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Kitaev’s honeycomb-lattice spin-1/2 model has become a paradigmatic example for Z2 quantum spin liquids,
both gapped and gapless. Here we study the fate of these spin-liquid phases in differently stacked bilayer versions
of the Kitaev model. Increasing the ratio between the interlayer Heisenberg coupling J⊥ and the intralayer Kitaev
couplings Kx,y,z destroys the topological spin liquid in favor of a paramagnetic dimer phase. We study phase
diagrams as a function of J⊥/K and Kitaev coupling anisotropies using Majorana-fermion mean-field theory,
and we employ different expansion techniques in the limits of small and large J⊥/K . For strongly anisotropic
Kitaev couplings, we derive effective models for the different layer stackings that we use to discuss the quantum
phase transition out of the Kitaev phase. We find that the phase diagrams depend sensitively on the nature
of the stacking and anisotropy strength. While in some stackings and at strong anisotropies we find a single
transition between the Kitaev and dimer phases, other stackings are more involved. Most importantly, we prove
the existence of two novel macrospin phases, which can be understood in terms of Ising chains that can be
either coupled ferromagnetically or remain degenerate, thus realizing a classical spin liquid. In addition, our
results suggest the existence of a flux phase with spontaneous interlayer coherence. We discuss prospects for
experimental realizations.
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I. INTRODUCTION

Quantum spin liquids [1–3] constitute a fascinating class
of many-body phases which have attracted tremendous at-
tention over the past decades: on the one hand, they feature
properties like fractionalization, topological order, and long-
range entanglement, all of fundamental interest in the context
of understanding and classifying phases beyond Landau’s
paradigm of symmetries and spontaneous symmetry breaking.
On the other hand, quantum spin liquids may hold the key
to understanding unsolved puzzles in the physics of cuprate
superconductors [4], and their excitations have been discussed
as elements for topological quantum computation [5,6].

Kitaev’s honeycomb-lattice model [5] is a particular spin
model realizing a quantum spin liquid with emergent Z2

gauge structure. It is a rare example of an exactly solvable
spin model in two space dimensions (2D), thanks to an
infinite number of conserved quantities, which has allowed the
community to obtain a large number of exact or quasiexact
results, including dynamical spin correlations [7] as well as
thermodynamic and transport properties [8–10]. Generaliza-
tions to other lattices, preserving the exact solubility, have
been proposed in both 2D and 3D [11–17]. Moreover, the
Kitaev model has been used as a controlled starting point
for investigations beyond integrability, for instance, targeting
metallic and superconducting phases of systems with highly
anisotropic magnetic interactions [18–21].

In this paper, we consider different bilayer versions of the
Kitaev model, with antiferromagnetic Heisenberg coupling
between the layers. The motivation is twofold. (i) Given that

the two limits—a Z2 spin liquid and a featureless dimer
paramagnet—are phases without spontaneously broken sym-
metries, a key question is whether they are separated by
a single (topological) quantum phase transition, or whether
additional phases—with or without symmetry breaking—
intervene. (ii) For transitions without symmetry breaking, it
is interesting to determine their characteristics. For instance,
a continuous transition out of a Z2 topological phase, i.e.,
a spinon confinement transition, is expected to be driven by
the condensation of visons and described by a Z2 gauge
theory [22–26]. This continuous quantum phase transition has
indeed been found in perturbing the anisotropic limit of the
honeycomb Kitaev model [27–31].

We attack the problem from different directions: we em-
ploy a Majorana-based mean-field theory, which enables us
to determine phase diagrams covering the entire parame-
ter space and moreover becomes exact in the isolated-layer
limit. In addition, we use bond-operator and series-expansion
techniques to describe the dimer phase at strong interlayer
coupling and its breakdown. Finally, we construct effective
models in the limit of strongly anisotropic Kitaev coupling
(i.e., the toric-code limit [6]), which we use to study the phases
and transitions in this limit.

A. Summary of results

The main results can be summarized as follows: differ-
ent stackings of the Kitaev x, y, z bonds, yielding different
symmetry properties, produce significantly different phase
diagrams, as summarized in Fig. 1. These differences are
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FIG. 1. Illustration of different stackings AA, AB, and AC (with two inequivalent choices of anisotropy) and schematic phase diagrams.
The critical J⊥/K for the transition from the MAC-AF and MAC-L phases to the DIM phase is obtained exactly at λ = 0 to be J⊥ = K/2 with
K = max(Kx, Ky, Kz ). As explained in Sec. V D, the DIM phase in the AA stacking is expected to be of greater stability compared to the
AB- and AC-stacked models because triplons in the AA stacking are fully localized. For various labels and further details we refer the reader
to the text.

particularly pronounced at strong anisotropies of the Kitaev
couplings.

