

Û = U
∑
r,ν

nν1(r)nν2(r) = U

2

∑
r

n(r)τ0σ1n(r), (50)

so that the remaining index ν = 1, 2 for the two components
in the subspace of τ produces a twofold degeneracy. In the
mean-field approximation, the interaction reads (apart from
unimportant constants)

Ûeff = Um̄
∑

k

ĉ
†
k+Qτ0σzĉk, (51)

where we defined the PSDW as

〈nνj (r)〉 = n

2
+ m̄(−1)j cos(Q · r). (52)

The effective 8 × 8 Hamiltonian has the same form as that
in Eq. (8), but the antidiagonal blocks are now written as
Um̄τ0σ3. Two of the original Z2 loops are now coupled by the
interaction. Such coupling provides an extra pseudospin-1/2
subspace, and the interaction term breaks the SU(2) symmetry
in this space. As a result, the pair of NLs may either survive,
shrink to point nodes, or be gapped out by the PSDW.

Depending on vector Q, the effective Hamiltonian takes the
form of

Heff = sin kxtαx
τ0σ1 + sin kytαy

τ2σ2 + sin kztαz
τ0σ3

+mt0τ1σ1 + Um̄t1τ0σ3, (53)

where the Pauli matrix tαi
equals t0 (t3) for Qi = 0 (Qi =

π ). Thus, different choices of Qi determine whether each
term commutes or anticommutes with the interaction term
Um̄t1τ0σ3. The possibilities with different choices of Q are
summarized as follows.

(1) Q = (1, 1, 1)π :

Heff = sin kxt3τ0σ1 + sin kyt3τ2σ2 + sin kzt3τ0σ3

+mt0τ1σ1 + Um̄t1τ0σ3, (54)

E2 = (
√

sin2 kx + sin2 ky ±
√

m2 + U 2m̄2)2 + sin2 kz.

(55)

The spectrum is composed of four twofold-degenerate bands,
and has the same NLs as the original H0, albeit with enlarged
radius [Fig. 2(a)]:

kz = 0, π ;
√

sin2 kx + sin2 ky =
√

m2 + U 2m̄2. (56)

Since the energy dispersions in Eq. (55) are twofold degener-
ate, the NLs are fourfold degenerate.
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FIG. 2. The effect of a PSDW on the Z2 loops for different
nesting vectors Q. (a) to (d) show four different cases of Q where the
resulting system is still a semimetal. The red lines are the original
NLs of Hamiltonian H0(k) in Eq. (48), whereas the blue lines and
stars are the nodal lines or points in the PSDW phase. The parameters
are m = √

2/2 and Um̄ = 0.5. We only plot for ki ∈ [−π/2, π/2],
as the graph repeats itself with a period of π .

(2) Q = (1, 1, 0)π :

Heff = sin kxt3τ0σ1 + sin kyt3τ2σ2 + sin kzt0τ0σ3

+mt0τ1σ1 + Um̄t1τ0σ3, (57)

which has the same NLs as in Eq. (56), and as shown in
FIg. 2(b), despite some minor variation of the spectrum near
the NLs.

(3) Q = (1, 0, 1)π :

Heff = sin kxt3τ0σ1 + sin kyt0τ2σ2 + sin kzt3τ0σ3

+mt0τ1σ1 + Um̄t1τ0σ3. (58)

The full spectrum also has the twofold degeneracy, while
the NLs are gapped in most regions, leaving only pairs of
fourfold-degenerate points at

sin ky = sin kz = 0, sin kx = ±
√

m2 + U 2m̄2, (59)

as shown in Fig. 2(c).
We note that the case Q = (0, 1, 1)π has a similar spectrum,
which can be obtained from the above by performing the
substitution kx ↔ ky .

(4) Q = (1, 0, 0)π :

Heff = sin kxt3τ0σ1 + sin kyt0τ2σ2 + sin kzt0τ0σ3

+mt0τ1σ1 + Um̄t1τ0σ3. (60)

Energy zeros are obtained if two conditions are simultane-
ously satisfied:

3∑
i=1

sin2 ki = U 2m̄2 + m2 (61a)

m sin kz = ±Um̄ sin ky. (61b)

Geometrically, one can think of the first condition as defining
a spherical surface, for small k, and the second one as two
planes. The intersection between the surface and the planes
yields two NLs, obtained by rotating the original loops (in the
XY plane) around the x axis in opposite directions. These two
NLs are given by different pairs of energy bands, and thus
form a nodal chain [Fig. 2(d)].
We note that spectrum for the case Q = (0, 1, 0)π is similar
to the case Q = (π, 0, 0), and differs only in the interchange
kx ↔ ky . The nodal chain is obtained from the two original
NLs by a rotation around the y axis.

