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Edge magnetization and spin transport in an SU(2)-symmetric Kitaev spin liquid
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We investigate the edge magnetism and the spin transport properties of an SU(2)-symmetric Kitaev spin liquid
(KSL) model put forward by Yao and Lee [Phys. Rev. Lett. 107, 087205 (2011)] on the honeycomb lattice. In
this model, the spin degrees of freedom fractionalize into a Z2 static gauge field and three species of either
gapless (Dirac) or gapped (chiral) Majorana fermionic excitations. We find that, when a magnetic field is applied
on a zigzag edge, the Dirac KSL exhibits a nonlocal magnetization associated with the existence of zero-energy
edge modes. The application of a spin bias V = μ↑ − μ↓ at the interface of the spin system with a normal metal
produces a spin current into the KSL, which depends as a power law on V , in the zero-temperature limit, for
both Dirac and chiral KSLs, but with different exponents. Lastly, we study the longitudinal spin Seebeck effect,
in which a spin current is driven by the combined action of a magnetic field perpendicular to the plane of the
honeycomb lattice and a thermal gradient at the interface of the KSL with a metal. Our results suggest that edge
magnetization and spin transport can be used to probe the existence of charge-neutral edge states in quantum
spin liquids.

DOI: 10.1103/PhysRevB.98.155105

I. INTRODUCTION

Spin fractionalization has become a key concept in the
description of the physical properties of quantum spin liquids
(QSLs) [1]. The latter are highly entangled states of interact-
ing magnetic moments, which break no internal symmetry,
even at zero temperature, and can also support nonlocal any-
onic excitations [2,3]. One example of such systems, known
as the Kitaev spin liquid (KSL), was originally proposed as
the exact ground state of a compass model on the honeycomb
lattice [4]. In general, the KSL describes exchange-frustrated
spin-1/2 systems defined on tricoordinated lattices [5,6],
in which the magnetic moments fractionalize into itinerant
Majorana fermions and a static Z2 gauge field. Depending
on the projective symmetries of the lattice, the Majorana
fermion excitations can mimic the behavior of an electronic
system harboring different nodal structures, namely, Dirac
or Weyl points, nodal lines, and Fermi surfaces. In addition,
they exhibit Majorana surface states associated with the non-
trivial momentum-space topology [5,7]. As demonstrated by
Jackeli and Khaliullin [8], the types of interactions present
in a KSL model can be found naturally in Mott insulators
of the 4d5 and 5d5 electronic configurations. Indeed, since
this original proposal was put forward, several two- (2D)
and three-dimensional (3D) compounds were identified as
potential candidates for realizing the physics of KSLs [9–12].
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To date, most theoretical predictions for KSL materials
have been addressed mainly by spectroscopic probes, includ-
ing inelastic neutron scattering (INS) [13,14], Raman scatter-
ing [15–17], and resonant inelastic x-ray scattering (RIXS)
[18]. Although most of the materials investigated exhibit some
sort of magnetic order below a Néel temperature TN (with the
notable exception of H3LiIr2O6 [19]), the experimental data
reveal the presence of a continuum of fractional excitations at
energy scales well above TN , consistent with the emergence
of Majorana fermion excitations. More recently, the itinerant
character of the excitations in the 2D KSL candidate α-RuCl3

has also been probed by measurements of the thermal conduc-
tivity [20,21] and thermal Hall conductance [22]. Remarkably,
quantum Monte Carlo calculations of the thermal conductivity
for a pure Kitaev model on the honeycomb lattice have found
that some features of the experimental data for that material
can, in fact, be related to the emergence of a KSL state [23].

Another interesting avenue for investigating the properties
of QSLs consists in the measurement of spin currents carried
by the fractionalized excitations. In this respect, Refs. [24,25]
proposed an experimental setup in which a spin current is
driven into a magnetic insulator by a spin bias produced by
the spin Hall effect at the interface with a normal metal.
According to this theory, if the elementary spin excitations
are treated as free quasiparticles (spinons) within a mean-field
approximation, their low-energy dispersion can be inferred
from the relation between the spin current and the spin bias.
As an alternative to the spin Hall effect, spin currents can also
be generated by the longitudinal spin Seebeck (LSS) effect
[26–28], which results from a combination of a magnetic
field and a temperature gradient at the interface of a magnetic
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insulator with a metal. For instance, a recent experiment [29]
has shown that the gapless spinons described by Tomonaga-
Luttinger (TL) liquid theory [30] in the one-dimensional (1D)
QSL material Sr2CuO3 give rise to an anomalous LSS effect,
in which the flow of the spin current with respect to the
magnetic field has an opposite sign when compared to that
of an ordered magnetic insulator. In this system, the breaking
of particle-hole symmetry of the spinon spectrum is crucial to
produce a nonzero LSS response [29].

Strictly speaking, in order for a spin current to propagate
into a system, the Hamiltonian must possess at least a global
U(1) spin rotational symmetry. By contrast, in models with
anisotropic spin interactions like the original Kitaev model
[4], the total spin is not conserved and spin transport becomes
ill-defined. However, over the past few years, several SU(2)-
symmetric spin-1/2 models harboring KSL-like ground states
have been proposed in different 2D lattices [31–34]. They
share the common feature of being described by three de-
generate species of free Majorana fermions hopping in the
background of a Z2 gauge field. One example is the spin-
1/2 Yao-Lee model [32] defined on the honeycomb lattice.
In the presence of time-reversal (T ) symmetry and spatially
isotropic exchange interactions, its low-energy excitations are
spin-1 gapless Majorana fermions with a linear dispersion
around the Dirac point. When the T symmetry is broken by a
next-nearest-neighbor chiral interaction Jχ , the Dirac points
become gapped and the Majorana excitations behave like
the spin-1/2 quasiparticles of a topological superconductor
described by the SU(2)2 Chern-Simons gauge theory. As a
result, the system exhibits the spin quantum Hall effect with
quantized spin Hall conductivity σ s

xy = 1/(2π ).
In this work, we examine the edge magnetism and spin

transport in the Yao-Lee model for both T -invariant (Dirac)
and T -broken (chiral) KSL states. The exact solvability of the
model obviates the need for uncontrolled mean-field approxi-
mations in the description of the fractionalized quasiparticles.
In order to calculate static and dynamic response functions
at the edge of the KSL, we numerically diagonalize the
Yao-Lee Hamiltonian in a slab geometry with zigzag edges.
This geometry is obtained by considering a honeycomb lattice
with periodic boundary conditions along the x̂ direction and
open boundary conditions for the ŷ direction, as schematically
depicted in Fig. 1. First, we address the existence of the
nonlocal effects in the KSL by applying a local magnetic
field at one edge of the system and then calculating the net
magnetization at the opposite edge. We find that only in the
case of the Dirac KSL, which has gapless excitations in the
bulk and zero-energy flat bands as edge states, is the opposite-
edge magnetization finite for a large number of unit cells L‖
separating the two edges.