In the following, we denote the Kitaev couplings by K

(in the isotropic case), while the J⊥ is the antiferromagnetic
interlayer coupling. We introduce an anisotropy for the Kitaev
layers by rescaling two of the three Kitaev couplings as
λK , where 0 � λ � 1, such that λ = 0 for a single-layer
Kitaev model yields decoupled (in-plane) dimers, while λ = 1
corresponds to the isotropic Kitaev model (see Sec. II and
Fig. 1 for a definition of the stackings and further notational
details).

For the AB and σ̄AC stackings, novel macrospin phases
(MAC) appear. The building blocks of MAC are emergent
Ising macrospins. Each chain, formed from the interlayer cou-
pling and a strong Kitaev coupling, constitutes a macrospin.
These chains can be mapped, in the fully anisotropic limit, to
an Ising chain in a transverse field. Given the exact solubility
of this effective model, the phase diagrams thus become exact
in the anisotropic limit λ → 0. In particular, the transition
from MAC to the trivial dimer phase (DIM) is located at
J⊥/K = 0.5. Notably, in the σ̄AC stacking, this collection of
Ising macrospins has a macroscopically large degeneracy even
at finite interchain couplings (i.e., when going away from the
anisotropic limit), thus realizing a classical spin liquid, while
in the AB stacking, the coupling of the macrospins leads to
antiferromagnetic long-range order.

In the AA and σAC stackings, the anisotropic limit λ → 0
leads to decoupled in-plane dimers (interlayer plaquettes), and
only a single transition between the Kitaev spin liquid (KSL)
and DIM occurs. We perturbatively derive effective models for
the breakdown of KSL in the anisotropic limit and at small J⊥
for both stackings. We then perform a mapping to a dual Ising
model (with higher-order plaquette-interactions) for the AA
stacking, exploiting the fact that there are conserved quantities
at finite J⊥ (in contrast to the other stackings). In the dual
effective model, the transition from the topological KSL to

the trivial dimer phase corresponds to a transition from a
pseudospin-polarized state to a symmetry-broken phase. The
analysis of the dual model shows that the KSL-DIM transition
in the AA stacking lies in the (2+1)D Ising universality class,
and the critical interlayer coupling scales as J⊥/K ∝ λ4,
where λ parametrizes the anisotropy. We further argue that in
the σAC stacking the transition can be expected to be of first
order.

Finally, our mean-field results suggest the existence of a
phase (dubbed FLUX) with spontaneous interlayer coherence.
This phase masks the transition between KSL and DIM close
to the isotropic point in the AA stacking and is akin to an
exciton condensate phase. We find that inversion symmetry is
spontaneously broken in this phase, resulting in the sponta-
neous formation of π fluxes of the Z2 gauge field in interlayer
plaquettes. Importantly, broken inversion symmetry allows the
itinerant Majorana fermions to be gapped for all parameter
regimes. This is to be contrasted to KSL, for which we
argue that no single-Majorana hopping processes can occur,
which also implies that the nodal points in the spectrum are
protected.

B. Outline

The remainder of the paper is organized as follows. In
Sec. II, we introduce the bilayer Kitaev models and discuss
their symmetry properties. Section III describes the Majorana
mean-field theory and its results for the different stackings, in
particular mean-field phase diagrams. In Sec. IV, we outline
the series expansion techniques used. Section V presents
the results for the one-triplon dispersion obtained through
series expansion in the paramagnetic phase for various stack-
ings and anisotropies. In Sec. VI, we focus on the limit
of strongly anisotropic Kitaev couplings, where controlled
analytical progress can be made. In particular, we derive
effective models for two different stackings which allow us

155101-2



BILAYER KITAEV MODELS: PHASE DIAGRAMS AND … PHYSICAL REVIEW B 98, 155101 (2018)

to deduce properties of phases and phase transitions in the
anisotropic limit. The novel macrospin phases are discussed in
Sec. VII, where we derive effective models and discuss both
the antiferromagnetic state as well as the classical spin liquid.
In Sec. VIII, we discuss the stability of the Kitaev spin liquid
against a small interlayer coupling, and the possibility of flux
phase with spontaneous interlayer coherence. A discussion
closes the paper.

