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Failure of Kohn’s theorem and the apparent failure of the f -sum rule in intrinsic Dirac-Weyl
materials in the presence of a filled Fermi sea
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Kohn’s theorem and the f -sum rule are powerful theorems, the first applying to translationally invariant single-
band electronic systems with parabolic electronic dispersion relations and the second applying to materials in
general, that impose restrictions on the effects of electron-electron interactions on electrical conductivity and on
dielectric response, respectively. We show rigorously that Kohn’s theorem does not hold for intrinsic Dirac-Weyl
materials with filled Fermi seas where the chemical potential is pinned at the band touching points. We also
demonstrate that the low-energy effective “relativistic” theories used in many-body studies of these materials
violate the f -sum rule due to the neglect of the full band structure of the materials in the effective low-energy
relativistic approximations.
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I. INTRODUCTION

Kohn’s theorem [1] and the f -sum rule [2] are very
powerful theorems regarding the effects of electron-electron
interactions in electron systems. Kohn’s theorem states that in-
teractions do not change the cyclotron resonance frequencies
in single-band metals with parabolic band dispersion relations
strictly obeying translational invariance or, if applied in the
absence of a magnetic field, that electron-electron interactions
cannot degrade the current in the system and therefore cannot
affect the dc long-wavelength electrical conductivity. As a
result, in a clean material with a parabolic dispersion relation,
the conductivity cannot be changed except by umklapp scat-
tering (which, arising from an underlying lattice, explicitly
breaks translational invariance and momentum conservation)
or Baber scattering (which involves multiband systems also
manifesting a breaking of translational invariance). The f -
sum rule is a restriction on the dielectric response of materials
in general and is as follows. If we let ε(�q, ω) be the dielectric
function, then it must satisfy the identity∫ ∞

0
dω ω Im

[
1

ε(�q, ω)

]
= −2π2e2n

m
, (1)

where e is (the absolute value of) the electron charge, m

is the noninteracting mass of the charge carriers, and n is
their number density. This exact formula applies specifically
to three-dimensional materials, but the invariance of this f

sum when interactions are introduced will extend to other
dimensions as well. The right-hand side is also equal to
−π

2 ω2
p, where ωp is the plasma frequency (which depends on

the wave number in two- and one-dimensional systems). We
note that the right-hand side of Eq. (1) depends only on the
density of carriers and the band mass and thus must remain
constant, even in the presence of interactions. Thus, Kohn’s
theorem is a statement of the inability of electron-electron
interactions to affect the long-wavelength dc conductivity of
a parabolically dispersing electron system, while the f -sum

rule is a similar statement that such interactions cannot change
the long-wavelength plasma frequency in any material. We
note that the effective metal in the case of Kohn’s theorem has
a single band with a partially filled Fermi surface containing
n carriers (electrons or holes) per unit volume. The current
work, by contrast, focuses on systems with a filled Fermi
sea and an empty Fermi sea with the chemical potential
pinned at the band touching point in between, as, for example,
in Dirac-Weyl materials. In addition (and this is a crucial
pint in our theory), the noninteracting band dispersion in
the system is approximated by the linear chiral relativistic
massless description appropriate at low energies. Such a rel-
ativistic Dirac description for graphene is widespread in the
literature.

We note two facts that allow us to see where these theorems
originate. In the case of Kohn’s theorem, it is related to the
fact that, for particles with a parabolic dispersion relation in
translationally invariant systems, momentum and velocity are
proportional to each other, so that the total current, which is
proportional to the sum of the velocities of the electrons, is
necessarily proportional to the total momentum. As a result,
we would expect that electron-electron interactions, by virtue
of momentum conservation, must not alter the current; that
is, momentum conservation automatically implies velocity or
current conservation. Similar classical arguments about the
inequivalence of momentum and velocity conservation have
been presented previously in the literature for graphene [3,4].
The same intuition, however, does not apply to Dirac electrons
with linear dispersion. For one, there is no direct proportion-
ality between momentum and velocity—all electrons travel
at the same speed, regardless of momentum. This opens up
the possibility that electron-electron interactions can, in fact,
degrade the current in such a system since momentum con-
servation does not automatically imply velocity conservation.
This line of argument, of course, is purely classical in nature;
we will put it on a more rigorous and quantum-mechanical
footing in this work.
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As for the f -sum rule, it emerges from evaluating the dou-
ble commutator [[H, ρ(�q )], ρ(−�q )], where H is the Hamil-
tonian of the system, now that of any material, and ρ(�q )
is the density operator in momentum space. The integral on
the left-hand side of the f -sum rule is proportional to the
expectation value of this double commutator. It turns out that
it is proportional only to q2 and to the total electron number
operator. This means that the expectation value, and thus the
f sum, is invariant under the introduction of anything that
changes only the energy distribution of the electrons, such
as finite temperature or interactions. We will, however, find
that the double commutator that yields the f -sum rule, when
evaluated for the low-energy effective theories describing
intrinsic Dirac-Weyl materials, cannot be expressed in terms
of the total electron number operator; we instead obtain an
operator whose expectation value depends on the details of
the electrons’ energy distribution and thus can be affected by
interactions. This is, of course, a direct consequence of the
widely used effective Dirac-Weyl relativistic approximation
for the system.