(5) Q = (0, 0, 1)π :

Heff = sin kxt0τ0σ1 + sin kyt0τ2σ2 + sin kzt3τ0σ3

+mt0τ1σ1 + Um̄t1τ0σ3. (62)

In this case the system is a fully gapped insulator.

V. NESTED NLs IN DIRAC SYSTEMS

In this section we study density wave phases in four-band
spinful Hamiltonians with NLs. The spin degree of freedom
allows us to distinguish two types of ordered phases: true and
hidden spin density waves (SDWs). In Sec. V B we consider
NLs obtained from a perturbed [3,33] Dirac Hamiltonian.

A. Spin-degenerate loops

The simplest way to go from a Weyl to a Dirac loop is to
introduce spin degeneracy,

H0(k) → H0(k)σ0, (63)

where σμ acts in spin space.
We assume Hubbard repulsion between two fermions

having opposite spins in the same orbital (labeled by the
index j ):

Û =
∑

r,j=1,2

n̂j↑(r)n̂j↓(r). (64)

In principle one could have ordered phases with ferromagnetic
(FM) or antiferromagnetic (or SDW) configurations of the
spin:

〈njσ 〉 = 1
4n + m̄σ, σ = ±1, Stoner FM; (65)

〈njσ 〉 = 1
4n + m̄σ (−1)j , hidden Stoner FM; (66)

〈njσ 〉 = 1
4n + m̄σ cos(Q · r), true SDW; (67)

〈njσ 〉 = 1
4n + m̄σ (−1)j cos(Q · r), hidden SDW.

(68)

Because a NL’s density of states vanishes linearly with energy,
the Stoner criterion precludes the FM orderings for weak in-
teractions [27], and they are not related to the nesting Q. In the
following, we shall concentrate on SDW phases. Considering
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the hidden SDW, Eq. (68), the effective interaction reads

Ûeff = −U
∑
r,j

[(n

4

)2
− m̄2 cos2(Q · r)

− n

4

∑
σ

ψ̂
†
jσ (r)ψ̂jσ (r)

]

+Um̄
∑

r,j,j ′,σσ ′
ψ̂

†
jσ (r) τ

jj ′
3 σσσ ′

3 cos(Q · r) ψ̂j ′σ ′ (r),

(69)

where the field operator ψ̂jσ (r) now includes the spin index
σ . Similarly, the field operator in momentum space ck now de-
notes ck,j,σ for all j, σ . The Hamiltonian matrix in (c†k c†k+Q)
space reads (apart from unimportant constants)

Heff (k) =
(

H0(k) Um̄τασ3

Um̄τασ3 H0(k + Q)

)
, (70)

where α = 3 describes a hidden SDW [as in Eq. (69)],
and α = 0 describes a true SDW. The off-diagonal block
Um̄t1τ3σ3 has exactly the same (anti)commutation relations
with the other Hamiltonian terms, as in the Weyl case of
Secs. III B and III C. All the criteria and spectra established
for the Weyl case still hold, if one just replaces m̄ → m̄σ3.
Since this term appears as (Um̄)2 in the dispersion relations,
there is no spin splitting in the spectra.

We note that single antiferromagnetic NLs have been
discussed in the literature [34].

B. Two perturbed Dirac points

A nodal line Dirac semimetal can be obtained starting from
a pristine 3D Dirac semimetal [33] of the form HD (k) =
−τ3p · σ and perturbing it with terms of the form aμτμ ⊗
bνσν . Suppose, for instance,

H0(k) = −τ3p · σ + τ1b · σ . (71)

Without loss of generality assume b ‖ ẑ. The term pzτ3σ3

anticommutes with the others, so

E2 = p2
z + (

√
p2

x + p2
y ± b)2. (72)

We note that this dispersion relation is very similar to that in
Eq. (49) for the Z2 loops. However, the effect of the Hubbard
interaction is different, as these two systems couple the two
sets of (pseudo)spin-1/2 subspace in different ways. On the
other hand, Dirac points described by HD above do not exist
alone if an additional symmetry, such as time reversal or
inversion, is present. For instance, a time-reversal symmetry
(TRS) relates two Dirac points at − 1

2 Q and + 1
2 Q in such a

way that

σ2H
∗
0

(
Q
2

− k
)

σ2 = H0

(
−Q

2
+ k

)
; (73)

it then follows that, for b = 0, H0(−Q/2 + k) =
H0(Q/2 + k) = HD (k). Therefore, the two unperturbed
Dirac points have the same k · p Hamiltonian. Including the