II. MODEL AND STACKING

We consider two stacked honeycomb layers, with spins 1/2
on each lattice site denoted by Smi , where i is a site index in
each layer and m = 1, 2 is the layer index, such that i also
labels interlayer dimers of adjacent sites. In our study, we
assume that the two layers are stacked such that the sites of
two layers are on top of each other, as opposed to, e.g., Bernal
stackings.

A. Hamiltonian

The construction of the Kitaev model is based on distin-
guishing three sets of mutually parallel bonds on the honey-
comb lattice; we will denote these sets by 1,2,3. In a single-
layer Kitaev model, each set is assigned to a spin component,
123 → xyz, to form Ising bonds. For the bilayer model, we
will use identical bond numbers for both layers, and define a
layer Hamiltonian as follows:

Hαβγ
m =−

∑
〈ij〉1

KαSα
miS

α
mj −

∑
〈ij〉2

KβS
β

miS
β

mj

−
∑
〈ij〉3

Kγ S
γ

miS
γ

mj , (1)

where 〈ij 〉 denotes nearest-neighbor sites. We assume fer-
romagnetic Kitaev interactions, Kα > 0, however there is a
duality transformation, which inverts all Kitaev couplings
Kα → −Kα (cf. Sec. II B), such that the results for ferromag-
netic Kitaev couplings presented in this paper also hold for
antiferromagnetic Kα . The interlayer coupling is of Heisen-
berg type with strength J⊥ > 0:

H⊥ = J⊥
∑

i

�S1i · �S2i . (2)

For the bilayer model, different stackings of the bond
flavors xyz are possible, as illustrated in Fig. 1. The case
with identical bonds in both layers, dubbed AA stacking in
the following, is described by the Hamiltonian

HAA = Hxyz

1 + Hxyz

2 + H⊥; (3)

of course, simultaneous cyclic permutations of the bond fla-
vors on both lattices lead to equivalent models. Using different
flavor assignments on both layers, various additional distinct
stackings are possible, such as

HAB = Hxyz

1 + Hyzx

2 + H⊥, (4)

HAC = Hxyz

1 + Hxzy

2 + H⊥. (5)

These stackings lead to different symmetry properties of the
full Hamiltonian, as we will discuss below.

We will consider the isotropic Kitaev models as well as
the case of anisotropic couplings. As shown by Kitaev [5],
increasing the anisotropy in a single-layer Kitaev model even-
tually gaps out the nodal points in the Majorana dispersion.
In the limit of strong anisotropy, the gapped phase can be
mapped to Kitaev’s toric code [6].

In the following, we parametrize the anisotropy in the
AA and AB stacking as Kx = Ky = λKz, where 0 � λ � 1,
yielding one strong and two weak bonds. For the AC stacking
however, there are two inequivalent choices of anisotropy,
depending if a mirror reflection σ along the x bonds (see
Sec. II B for an extended discussion of the symmetries of the
model) is preserved under the anisotropy, with Ky = Kz =
λKx , or broken, for instance by choosing Kx = Ky = λKz.
For notational convenience, we will call the former the σAC
stacking, and use σ̄AC to refer to the latter case. Obviously,
at λ = 1 these two notations refer to the same model. We
also introduce the notation K = max(Kx,Ky,Kz) to mark
the largest of the Kitaev couplings.

It is clear that for dominant J⊥ � K the two spins within
an interlayer dimer form a spin-zero singlet independent of
the stacking, such that the full system is a featureless quan-
tum paramagnet. In the opposite limit, J⊥ 	 K , the system
consists of two weakly coupled Z2 spin liquids, which can
be expected to be stable. An important difference between the
stackings exists in the anisotropic limit λ → 0, where each Ki-
taev layer consists of Ising-coupled dimers: J⊥ couples these
dimers either to four-spin plaquettes (as is the case for the AA
and σAC stackings) or to chains (AB, σ̄AC), and this differ-
ence turns out to be important, see Sec. VI for more details.

B. Symmetries and conservation laws

The bilayer model with AA stacking inherits all symme-
tries of the single-layer Kitaev model. In the isotropic case
(λ = 1) these can be generated from the following unitary
operations: (i) a C3 lattice rotation combined with permuting
the spin components Sx → Sy → Sz → Sx , (ii) a reflection
symmetry σ across an axis perpendicular to the x bonds
combined with the spin transformation Sx → −Sx , Sy →
−Sz, Sz → −Sy , and (iii) an inversion of two spin compo-
nents by a π -rotation around the x axis, C∗

x : (Sx, Sy, Sz) →
(Sx,−Sy,−Sz), and similarly for C∗

y , C∗
z . In addition, the

AA-stacked model is trivially symmetric under (iv) layer
exchange: �S1i ↔ �S2i .

