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We study two-component electrons in the lowest Landau level at total filling factor νT = 1/2 with anisotropic
mass tensors and principal axes rotated by π/2 as realized in aluminum arsenide (AlAs) quantum wells.
Combining exact diagonalization and the density matrix renormalization group we demonstrate that the system
undergoes a quantum phase transition from a gapless state in which both flavors are equally populated to
another gapless state in which all the electrons spontaneously polarize into a single flavor beyond a critical
mass anisotropy of mx/my ∼ 7. We propose that this phase transition is a form of itinerant Stoner transition
between a two-component and a single-component composite Fermi sea states and describe a set of trial wave
functions which successfully capture the quantum numbers and shell filling effects in finite size systems as well
as providing a physical picture for the energetics of these states. Our estimates indicate that the composite Fermi
sea of AlAs is the analog of an itinerant Stoner magnet with a finite spontaneous valley polarization. We pinpoint
experimental evidence indicating the presence of Stoner magnetism in the Jain states surrounding ν = 1/2.
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I. INTRODUCTION

Since its discovery more than three decades ago [1,2] the
fractional quantum Hall (FQH) regime has gifted us with a re-
markably rich arena for correlated phases of two-dimensional
(2D) electrons. Among these phases, a prominent example is
the fractionalized gapless state proposed by Halperin, Lee,
and Read [3] as a Fermi liquid-like state of the composite
fermions (CFs) introduced by Jain [4,5]. When the lowest
Landau level has two nearly degenerate components, as it is
the case of gallium arsenide (GaAs) in the limit of small g

factor, experimental [6–8] and numerical studies [9] indicate
that the composite Fermi sea is spin unpolarized, namely, that
the interactions are unable to induce a Stoner-like instability
into a polarized state. In fact, systems of itinerant fermions
for which the Stoner state can be theoretically established to
be the ground state in an unbiased fashion are rare, typically
because the Stoner instability appears at strong coupling
where it is hard to rule out other competing correlated states.

Mass anisotropy is expected to couple to concealed geo-
metric degrees of freedom [10] in FQH systems and can be
experimentally tuned, e.g., by applying in-plane fields [11]
or strain [12,13]. Crucially, to this date numerical studies in
the lowest Landau level (n = 0LL) have demonstrated that
the single component composite Fermi liquid (CFL) has a
remarkable robustness against mass anisotropy [14]. As we
will demonstrate, however, a two-component half-filled n =
0LL with anisotropic mass tensors rotated by π/2, as realized
in AlAs quantum wells [15,16], will undergo a quantum phase
transition from an unpolarized two-component CFL into an
analog of the Stoner ferromagnetic CFL state as a function
of mass anisotropy. We find specifically a transition from an
unpolarized CFL into a partially polarized CFL at mx/my ∼ 2,
and finally into a fully valley polarized CFL at a critical value

of the mass anisotropy mx/my ∼ 7 (see Figs. 1 and 2). AlAs
has mass anisotropy of mx/my ∼ 5 and therefore our results
indicate that its CFL state is the analog of an itinerant Stoner
magnet that is relatively close to the value for full valley
polarization.

II. MULTICOMPONENT ANISOTROPIC CFL

The Laughlin wave function [2] is extremely good at min-
imizing the energy of a large class of repulsive interactions.
The key to its energetic success is that it has m zeros (or
vortices) “bound” to each particle. It describes a liquid at
filling ν = 1/m and is antisymmetric (symmetric) under co-
ordinate exchange when m is odd (even). The CFL trial wave-
function [17] can be viewed as a simple replacement to the
Laughlin state at ν = 1/2 that corrects for its bosonic statistics
while minimally altering its energetic virtues. As argued by
Read [18], this is achieved by displacing the zeros of the
bosonic Laughlin state by the smallest allowed amounts. As
proposed in Ref. [19], this can be conveniently implemented
in the torus leading to the following single component CLF
trial wave function [20]:

|�CFL({di})〉 = det[t̂j (di )]
∣∣�Bose

1/2

〉
. (1)

Here |�Bose
1/2 〉 is the Laughlin wave function for Ne bosons,

t̂j (d) is the magnetic translation operator acting on particle
j by an amount d, and {di} is a set of Ne 2D vectors
that parametrize the trial state. The many-body operator
det[t̂j (di )] is antisymmetric under the exchange of the labels
of any two particles and hence it maps bosonic states into
fermionic ones. The vectors {di} are the variational parame-
ters which control the displacement of zeros away from the
particles, and, hence, energetically it is favorable for them
to have the smallest possible magnitude. In order for the
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mx/my∼ 2 ∼ 7