>Next, we calculate the spin current carried by the Majo-
rana excitations into the KSL when a spin bias V = μ↑ − μ↓
is applied at the KSL-metal interface. We show that the edge
states give the dominant contribution to the net spin current
when |V | is much smaller than the Kitaev exchange interac-
tion JK . In the zero-temperature limit, this current depends as
a power law Ispin[V ] ∝ V α for both the Dirac and chiral KSL
states. However, the exponents are distinct and found here to
be αDirac ≈ 1 and αChiral ≈ 3. The behavior of the spin current

FIG. 1. Schematic representation of the finite honeycomb lattice
containing the degrees of freedom of the Yao-Lee model. Throughout
this work, we consider a slab geometry with zigzag edges, such that
the lattice obeys periodic boundary conditions in the x̂ direction,
and L⊥ and L‖ are defined as the unit-cell dimensions along the x̂
and ŷ axes, respectively. As depicted in the inset, the upper edge
contains only sites of the A sublattice (blue circles, “ ”), whereas
the lower edge has sites of the B sublattice (red circles, “ ”). The
two vectors n1 =

√
3a

2 (1,
√

3), n2 =
√

3a

2 (−1,
√

3) refer to the lattice
vectors. The allowed nearest-neighbor spin-exchange interactions
Jx,y,z are indicated by the letters x, y, and z.

for the chiral KSL is equivalent to that for a 1D spinon Fermi
sea [24] and can be associated with the gapless chiral edge
mode. Therefore the result Ispin[V ] ∝ V 3 for the gapped chiral
KSL is a consequence of its nontrivial topological properties.

Finally, we calculate the spin current driven by the LSS
effect for a small temperature gradient between the metal
and the KSL. Despite the intrinsic particle-hole symmetry of
Majorana fermion excitations, we find a nonzero spin current,
which is again dominated by the contribution from the edge
states. In addition, the spin current changes sign as a function
of the chiral interaction Jχ . In this respect, the KSL system
is entirely distinct from the TL liquid, in which the unusual
spin current due to the LSS effect is explained in terms
of the breaking of the particle-hole symmetry in the spinon
spectrum.

This paper is structured as follows. In Sec. II, we briefly
review the Yao-Lee model and describe its exact solution
using a Majorana representation for both spin and orbital
degrees of freedom. In Sec. III, we show that a nonlocal
edge magnetization occurs in this model in the absence of the
T -breaking interaction, which corresponds to the Dirac KSL
state with zero-energy edge states. Section IV contains the
calculation of the spin current in the KSL driven by a spin bias
at the edge. In Sec. V, we show that the spin current can also
be driven by the LSS effect, in which case it is controlled by
a temperature gradient and an external magnetic field. Finally,
Sec. VI contains our concluding remarks. Details of some
calculations are presented in Appendix.
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II. MODEL

The Yao-Lee model [32] describes a two-dimensional sys-
tem of interacting spin-1/2 moments localized at the vertices
of small triangles which form a decorated honeycomb lattice.
In this model, one projects the isotropic bond-dependent spin
interactions onto the Hilbert subspace spanned by two dou-
blets, 1

2 ⊕ 1
2 ∈ 3

2 ⊕ 1
2 ⊕ 1

2 , for the three spins at the vertices of
each triangle. This projection allows one to rewrite the interac-
tions in the low-energy subspace in terms of two independent
sets of operators σ j and τ j , which obey both the SU(2) and
Clifford algebra for each site j of the simple honeycomb
lattice (see Fig. 1). The operators σ j and τ j can be viewed as
encoding respectively the spin and orbital degrees of freedom
in the model, in analogy with well-known spin-orbital models
for transition metal oxides [35]. In terms of these operators,
the Yao-Lee Hamiltonian reads

H =
∑
〈jk〉α

Jα

(
τα
j τ α

k

)
σ j · σ k

+ Jχ

∑
〈jk〉α

∑
〈kl〉β

εαβγ
(
τα
j τ

γ

k τ
β

l

)
σ j · σ l , (1)

where Jα (α ∈ {x, y, z}) and Jχ are, respectively, the nearest-
neighbor and the chiral next-nearest-neighbor interaction. At
zero magnetic field, the model possesses a global SU(2)
symmetry for the σ j operators, but the interactions depend
on the bond directions via the τα

j operators. Although the
Hamiltonian in Eq. (1) may seem artificial at first, we should
point out that similar models featuring SU(2) symmetry and
bond-directional interactions appear in 4d1 and 5d1 Mott
insulators with strong spin-orbit coupling and jeff = 3/2 local
moments [36–40].

The Hamiltonian in Eq. (1) can be solved exactly by
invoking a Majorana fermion representation for the spin-1/2
and the orbital operators [32–34,41,42]. In order to do that,
we write τα

j and σα
j as

σα
j = − i

2
εαβγ c

β

j c
γ

j , (2)

τα
j = − i

2
εαβγ d

β

j d
γ

j , (3)

where ηα
j ∈ {cα

j , dα
j } are Majorana fermion operators which,

by definition, obey η
α†
j = ηα

j and the anticommutation rela-

tions {ηα
j , η

β

k } = 2δαβδjk . In addition, the above transforma-
tions must be supplemented with the definition of the physical
Hilbert space in terms of the operators ηj . This is achieved
by demanding that the action of the projection operator
D̂j ≡ −icx

j c
y

j c
z
j d

x
j d

y

j dz
j on every physical ket |�〉phys is such

that D̂j |�〉phys = |�〉phys. Restricting to spatially isotropic
nearest-neighbor exchange interactions Jx = Jy = Jz = JK

and inserting the relations in Eqs. (2) and (3) into Eq. (1), we
obtain

H = JK

∑
〈jk〉α

∑
γ=x,y,z

û〈jk〉α ic
γ

j c
γ

k

+ Jχ

∑
〈jk〉α

∑
〈kl〉β

∑
γ=x,y,z

û〈jk〉α û〈kl〉β ic
γ

j c
γ

l , (4)
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FIG. 2. Energy dispersion curves E�(k⊥) (in units of JK ) as a
function of the k⊥ momentum for the KSL on the honeycomb lattice
with zigzag surfaces along the ŷ direction: (a) in the absence of the
chiral interaction (i.e., Jχ = 0) and (b) for a finite chiral interaction
(i.e., Jχ = 0.3JK ). Here, the lattice constant a has been set to
unity.