The π -spin-rotation symmetry (iii) is a local operation
and is thus also preserved for all variations of the stackings.
Notably, this particular local spin rotation symmetry implies
that the models considered here are symmetric under the
inversion of the Kitaev couplings Kα → −Kα , as we can find
an operation U under which the ferromagnetic Kitaev model
is mapped to the antiferromagnetic Kitaev model [32], and
this symmetry operation can be chosen to be identical in each
layer, such that U leaves the interlayer-coupling J⊥ �S1i · �S2i

invariant.
For the AB stacking, the C3 rotation symmetry is pre-

served, but the reflection symmetry (ii) is absent, and the layer
exchange (iv) is only a symmetry if followed by a C3 rotation.

Finally, in the case of AC stacking, the C3 rotation is not
a symmetry, while there is a reflection symmetry across the
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bond with the same interaction in both layers, i.e., the x-bond
in the model defined in Eqn. (5). Analogous to the AB stacked
model, layer exchange is a symmetry if combined with the
reflection operation σ . Introducing a finite anisotropy (λ < 1),
all symmetries [except (iii)] detailed above are spoiled, with
the exception that in the AA- and σAC-stacked models, a
reflection symmetry across the strong bond is retained.

While the single-layer Kitaev model is characterized by the
conservation of Ising fluxes

Ŵp = Sx
1 S

y

2 Sz
3S

x
4 S

y

5 Sz
6 (6)

for sites 1, . . . , 6 along each individual plaquette, this con-
servation law is spoiled by the interlayer coupling. However,
for the AA stacking, the product of fluxes in intralayer pairs
of plaquettes, �̂p ≡ Ŵ

p

1 Ŵ
p

2 , is still conserved. This implies
a thermodynamically large number of conserved quantities,
but cannot be obviously used to solve the model exactly. In
contrast, for both AB and AC stackings, there are no such
conserved fluxes.

III. MAJORANA MEAN-FIELD THEORY

In the following section, we employ a Majorana-based
mean-field theory in order to map out the full phase diagram
of the model. The advantage of our approach is that the
mean-field theory is exact in the limit J⊥ = 0, i.e., reproduces
the Kitaev spin liquid physics for the two decoupled layers.

A. Majorana representation

The Kitaev honeycomb model defined on each layer (1) can
be solved exactly [5] by introducing four Majorana fermions
χμ with the anticommutation relations {χμ, χν} = δμν . The
spin representation Sα

K = iχ0χα reproduces the SU(2) spin
algebra as long as the (gauge) constraint D ≡ 4χ0χ1χ2χ3 =
1 is satisfied.

In order to elucidate pecularities of Kitaev’s spin rep-
resentation, we make the connection to more conventional
slave-fermion approaches, which decompose the spin as Sα =
f †

σ τα
σσ ′fσ /2 with two canonical fermions f↑, f↓. Mapping

the above expression to Majorana fermions with f↑ = (χ0 +
iχ3)/

√
2 and f↓ = (iχ1 − χ2)/

√
2 then yields a different

Majorana spin representation that uses all four Majorana
fermions per site,

Sα = i

2

(
χ0χα − i

2
εαβγ χβχγ

)
= i

4
χT Mαχ , (7)

with χ being a real Majorana 4-vector and

M1 = τ 3 ⊗ iτ 2, M2 = iτ 2 ⊗ τ 0 and M3 = τ 1 ⊗ iτ 2 (8)

suitably chosen SO(4) matrices, which are to be understood as
the Majorana analog of the Pauli matrices acting on the spinor
(f↑, f↓)T [20]. Note that the above representation can be seen
to be equivalent to Kitaev’s representation by employing the
Hilbert-space constraint D = 1. The representation (7) admits
a redundancy χ → Gαχ , where

G1 = −τ 0 ⊗ iτ 2,

G2 = −iτ 2 ⊗ τ 3 and G3 = −iτ 2 ⊗ τ 1 (9)

are three SO(4) matrices which commute with the Mα and
form another representation of SU(2). The matrices Gα can
be understood as an analog of Pauli matrices for the Nambu
spinor (f↑, f

†
↓ )T . Accordingly, we can form an isospin J α =

i/4χT Gαχ . It can be seen that the (gauge) constraint amounts
to working in the subspace of states |ψ〉, which are isospin sin-
glets, J α |ψ〉 = 0, guaranteeing that the local physical Hilbert
space is indeed two-dimensional.