FIG. 1. Schematic of the Stoner phase transition for a two-
component CFL state. The solid blue and red ellipses are the com-
posite Fermi surfaces in the two valleys. As a function of mass
anisotropy the system first transitions into a partially polarized CFL
state and finally into a fully polarized CFL state.

antisymmetrized operator not to vanish identically the di must
all be distinct. On a torus only a discrete set of magnetic
translations are allowed [21], dictating that the displacement
vectors {di} must be drawn to the following lattice:

d ∈ m1L1 + m2L2

Nφ

, m1,2 ∈ Zmod(Nφ ), (2)

where L1,2 are the principal vectors of the torus and Nφ the
number of flux quanta piercing it. The particles bound to
displaced zeros (vortices) can be viewed as charge neutral
dipolar objects with momenta ki ≡ l−2ẑ × di [18,19,22–24].
These dipoles are the composite fermions and the disk-shaped
region that they occupy in the lattice S5 is their emergent
Fermi surface. This parametrization of the CFL has redun-
dancies which can be viewed as gauge degrees of freedom.
In particular, changing the overall origin of the dipole lattice,
and hence the origin of momentum, leads to the same physical
state. A simple model for the energy of this state as a function

FIG. 2. (a) The lowest energy in each pseudospin Sz sector as a
function of mass ratio for n = 0LL with Ne = 10. The ground state
at mx/my < 1.3 has Sz = 0. (b) and (c) are the energy spectra as a
function of Ky for unpolarized state and fully polarized state, respec-
tively. (d) DMRG results of ground state Sz as a function of mass
ratio for Ne = 8, 10, 12 systems. All of the electrons spontaneously
polarize into a single flavor beyond a critical mass ratio mx/my ∼ 7.

of the set {di} or equivalently {ki} can be written as [25]:

E[{ki}] ≈ E0 + 1

Ne

∑
i<j

|ki − kj |2
2m∗ , (3)

where m∗ is the effective mass of the composite fermions. One
of the great successes of this wave function is that it correctly
captures the quantum numbers of the ground states and a few
excited states even in systems with a relatively small number
of particles [19]. In particular, a quantum number that will
play a crucial role in the analysis of our numerical results is
the many body momentum, that is simply given by:

K =
∑

i

ki = 2π

(
−

∑
i m2i

L1
,

∑
i m1i

L2

)
. (4)

Here (m1i , m2i ) are the integers describing the dipolar lattice
in Eq. S5 and the sums are defined modulo Ne [26].

We will now introduce a natural generalization of the CFL
wave function to our case of a two valley system allowing for
mass anisotropy. We label the two valleys by a pseudospin
index σ ∈ {↑,↓}. The CFL wave function reads as follows:

|�CFL({d↑
i , d↓

i })〉 = det(t̂j (d↑
i )) det(t̂j (d↓

i ))
∣∣�Bose

1/2

〉
. (5)

Here |�Bose
1/2 〉 is a two component Bosonic Laughlin wave

function at total filling ν = 1/2 known as the Halperin 222
state. We allow for the number of particles in each flavor to
be a variational parameter. The state is here parametrized by
two sets of vectors {dσ

i } for σ ∈ {↑,↓}, drawn from the lattice
in Eq. (A5). The shapes of the lattice points that constitute
the trial Fermi surface of each component is allowed to be
distinct to account for the possibility of Fermi surfaces with
different anisotropy for each valley. The relation between
displacement and momenta is still given by dσ

i = −l2ẑ × kσ
i ,

and the many-body momentum will be given by the analogous
expression to Eq. (A6) with a summation over both valleys
σ ∈ {↑,↓}.

III. NUMERICAL SOLUTIONS VS TRIAL
WAVE FUNCTIONS

Our model consists of electrons in two valleys with a
kinetic energy of H0 = 1

2m
gab

mα
�a�b, where �a = pa − e

c
Aa

(a, b = x, y) and α = 1, 2 are valley indices. We choose
r ≡ √

my/mx to denote the mass anisotropy, then gm1 and
gm2 are given by gm1 = diag[r, 1/r] and gm2 = diag[1/r, r],
respectively, corresponding to two perpendicular elliptical
Fermi surfaces. We focus on total filling νT = 1/2 of the
n = 0LL. In addition, the Hamiltonian includes the projected
Coulomb interaction into the n = 0LL, which reads as:

V = 1

2πNφ

∑
i<j

∑
q,q 
=0

∑
α,β

V (q )e−(q2
mα

+q2
mβ

)/4
eiq·(Rα,i−Rβ,j ).