τ1b · σ term, which breaks TRS, we obtain the model

H0

(
−Q

2
+ k

)
= −τ3p · σ + τ1b · σ , (74a)

H0

(
Q
2

+ k
)

= −τ3p · σ + τ1b · σ , (74b)

and the effective Hamiltonian has equal diagonal blocks.
A different version of the above model that would preserve

TRS symmetry reads

H0

(
−Q

2
+ k

)
= −τ3p · σ + τ1b · σ , (75a)

H0

(
Q
2

+ k
)

= −τ3p · σ − τ1b · σ . (75b)

If we now consider the role of inversion symmetry
k → −k, the two Dirac points are related by

H0

(
Q
2

− k
)

= H0

(
−Q

2
+ k

)
= −τ3p · σ + τ1b · σ (76a)

⇒ H0

(
Q
2

+ k
)

= τ3p · σ + τ1b · σ ; (76b)

therefore, the two Dirac points have different k · p Hamil-
tonians.

Next we study the effects of a hidden SDW and a true SDW
for these different cases, still assuming b ‖ ẑ. For a hidden
SDW, the effective Hamiltonian for the TRS-breaking model
in Eq. (74) is then

Ĥeff = t0[−τ3p · σ + bτ1σ3] + Um̄t1τ3σ3, (77)

which by inspection produces the eight-band spectrum

E2 = (−pz ± Um̄)2 + (√
p2

x + p2
y ± b

)2
, (78)

where the ± signs are uncorrelated. This corresponds to
splitting each loop along the kz direction.

If one considers, instead, a true SDW phase,

Ĥeff = t0[−τ3p · σ + bτ1σ3] + Um̄t1τ0σ3, (79)

then there are four doubly degenerate bands:

E2 = b2 + U 2m̄2 + p2

± 2
√

b2
(
U 2m̄2 + p2

x + p2
y

) + U 2m̄2p2
z (80)

with nodal lines given by pz = 0,

p2
x + p2

y = b2 − U 2m̄2. So, the initial two loops still exist but
their radius shrinks.

In the TRS model, Eq. (75), the hidden SDW phase is
described by the effective Hamiltonian

Ĥeff = −t0τ3p · σ + bt3τ1σ3 + Um̄t1τ3σ3. (81)

The spectrum is the same as in Eq. (80). So, the initial two
loops still exist but their radius shrinks. And a true SDW phase
is described by the effective Hamiltonian

Ĥeff = −t0τ3(pxσ1 + pyσ2) − pzt0τ3σ3 + b t3τ1σ3

+Um̄t1τ0σ3, (82)
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which produces the spectrum with eight bands

E2 = (√
p2

x + p2
y ± b

)2 + (pz ± Um̄)2, (83)

where the ± signs are uncorrelated. This corresponds to
splitting each loop along pz = ±Um̄.

For the case with inversion symmetry, in Eq. (76b), a
hidden SDW phase is described by the effective Hamiltonian

Heff (k) = −t3τ3p · σ + b t0τ1σ3 + Um̄t1τ3σ3, (84)

which produces the eight-band spectrum

E2 = p2
z + ( ±

√
b2 + U 2m̄2 ±

√
p2

x + p2
y

)2
(85)

(uncorrelated± signs). This corresponds to splitting each
nodal line by changing its radius. A true SDW is obtained by
changing τ3 → τ0 in the last term of Eq. (84). The resulting
spectrum,

E2 = p2
z + (√

p2
x + p2

y ± b ± Um̄
)2

(86)

(with uncorrelated ± signs), also has NLs given by pz = 0,√
p2

x + p2
y = |b ± Um̄|.

In the remaining case, where H0(−Q/2 + k) =
−H0(Q/2 + k), a hidden SDW phase is described by
the effective Hamiltonian

Heff (k) = t3[−τ3p · σ + bτ1σ3] + Um̄t1τ3σ3, (87)

which by inspection produces the eight-band spectrum

E2 = p2
z + (√

p2
x + p2

y ± b ± Um̄
)2

, (88)

with uncorrelated ± signs. Therefore, each loop splits in the
radial direction. The true SDW is described by the effective
Hamiltonian

Ĥeff = t3[−τ3p · σ + bτ1σ3] + Um̄t1τ0σ3, (89)

which by inspection produces the eight-band spectrum

E2 = p2
z + ( ±

√
p2

x + p2
y ±

√
b2 + U 2m̄2

)2
, (90)

where the ± signs are uncorrelated. Again, this corresponds
to splitting each nodal loop in the radial direction.