where û〈jk〉α ≡ −idα
j dα

k are bond operators defined for two
neighboring sites j and k. Since [û〈jk〉α , û〈lm〉β ] = 0 and
[û〈jk〉α ,H] = 0, the operators û〈jk〉α are conserved and can
be substituted by their eigenvalues u〈jk〉α = ±1. Since the
ground state of the present model is in the zero flux sector, the
bond variables are chosen conventionally as u〈jk〉α = 1 (−1)
for a site j = A (B ). As a consequence, the spin system is
described by a tight-binding Hamiltonian where three species
of Majorana fermions cα

j are coupled to a static Z2 gauge
field u〈jk〉α . Due to SU(2) spin symmetry of the Yao-Lee
model, we also notice that the Hamiltonian in Eq. (4) has an
SO(3)⊗Z2 invariance with respect to rotations of the three
species of Majorana fermions and the gauge symmetry of the
bond variables.

In Fig. 2, we show the behavior of the energy dispersion
curves E�(k⊥) of the Yao-Lee Hamiltonian in a slab geometry
with zigzag edges as a function of momentum k⊥ for Jχ = 0
and Jχ = 0.3JK , which correspond, respectively, to the Dirac
and chiral KSL states. In the absence of the chiral interaction,
the system exhibits zero-energy flat bands on the edges. As
Jχ becomes finite, the zero-energy flat bands give rise to a
pair of dispersing edge modes, which are associated with the
nontrivial Chern number νChern = 1 and, thus, constitute a
hallmark of the chiral KSL phase.
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III. NONLOCAL EDGE MAGNETIZATION

We now turn to the question of whether the KSL states
of the Yao-Lee model on the honeycomb lattice exhibit any
nonlocal property. This study is inspired by recent works on
Weyl semimetals [43] reporting the emergence of nonlocal
effects in their dc voltage and transmission of electromagnetic
waves [44,45], and in the Coulomb drag for sheets of graphene
separated by a slab of Weyl semimetal [46]. In these latter sys-
tems, the nonlocal effects are due to either the chiral anomaly
[47,48], which is effective in the bulk, or the topological Fermi
arcs on the surface.

As the Yao-Lee model contains only charge-neutral spinful
excitations, possible nonlocal effects can be effectively probed
by measuring its magnetic response under local magnetic
fields. We consider a magnetic field B = Bz ẑ applied to the
spin-1/2 moments localized on the upper zigzag edge de-
picted in Fig. 1. This boundary magnetic field can be regarded
as being due to the interface of the KSL with a ferromagnet
(FM). Note that only the cx and cy Majorana fermions couple
to the magnetic field by means of the Zeeman interaction.
Since this term commutes with the conserved quantities of
the Yao-Lee model, which are defined in terms of the dx,y,z

Majorana fermions, the magnetic field does not break its exact
solvability. In order to simplify the calculation, we use the
complex fermions operators f z

j = (cx
j − ic

y

j )/2, and write the
corresponding part of the Hamiltonian in Eq. (4) as

HFM = 2JK

∑
〈jk〉α

u〈jk〉α if
z†
j f z

k + H.c.

+ 2Jχ

∑
〈jk〉α

∑
〈kl〉β

u〈jk〉αu〈kl〉β if
z†
j f z

l + H.c.

− Bz

∑
j∈∂A

(
f

z†
j f z

j − 1

2

)
, (5)

where σ z
j = (f z†

j f z
j − 1/2) is the spin operator along ẑ,

and ∂A represents the boundary sites of the spin sys-
tem which are coupled to the magnetic field. We per-
form a partial Fourier transform of the f z

j fermions
for momentum k⊥ = k⊥ x̂, and then define the spinor
Fz†(k⊥) = [f z†(k⊥, 1), f z†(k⊥, 2), . . . , f z†(k⊥, L‖)], where
f z†(k⊥, y) = [f z†

A (k⊥, y), f z†
B (k⊥, y)]. As a result, we obtain

HFM =
∑
k⊥

Fz†(k⊥)HFM(k⊥, Bz)Fz(k⊥) + L⊥Bz

2
, (6)

where

HFM(k⊥, Bz)=2H(k⊥) +
( −Bz 01×(2L‖−1)

0(2L‖−1)×1 0(2L‖−1)×(2L‖−1)

)
.

(7)

Here, H(k⊥) is a matrix of dimension 2L‖ × 2L‖ representing
the slab Hamiltonian, which is given in Appendix, whereas
0n×m corresponds to a matrix of order n × m, where all entries
are zero.

The diagonalization of HFM proceeds straightforwardly.
By defining the canonical transformation

Fz
� (k⊥) =

2L‖∑
�′=1

U�,�′ (k⊥, Bz)ϒz
�′ (k⊥, Bz), (8)

where ϒz
� (k⊥, Bz) are complex fermion operators, and

U (k⊥, Bz) is a unitary matrix obeying

U †(k⊥, Bz)HFM(k⊥, Bz)U (k⊥, Bz)

= diag{E1(k⊥, Bz), . . . , E2L‖ (k⊥, Bz)}, (9)

we find, after substituting Eqs. (8) and (9) into Eq. (6), that

HFM =
2L‖∑
�=1

∑
k⊥

E�(k⊥, Bz)ϒz†
� (k⊥, Bz)ϒz

� (k⊥, Bz)+L⊥Bz/2.