(6)

Here, α(β ) is the valley index and V (q ) = 2πe2/q is the
Fourier transformation of the Coulomb interaction. q2

mα
=

gab
mα

qaqb includes the metric gab
mα

derived from the band mass
tensor. Notice that the projected intervalley interactions have
full rotational invariance unlike the intravalley interactions
which have invariance only under π rotations.
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Before comparing our model with numerics, we analyze
the symmetries. First, the system has separate conservation for
the number of electrons in each valley due to the absence of in-
tercomponent tunneling, which allows us to label eigenstates
by pseudospin Sz. Second, there is also space symmetries
like mirror times time reversal operation that act on the
many body momenta. However, due to the mass anisotropy,
only the subgroup of π rotations (for a square torus), which
map (Kx,Ky ) → (−Kx,−Ky ), remains a symmetry. Third,
there is an interesting discrete symmetry which is the π/2
rotation combined with a pseudospin reversal operation ↑↔↓.
This operation generally maps a state with (Kx,Ky, S

z) →
(Ky,−Kx,−Sz) and therefore acts in a similar way to a space
symmetry within the subspace Sz = 0.

We combine exact diagonalization (ED) with density ma-
trix renormalization group (DMRG) methods on a square
torus [21,27]. Figure 2(a) shows the lowest energy in each
pseudospin Sz ≡ (N↑

e − N
↓
e )/2 sector, as a function of the

mass anisotropy for Ne = 10 system. We find a transition
from a valley unpolarized state at small mass anisotropy
into a partially polarized state and finally transitions into a
fully polarized state at a higher critical mass anisotropy [28].
Figures 2(b) and 2(c) show the spectrum as a function of
momenta for representative values of the mass anisotropy, and
we see that there is no clear gap in the spectrum indicating that
both states are gapless. To be able to reach larger system sizes
we resort to DMRG [29]. Figure 2(d) displays the ground state
Sz as a function of mass anisotropy obtained from DMRG,
which is in agreement with the results at smaller system sizes
obtained in ED. From these results we estimate that the system
is able to transition into a fully polarized state at a critical
mass anisotropy of mx/my ∼ 7. We hope future studies will
access larger sizes to evaluate the persistence of the trends we
have found and estimate more precisely the phase transition

boundaries and their nature closer to the thermodynamic
limit.

To compare with CFL trial wave functions, we introduce
the following generalization of Eq. (3) to capture the energet-
ics of these states:

E
[{

kσ
i

}] =
∑

σ

Nσ
e∑

i<j

εσ

(
kσ

i − kσ
j

) +
∑

i∈↑,j∈↓
ε↑↓(k↑

i − k↓
j ),

ε↑(k) ≈ k2
x

2m∗
xNe

+ k2
y

2m∗
yNe

, ε↑↓(k) ≈ |k|2
2m∗

↑↓Ne

, (7)

and ε↓ is obtained from ε↑ by changing m∗
x ↔ m∗

y . Upon
projecting into a Landau level the composite fermions kinetic
energy arises entirely from the microscopic interactions and
hence their symmetries follow those of the interaction terms.
This motivates the isotropy of the interflavor kinetic term,
which follows from the isotropy of the interflavor interaction
captured by the form factors in Eq. (6) [30]. The key predic-
tions of this model that we will contrast against numerical
simulations are the many body momentum sectors K of the
ground state expected as a function of mass anisotropies.