Kitaev’s spin representation is finally obtained by consid-
ering the difference

Sα
K ≡ iχ0χα = Sα − J α. (10)

When using this spin representation, it is clear that in order to
realize symmetry operations acting on Sα

K, the transformation
needs to act both on the physical spin sector and the isospin
(gauge) sector in the same manner—this is precisely the
projective realization of symmetry operations characteristic
for quantum ordered states [33]. For the Kitaev model, we
find that an identical operation needs to act on the spin and
isospin, known as “spin-gauge locking” [18]. In this case
and with above choice of matrices, a joint spin- and gauge
transformation

χ → RG RMχ (11)

treats the χ0 Majorana as a scalar, while χα transforms as
a three-dimensional vector. Importantly, the resulting mean-
field Hamiltonian with a chosen ansatz also has the property
that symmetries need to be realized projectively, as described
above. In the isotropic case, we also tested the spin represen-
tation (7) as recently used in Ref. [20] and find qualitative
(and semiquantitative) agreement with the results obtained by
using Kitaev’s spin representation.

B. Mean-field theory

We first treat a decoupled layer of the model (1) in a mean-
field approximation by employing the spin representation in
Eq. (10). Performing the mean-field decoupling, we obtain
[18,20]

Hxyz
m = −

∑
α=x,y,z

∑
〈ij〉α

KαSα
miS

α
mj

→
∑

α=x,y,z

∑
〈ij〉α

Kα
[
uα

ij iχ0
i χ0

j + u0
ij iχα

i χσ
j − u0

ij u
α
ij

]
,

(12)

where the 〈ij 〉α denotes a bond of type α = x, y, z. The real-
valued Majorana-bilinear mean fields are given by

u0
ij = 〈

iχ0
i χ0

j

〉
and uα

ij = 〈
iχα

i χα
j

〉
(13)

on 〈ij 〉α links. We assume translational invariance, such that
u0 and uα are parametrized by their respective values on
x, y, z links, and choose the convention that i ∈ A and j ∈ B

sublattice. In the remainder, we employ the notation u0(α) and
uα (α) to denote the values of u0,α on 〈ij 〉α links.

The resulting Majorana-bilinear Hamiltonian can then
straightforwardly be diagonalized in momentum space. The
isospin singlet constraint discussed in the previous subsec-
tion is enforced on average by the use of three Lagrange
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multipliers λα , however, we find that for all parameter regimes
discussed here, the constraint is readily satisfied for λα = 0.

The solutions to the mean-field equations at T = 0 are
given by

u0(α) = ± 1

N

∑
k∈BZ/2

cos(φ(�k) − �k · �nα ), (14a)

uα (α) = ∓0.5, (14b)

for the bonds α = x, y, z and φ(�k) = arg
∑

α Kαei�k·�nα , where
�nα denote the lattice vectors, using the convention �n1/2 =
(±1,

√
3)T /2 and �n3 = 0. The solutions to mean-field equa-

tions yield a single Majorana band with a Dirac cone as well as
three flat bands corresponding to the χα Majoranas localized
on α bonds. There is a Z2 freedom in choosing the global
sign of the pair u0,α on each bond as long as the relative sign
between u0(α) and uα (α) is fixed.

The mean-field theory can be related to the exact solution
of the Kitaev model by noting that the mean-field parameters
uα essentially correspond to the Z2 gauge field in its ground
state (i.e., flux-free) configuration. We, however, stress that
the flat bands do not correspond to the static excitations of the
gauge field [20].

Considering the bilayer models, the interlayer Heisenberg
interaction H⊥, which constitutes a quartic interaction for the
Majorana fermions can be decoupled in an analogous manner
to (12), yielding the mean-field Hamiltonian

H⊥ = −J⊥
∑
i,α

[
iw0

i χ
α
1iχ

α
2i + iwα

i χ0
1iχ

0
2i − w0

i w
α
i

]
, (15)

where the real-valued mean fields are given by w
μ

i = 〈iχμ

1iχ
μ

2i〉
for μ = 0, α. Considering the Majorana 4-vectors χ , the
mean-field parameters can be written in a matrix W . The
decoupling (15) corresponds to a diagonal W , however, also
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FIG. 2. Mean-field phase diagram for the AA stacking. First-
(second-) order transitions are marked with thick (thin) lines. The
KSL phase becomes gapped when λ < 0.5 (marked by a dashed
line), while all other phases occurring are gapped for all parameter
regimes. As discussed in Sec. III C, we consider the DIM’-phase to
be an artifact of mean-field theory, and the transition at J⊥/Kz =
0.58 can be expected to become a crossover when going beyond
mean-field theory.
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FIG. 3. Mean-field parameters [34] obtained from the Majorana
mean-field theory as a function of J⊥/K with Kitaev couplings
Kx = Ky = λKz. In the interest of clarity, we only show MFT
parameters u