(10)

From the above result, we can finally calculate the zero-
temperature magnetization per unit cell for the spins of a
sublattice b ∈ {A,B} parallel to x̂ (see Fig. 1), which is
specified here by the composite index � = (b, L‖ − y + 1).1

Indeed, one obtains
〈
Sz

� (Bz)
〉

L⊥
T →0=

2L‖∑
�′=1

∫
dk⊥
2π

|U�,�′ (k⊥, Bz)|2�[−E�′ (k⊥, Bz)]

− 1/2, (11)

where �(x) is the Heaviside step function.
In Figs. 3(a) and 3(b), we show the behavior of

〈Sz
� (Bz)〉/L⊥ for the Dirac KSL (Jχ = 0). Figure 3(a) refers to

the dependence of 〈Sz
� (Bz)〉/L⊥ on the sublattice index � for

systems with different edge distances L‖ and fixed magnetic
field Bz = 0.5JK . Figure 3(b) shows the magnetic field depen-
dence of 〈Sz

� (Bz)〉/L⊥ on the two sublattices � = (A, 1) and
� = (B,L‖), which are localized at the two opposite edges
for a system with L‖ = 25. We observe that both the magne-
tization at the edge � = (A, 1), which is under the influence
of the local magnetic field, and the one at the opposite edge
� = (B,L‖) are finite for nonzero magnetic fields, but point
in different directions. Besides, the magnetization oscillates
between positive and negative values with the sublattice index
�. In Figs. 3(c) and 3(d), we show the same results for the
chiral KSL with chiral interaction given by Jχ = 0.3JK . In
this case, we find, however, that the system exhibits a finite
magnetization only in the vicinity of the edge � = (A, 1)
under the action of the local magnetic field. We have also
checked that these results do not change qualitatively for other
finite values of Jχ .

The nonlocal magnetization for the Dirac KSL can be
explained in terms of the zero-energy edge bands and the
long-range correlations among the spin-1/2 moments. Indeed,
since the edge states have no kinetic energy, they can order
ferromagnetically by the action of an infinitesimal magnetic

1Here, we point out that the index � denotes the position on the
lattice. It should not be confused with the index � in E�(k⊥) that is a
label to represent the energy dispersion curves of the model.
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FIG. 3. Magnetization per unit cell 〈Sz
� (Bz )〉/L⊥ in the limit of T → 0 for the sublattices � = (b, L‖ − y + 1) parallel to the x̂ direction.

This magnetization is induced by a local magnetic field acting on the spin-1/2 magnetic moments at the upper zigzag edge of the honeycomb
lattice shown in Fig. 1. (a) and (b) refer to the behavior exhibited by the Dirac KSL, whereas (c) and (d) refer to the behavior of the chiral
KSL. In (a) and (c), we set Bz = 0.5JK . Note that a nonlocal (long-distance) edge magnetization appears just for the spin system described by
the Dirac KSL. These results were obtained by substituting the momentum integral in Eq. (11) by a sum over a mesh with 1500 points.

field. However, the magnetic field here is restricted to the
vicinity of just one edge. Due to the power-law decay-
ing spin correlations present in this state, which behave as
〈σ z(r)σ z(0)〉 ∼ 1/|r|4 [32] for spins separated by a distance
|r| � 1, the action of a magnetic field at one edge can create
a small perturbation at the opposite edge and, therefore,
polarize the zero-energy modes. Consequently, we expect that
other SU(2)-symmetric Kitaev spin models with long-range
correlations and flat surface bands, which can be realized in
the so-called harmonic-honeycomb lattices [49], could also
exhibit the same sort of nonlocal magnetization as described
here.

IV. SPIN CURRENTS CARRIED BY MAJORANA
FERMIONS

In this section, we are concerned with the evaluation of a
spin current injected from a normal metal with a nonequilib-
rium distribution of spins into the KSL described by Eq. (1)
and carried by the Majorana fermion excitations. This calcu-
lation is based on the general spin-transport theory proposed

by Chatterjee and Sachdev [25], which can be applied to
magnetic insulators with and without long-range order.

In the present case, the experimental setup for the gen-
eration of a nonzero spin current carried by the Majorana
fermions consists of the KSL on the honeycomb lattice sand-
wiched between two metallic plates, as schematically depicted
in Fig. 4. It is assumed that these metallic plates behave as a
conventional Fermi liquid metal with quadratic band disper-
sion and Fermi energy εF . According to this setup, a charge
current JC flowing in a metallic plate subjected to strong
spin-orbit coupling or disordered skew scattering generates a
transverse spin current density JS through the edge boundary
with the KSL. As a consequence, a spin current is injected into
the KSL and carried here by the Majorana fermion excitations
to the opposite edge in contact with a second metallic plate,
where it can be detected by measuring the charge current
JC produced by the inverse spin Hall effect. In the case
where the KSL-metal system is in thermal equilibrium, the
spin current is basically a function of the spin bias (or spin
chemical potential difference) V = μ↑ − μ↓ between spin-up
and spin-down electrons, which is controlled by the charge
current at the first metallic plate. In fact, according to the
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FIG. 4. Schematic representation of the experimental setup used
for the injection of spin currents into the KSL described by the
Yao-Lee model. In the presence of strong spin-orbital coupling or
disordered skew scattering, an electronic current density JC flowing
in a metallic plate produces a transverse spin current density JS at
the KSL-metal interface. As a result, the spin current is injected into
the KSL and carried here by the Majorana fermionic excitations,
originated from the fractionalization of the magnetic moments. This
unusual spin current can be detected by measuring a finite charge
current JC produced in a second metallic plate by the inverse spin
Hall effect.

theory proposed in Ref. [25], the spin current Ispin flowing into
the KSL is given by

Ispin[V ] = Ispin,↑[V ] − Ispin,↓[V ], (12)

where

Ispin,↑[V ] =πJ 2L⊥ν(εF )

2

∫ V

0

dω

2π

∫
dq⊥
2π

V − ω

1 − e−β(V −ω)

× S−+(q⊥, ω), (13)

Ispin,↓[V ] =πJ 2L⊥ν(εF )

2

∫ V

0

dω

2π

∫
dq⊥
2π

V + ω

eβ(V +ω) − 1

× S+−(q⊥, ω). (14)

Here, J is the coupling of the metal with the spin system, L⊥
is the interface area (length) perpendicular to the spin current,
ν(εF ) is the density of states at the Fermi energy, and β =
1/T is the reciprocal temperature. Ispin,↑[V ] describes the spin
current due to spin-up electrons flipping to spin-down ones,
whereas Ispin,↓[V ] corresponds to the spin current resulting
from spin-down electrons flipping to spin-up ones. To evaluate
Ispin[V ] at finite temperature, one needs to determine the
dynamical spin structure factors (DSSFs) S−+(q⊥, ω) and
S+−(q⊥, ω) at the boundary of the spin system. For the former
DSSF, one has the definition

S−+(q⊥, ω)