We mention that the fact that in Dirac systems electron-
electron interactions could affect the electrical conductivity
was previously discussed in the literature in the context of
quantum criticality associated with the Dirac point [5], and
as such, the violation of Kohn’s theorem in the Dirac system
is implicitly known in the literature. Our work, however,
puts the violation of Kohn’s theorem on firm formal footing
by considering the Dirac system. Our formal proof follows
Kohn’s derivation and shows that the theorem is violated in
Dirac systems without any reference to quantum criticality.
Also, it is well known that in the presence of the breaking
of translational invariance by some mechanism, electron-
electron interactions can, in fact, affect the electrical con-
ductivity even in a system with parabolic energy dispersion
(but the interaction effect must disappear as the translational
invariance is restored). Some well-known examples of such
translational-invariance-breaking mechanisms leading to the
violation of Kohn’s theorem in its pristine form even for
nominally parabolic band systems are umklapp scattering
in lattice systems, Baber scattering in transition metals (or
generally in two-band systems) [6], electron-hole scattering in
semiconductors (or generally in any multicomponent system
with more than one carrier species differing in charge or
mass), electronic screening of impurity disorder [7], hydro-
dynamic effects associated with strong interaction [8], and
Altshuler-Aronov-type interaction corrections in the presence
of diffusive carriers [9]. The interesting physics in Dirac ma-
terials is that interaction affects the conductivity intrinsically
by virtue of the fundamental breaking of Kohn’s theorem
as we show in this paper—no explicit mechanism breaking
translational invariance (such as umklapp or Baber scattering
or disorder, etc.) is necessary. Of course, one could argue
that in a solid-state system a linear band dispersion cannot
arise unless the translational invariance is somehow broken
(i.e., a lattice must somehow be present), but the standard
continuum theory we use in the current work does not make
any explicit reference to an explicit momentum-conservation-
breaking mechanism from outside.

The same applies to the apparent breakdown of the f -
sum rule which in ordinary materials arises from number

conservation and thus appears to be sacrosanct. However, in
low-energy effective theories of Dirac materials, the gapless
nature of the electron and hole bands touching at the Dirac
point leads to an apparent breakdown of number conservation
since the infinitely filled valence band provides a mechanism
for zero-energy excitations violating the f -sum rule in its
pristine form, as we show in our work. We should reiterate
here that our statements about violations of the f -sum rule
apply to only the low-energy effective theories of materials
with Dirac points, not to putative exact models of such mate-
rials, which must obey the f -sum rule and, as a matter of fact,
do not possess an infinite negative-energy sea of electronic
modes as the low-energy theory does. Thus, the f -sum rule
must be restored by virtue of the number conservation in
a full band description of the system, but it is violated
in the low-energy Dirac description, as we show explicitly
in the current paper. We mention here that the fact that the
naïve f -sum rule is violated in various low-energy effective
model Hamiltonians has been demonstrated in the literature
in various contexts [10–12], and our current work focuses
explicitly on the low-energy models of graphenelike systems
of great current interest, showing explicitly that the low-
energy effective Hamiltonians here indeed violate the naïve
f -sum rule defined by Eq. (1).

While all of our discussion so far has been about Dirac
materials with linear dispersion, we should emphasize that the
basic physics described above is by no means limited to just
Dirac materials with linear dispersion—any material featuring
two touching bands will display these effects as well, as long
as the chemical potential is pinned at the band touching point
(i.e., the system is undoped). In particular, the breakdown of
Kohn’s theorem and the apparent breakdown of the f -sum
rule also occur in materials with quadratic band touching
points (e.g., bilayer graphene), which we also explicitly and
formally show in this work. The key for the breakdown is
not the dispersion linearity, but the simultaneous presence of a
filled Fermi sea and an empty Fermi sea in the system with the
chemical potential being precisely at the band touching point.
Thus, all intrinsic Dirac-Weyl-type materials in all dimensions
violate Kohn’s theorem and appear to violate the f -sum rule
if a low-energy effective theory is employed if the chemical
potential is at the Dirac point. Again, the f -sum rule will
be restored in a full band description of these systems, but
not in the effective low-energy models used extensively in the
literature.