0,α
0 in the lower layer, since, employing a Z2 redundancy,

u
0,α
1 = −u

0,α
0 . We denote the weak x and y bonds and correspond-

ing Majorana flavors with λ. Also note that w11 = w22 for the
chosen anisotropy. [(a)–(c)] AA stacking with varying anisotropies
λ = 0, 0.75, 1. Close to the isotropic point, a phase (FLUX) with
interlayer-coherence is observed. At strong anisotropies, the DIM’
dominates, which is separated from DIM by a second-order transi-
tion, which is expected to become a crossover beyond mean-field
theory.

decouplings with more general W are in principle possible, cf.
Ref. [20].

The Majorana mean-field theory (MMFT) discussed above
allows us to map out the phase diagram [35] at T = 0 as a
function of J⊥/K and anisotropy λ for the stackings illus-
trated in Fig. 1. Assuming unbroken lattice translation invari-
ance, the problem involves six chemical potentials (trivially
satisfied), and 8 + 4 real scalar mean-field parameters (2×4
for u

0,α
i (α), where i = 0, 1 is the layer index and 4 for wμ).

We solve the mean-field equations by means of an iterative
procedure, employing a momentum-space discretization of
24×24 points.

C. Results for the AA stacking

The phase diagram as obtained from MMFT for the AA
stacking is shown in Fig. 2, with four mean-field phases to be
discussed below. A plot of mean-field parameters as a function
of J⊥/K for various values of λ is shown in Fig. 3.

At J⊥ 	 K and for all λ, we find a phase for which the
u0, uα mean fields are equal to the Kitaev spin-liquid param-
eters as shown in (14), and wμ = 0 holds. On a mean-field
level, the phase labeled KSL in Fig. 2 is thus identical to the
decoupled limit J⊥ = 0. Beyond mean-field theory, we expect
this phase to be adiabatically connected to the J⊥ = 0 limit.
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Crucially, the nodes in the spectrum of the matter Majorana
are protected against the perturbation H⊥, see also Sec. VIII.
Due to our parametrization of the anisotropy, decreasing λ

implies a lowering of the global energy scale for the KSL, so
that the critical J⊥/K for any transition out of the KSL phase
is expected to decrease as λ decreases.

As we increase J⊥/K for anisotropies with λ � 0.27, we
encounter a second-order transition to a phase labeled FLUX.
In contrast to KSL, the interlayer Heisenberg mean-fields in
this phase are finite and of the form

wμ = (w0, wa,wa,wb ). (16)

The Kitaev mean-field parameters u0,α �= 0 attain numerically
different values compared to the previous phase, however, still
preserve a structural similarity to the values in KSL, and thus
can be seen to emerge continuously from the J⊥ = 0 limit.
The fact that the Kitaev mean-fields are only renormalized
indicates that the quantum order (by which we refer the
projective realization of symmetries, cf. Sec. III A) of the spin
liquid is preserved.

The structure (with wb �= wa) is a direct result of the
spoiled rotational symmetry in the presence of anisotropy.
Choosing the anisotropy on a different bond, the solutions
would be related by a PSG transformation which, as noted in
Sec. III A, effectively treats the χ0 Majorana as a scalar and
the χα as a three-component vector. In the case of λ = 1, the
rotational symmetry is restored, with wb = wa .

We observe that, crucially, the u0,α mean-field parameters
in FLUX have opposite signs on the two layers, implying a
breaking of the global point inversion symmetry. Note that
we can perform a Z2 gauge transformation on one sublattice
such that the u0,α have identical signs on both layers, however,
this transformation leads to an alternating wμ on the A and
B sublattices, thus again breaking inversion symmetry. As
inversion symmetry is broken, the nodal points are no longer
protected, and the presence of finite Heisenberg interlayer
mean fields wμ implies the opening of the gap of the itinerant
Majorana mode in FLUX for all λ, in contrast to KSL which
is gapless for λ > 0.5.

The peculiar sign structure of the mean-field parameters
implies that the itinerant χ0-Majorana fermion picks up a π

flux when going around an elementary four-spin plaquette
involving two interlayer dimers and a bond from each layer.
For a further discussion of the stability of KSL and the
emergence of FLUX we refer the reader to Sec. VIII.