= 1

L⊥

∑
l,j∈∂A

e−iq⊥·(X l−Xj )
∫ ∞

−∞
dt eiωt 〈σ−

l (t )σ+
j (0)〉,

(15)

where the indices l and j refer here to sites at the upper
interface ∂A of the metal with the KSL shown in Fig. 4 and
σ±

l (τ ) ≡ eτHσ±
l e−τH denotes the imaginary-time Heisenberg

representation of the transverse spin operators σ±
l = σx

l ±
iσ

y

l .
In order to determine S−+(q⊥, ω), we first calculate the

Matsubara spin correlation function

X−+(q⊥, iωn)

= 1

L⊥

∑
l,j∈∂A

e−iq⊥·(X l−Xj )
∫ β

0
dτeiωnτ 〈Tτ [σ−

l (τ )σ+
j (0)]〉,

(16)

where the wave vector q⊥ points along x̂, since we are consid-
ering a honeycomb lattice with periodic boundary conditions
along this direction. To specify the position X l of a site l of
the honeycomb lattice, we make the substitution l → (b, R),
where b ∈ {A,B} refers as before to the sublattice index, and
R represents a lattice vector. Using this notation and setting
d ≡ a

√
3

2 ŷ, we obtain

X (b,R) = R + ϕ(b)d, (17)

where ϕ(b) = 0 (1) for b = A (B ).
Next, we use the Majorana representation for the spin

operators and then rewrite the spin correlation function
〈Tτ [σ−

l (τ )σ+
j (0)]〉 in terms of them. Since the DSSFs are

calculated in the absence of a magnetic field, the Hamil-
tonian in Eq. (4) for this situation has no cross terms in-
volving Majorana fermions of different species. As a result,
〈Tτ [σ−

l (τ )σ+
j (0)]〉 can be factorized, according to the Wick’s

theorem, into two-point correlation functions involving Ma-
jorana fermions of the same species. In addition, the SU(2)
symmetry of the Yao-Lee Hamiltonian implies that the corre-
lation functions for the three species of Majorana fermions are
equal to each other. As a result, we obtain

〈Tτ [σ−
b (R, τ )σ+

b′ (R′, 0)]〉 = 1

2

〈
Tτ

[
c
γ

b (R, τ )cγ

b′ (R′, 0)
]〉2

,

(18)

where the superscript γ represents just one of the three Majo-
rana fermion species. The correlation function in Eq. (18) can
now be evaluated by performing the partial Fourier transform
of the Majorana operators and then rewriting the resulting
k⊥-dependent Majorana operators according to the unitary
transformation that diagonalizes the Hamiltonian for the slab
geometry in Fig. 1. After performing this calculation, we
obtain that the correlation function in Eq. (16) evaluates to

X−+(q⊥, iωn)

= 1

2L⊥

2L‖∑
�1=1

2L‖∑
�2=1

∑
k⊥

∣∣∣∣∣
∑
�∈∂A

U�,�1 (k⊥)U�,�2 (−k⊥ − q⊥)

∣∣∣∣∣
2

× nF [−E�1,z(k⊥)]nF [−E�2,z(−k⊥ − q⊥)]

× exp{−β[E�1,z(k⊥) + E�2,z(−k⊥ − q⊥)]} − 1

iωn − E�1,z(k⊥) − E�2,z(−k⊥ − q⊥)
, (19)

where E�,z(k⊥) = 2E�(k⊥) and U�,�′ (k⊥) are, respectively, the
double eigenvalues and eigenvectors of the slab Hamiltonian
for zigzag surfaces (see Appendix), and nF (ε) = (eβε + 1)−1

refers to the Fermi-Dirac distribution function. Finally, the
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DSSF can be obtained in the following way:

S−+(q⊥, ω) = Im[X−+(q⊥, iωn → ω + iη)], (20)

where η → 0+.
The procedure for calculating S+−(q⊥, ω) follows the same

steps we used to evaluate S−+(q⊥, ω). However, we will not
determine here S+−(q⊥, ω), because we are mostly interested
in the zero-temperature limit of the spin current Ispin[V ] for
spin bias V = μ↑ − μ↓ > 0. In this limit, Ispin,↓[V ] vanishes

according to Eq. (14). Due to this fact, the total spin current
for T → 0 evaluates to

Ispin[V ] =πJ 2L⊥ν(εF )

2

∫ V

0

dω

2π
(V − ω)

∫
dq⊥
2π

S−+(q⊥, ω),

(21)

where the zero-temperature limit of S−+(q⊥, ω) for positive
frequencies is given by

S−+(q⊥, ω)
T →0= π

2

2L‖∑
�1=1

2L‖∑
�2=1

∫
dk⊥
2π

∣∣∣∣∣
∑
�∈∂A

U�,�1 (k⊥)U�,�2 (−k⊥ − q⊥)

∣∣∣∣∣
2

�[E�1,z(k⊥)]�[E�2,z(−k⊥ − q⊥)]

× δ[ω − E�1,z(k⊥) − E�2,z(−k⊥ − q⊥)]. (22)

We should mention here that the above expression is exact for
T → 0, because in this limit we do not have to include the
fluctuations of the Z2 gauge field. This should be contrasted
with the DSSFs for the Kitaev model, where spin operators
involves the insertion of a flux pair [50]. Moreover, since
S−+(q⊥, ω) depends in this limit on two Heaviside step func-
tions, whose arguments are the energy dispersions of the slab
Hamiltonian, we have, therefore, to take into account only its
positive energies states for the evaluation of this DSSF.

To determine the behavior of Ispin[V ] for both Dirac and
chiral KSL, we consider the contribution of all energy bands
of the slab Hamiltonian for a system with L‖ = 20 unit cells
separating the two edges along the ŷ direction. In addition,
we substitute the momentum integrals appearing in Eq. (22)
by a sum over a mesh with 200 × 200 points. In Fig. 5, we
show the dependence of the calculated spin current Ispin[V ] as
a function of both the spin bias and the chiral interaction. We
find that Ispin[V ] for the Dirac KSL depends on the spin bias
as a power-law Ispin[V ] ∝ V α with the exponent αDirac ≈ 1.
This linear dependence for arbitrarily small V stems from

0.0 0.2 0.4 0.6 0.8 1.0
0

5

10

15

20

25

30

35

FIG. 5. Zero-temperature limit of the spin current Ispin[V ]
[in units of πJ 2L⊥ν(εF )JK/4] for chiral interactions Jχ =
0, 0.05JK, 0.10JK, 0.15JK . The spin current for the Dirac KSL
behaves as a linear function of the spin bias V . On the other hand, a
finite Jχ (i.e., chiral KSL) leads to the cubic dependence of Ispin[V ]
on the spin bias V for V � JK .

the delta-function contribution to the density of the states
associated with the zero-energy edge states. On the other
hand, for the chiral KSL, we also find that the spin current
Ispin[V ] for the chiral KSL depends approximately on the spin
bias V as a power-law for V � JK . However, the exponent in
this latter case is given by αChiral ≈ 3. As a consequence, this
spin current becomes suppressed within the regime of small
spin bias more rapidly than the one for the Dirac KSL. It is
also interesting to note that the exponent for the chiral KSL
agrees with the exponent α = 3 found for a 1D spinon Fermi
sea in Ref. [24] and can be associated with the gapless edge
state. In the absence of a gapless edge mode, the spin current
would vanish at zero temperature for a spin bias V below the
bulk spin gap. Another important point that we would like
to emphasize here is that, in the limit of large spin bias (i.e.,
for V � JK ), the spin currents that appear in both KSL states
become asymptotically described by Ispin[V ] ∝ V .