We also emphasize that an exact theory starting from the
lattice model of Dirac materials and including all bands and
valleys will, by definition, obey the f -sum rule since the
f -sum rule is simply a restatement of the particle conservation
law. But such a theory will have to be completely numerical
from the beginning. What we consider in the current work is
the effective low-energy two-band continuum Dirac descrip-
tion in which the system is a semimetal described by only
linear or quadratic and chiral particle-hole bands. We show
that such a low-energy continuum theory violates the f -sum
rule explicitly, and therefore, analytical theories using the
low-energy continuum description should take into account
this apparent violation of the f -sum rule in the dielectric
response. In a purely numerical exact theory, such a failure
plays no role at all.
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The rest of this work is organized as follows. We dedicate
Secs. II and III to reviewing the proofs of Kohn’s theorem for
partially filled single-band systems with parabolic dispersions
and of the f -sum rule for general materials, respectively, and
then showing that Kohn’s theorem breaks down for systems
with massless Dirac dispersions or quadratic band touching
points and that the commonly used low-energy effective the-
ories for these materials violate the f -sum rule. We then
provide conclusions in Sec. IV.

II. KOHN’S Theorem

A. Dirac electrons

We begin by addressing whether or not a theorem similar to
Kohn’s theorem holds for Dirac electrons. We will show that,
in fact, this theorem is dependent on the parabolic dispersion
and a finite Fermi surface by showing that it fails for massless
Dirac electrons. The essential difference is as follows. For
electrons with a parabolic dispersion, the total momentum,
the sum of the velocities of the electrons, and the current
are all proportional to each other, and thus, conservation of
momentum implies conservation of the other two quantities.
This is not true for massless Dirac electrons, however—the
speed of the electrons is always the same, no matter what their
momenta may be. Thus, velocity conservation fails explicitly
even when momentum is conserved in the continuum model.

It might be helpful to first review Kohn’s original proof,
as we will model our calculation on it. We start with the
Hamiltonian,

H =
N∑

j=1

P 2
j

2m
+

∑
1�j<k�N

u(�rj − �rk ), (2)

where u(�rj − �rk ) is a two-body interaction between electrons
j and k and �Pj = �pj + e

c
�A(�rj ) is the kinetic momentum of

electron j . We assume that u(−�r ) = u(�r ) and work in the
Landau gauge, so that �Pj = �pj + eB

c
xj �̂y.

Working in the Heisenberg picture, the equation of motion
for the total (kinetic) momentum of the system, �P = ∑

j Pj ,
is

d �P
dt

= i

h̄
[H, �P ] = − e

mc
�P × �B. (3)

At this point, we can simply set �B = 0 to obtain the familiar
statement of conservation of total momentum and thus, as
stated earlier, current. If, however, we retain the magnetic
field, then we find that

[H,P±] = ±h̄ωcP±, (4)

where P± = Px ± iPy and ωc = eB
mc

is the cyclotron fre-
quency. This means that the P± operators act like the raising
and lowering operators for the harmonic oscillator—applied
to an eigenstate of H with energy E, they produce another
eigenstate with an energy E ± h̄ωc. Therefore, the cyclotron
resonance frequencies are unchanged.

Although Kohn’s original proof is only for explicitly trans-
lationally invariant systems as in Eq. (2), where there is no
external one-particle potential destroying translational invari-
ance (in fact, the theorem fails generically in the presence
of such a one-electron spatially varying potential since the

center-of-mass and relative coordinates are no longer separa-
ble, and hence, interaction effects can then modify the center-
of-mass motion), it is possible to generalize Kohn’s theorem
to a situation where an explicit parabolic external potential
is applied to the system [13,14]. This is simply because the
parabolic potential allows the separation of the center-of-mass
and relative coordinates, thus preserving Kohn’s theorem in
spite of an apparent breaking of the translational invariance.

Now we turn our attention to the case of a massless Dirac
fermion and attempt to replicate the above proof for this case.
The Hamiltonian is

H = vF

N∑
j=1

�σj · �Pj +
∑

1�j<k�N

u(�rj − �rk ), (5)

where �σj is the vector of Pauli matrices acting on electron j .
The physical meaning of the Pauli matrices will depend on
the material under consideration; as an example, in graphene,
this represents the sublattice that the electron is on. Here, we
consider a system with just one flavor of Dirac fermion for
simplicity; additional flavors will not affect our conclusions.
The velocity operator is given by

�vj = i

h̄
[H, �rj ] = vF �σj . (6)

Note that this is not proportional to the momentum operator;
as implied earlier, this is the key fact that will lead to the
failure of Kohn’s theorem for this case.

We begin by determining the equation of motion for the
kinetic momentum. The commutator of a component of the
kinetic momentum Pk,α of electron k is

[H,Pk,α] = −i
h̄eB

c
vk,xδα,y + i

h̄eB

c
vk,yδα,x

− ih̄

N∑
j=k+1

∂u(�rk − �rj )

∂xk,α

+ ih̄

k−1∑
j=1

∂u(�rj − �rk )

∂xk,α

.