Upon increasing J⊥/K further for λ = 1, a second-order
transition from FLUX to DIM occurs; in DIM, the mean-field
parameters u0, ua → 0 and wμ = − 1

2 (1, 1, 1, 1), and conse-
quently all Majorana fermions transform purely by means
of physical transformations, χ → RMχ , and W ∝ 1 is the
only ansatz compatible with all symmetries. In this phase, the
Kitaev spin-liquid physics is completely absent, and all sym-
metries are preserved—thus the mean-field ansatz transforms
as a trivial representation of SU(2). Further u0,α = 0 implies
that the Hamiltonian H = H⊥ is local and portrays singlet
formation between the local moments in the two layers, as
expected in the limit J⊥/K � 1.

At all λ < 1, an intermediate DIM’ phase appears, bounded
by a first-order-transition into KSL, a second-order transition
into FLUX, and a second-order transition into DIM. The phase

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
J⊥/Kz

0.0

0.2

0.4

0.6

0.8

1.0

λ

0.52

gapped
gapless

KSL

MAC

DIM

FIG. 4. Mean-field phase diagram for the AB stacking with an
anisotropy Kx = Ky = λKz. First- (second-) order transitions are
marked with thick (thin) lines.

DIM’ features vanishing u0,α parameters on the weak x and y

bonds, and finite values on the z bonds. The interlayer mean
fields are now of the form

wμ = (
w0,− 1

2 ,− 1
2 , wb

)
, (17)

with w0, wb → −1/2 as we approach the transition to the
DIM phase for J⊥ � Kz. Choosing an anisotropy on a dif-
ferent link type results in a mean-field solution where the last
three components in Eq. (17) are permuted accordingly. We
note that the nature of the mean-field parameters wμ can be
understood by considering that at λ = 0 (cf. Fig. 3), the x and
y Majoranas in the Kitaev Hamiltonian constitute zero modes.
Turning on a finite J⊥, these become localized modes on
the interlayer dimers with 〈iχ1χ2〉 = −1/2, as also obtained
numerically in Eq. (17).

In the following, we argue that the DIM–DIM’ transition,
occurring at J⊥/K ≈ 0.58 independent of λ, is an artifact of
mean-field theory. Consider first λ = 0. Here we can analyze
the eigenenergies and eigenstates the four-spin Hamiltonian

H⊥ = J⊥(�S1 · �S2 + �S3 · �S4) − Kz
(
Sz

1S
z
3 + Sz

2S
z
4

)
. (18)

For Kz = 0, the ground states are trivially given by two spin
singlets. As we turn on a finite Kz, we observe a continuous
evolution of the ground state to the Kz/J⊥ � 1 limit without
signs of an (avoided) level crossing, thus showing a crossover
behavior. The finite gap implies that this behavior persists to
finite λ. Hence the second-order transition between DIM’ and
DIM observed at J⊥ � 0.58 is a mean-field artifact, and both
DIM and DIM’ should be considered to represent a single
dimer phase adiabatically connected to the J⊥/K → ∞ limit.

D. Results for AB stacking

The quantitative mean-field phase diagram for the AB
stacking is shown in Fig. 4. We discuss the three occurring
phases below. At λ � 0.58, we find a first-order transition
between the spin liquid KSL to the dimer phase DIM, with
the Heisenberg mean fields W vanishing in KSL and taking a
uniform form wμ = ±1/2 (as for the AA stacking),
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0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
J⊥/Kz

−0.6

−0.4

−0.2

0.0
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u
,w

AB,
λ = 0.25

KSL

MAC DIM

−1.2

−1.0

−0.8

−0.6

−0.4

−0.2

E

u0
0(z)

u0
0(λ)

u3
0(z)

uλ
0(λ)

w00

w11

w33

E

FIG. 5. Mean-field parameters [34] for the AB stacking obtained
from the Majorana mean-field theory as a function of J⊥/K with
anisotropic Kitaev couplings Kx = Ky = λKz with λ = 0.25. The
mean-field parameters in the MAC-phase describe decoupled chains.
Since the chains are decoupled on mean-field level, the MFT param-
eters for MAC in the AC-stacking are identical.

respectively. The values of the mean fields in vicinity of the
transition in each phase are identical to those at the limits
J⊥ = 0,Kα �= 0, and Kα = 0, J⊥ �= 0, respectively. The crit-
ical J⊥/K � 0.52 is thus fully determined by the energetics
of the decoupled QSL and dimer phases, respectively.