V. LONGITUDINAL SPIN SEEBECK EFFECT DRIVEN BY
MAJORANA FERMIONS

The longitudinal spin Seebeck (LSS) effect refers to the
generation of spin current flowing from a magnetic insulator
to a metal, when they are subjected to the action of a static
magnetic field and a temperature gradient across their inter-
face [29]. According to linear response theory, based on the
Keldysh formalism [51], this spin current can be calculated
by the formula

Ispin[B] =4J 2A⊥√
2

∫ ∞

−∞

dω

2π

∫
dd−1q⊥
(2π )d−1

[nB (Tm) − nB (Ts )]

× χ−+(q⊥, ω)S−+(q⊥, ω, B). (23)

Here, A⊥ and J stand for the (d − 1)-dimensional interface
area and the exchange coupling of the metal with the magnetic
insulator, nB (T ) = 1/(eβω − 1) is the Bose-Einstein distri-
bution function, and Tm and Ts refer, respectively, to the
temperature in the metal and the magnetic insulator. In this
formula, the two functions χ−+(q⊥, ω) and S−+(q⊥, ω, B)
represent, respectively, the spin susceptibility of the metal
and the DSSF of the magnetic insulator in the presence of a
magnetic field B.
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FIG. 6. Illustration of the experimental setup for the observation
of the LSS effect on an SU(2)-symmetric KSL system described by
the Yao-Lee model. In order for this effect to occur, the spin system
and a metal are placed in a region with finite magnetic field B =
Bz ẑ and kept at different temperatures Ts and Tm, respectively. As a
result, a finite spin current Ispin can be driven at their interface and
transformed in the metal into an electric current with an associated
voltage E by means of the inverse spin Hall effect.

As the formula in Eq. (23) holds even for magnetic insula-
tors lacking any kind of spontaneous-symmetry-breaking or-
der, we shall apply it to the SU(2)-symmetric Yao-Lee model
studied here. Henceforth, we will consider the metal as a clean
2D Fermi liquid system and approximate χ−+(q⊥, ω) by
a momentum-independent spin-diffusion type function [52].
Therefore we write it as χ−+(q⊥, ω) = χ0τsω/(1 + τ 2

s ω2),
where χ0 is the static spin susceptibility and τs corresponds to
the spin relaxation time. On the other hand, we will evaluate
S−+(q⊥, ω, B) [see Eq. (15)] by taking into account the
Hamiltonian in Eq. (1) for the slab geometry with zigzag
surfaces, when the KSL system is placed in a region with a
finite magnetic field B = Bz ẑ perpendicular to the plane as
schematically depicted in Fig. 6.

The expression for the spin current Ispin[Bz] will be fur-
ther simplified here by expanding nB (Tm) − nB (Ts ) around
T = (Tm + Ts )/2 up to first order in �T = Tm − Ts , i.e., the
temperature gradient across the interface. This leads to the
following expression:

Ispin[Bz] =J 2L⊥χ0τs

2
√

2π

�T

T 2

∫ ∞

−∞

dω

sinh2[ω/(2T )]

ω2

1 + τ 2
s ω2

×
∫

dq⊥
2π

S−+(q⊥, ω, Bz), (24)

where we have substituted A⊥ by the 1D interface area L⊥
defined before. According to this last result, the spin cur-
rent Ispin[Bz] is identically zero when the integrated DSSF
S−+(ω,Bz) = ∫

dq⊥
2π

S−+(q⊥, ω, Bz) is an odd function of
frequency. In the case of zero magnetic field, one may
easily obtain by means of the Lehmann representation that
the DSSF for the Yao-Lee model obeys S−+(ω,Bz = 0) =
−S−+(−ω,Bz = 0), even in the absence of time-reversal
symmetry caused by a finite chiral interaction Jχ . As a result,
a nonzero spin current driven by the Majorana fermions in
KSL and due to the LSS effect can only occur if the spin
system is subjected to both a magnetic field and a temperature
gradient at the interface with the metal.

Once more, in order to determine S−+(q⊥, ω, Bz) and
subsequently Ispin[Bz], we begin by calculating the Mat-
subara spin correlation function X−+(q⊥, iωn, Bz) defined
by Eq. (16). As shown in Fig. 6, we also impose here
periodic boundary conditions on the spin system along
the x̂ direction, such that q⊥ = q⊥ x̂. In order to find
X−+(q⊥, iωn, Bz), we first evaluate the spin correlation func-
tion 〈Tτ [σ−

b (R, τ )σ+
b′ (R′, 0)]〉, as was done in the previous

section. However, there is one important difference in the
present case. Since the system is subjected to a finite magnetic
field B = Bz ẑ, the expectation values of products of the
Majorana fermions of x and y species are nonzero. Taking
this fact into account, we find

X−+(q⊥, iωn, Bz) = 1

4L⊥

2L‖∑
�1=1

2L‖∑
�2=1

∑
ν=±

∑
k⊥

∣∣∣∣∣
∑
�∈∂A

U�,�1 (k⊥)U�,�2 (−k⊥ − q⊥)

∣∣∣∣∣
2

{nF [−E�1,ν (k⊥)]nF [−E�2,z(−k⊥ − q⊥)]

+ νnF [−E�1,ν (k⊥)]nF [−E�2,z(−k⊥ − q⊥)]}exp{−βs[E�1,ν (k⊥) + E�2,z(−k⊥ − q⊥)]} − 1

iωn − E�1,ν (k⊥) − E�2,z(−k⊥ − q⊥)
, (25)

where E�,ν (k⊥) = E�,z(k⊥) − νBz/2 are the energy disper-
sions of the slab Hamiltonian for a finite magnetic field.
We note here that the second term on the right-hand side of
Eq. (25) has a finite contribution just in the situation where the
magnetic field Bz is different from zero. On the other hand, the
first term on the right-hand side coincides with the correlation
function in Eq. (19) when Bz = 0.