(7)

The commutator with the total momentum Pα = ∑N
j=1 Pj,α is

then

[H,Pα] = −i
h̄eB

c
(vxδα,y − vyδα,x ). (8)

We may write this equation for the x and y components in a
different way; defining P± = Px ± iPy as before, we find that

[H,P±] = ± h̄eB

c
v±, (9)

where vα = ∑N
j=1 vj,α is the sum of the electrons’ velocities,

which is proportional to the total current, and v± = vx ± ivy .
Therefore,

dP±
dt

= ±i
eB

c
v±. (10)

Because the velocity operator is not proportional to the
momentum operator, we cannot necessarily conclude from
this result that, in the absence of a magnetic field, the sum
of the electrons’ velocities, and thus the total current, will
be conserved. In fact, the above result also demonstrates
explicitly that the cyclotron resonance frequency in a Dirac
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material will, indeed, be renormalized by electron-electron
interaction in direct violation of Kohn’s theorem. Indeed, the
dependence of the cyclotron resonance on interaction effects
has been experimentally observed in graphene, which is the
prototypical Dirac material [15].

Next, we determine the equation of motion for the sum of
the electron velocity operators. The commutator of v± with
the Hamiltonian is

[H, v±] = ±vF

N∑
k=1

(vk,±Pk,z − vk,zPk,±), (11)

so that the corresponding equation of motion is

dv±
dt

= ± ivF

h̄

N∑
k=1

(vk,±Pk,z − vk,zPk,±). (12)

We thus have obtained an expression that cannot be written
entirely in terms of sums of the electrons’ momenta and

velocities, although at this stage we cannot explicitly see any
dependence of the equations of motion for the sum of the
velocities on the electron-electron interaction. We now con-
sider the equation of motion for

∑N
k=1(vk,±Pk,z − vk,zPk,±).

To this end, we will need the identity, [A,BC] = [A,B]C +
B[A,C], along with the following commutators:

[H,Pk,z] = −ih̄

N∑
j=k+1

∂u(�rk − �rj )

∂zk

+ ih̄

k−1∑
j=1

∂u(�rj − �rk )

∂zk

, (13)

[H, vk,z] = 1
2vF (vk,−Pk,+ − vk,+Pk,−). (14)

Combining these results, we obtain the equation of motion,

d

dt

N∑
j=1

(vk,±Pk,z − vk,zPk,±) =
N∑

j=1

{
ivF

h̄
(vj,±Pj,z − vj,zPj,±)Pj,z − ivF

2h̄
(Pj,+vj,− − Pj,−vk,+)Pj,±

−vj,±

⎛
⎝j−1∑

k=1

∂u(�rk − �rj )

∂zj

−
N∑

k=j+1

∂u(�rj − �rk )

∂zj

⎞
⎠

−vj,z

[
± ieB

c
vj,± −

j−1∑
k=1

(
∂u(�rk − �rj )

∂xj

± i
∂u(�rk − �rj )

∂yj

)

+
N∑

k=j+1

(
∂u(�rj − �rk )

∂xj

± i
∂u(�rj − �rk )

∂yj

)⎤
⎦

⎫⎬
⎭. (15)

Similarly, we find that the equation of motion for vz is

dvz

dt
= ivF

2h̄

N∑
k=1

(vk,−Pk,+ − vk,+Pk,−), (16)

and the equation of motion of the operator on the right-hand side of it is

d

dt

N∑
j=1

(vj,−Pj,+ − vj,+Pj,−)

=
N∑

j=1

{
− ivF

h̄
(vj,+Pj,z − vj,zPj,+)Pj,− − ivF

h̄
(vj,−Pj,z − vj,zPj,−)Pj,+

+ vj,−

⎡
⎣ ieB

c
vj,+ −

j−1∑
k=1

(
∂u(�rj − �rk )

∂xk

+ i
∂u(�rj − �rk )

∂yk

)
+

N∑
k=j+1

(
∂u(�rk − �rj )

∂xk

+ i
∂u(�rk − �rj )

∂yk

)⎤
⎦

− vj,+

⎡
⎣− ieB

c
vj,− −

j−1∑
k=1

(
∂u(�rj − �rk )

∂xk

− i
∂u(�rj − �rk )

∂yk

)
+

N∑
k=j+1

(
∂u(�rk − �rj )

∂xk

− i
∂u(�rk − �rj )

∂yk

)⎤
⎦

⎫⎬
⎭. (17)

The terms that depend on the electron-electron interaction do
not cancel out of these expressions due to the prefactors of
vj,± and vj,z, and thus, we conclude that the time evolution of

the sum of the electrons’ velocities, and thus the total current
in the system, depends on the interaction, in contrast to the
case with a parabolic dispersion.
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We emphasize that our formal results arise from the fact
that the relative and center-of-mass coordinates are hope-
lessly intermixed in the dynamics of Dirac systems, and thus,
electron-electron interaction, in spite of being dependent on
only relative coordinates, affects the total momentum and
hence the conductivity. The fact that the correct calculation
of the dielectric function for the Dirac problem must account
for the intraband and interband processes on an equal footing
was already pointed out in Ref. [16].