Let us consider the system with Ne = 8 particles. We start
with studying the fully polarized sector (i.e., Sz = 4), which
corresponds to the single component CFL. The momentum
sector of the ground state predicted from Eqs. (7) as a
function of mass anisotropy is depicted in Fig. 3(c). The
momentum sectors predicted are in perfect agreement with
the results from ED shown in Fig. 3(f). We consider next
partially polarized states. Motivated by the scaling of the form
factors in the lowest Landau level and by previous numerical
findings on the scaling of the effective composite fermion
mass as a function of the bare mass [14], we have chosen the
following phenomenological parametrization of the effective

1 2 3 4 5
8

10

12

14

1 2 3 4 5 6 7 8 9 10

4

6

8

10

1 2 3 4 5 6 7 8 9 10
4

6

8

10

1 2 3 4 5 6 7 8 9 10

0.00

0.04

0.08

1 2 3 4 5 6 7 8 9 10

0.00

0.04

0.08

1 2 3 4 5 6 7 8 9 10

0.00

0.04

0.08

E 
[a

.u
.]

mx/my

 K=(1,1)
 K=(4,4)
 K=(4,0)

(c) Sz=4(a) Sz=0

E 
[a

.u
.]

mx/my

 K=(4,4)
 K=(2,2)

(b) Sz=2

E 
[a

.u
.]

mx/my

 K=(3,3)
 K=(0,4)

(f) Sz=4

 K=(1,1)
 K=(4,0)
 K=(4,4)
 OthersE n-E

0  
 [e

2 /
l B

]

mx/my

 K=(4,4)
 K=(4,4)
 K=(4,2)
 K=(2,4)
 Others

(d) Sz=0

E n-E
0 [

e2 /
l B

]

mx/my

(e) Sz=2  K=(0,4)
 K=(4,4)
 Others

E n-E
0 [

e2 /
l B

]

mx/my

FIG. 3. The comparison of the energy spectra of predicted many-body momentum sectors [(a) to (c)] with ED results [(d) to (f)] as a
function of mass anisotropy. The theoretical predictions are consistent with numerics.
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masses: m↑x = m∗√mx/my,m↑y = m∗√my/mx,m
∗
↑↓ =

(m↑x + m↑y )/2. Using this simple model we obtain that the
ground states at Sz = 0 and Sz = 2 are expected to have
many body momenta in the sectors (4,4) and (0,4) in units
of 2π/L, respectively [see Figs. 3(a) and 3(b)]. On the other
hand the numerical results are shown in Figs. 3(d) and 3(e).
In the case of Sz = 2 we see a level crossing which appears in
ED is not captured in the simple model, however such level
crossing occurs when the Sz = 2 sector is not the absolute
ground state sector [see Fig. 2(d)]. Therefore, we conclude
that the quantum numbers of the ground state from this simple
model always coincide with those seen in ED whenever the
corresponding Sz is the absolute ground state sector [31].

IV. CONNECTIONS TO EXPERIMENTS

In AlAs quantum wells [16,32–36], the mass anisotropy is
mx/my ∼ 5. Our findings indicate that its CFL at νT = 1/2
will likely be a Stoner ferromagnetic state with partial valley
polarization [see Fig. 2(d)]. As we will argue next, there are
clear hints of this behavior in existing experimental studies of
AlAs.

One of the most clear hints is offered by comparing the
FQH states in the Jain sequence that surrounds ν = 1/2 with
those at ν = 3/2 [36,37]. In a two-component system in which
there is no spontaneous polarization of the CFL, such as our
system in the limit mx/my = 1, it is well known that the Jain
sequence is expected to also follow this trend and the com-
posite fermions tend to form FQH states with minimal valley
polarization [4]. In particular this implies that the Jain states
with even numerators will be valley unpolarized. As a function
of the single particle valley splitting, which is controlled
by straining the sample, one therefore expects an analogous
pattern of composite fermion level crossings as those of the
noninteracting Landau levels of free fermions as a function
of strain. This trend is indeed seen in the piezoresistance
traces for the fractions that surround the composite Fermi sea
at ν = 3/2 [36,37]. However, for the fractions surrounding
ν = 1/2 deviations have been detected. In particular the trace
for ν = 3/5 displays a minimum near zero strain separated
by a single maximum from the saturated state [see Fig. 4(b)],
in contrast to its particle hole conjugate at ν = 7/5, which
displays a maximum near zero strain separated by another
maximum at finite strain before the saturation of the resistivity
is reached [see Fig. 4(a)]. This pattern can be explained if one
assumes that there is a spontaneous valley splitting, �v , at
ν = 3/5, which is larger than the composite fermion effective
cyclotron energy so that only one level crossing is realized as
a function of strain as depicted in Fig. 4(d). This offers a clear
indication that the system is proximate to the Stoner instability
and presumably this tendency is enhanced as the Landau level
mixing is reduced, which explains the enhanced tendency at
ν = 1/2 compared to ν = 3/2.