From the Matsubara correlation function
X−+(q⊥, iωn, Bz), we compute the DSSF for a finite magnetic
field using Eq. (20). As a consequence, we obtain that the
integrated DSSF S−+(ω,Bz) can be conveniently written as

S−+(ω,Bz) = S−+,I (ω,Bz) + S−+,I I (ω,Bz), (26)

where S−+,I (ω,Bz) and S−+,I I (ω,Bz) are defined, respec-
tively, as the momentum-integrated imaginary part of the first
and second term of X−+(q⊥, iωn, Bz) in Eq. (25) after taking
iωn → ω + iη.

Before evaluating the spin current Ispin[Bz], it is worth
determining the parity of S−+,I (ω,Bz) and S−+,I I (ω,Bz)
under the change of ω → −ω. By invoking the particle-hole
symmetry properties of the eigenvalues and eigenvectors of
the slab Hamiltonian (see Appendix for details), we obtain

S−+,I (−ω,Bz) = − S−+,I (ω,Bz), (27)

S−+,I I (−ω,Bz) = S−+,I I (ω,Bz). (28)
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As a result, only the frequency integration over S−+,I I (ω,Bz)
in Eq. (24) will give a finite contribution to the spin current
Ispin[Bz]. In fact, it evaluates to

Ispin[Bz] = L⊥J 2χ0τs√
2π

�T

T 2

∫ ∞

0

dω

sinh2[ω/(2T )]

ω2

1 + τ 2
s ω2

× S−+,I I (ω,Bz). (29)

In addition, we restrict ourselves to the limit Ts → 0, in which
we can neglect thermal fluctuations of the Z2 gauge field and

determine Ispin[Bz] from the spectrum of the cγ Majorana
fermions in the uniform background u〈jk〉α = 1 (−1) for a site
of the sublattice j = A (B ). In this case, we have

Ispin[Bz]
Ts→0= 4J 2L⊥χ0τs√

2πTm

∫ ∞

0

dω

sinh2(ω/Tm)

ω2

1 + τ 2
s ω2

× S−+,I I (ω,Bz), (30)

where the zero-temperature limit of the integrated DSSF
S−+,I I (ω,Bz) yields

S−+,I I (ω,Bz)
Ts→0= π

4

2L‖∑
�1=1

2L‖∑
�2=1

∑
ν=±

∫
dq⊥
2π

dk⊥
2π

ν

∣∣∣∣∣
∑
�∈∂A

U�,�1 (k⊥)U�,�2 (−k⊥ − q⊥)

∣∣∣∣∣
2

�[E�1,ν (k⊥)]�[E�2,z(−k⊥ − q⊥)]δ

× [ω − E�1,ν (k⊥) − E�2,z(−k⊥ − q⊥)]. (31)

In contrast to the DSSF in Eq. (22), we will now have to
consider both the positive and negative energy states E�,z(k⊥)
of the slab Hamiltonian in order to evaluate S−+,I I (ω,Bz).
The reason is that the magnetic field here mixes the particle-
hole states of the spin system.

We will focus here on determining the behavior of Ispin[Bz]
as a function of the magnetic field Bz and the exchange inter-
actions of the Yao-Lee model. In order to do that, we evaluate
S−+,I I (ω,Bz) by substituting the momentum integrals on its
right-hand side by a sum over a mesh with 200 × 200 points.
Within this approximation, we show in Fig. 7 the behavior
of Ispin[Bz] as a function of both Bz and Jχ , and fixed metal
temperature Tm = 0.1JK . We can observe that the spin current
Ispin[Bz] exhibits a continuous sign-change for fixed magnetic
field |Bz| � JK , as the chiral interaction Jχ becomes finite,

−0.4 −0.2 0.0 0.2 0.4

−3

−2

−1

0

1

2

3

FIG. 7. Spin current Ispin[Bz] generated by the LSS effect in a
system consisting of a normal metal in contact with a Dirac or chiral
KSL described by the Yao-Lee model. For magnetic fields |Bz| �
JK , Ispin[Bz] exhibits a continuous change in the flow direction as
the chiral interaction Jχ varies from zero to positive finite values.
This feature can be used to identify the topological nature of KSLs,
since the most relevant contribution to the spin current comes from
the edge states. Here, Ispin[Bz] is given in units of 2

√
2J 2L⊥χ0JK ,

the metal spin relaxation is τs = 1/(2JK ), and metal and KSL
temperatures are set to Tm = 0.1JK and Ts = 0, respectively.

i.e., the spin current for the Dirac and chiral KSL states flows
in opposite directions above a critical value J c

χ of the chiral
interaction. Additionally, we note that the spin current for the
former KSL state is finite for infinitesimally small Bz, while
for the latter case it is clearly suppressed as a linear function
of Bz. The jump in the spin current at Bz = 0 for the Dirac
KSL is a signature of the zero-energy edge states, which give
a delta-function contribution to the density of states. Lastly,
we point out that, in the limit of high magnetic fields, the spin
currents vanish asymptotically for both KSL states.

The physical properties of the spin current Ispin[Bz] inves-
tigated here are therefore different from the mechanism of the
LSS effect that appears in the one-dimensional QSL Sr2CuO3

in Ref. [29], in which the low-energy spinons emerging in an
antiferromagnetic Heisenberg chain are described by the TL
theory. In that case, the spin current due to the LSS effect
is nonzero only when the particle-hole symmetry is broken
by quadratic terms in the spinon dispersion. In the same
work (Ref. [29]), the sign difference in the Seebeck response
of different insulating magnetic materials was argued to be
related to either the existence or nonexistence of long-range
magnetic order in the system. Interestingly, according to our
present results, the sign of the Ispin[Bz] for a fixed magnetic
field can also be tuned by the edge states by means of a
chiral interaction in systems composed only of particle-hole
symmetric Majorana fermion excitations.