To help explicitly illustrate the basic physics behind Kohn’s
theorem for electrons with parabolic dispersions and its failure
for Dirac electrons, it might be helpful to consider colli-
sions between two electrons in single-particle noninteracting
eigenstates in each case. We may equivalently consider what
follows to be a (semi)classical argument. This will also help
us to quantify how severe the effects of this breakdown will
be for Dirac electrons. In both cases, the conservation of
momentum is very well known:

�p1,i + �p2,i = �p1,f + �p2,f . (18)

In the case of a parabolic dispersion, the momentum is just
�p = m�v, so that, dividing by m,

�v1,i + �v2,i = �v1,f + �v2,f . (19)

Therefore, the sum of the velocities of the two electrons is also
conserved, and thus, this collision will not degrade the total
current carried by them. On the other hand, if the electrons
have a Dirac dispersion, then the velocity of an electron

vj = ∂E

∂pj

= vF

| �p|pj . (20)

In this case, the conservation of momentum becomes

�v1,i | �p1,i | + �v2,i | �p2,i | = �v1,f | �p1,f | + �v2,f | �p2,f |. (21)

In contrast to the parabolic case, this equation does not
necessarily imply conservation of the total velocity. Thus,
electron-electron interaction, in spite of being momentum
conserving, can indeed relax the charge current flow and
hence lead to a finite electrical conductivity. However, total
velocity conservation is approximately true in the case of
low-energy excitations if there is a finite chemical potential,
i.e., all electronic wave vectors are near the Fermi surface. In
this case, pn,i/f ≈ h̄kF . This approximation should hold very
well in cases where the temperature is far below the chemical
potential, i.e., kBT � μ, since the Pauli exclusion principle
will help to “freeze out” scattering into or from states with mo-
menta other than h̄kF . Note, however, that at the Dirac point,
where μ = 0 in our notation, the system is always susceptible
to interaction effects and is thus a non-Fermi liquid, which
has led people to dub the Dirac point a quantum critical point
lying between an electron metal and a hole metal. Thus, for
an undoped intrinsic system with the chemical potential at the
Dirac point, the system always violates current conservation
in the presence of electron-electron scattering.

B. Quadratic band touching

We now turn our attention to the case of a quadratic band
touching point, e.g., in bilayer graphene. We will find that
similar effects occur here as well provided that the Fermi

level is pinned at the band touching point (i.e., no partial band
filling). The Hamiltonian for this case is

H = 1

2m

N∑
j=1

[(
P 2

j,x − P 2
j,y

)
σj,x + 2Pj,xPj,yσj,y

]

+
∑

1�j<k�N

u(�rj − �rk ), (22)

where all symbols have the same basic meaning as before. If
we determine the velocity operators for this system, we get

vj,x = Pj,x

m
σj,x + Pj,y

m
σj,y, (23)

vj,y = Pj,x

m
σj,y − Pj,y

m
σj,x . (24)

We note that the direct proportionality between momentum
and velocity is broken in a different way here—the veloc-
ity component operators depend on both components of the
(kinetic) momentum operator. We should emphasize here,
however, that this lack of direct proportionality between the
velocity and momentum operators is just a symptom of the
underlying physics at work here, namely, the presence of a
filled negative-energy Fermi sea.

If we now determine the equations of motion for the kinetic
momentum, we obtain similar results as before. Letting Pα =∑

j Pj,α be the total momentum, we find that

dPx

dt
= −eB

c
vy, (25)

dPy

dt
= eB

c
vx. (26)

We now want to determine the equations of motion for the
velocity. Following a procedure similar to that for the Dirac
case, we find that

dvk,x

dt
= − eB

mc
vk,yσk,x + eB

mc
vk,xσk,y

− 1

m

⎡
⎣k−1∑

j=1

∂u(�rj − �rk )

∂xk

−
N∑

j=k+1

∂u(�rk − �rj )

∂xk

⎤
⎦σk,x

− 1

m

⎡
⎣k−1∑

j=1

∂u(�rj − �rk )

∂yk

−
N∑

j=k+1

∂u(�rk − �rj )