VI. SUPERCONDUCTIVITY

When considering a single Weyl NL, the pairing block of
the Bogoliubov–de Gennes (BdG) matrix in the particle-hole
basis [35–37] takes the form

�̂(k) = [d0(k)τ0 + d(k) · τ ]iτ2, (91)

and fermionic statistics imposes that �̂(k) = �̂T (−k). Close
to the nodal lines the 3D momentum, p = h̄k, can be
parametrized as

px = (p0 + p̃ cos φ) cos θ, (92a)

py = (p0 + p̃ cos φ) sin θ, (92b)

pz = p⊥ = p̃ sin φ, (92c)

which is to be inserted in the k · p loops models. Here, θ is
the azimuthal angle along the loop, p̃ is the radius of a torus

involving the NL, and the angle φ wraps around the latter [25].
Note that, according to Eq. (92), momentum inversion p →
−p is equivalent to θ → θ + π and φ → −φ, while reflection
in the loop’s plane, pz → −pz, is equivalent to φ → −φ.

In the semimetal case (undoped, or compensated case)
the FS reduces to the NL and p reduces to the angle θ on
the loop. In the doped case, any point on the torus-shaped
FS can be labeled by two angles, θ, φ. The functions d0(k)
and d(k) describe (pseudospin) singlet and triplet pairing,
respectively. One can expand the singlet pairing function quite
generally as

d0(k) =
∑
l1,l2

eil1θ [�l1l2 cos(l2φ) + �̃l1l2 sin(l2φ)]. (93)

An analogous expansion can be written for d(k).
If there are two nested Weyl loops, then an additional loop

label must be introduced and the Pauli matrix tμ operates in
the two-dimensional loop space. For a two-loop system then,
we write the pairing matrix as

�̂(k) = [d0(k)τ0 + d(k) · τ ]iτ2tμ. (94)

The BdG Hamiltonian matrix in the particle-hole basis has the
form

H (k) =
(

�̂(k) �̂(k)
�̂†(k) −�̂T (−k)

)
(95)

with �̂ = diag(H1,H2). The Hamiltonians H1(2) are the k · p

Weyl NL models. The total Hamiltonian is then

Ĥ = 1

2

∑
k

c†H (k)c, (96)

where c = (ĉk,1, ĉk,2, ĉ†−k,1, c†−k,2)T . If the two NLs are cen-
tered at BZ points ±Q/2, respectively, then the inter-NL
pairing is the “usual” pairing between opposite momenta, and
we shall take this to be the case. If not, then the Cooper pair
would have a finite quasimomentum (a Fulde-Ferrel-Larkin-
Ovchinnikov state [39–41]).

The cases μ = 0, 1, 3 are different from the case μ = 2
regarding the parity of the functions d0(k) and d(k). In the
cases μ = 1, 2, electrons on different loops are being paired:
an electron (k, 1) is being paired with another (−k, 2). The
cases μ = 0, 3 describe intra-NL pairing, where the scattering
of two particles from one NL into the other may be included,
and id0τ2t3 would describe sign-reversed s-wave pairing, anal-
ogous to that in pnictide superconductors [38].

Inter-NL pairing with μ = 1 (interloop triplet pairing)
requires d0 to be even and d to be odd function of k; if μ = 2
(interloop singlet), then d0 and d have the opposite parities.
The BdG matrix decouples into two blocks each associated
with the vector spaces (ĉk,1, ĉ

†
−k,2)T and (ĉk,2, ĉ

†
−k,1)T , re-

spectively. Since we expect a fully gapped excitation spectrum
to have higher condensation energy than a nodal spectrum,
we shall examine the cases where d0 and d are constant
on the FS (in the μ = 1 and μ = 2 cases, respectively).
If TRS holds, then these order parameters must also be
real.

155114-9



MIGUEL A. N. ARAÚJO AND LINHU LI PHYSICAL REVIEW B 98, 155114 (2018)

A. Model-1 loops

Assuming a positive energy offset, δ, the interband pairing
occurs between the electronic toroidal FS from the H1 − δ

loop, and the hole-like FS from the H2 + δ loop. As in
previous literature, this is best done by considering projective
form factors [28,42] onto the conduction or valence band.
Let U1(2) be the unitary matrices which diagonalize H1(2), so

that UsHsU
†
s =

√
(|p‖| − p0)2 + p2

⊥ τ3 ≡ p̃τ3 for s = 1, 2.
The positive and the negative branches are the conduction
and valence bands, respectively. Because for model-1 loops
there is always a Pauli matrix τβ such that H1 = τβH2τβ , it
then follows that U2 = U1τβ . We can apply this same unitary
transformation to the BdG matrix in Eq. (95) as(

� 0
0 �∗(−k)

)
H (k)

(
�† 0
0 �T (−k)

)

=
(

p̃τ3t0 − δτ0t3 ��̂�T (−k)
�∗(−k)�̂†�† −p̃τ3t0 + δτ0t3

)
, (97)

where � = diag(U1, U2). The off-diagonal pairing block is
then �(k)�̂(k)�T (−k).