Another hint of Stoner magnetism near ν = 1/2 is the
reduced value for the critical strain needed to achieve satura-
tion of the resistivity as compared to ν = 3/2 [36,38], which
can be interpreted as an enhanced susceptibility to induce
full valley polarization. The number of FQH states observed
in AlAs is rather limited, but we hope that our study will
motivate the realization of samples with fractions closer to

Ecf Ecf

ωcf

Δv

(a) (b)

(c) (d)

FIG. 4. Resistance traces of the p = −3 Jain states surrounding
ν = 3/2 and ν = 1/2 as a function of strain-induced valley splitting
from Ref. [36]. The trace near ν = 3/2 in panel (a) can be understood
assuming that the spontaneous valley splitting �v , if present, is
smaller than the effective cyclotron energy of composite fermions
h̄ωc. However, we propose that the resistance trace surrounding
ν = 1/2 in panel (b) implies an spontaneous valley splitting that is
larger than the composite fermion effective cyclotron splitting.

half filling where the trends might offer a closer look into
the physics of the composite Fermi sea state. We also hope
that our study motives future theoretical explorations of the
role of aspects beyond the ideal model we have considered, in
particular, on the impact of Landau level mixing.

V. DISCUSSION AND SUMMARY

The Stoner transition that we have encountered is accom-
panied by spontaneous breaking of discrete space symmetries.
Specifically, the π/2 rotation composed with valley exchange
is spontaneously broken. The remaining rotational symmetry
is a π rotation. Thus, from the symmetry point of view, our
state has an Ising nematic character analogous to the quantum
Hall ferromagnet at ν = 1 [39,40]. However, it is crucially
different in that it is an itinerant system with a gapless Fermi
surface unlike the state at ν = 1 which has a fully gapped
bulk spectrum. Our Ising nematic Stoner transition also differs
from a pomeranchuk Ising nematic transition (such as those
recently studied numerically in Refs. [41–43]), because in
our case the broken symmetry is not a pure space symmetry
but includes a composition with a pseudospin operation [44].
It also differs from other higher angular momentum channel
instabilities such as those considered in Refs. [45].

We would like to comment on other proposals for the
realization of Stoner-like CFLs which are distinct from ours.
Reference [46] proposed a Stoner instability for isotropic
CFLs of higher order flux at lower filling fractions supported
by trial wave-function calculations. Another proposal is the
interlayer coherent CFL phase in quantum Hall bilayers [47].
To the best of our knowledge, there is no experimental support
for the realization of either of these proposals. More recently
Stoner magnetism in the n = 1LL of graphene was put forth
in Ref. [48]. Experiments [49] have uncovered several incom-
pressible states in the n = 1LL of graphene, but, there is no
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direct experimental evidence as of yet for the proposed Stoner
state of composite fermions to the best of our knowledge.

Our results are consistent with the fact that as a function of
mass anisotropy the two-component half-filled n = 0 LL of a
system with the symmetry of AlAs undergoes a spontaneous
polarization transition from a composite Fermi sea state of
equal occupation of both flavors into one in which a single
flavor is occupied as the mass anisotropy is increased, in
a manner analogous to the Stoner picture of magnetism of
itinerant magnets. This conclusion is drawn on the remarkably
good agreement of a simple model based on two composite
fermion Fermi seas to reproduce the quantum numbers of
finite size systems in the torus, for both the fully polarized
state in which the composite fermions have an elliptically
shaped Fermi surface as well as partially polarized cases.
We note that for all the system sizes that we have reached
we find that the unpolarized state transitions through a series
of intermediate states with partial polarization and we have
found evidence that the intermediate states with partial polar-
ization have quantum numbers that can be explained within
the picture of two composite Fermi surfaces of different sizes
for each flavor. Additionally, we have found experimental
evidence of the physics of Stoner magnetism in the Jain states
surrounding ν = 1/2 in AlAs quantum wells, lending support
to the belief that our findings remain robust after including
more realistic corrections to our ideal model. We also hope
that our study motives future theoretical explorations of the
role of aspects beyond the ideal model we have considered, in
particular, on the impact of Landau level mixing.
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APPENDIX: ANISOTROPIC SINGLE-COMPONENT
COMPOSITE FERMI SEAS

In this section, we briefly review the single component
CFL trial states. The classic wave function describing the
composite Fermi sea in the half-filled Landau level was in-
troduced by Read and Rezayi [17], motivated by the field
theoretic description of Halperin, Lee, and Read [3] and as
a natural generalization of the fractional quantum Hall Jain
wave functions [4]. The wave function can be written as:

�CFL = PLLL
[
�FL�Bose

1/2

]
, (A1)

where �Bose
1/2 is the bosonic Laughlin wave function at total

filling ν = 1/2 and �FL is the Slater determinant of a non-
interacting Fermi gas at zero magnetic field. PLLL projects
the wave function onto the lowest Landau level. Explicit
evaluations involving this wave function are commonly done
in the disk or sphere geometry as it is nontrivial to perform the
projection in the torus geometry (see, however, Refs. [23,24]).
A convenient way to write the composite Fermi liquid state on

the torus was introduced by Rezayi and Haldane [19]:

|�CFL({ki})〉 = det(eiki ·R̂j )
∣∣�Bose

1/2

〉
. (A2)

Here, the Bosonic Laughlin wave function is viewed as a state
|�Bose

1/2 〉 of Ne bosons, upon which the operator det(eiki ·R̂j )
acts. {ki} is a set of Ne distinct 2D vectors that parametrize
the state and R̂j is the guiding center operator of particle
j . Because the guiding center operators are intra-Landau
level operators this wave function is manifestly in the lowest
Landau level, and the antisymmetrization of the determinant
guarantees that the state |�CFL({ki})〉 describes fermions.

To gain physical insight into this wave function, it is
convenient to replace guiding center operators in favor of
magnetic momentum operators, which are the generators of
the intra-Landau level magnetic translation algebra. The mag-
netic momentum Q̂ is a rotated and rescaled version of the
guiding center operator: R̂ = l2ẑ × Q̂. Using this relation the
wave function can be rewritten as the action of nontrivial
translation operator on the particles of the bosonic Laughlin
state

|�CFL({di})〉 = det(t̂j (di ))
∣∣�Bose

1/2

〉
, di ≡ −l2ẑ × ki , (A3)

where t̂j (di ) = eidi ·Q̂j is a magnetic translation operator act-
ing on particle j by an amount di . Equation (A3) provides an
appealing picture of the composite Fermi sea as a quantum
liquid of fermionic dipoles, first advocated by Read [18].
When the bosonic state, �1/2, is viewed as a function of a
single coordinate zi while other coordinates are held fixed, zi

has a zero of degree 2 at any other particle position zj . After
the action of det(tj (di )), the resulting function of zi has no
longer the zeros at zj but instead at zj + dj . Thus this wave
function is in a sense one in which the zeros are displaced
relative to the bosonic state in such a way so that the state is
fully antisymmetric [50]. It is clear that the trial state with the
minimal energy would be that in which the set of {di} have
minimal magnitude and hence are distributed in a disk around
the origin. This is the energetic origin of the Fermi sea state.
On this basis, a simple model for the energy of this state as
a function of the set {di} or equivalently {ki} can be written
as [25]:

E[{ki}] = E0 + 1

Ne

∑
i<j

ε(ki − kj )

≈ E0 + 1

Ne

∑
i<j

|ki − kj |2
2m∗ , (A4)

here E0 is an energy on the order of the Bosonic Laughlin
state ground state energy, which would be the energy of a
state in which the statistics allow all the particles to condense
into a common k. When the system is placed on a torus only
a discrete subset of single particle magnetic translations are
compatible with fixed boundary conditions [21]. This implies
that the displacement vectors belong to a lattice

d ∈ m1L1 + m2L2

Nφ

, m1,2 ∈ Zmod(Nφ ), (A5)

where L1,2 are the principal vectors of the torus. Because
of its high symmetry the bosonic Laughlin state forms at
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zero many-body momentum, and therefore the many-body
momentum of the corresponding composite Fermi sea state
is determined completely by the displacement wave vectors.
For simplicity we consider a rectangular torus. Then, the
many-body momentum of the CFL state will be

K = ẑ
l2

×
∑

i

di = 2π

(
−

∑
i m2i

L1
,

∑
i m1i

L2

)
, (A6)

where (m1i , m2i ) are the integers describing the dipolar dis-
placement of particle i from Eq. (A5), and the sums are
defined modulo Ne [26]. Notice that this description of the
Fermi liquid state has redundancies which can be viewed as
gauge degrees of freedom. In particular, changing the overall
origin of the dipole lattice, and hence the origin of momentum,
leads to the same physical state.
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