∂yk

⎤
⎦σk,y

+ 1

h̄

Pk,x

m

Pk,xPk,y

m
σk,z − 1

h̄

Pk,y

m

P 2
k,x − P 2

k,y

2m
σk,z

(27)

and
dvk,y

dt
= − eB

mc
vk,xσk,x − eB

mc
vk,yσk,y

− 1

m

⎡
⎣k−1∑

j=1

∂u(�rj − �rk )

∂xk

−
N∑

j=k+1

∂u(�rk − �rj )

∂xk

⎤
⎦σk,y

+ 1

m

⎡
⎣k−1∑

j=1

∂u(�rj − �rk )

∂yk

−
N∑

j=k+1

∂u(�rk − �rj )

∂yk

⎤
⎦σk,x
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− 1

h̄

Pk,x

m

P 2
k,x − P 2

k,y

2m
σk,z − 1

h̄

Pk,y

m

Pk,xPk,y

m
σk,z.

(28)

We see that, if we were to sum the velocities of all of the
particles, then the terms involving the interaction would not
cancel out due to the σk,α factors. As a result, we find that
Kohn’s theorem is also broken for a system with quadratic
band touching points. As noted before, the fact that the
exact nature of the dispersion does not matter points to the
underlying reason for this failure of Kohn’s theorem being
the presence of an empty electron band and a filled hole band
with the Fermi level exactly at the band touching point, rather
than just a partially filled electron band as in ordinary metals.
Again, Kohn’s theorem will apply when the Fermi energy (in
a doped system) is high compared with temperature so that
interband transitions are no longer important.

III. f -SUM RULE

We now turn our attention to the f -sum rule, also referred
to as the Thomas-Reiche-Kuhn sum rule for metals. In exact
models of general material systems, it has been shown that
what is known as the f -sum rule, Eq. (1), holds with the
frequency or energy integral in Eq. (1) going over all energies
and hence all bands. None of the quantities on the right-
hand side of this relation are dependent on such things as
temperature or the presence of interactions. Therefore, this
relation provides a powerful constraint on models of the
dielectric function for materials, as it can be calculated for
noninteracting electrons, but must be followed even in the
presence of interactions. In fact, this sum rule necessarily re-
stricts the high-frequency long-wavelength dielectric function
of a simple metal to the form

ε(�q, ω) = 1 − ω2
p

ω2
, (29)

where ωp is the standard electronic plasma frequency.
We will now illustrate that the f -sum rule is violated by the

low-energy effective theories of materials with massless Dirac
points often used in many-body calculations—the right-hand
side of the analogous relation will actually depend on the
details of the energy distribution of the electrons, and thus,
interactions or even temperature can change it. This failure
of the simple f -sum rule arises from the presence of an
infinite filled negative-energy hole Fermi sea in these effective
models. In a complete model of the system with all bands, the
f -sum rule is an identity which must always be obeyed.

We will begin by stating the most general form of the f -
sum relation. The right-hand side is proportional to the expec-
tation value of the double commutator, [[H, ρ(�q )], ρ(−�q )],
where H is the Hamiltonian and ρ(�q ) is the density operator
in momentum space. Following a derivation similar to that of

Ref. [17], we find that∫ ∞

0
dω ω Im

[
1

ε(�q, ω)

]

= πe2VC (�q )

2h̄2V
〈[[H, ρ(�q )], ρ(−�q )]〉 , (30)

where V is the volume of the system and VC (�q ) is the
Coulomb interaction in momentum space. In the case of an
exact Hamiltonian describing a material,

H =
N∑

j=1

[
p2

j

2m
+ U (�rj )

]
, (31)

where U (�r ) is the potential that the electrons are subject to,
including the periodic ionic lattice and disorder, one finds that
the double commutator is

[[H, ρ(�q )], ρ(−�q )] = − h̄2q2

m
N, (32)

where N = ∑
�k n(�k) is the total electron number operator.

If we substitute this into the previous equation and use the
fact that, in three dimensions, VC (�q ) = 4πe2

q2 , we will recover
Eq. (1). The fact that this expression for the double commuta-
tor depends on only the total electron number operator is what
leads to the invariance of the f sum under the introduction
of interactions. We show below that this is no longer true in
the extensively used low-energy effective theories in which
a relativistic band dispersion is used to describe the system
around the chemical potential.