For δ > 0, only the pairing between the conduction band of
H1 and the valence band of H2 is considered. From the BdG
matrix in Eq. (97) we obtain the submatrix operating in this
twofold subspace as

HFS =
(

p̃ − δ �FS (k)
�∗

FS (k) p̃ − δ

)
, (98)

where �FS (k) is the pairing function on the FS which, from
Eq. (97) and for μ = 1, reads

�FS (k) = [U1(k)(d0 + d · τ )iτ2U
T
2 (−k)]12. (99)

It is then clear from Eq. (98) that the spectrum is E = p̃ − δ ±
|�FS (k)|, and is gapless. At finite doping, no gapped state is to
be expected from FS interloop pairing between nondegenerate
model-1 Weyl loops.

The situation is different for the degenerate (δ = 0) case,
however, where the FS is composed of two nodal lines. From
Eq. (97) and tμ = t1 we obtain a BdG matrix restricted to the
subspace (U1(k)ĉk,1, U

∗
2 (−k)ĉ†−k,2) as

H ′
12 =

(
p̃τ3 U1(d0 + d · τ )iτ2U

T
2

−iU ∗
2 τ2(d0 + d · τ )U †

1 −p̃τ3

)
.

(100)

For the sake of definiteness we consider the NL models with
τa = τ1, τb = τ2, so that

H1(φ) = p̃(cos φτ1 + sin φτ2), (101)

U1(k) = 1√
2

(
1 e−iφ

−1 e−iφ

)
. (102)

We note that all the other (τa, τb ) cases can be related
to this through a suitable rotation in pseudospin space.
From Eq. (102), one can see that U

†
1 (k) = UT

1 (−k). In-
terloop pairing is described by the off-diagonal block in
Eq. (100):

U1(k)(d0 + d · τ )iτ2τ
T
β UT

1 (−k) =
(

id0 sin φ + id2 + d3 cos φ d0 cos φ + d1 + id3 sin φ

−d0 cos φ + d1 − id3 sin φ −id0 sin φ + id2 − d3 cos φ

)
,

=
(

d3 + id2 cos φ − id1 sin φ −d0 − d1 cos φ − d2 sin φ

−d0 + d1 cos φ + d2 sin φ d3 − id2 cos φ + id1 sin φ

)
,

=
(−id0 − id1 cos φ − id2 sin φ d1 sin φ − d2 cos φ + id3

−d1 sin φ + d2 cos φ + id3 −id0 + id1 cos φ + id2 sin φ

)
,

=
(−d0 cos φ − d1 − id3 sin φ −id0 sin φ − id2 − d3 cos φ

id0 sin φ − id2 + d3 cos φ d0 cos φ − d1 + id3 sin φ

)
, (103)

for the cases β = 0, 1, 2, 3, respectively. Note that for the case
tμ = t2, we simply have to multiply both sides of Eq. (103)
by −i.

For μ = 1 a fully gapped FS can only happen for constant
d0 because d is an odd function and must have nodes on
the NLs. In this case, only for β = 2 a gapped spectrum is
obtained: E2 = p̃2 + d2

0 .
For μ = 2 (interloop singlet) and constant real d there are

more possibilities. If β = 0 a fully gapped spectrum E2 =
p̃2 + d2

2 ; if β = 1 a fully gapped spectrum E2 = p̃2 + d2
3 ;

for β = 3 the fully gapped spectrum E2 = p̃2 + d2
1 . Gapped

spectra result from intraband pairing. Interband pairing leads
to nodal spectra for the same reason as in the δ > 0 case.

B. Model-2 loops

In a model-2 loop we replace Eqs. (101) and (102) with

H1(φ) = p̃[(cos φ + sin φ)τ1 + sin φτ2], (104)

U1(k) = 1√
2

(
eiω 1
e−iω −1

)
, (105)

where ω = arg(eiφ + sin φ). If H1 = τβH2τβ , then the con-
clusions are the same as for model-1 loops, with the replace-
ment p̃ → p̃|eiφ + sin φ|.