VI. CONCLUSIONS

In summary, we have analyzed both the edge magnetism
and the spin transport properties of an SU(2)-symmetric spin-
1/2 system described by the Yao-Lee model, in which the
spin degrees of freedom fractionalize and give rise to either a
Dirac or chiral KSL with Majorana fermionic excitations. We
have shown that the edge magnetization for the Dirac KSL
possesses a nonlocal response when the spin system is probed
by local magnetic fields. These features are a consequence
of both the long-range correlations between the spin-1/2
moments and the zero-energy edge bands of the 2D spin
system with a zigzag edge.
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We have also shown that the application of a spin bias at the
interface of the spin system with a normal metal generates a
spin current into the KSL states depending as a power-law on
the spin bias in the zero-temperature limit. As the spin current
response depends on the dynamical spin structure factor at
the boundary of the spin system, it is sensitive to both bulk
and edge states in the spectrum of the KSL. As a result, the
spin current measured in this setup can be used to identify
the nodal structures formed by the Majorana excitations in
KSLs with SU(2) symmetries, similarly to what has been
discussed for other types of QSLs in the literature [24,25].
Moreover, we have also predicted here that a spin current
can be controlled at the interface of the KSL with a metal
by the LSS effect, despite the particle-hole symmetry of the
Majorana excitations in this case.

Lastly, we should also comment on the stability of the
spin currents calculated here. In real materials, the SU(2)
spin symmetry is broken by, e.g., Rashba or hyperfine inter-
actions. However, as long as the SU(2)-symmetry breaking
interactions are weak, the spin current can propagate over
long distances into the QSL. We hope that our results will
contribute to stimulate further activities in the experimental
pursuit of novel KSL materials, particularly those with fluc-
tuating orbital degrees of freedom that might realize SU(2)-
symmetric KSLs as described by the Yao-Lee model.
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APPENDIX: SLAB HAMILTONIAN FOR A ZIGZAG
SURFACE

In order to obtain the Yao-Lee Hamiltonian H on the
honeycomb lattice for a slab geometry with periodic boundary
conditions along the x̂ direction and zigzag surfaces along ŷ
direction, we initially fix the Z2 bond variables in Eq. (4) ac-
cording to u〈jk〉α = 1 (−1) for a site j in the A (B ) sublattice,
and define the partial Fourier transform

cα
b (x, y) = 1√

L⊥

∑
k⊥

e−ik⊥·xcα
b (k⊥, y) (A1)

for the Majorana fermion operators. Here, b ∈ {A,B} is the
sublattice index, L⊥ is the number of unit cells on the edge
along the x̂ direction, k⊥ is the wave vector related to it, and
y = 1, . . . , L‖ represents the number of unit cells along the ŷ
direction. Note that the (k⊥, y)-dependent Majorana fermion
operators cα

b (k⊥, y) in Eq. (A1) are related to their Hermi-
tian conjugates by the relation cα

b (−k⊥, y) = [cα
b (k⊥, y)]†. By

considering the coupling of the spin-1/2 moments to the
magnetic field B = Bz ẑ, the Yao-Lee Hamiltonian becomes

H = JK

∑
〈jk〉α

∑
γ=x,y,z

û〈jk〉α ic
γ

j c
γ

k

+ Jχ

∑
〈jk〉α

∑
〈kl〉β

∑
γ=x,y,z

û〈jk〉α û〈kl〉β ic
γ

j c
γ

l + Bz

∑
j

icx
j c

y

j .

(A2)

In that case, by making use of the partial Fourier transform
defined above, we obtain that H evaluates to

H =
∑
k⊥,α

Cα†(k⊥)H(k⊥)Cα (k⊥) + iBz

∑
k⊥

Cx†(k⊥)Cy (k⊥),

(A3)

where Cα (k⊥) ≡ [cα
A(k⊥, 1), cα

B (k⊥, 1), . . . , cα
B (k⊥, L‖)]T is a

2L‖-dimensional spinor and H(k⊥) is given by

H(k⊥) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

A(k⊥) B†(k⊥) 0 0 . . . 0

B(k⊥) A(k⊥) B†(k⊥) 0 . . . 0

0 B(k⊥) A(k⊥) B†(k⊥)
. . .

...

0 0 B(k⊥)
. . .

. . . 0
...

...
. . .

. . . A(k⊥) B†(k⊥)

0 0 . . . 0 B(k⊥) A(k⊥)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (A4)

with A(k⊥) and B(k⊥) being square matrices defined accord-
ing to

A(k⊥) ≡
(

Jχ sin(k⊥a) iJK/2

−iJK/2 −Jχ sin(k⊥a)

)
(A5)

and

B(k⊥) ≡
(−Jχ sin(k⊥a) iJK cos(k⊥a/2)

0 Jχ sin(k⊥a)

)
. (A6)

By looking at the structure of H(k⊥), it is straight-
forward to verify that this matrix is skew-Hermitian, i.e.,
under the transpose operation, it transforms as H(k⊥) =
−HT (−k⊥). Consequently, by defining a band index �, one
may show that the entries of the eigenvectors |U�(k⊥)〉
and the eigenvalues E�(k⊥) of H(k⊥) are characterized
by the relations U�,L‖+�′ (k⊥) = U ∗

�,�′ (−k⊥) and EL‖+�(k⊥) =
−E�(−k⊥), where the eigenvalues are distributed according to
E1(k⊥) � E2(k⊥) � · · · � EL‖ (k⊥) (see Fig. 2). This allows
one to rewrite each component of the Majorana spinor Cα (k⊥)
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as

Cα
� (k⊥) =

L‖∑
�′=1

[
U�,�′ (k⊥)�α

�′ (k⊥) + U ∗
�,�′ (−k⊥)�α†

�′ (−k⊥)
]
,

(A7)
where �

α†
� (k⊥) and �α

� (k⊥) are complex fermion operators

obeying the anticommutation relations {�α
� (k⊥),�α′†

�′ (k′
⊥)} =

δα,α′δ�,�′δk⊥,k′
⊥ . By inserting this last result into Eq. (A3) and

then performing the canonical transformation

�
†
�,±(k⊥) ≡ 1√

2

[
�

x†
� (k⊥) ± i�

y†
� (k⊥)

]
, (A8)

we obtain the following diagonal Hamiltonian:

H =
L‖∑
�=1

∑
k⊥

∑
ν=±

E�,ν (k⊥)

[
�

†
�,ν (k⊥)��,ν (k⊥) − 1

2

]

+
L‖∑
�=1

∑
k⊥

E�,z(k⊥)

[
�

z†
� (k⊥)�z

� (k⊥) − 1

2

]
, (A9)

where E�,ν (k⊥) ≡ E�,z(k⊥) − νBz and E�,z(k⊥) ≡ 2E�(k⊥)
are the energy dispersions of the Majorana fermions in the
KSL for a finite magnetic field.
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