We now calculate the double commutator for Dirac elec-
trons within the usual low-energy effective theory. The density
operators commute with the interaction term, so we just need
to find it for the noninteracting case. The noninteracting part
of the Hamiltonian H0 is, in second-quantized form,

H0 = h̄vF

∑
�k

�†(�k)�σ · �k�(�k), (33)

where �T (�k) = [a(�k), b(�k)] is the vector of annihilation op-
erators for pseudospins a and b (e.g., sublattice), and

ρ(�q ) =
∑

�k
�†(�k)�(�k + �q ). (34)

Applying the usual anticommutation relations for fermionic
operators, we find that

[[H, ρ(�q )], ρ(−�q )]

= h̄vF

∑
�k

[2�†(�k)�σ · �k�(�k) − �†(�k + �q )�σ · �k�(�k + �q )

−�†(�k − �q )�σ · �k�(�k − �q )]. (35)

If we now perform the unitary transformation that diagonal-
izes H0, we may split this expression into two sets of terms,
which we will denote C1 and C2, i.e., [[H, ρ(�q )], ρ(−�q )] =
C1 + C2, where

C1 = h̄vF

∑
�k

[2k�
†
+(�k)�+(�k) − 2k�

†
−(�k)�−(�k)

+ |�k + �q|�†
+(�k + �q )�+(�k + �q )
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− |�k + �q|�†
−(�k + �q )�−(�k + �q )

+ |�k − �q|�†
+(�k − �q )�+(�k − �q )

− |�k − �q|�†
−(�k − �q )�−(�k − �q )] (36)

and

C2 = h̄vF

∑
�k

[�†(�k + �q )�σ · �q�(�k + �q )

−�†(�k − �q )�σ · �q�(�k − �q )]. (37)

In these expressions, �±(�k) is the annihilation operator for
electrons in positive- (+) and negative- (−) energy single-
particle eigenstates. We note that an expression similar to ours
was derived for the case of monolayer graphene in Ref. [18];
there, only the terms corresponding to our C2 are obtained.
It turns out that the C1 terms have a nonzero expectation
value; we believe that this arises from the same phenomenon
mentioned therein (the “anomalous commutator” problem).

We note that, in contrast to the results obtained
from an exact model, the expression that we obtain for
[[H, ρ(�q )], ρ(−�q )] from the low-energy effective theory can-
not be expressed in terms of the total number of particles; the
expectation value of this expression will necessarily depend
on the details of the electron energy distribution. Therefore,
this model for Dirac electrons violates the f -sum rule.

We find similar results for the intrinsic quadratic band
touching case as well. The noninteracting low-energy effec-
tive Hamiltonian, again in second-quantized form, is

H0 = h̄2

2m

∑
�k

�†(�k)[(k2
x − k2

y )σx + 2kxkyσy]�(�k), (38)

where all symbols have meanings similar to those in the Dirac
case. If we now calculate [[H, ρ(�q )], ρ(−�q )], we find that it
is given by D1 + D2, where

D1 = h̄2

2m

∑
�k

[2k2�
†
+(�k)�+(�k) − 2k2�

†
−(�k)�−(�k) − |�k + �q|2�†

+(�k + �q )�+(�k + �q )

+ |�k + �q|2�†
−(�k + �q )�−(�k + �q ) − |�k − �q|2�†

+(�k − �q )�+(�k − �q ) + |�k − �q|2�†
−(�k − �q )�−(�k − �q )], (39)

D2 = h̄2

2m

∑
�k

[�†(�k + �q )M+�(�k + �q ) − �†(�k − �q )M−�(�k − �q )], (40)

and

M± =
[

0 (qx − iqy )[2kx ± qx − i(2ky ± qy )]
(qx + iqy )[2kx ± qx + i(2ky ± qy )] 0

]
. (41)

As in the Dirac case, the expectation value of the double
commutator will depend on the details of the electronic energy
distribution and thus will be changed by the presence of
electron-electron interactions. Thus, the f -sum rule is vio-
lated by low-energy effective field theories of intrinsic un-
doped Dirac-Weyl systems independent of energy dispersion.

As we already stated in the Introduction, this violation
of the f -sum rule arises from the presence of the infinite
filled valence band in the continuum Dirac-Weyl system—one
can, of course, impose a sum rule by imposing a physical
energy or momentum cutoff on the spectrum, but then the
result becomes explicitly dependent on this cutoff. Thus, the
invariable presence of both intraband and interband processes
and, ultimately, the fact that our low-energy theory ignores
such phenomena as deviations from the assumed linear or
quadratic band structure at higher energies and the presence
of lower- or higher-energy bands destroy the simplicity of an
f -sum rule for these models.

IV. CONCLUSION

We have revisited two well-known theorems, Kohn’s the-
orem and the f -sum rule, in the context of massless Dirac
and Weyl materials. These theorems are very powerful—
Kohn’s theorem places restrictions on the ability of electron-
electron interactions to affect cyclotron resonance frequency

and dc conductivity for electrons with parabolic dispersions
[1], while the f -sum rule imposes a restriction on the correct
mathematical models of dielectric response in any material
[2]. While the charge carriers in many semiconductors and
metals possess parabolic dispersions, there are a number
of materials, including two-dimensional graphene and three-
dimensional Dirac and Weyl materials, that have massless
Dirac dispersions instead. We find that Kohn’s theorem breaks
down in such materials and that the low-energy effective
theories often employed in studies of many-body effects in
massless Dirac and Weyl materials violate the f -sum rule.
Our results imply, for one, that electron-electron interactions
can, in fact, change the electrical conductivity of these materi-
als, even in the absence of umklapp scattering or other explicit
momentum-conservation-breaking mechanisms.