We now consider the case where the two loops are related
through the reflection operation in Eq. (20). Because the re-
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flection implies φ → −φ, the energy dispersions are different
for H1 and H2. In the nondegenerate case (δ > 0), HFS now
takes the form

HFS =
(

p̃|eiφ + sin φ| − δ �FS (k)
�∗

FS (k) p̃|eiφ − sin φ| − δ

)
,(106)

and the resulting spectrum allows gapless excitations, as was
the case for model-1 loops.

In the degenerate case, we find it more convenient not to
perform the rotation in Eq. (97), and diagonalize the original
BdG matrix restricted to the subspace (ĉk,1, ĉ†−k,2), instead.
In this subspace, the two diagonal blocks of the BdG matrix,
which follow from Eq. (95), are H1(φ) and

−HT
2 (−φ) = −τβHT

1 (φ)τβ, (107)

which follows from (104) and the reflection operation
that relates both loops: H2(φ) = τβH1(−φ)τβ . For tμ = t1
(interloop triplet) the BdG reads

H ′
12 =

(
H1(φ) (d0 + d · τ )iτ2

−iτ2(d0 + d · τ ) −τβHT
1 (φ)τβ

)
. (108)

We identify the TRS cases where the excitation spectrum is
fully gapped. For constant d0 and d = 0, the gapped spectra
are obtained for β = 1 and β = 3, respectively:

β = 1 : E2 = d2
0 + p̃2 sin2 φ + (d0 ± p̃| sin φ + cos φ|)2,

(109)

β = 3 : E2 = d2
0 + p̃2[sin2 φ + (sin φ + cos φ)2].

(110)

In the case of interloop singlet tμ = t2, we consider d0 = 0
and constant d. Gapped spectra exist for β = 0 and nonzero
d3; β = 1 and nonzero d2; β = 2 and nonzero d1. All these
cases have similar spectra:

β = 0 : E2 = d2
3 + p̃2[sin2 φ + (sin φ + cos φ)2], (111a)

β = 1 : E2 = d2
2 + p̃2[sin2 φ + (sin φ + cos φ)2], (111b)

β = 2 : E2 = d2
1 + p̃2[sin2 φ + (sin φ + cos φ)2]. (111c)

C. Pairing between Dirac loops

Including the spin degree of freedom, we may discuss the
pairing between spin-degenerate loops H1 ⊗ σ0 and H2 ⊗ σ0

described by the BdG matrix:

H ′
12,s =

(
H1 ⊗ σ0 (d0 + d · τ )iτ2(tμ)12σs

−iσsτ2(d0 + d · τ )(tμ)21 −HT
2 ⊗ σ0

)
.

(112)

Whatever the choice for s = 1, 2, 3, H ′
12,s decouples in sub-

blocks for which the results obtained above for Weyl systems
can be applied. The (anti)symmetric property of the matrices
tμ, σs will determine whether the functions d0, d should be
odd of even: if for instance, s = 1, 3 then the parity of d0, d is

as in the Weyl case; if, however, s = 2 (spin singlet), then the
parities should be reversed.

VII. SUMMARY AND CONCLUSIONS

We have described broken-symmetry phases of nested
Weyl and Dirac NLs that are induced by a short-range
interaction. We made a systematic analysis for two-band
Hamiltonians with PT symmetry, where the two nested Weyl
NLs can be mapped onto each other through a rotation or
reflection operator. Charge and (pseudo)spin density waves
always lower the energy and the broken-symmetry phase can
be metallic, semimetallic, or insulating, depending on the
operator that maps the the initial NLs onto each other, and
on whether they enjoy a local reflection symmetry in the loop
plane. This outcome does not depend on whether the initial
system is semimetallic or metallic (when the initial FS is com-
posed of two toroidal FSs, one hole- and one electron-like).
If the initial system is semimetallic, spontaneous symmetry
breaking requires a finite interaction which is attractive for
CDWs and repulsive for PSDWs.

We have also studied specific four-band models, including
the Z2 NLs, spin-degenerate Dirac systems, and NLs derived
from perturbed spinful Dirac nodal points. The PSDW phases
from Z2 NLs include nodal point and nodal chain semimetals.

Fully gapped superconducting phases from electron pair-
ing in different NLs (interloop pairing), with TRS, have been
found. They include all possibilities of triplet and singlet
pairing in loop space and spin space.

There has recently been an intensive search for topological
semimetal materials. Given that point nodes tend to appear
in pairs for symmetry reasons, it is conceivable that suit-
able engineering can produce double NLs. Indeed, a recent
proposal for realizing point nodes (Dirac or Weyl) and pairs
of NLs by strain engineering in SnTe and GeTe is relevant
here [43]. Another recent proposal concerns layered ferro-
magnetic rare-earth-metal monohalides LnX (Ln = La, Gd;
X = Cl, Br) and a pair of mirror-symmetry protected nodal
lines in LaX and GdX [44]. Also, splitting of Dirac rings
into pairs of Weyl rings by spin-orbit interaction in InNbS2

has been proposed [45]. Two groups of Dirac nodal rings
have been experimentally detected [46] in ZrB2. However, the
detection of pairs of NLs at the Fermi level is presently still
lacking.