We expect that significant interaction and temperature ef-
fects on conductivity will occur at temperatures comparable
to or higher than the chemical potential, i.e., kBT � μ. The
reason for this is that, if the temperature is much lower
than the chemical potential, then scattering processes that can
alter the sum of the velocities of the electrons are frozen
out due to the Pauli exclusion principle (a similar argument
forms the basis for Landau’s Fermi-liquid theory). We note
that, in Dirac systems, therefore, a fundamental difference
exists between μ < kBT and μ > kBT (where μ = 0 is the
Dirac point or the band touching point in our notation), with
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the higher-temperature regime corresponding to an “intrin-
sic” non-Fermi-liquid-type system where interactions mat-
ter nontrivially, while the lower-temperature regime is more
like a standard Fermi-liquid system. It follows that the pure
semimetal with the chemical potential precisely at the Dirac
point is always a non-Fermi liquid and always explicitly
violates Kohn’s theorem.

We should emphasize that the linear Dirac cone nature of
the dispersion is not the ultimate source of this breakdown
of Kohn’s theorem, but rather the presence of a filled Fermi
sea of negative-energy electrons. To help illustrate this, we
also investigated the case of materials with quadratic band
touchings in their spectra, such as bilayer graphene, and
showed that these two theorems break down in them as well.
The common theme with these is the presence of an “infinite”
sea of electrons and the lack of a band gap. If a band gap were
to be opened, then this would freeze out scattering processes
that involve the Fermi sea, thus restoring Kohn’s theorem
as long as the temperature is much less than the band gap.
This other method for rescuing these theorems, of course,
is relevant only when the chemical potential is close to the
band minimum; otherwise, there is no real difference from the
case of a large chemical potential discussed above. We should
also emphasize that our results rely on the fact that the two
bands touch at a point, rather than overlap with each other,
with the chemical potential within the overlap region, as in an
ordinary semimetal. In such a case, we will see no zero-energy
electron-hole excitations of the kind ultimately responsible for
the effects described in this work at zero temperature, and
thus, Kohn’s theorem will apply to ordinary semimetals at low
temperature.

Thus, a gapless semimetal with the chemical potential
pinned at the band touching point with a completely filled
Fermi sea and a completely empty Fermi sea (i.e., an intrinsic
undoped Dirac-Weyl system) is always a non-Fermi liquid
(independent of the energy band dispersion) in the sense
that interactions affect its conductivity even in the absence
of disorder. The result arises simply from the presence of
zero-energy interband excitations which make the system fun-
damentally different from a single-band metal with a partially
filled Fermi sea. If the chemical potential μ is finite (i.e.,

away from the Dirac point), the system still behaves as an
intrinsic material as long as the temperature is high enough:
kBT � μ. It is interesting to note that kBT > μ is, in some
sense, the classical limit of the system, and the classical limit
manifests a strong quantum critical effect of the underlying
Dirac point, whereas the quantum limit, μ � kBT , is benign
and behaves as an ordinary metal. The reason for this ap-
parently puzzling behavior is physically obvious: Only in the
high-temperature limit do the effective low-energy interband
excitations proliferate, leading to the strange quantum critical
behavior involving the violation of Kohn’s theorem discussed
in the current work.

As for the (apparent) failure of the f -sum rule, it can be
traced back in part to the presence of the infinite negative-
energy Dirac sea of electrons obtained only in the low-energy
effective theory. This infinite sea is simply an artifact of the
low-energy approximation—an exact theory of such materials
with all bands included possesses no such infinite sea. Due to
this, there is only a finite amount of “weight” that interactions
can redistribute in the f sum. This is not the case for the
low-energy effective theory; the presence of the infinite Dirac
sea means that there is an infinite amount of weight present.
This is, of course, in addition to the fact that the double
commutator [[H, ρ(�q )], ρ(−�q )] yields an operator with an
expectation value that will depend on the details of the energy
distribution of the electrons. We still expect that, at least at
sufficiently low frequencies (far below the minimum energy
of all occupied single-electron levels), phenomena that appear
to violate the f -sum rule will occur because the low-energy
theories that imply them are still good approximations at such
frequencies but that these are simply due to the redistribution
of weight to frequencies higher than those considered within
a given experiment. We expect that such phenomena should
occur under the same conditions as those due to violations of
Kohn’s theorem, i.e., when the temperature kBT � μ.
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