We have not addressed the competition between differ-
ent orderings or interactions, but such an extension of our
work might be relevant to real materials. We have also ne-
glected the effect of the long-ranged tail of the Coulomb
interaction which could be present if the starting system is
a NL semimetal with the screening radius diverging near
the Fermi level. In this respect, the study in Ref. [27] for a
single NL suggests that the critical interaction strength for
orderings where a fully gapped spectrum arises could be
lowered.

Ordered phases [32], such as orbital and/or spin den-
sity waves, can be detected through neutron scattering,
or resonant soft x-ray scattering [47]. The band structure
itself may be studied with angle-resolved photoemission
spectroscopy.
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APPENDIX A: ENERGY SPECTRUM
FOR HAMILTONIAN (12)

Taking α = 0 (CDW case), for instance, and (a, b) =
(1, 2), the rotated effective Hamiltonian in Eq. (12) then reads

AHeff (k)A† = (p‖ − po)t0τ1 + p⊥t0τ2 + Um̄ t1τβ − δ t3τ0.

(A1)

We perform a suitable rotation on the Hamiltonian AHeffA
† in

Eq. (A1) so that its energy spectrum can be written down by
inspecting the (anti)commutation relations among its terms. If
β = 1 or 2, we introduce a SU(2) rotation in tμ space so that
in the end, only the matrix t3 appears. The required rotation is

W = cos
θ

2
− it2τβ sin

θ

2
, (A2)

with the rotation angle θ given by

sin θ = Um̄√
U 2m̄2 + δ2

, (A3a)

cos θ = δ√
U 2m̄2 + δ2

, (A3b)

so that the rotated Hamiltonian for β = 1 reads

WAHeffA
†W † = (p‖ − po)τ1 + p⊥ cos θ τ2

+p⊥ sin θ t2τ3

−
√

U 2m̄2 + δ2 t3, (A4)

and the energy spectrum obeys

E2 = [
√

(p‖ − po)2 + p2
⊥ cos2 θ ±

√
U 2m̄2 + δ2]2

+p2
⊥ sin2 θ, (A5)

which is equivalent to Eq. (15).
For β = 2 we have

WAHeffA
†W † = (p‖ − po) cos θ τ1 + p⊥τ2

− (p‖ − po) sin θ t2τ3

−
√

U 2m̄2 + δ2 t3, (A6)

and the energy spectrum obeys

E2 = [
√

(p‖ − po)2 cos2 θ + p2
⊥ ±

√
U 2m̄2 + δ2]2

+ (p‖ − po)2 sin2 θ, (A7)

which is equivalent to Eq. (16).
In the case β = 3, it is preferable to perform a SU(2)

rotation in τ space in order to eliminate one of the Pauli

matrices τ . To this aim, we introduce

Rc = cos
θ

2
− iτ3 sin

θ

2
, (A8)

with

sin θ = p‖ − po√
(p‖ − po)2 + δ2

, (A9a)

cos θ = p⊥√
(p‖ − po)2 + δ2

, (A9b)

so that the rotation of the Hamiltonian now works out as

RcAHeffA
†R†

c =
√

(p‖ − po)2 + δ2 τ2 + Um̄ t1τ3 − δ t3.

(A10)

More generally, if the product τατβ = iεαβj τj , then the
above results for the energy still hold, because the appearance
of the factor i in the Um̄ term would lead to the replacement
t1 → t2 in (A1), which does not change the (anti)commutation
relations among the Hamiltonian terms.

APPENDIX B: MEAN-FIELD TREATMENT OF PSDW/CDW

Given the order parameter for a PSDW, 〈ns (r)〉 = 1
2n +

m̄(−1)s cos(Q · r), one may transform to Fourier space as

〈ns (r)〉 = 1

N

∑
q

〈c†qscqs〉 + eiQ·r〈c†qscq+Qs〉

+ e−iQ·r〈c†q+Qscqs〉. (B1)

Using ψ̂s (r) = ∑
q eiq·rcqs/

√
N , where N is the number of

momentum values in the summation, we see that the above
〈ns (r)〉 is obtained if

1

N

∑
q

〈c†qscqs〉 = 1

2
n, (B2)

1

N

∑
q

〈c†q+Qscqs〉 = 1

N

∑
q

〈c†qscq+Qs〉 = 1

2
m̄(−1)s , (B3)

for α = 3 (PSDW). If α = 0 (CDW) then the factor (−1)s

should be omitted. The Hamiltonian is given by

Ĥeff = 1

2

∑
k

(ĉ†k ĉ†k+Q)Heff (k)

(
ĉk

ĉk+Q

)
, (B4)

where ĉk = (ĉk,1ĉk,2). We assume that Heff (k) is diagonalized
by a unitary matrix, S, so that SHeff (k)S† is the diagonal
matrix composed of the eigenenergies. Then, the operators γ̂

which destroy the elementary excitations are given by

γ̂ = S

(
ĉk

ĉk+Q

)
. (B5)

Following Eq. (B3) we can see that

1

N

∑
k

〈
(ĉ†k ĉ†k+Q)

(
0 τα

τα 0

)(
ĉk

ĉk+Q

)〉
= ∓2m̄

{
α = 3,

α = 0,
(B6)

or, in the eigenbasis using (B5),

1

N

∑
k

〈γ̂ †S

(
0 τα

τα 0

)
S†γ̂ 〉 = ∓2m̄

{
α = 3,

α = 0,

155114-12



BROKEN-SYMMETRY PHASES OF INTERACTING NESTED … PHYSICAL REVIEW B 98, 155114 (2018)

= 1

N

∑
k

∑
j

[
S

(
0 τα

τα 0

)
S†

]
jj

f (Ej (k)), (B7)

where f (x) = 1/(1 + ex/T ) denotes the Fermi-Dirac distri-
bution function, and j = 1, . . . , 4 denotes a band index. The
energy dispersions, Ej (k), are given in the main text. How-
ever, it is more convenient to work with the transformed
Hamiltonian AHeffA

† as in the main text, which implies that
all operators are similarly rotated and S → SA† above. Then,
Eq. (B7) can be written in the form

1

N

∑
k

∑
j

[
SA†

(
0 τατβ

τβτα 0

)
AS†

]
jj

f (Ej (k))

= ∓2m̄

{
α = 3,

α = 0.
(B8)

APPENDIX C: CRITICAL INTERACTION Ucr

FOR DEGENERATE NLs

We consider a circular nodal line and use the momentum
parametrization in Eq. (92).

We linearize the theory in a toroidal region surrounding the
NL up to a momentum cutoff: 0 < p̃ < p̃c, 0 < θ, φ < 2π .
The volume element is d3p = (p0 + p̃ cos φ)p̃ · dp̃dθdφ.
The number of k terms in the toroidal region around the NL is
then given by

N = 1

(2πh̄)3

∫
d3p = p0p̃

2
c

4πh̄3 . (C1)

In order to simplify the calculations, it is assumed that the
dispersion relation has the same velocity, v, in the NL plane
and perpendicular to it. Then, using p‖ − p0 = p̃ cos φ, the

model-1 NL Eq. 1(a) reads

H0(k) = vp̃(cos φτ1 + sin φτ2), (C2)

where v = v1 = v2 and we shall take δ = 0. As before, we
proceed considering the velocity v = 1 and but shall restore
it in the final result for Ucr . In the cases where τατβ ∝ τ1

and τατβ ∝ τ2 the ordered phases are semimetallic and yield
similar mean-field equations. In the case where τατβ ∝ τ2, for
instance, the negative energy bands are

E1(2) = −
√

p̃2 ± 2p̃Um̄ sin φ + U 2m̄2 (C3)

and the left-hand side of Eq. (B8) takes the form

1

N

∑
k

∑
j

[
SA†

(
0 τατβ

τβτα 0

)
AS†

]
jj

f (Ej (k))

= 1

N

∫
2(p̃ sin φ − Um̄)(p0 + p̃ cos φ)d3p

(2πh̄)3
√

p̃2 − 2p̃Um̄ sin φ + U 2m̄2
. (C4)

In the limit Um̄ → 0 one can Taylor-expand the integrand to
first order. The mean-field equations (B8) yield

p0p̃c

4πNh̄3 = ± 1

Ucr

=⇒ Ucr = ±vp̃c

{
α = 3,

α = 0,
(C5)

where we used (C1) and the velocity v has been restored. The
finiteness of Ucr stems from the linear form of the density
of states near the Fermi level. The case where τατβ ∝ τc �=a,b,
where the PSDW phase is insulating, yields a similar result
modified by a prefactor of 1/2: Ucr = ±vp̃c/2. This is valid
also for the case τατβ = 1, where the density wave phase
is metallic. We see then that the CDW phase requires an
attractive interaction.
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