Below λ � 0.58, however, an intermediate phase, which
we call MAC, emerges. A plot of the evolution of mean-
field parameters as a function of J⊥/K is shown in Fig. 5.
Remarkably, the critical J⊥ for the transition between MAC
and DIM is only weakly dependent on λ and extends down
to the limiting case of λ = 0 at J⊥ � 0.39. This is in stark
contrast to the previously discussed AA stacking, for which in
the anisotropic limit an infinitesimal J⊥ suffices to enter the
DIM’ phase (which is to be considered part of the DIM-phase
beyond mean-field theory).

Considering the anisotropic limit, we note that the model
now effectively consists of chains formed from the strong
dimers in the upper and lower layer, connected via the Heisen-
berg interaction, as shown in Fig. 6. This chain can be viewed
as an effective one-dimensional (1D) hopping problem for the
itinerant Majorana fermions. Decreasing the anisotropy, i.e.,
allowing a finite λ > 0, would result in an effective coupling
of the chains.

In mean-field theory however, finite (but small) mean-field
parameters are only induced on the z links in the lower and y

links in the upper layer, i.e., those links which would complete
the chains to ladders, but without interchain couplings. In
particular, we note that finite u0

0(z) and u0
1(y) are induced

even in the Ky = Kz = 0 limit, while the finite u3
0(z) and

u2
1(y) can be seen only to emerge when λ > 0, i.e., the finite

amplitudes for the localized Majoranas are induced by the

Kz

Ky

Kx
J⊥

Kz
Kx Ky

FIG. 6. Illustration of an effective zigzag chain in the MAC phase
for the AB-stacked model with strong anisotropy on the x bonds
(for visual clarity, a different anisotropy was chosen than in the main
text).

0 0.25 0.5
E

Γ M K Γ
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0.8

E

(a)

−6−4−2 0 2 4 6
kx

−6

−4

−2

0

2

4

6
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(b)

FIG. 7. Band structure in the MAC phase for the AB-stacked
model at J⊥ = 0.3 and λ = 0.28, showing a one-dimensional char-
acter due to hopping on chains. (a) Cut along high-symmetry lines.
(b) Energy of the lowest dispersing quasiparticle band (obtained by
removing flat bands resulting from localized excitations).

itinerant Majoranas on the bonds. The Heisenberg mean fields
wμ take the form wμ = (w0,−1/2,−1/2, wb ), where |wb| <

|w0|.
The effective one-dimensional character of this phase is

also evident in the spectrum, illustrated in Fig. 7 by a cut along
high-symmetry lines and a plot of the lowest quasiparticle
energy (after removing low-lying flat bands resulting from
the localized Majoranas). Notably we find that the spectrum
is gapped for all parameter regimes in the MAC phase. This
phase is further discussed in Sec. VII, where we also derive ef-
fective models by mapping the chains to effective macrospins.

E. Results for the σAC and σ̄AC stackings

The respective phase diagrams for the σAC- and σ̄AC-
stacked models are shown in Figs. 8 and 9. In the isotropic
case λ = 1, these phase diagrams coincide. There is an inter-
mediate phase with nonfinite mean-field parameters only on
the x bonds. This phase is identical to phase DIM’ previously
discussed for the AA stacking, which is separated from the

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
J⊥/Kx

0.0

0.2

0.4

0.6

0.8

1.0

λ

0.580.52

gapped
gapless

KSL

DIM
DIM′

FIG. 8. Mean-field phase diagram for the σAC stacking with a
symmetry-compatible anisotropy Ky = Kz = λKx . First- (second-)
order transitions are marked with thick (thin) lines.
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gapless
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FIG. 9. Phase diagram for the σ̄AC stacking with anisotropy
Kx = Ky = λKz, which spoils the reflection symmetry σ of the
AC stacking. First- (second-) order transitions are marked with thick
(thin) lines.

Kitaev spin liquid by an first-order transition at J⊥/K � 0.52
and from the dimer phase by a second-order phase transition
at J⊥/K � 0.58. The models become inequivalent upon de-
creasing λ < 1.

1. σAC stacking

When introducing the anisotropy on the x bonds, compati-
ble with the mirror symmetry σ , we observe that the first-order
transition between phases KSL and DIM’ extends down to
J⊥ = 0 as λ → 0, as visible in Fig. 8. In addition, we find that
the critical J⊥ for the second-order transition separating DIM’
and the dimer phase is independent of λ, for the same reasons
as explained in the AA stacking. Moreover, the mean-field
parameters in DIM’ are identical to those in the phase DIM’
in the AA stacking, such that we employ the same reasoning
as above to conclude that DIM’ is an artifact of our mean-field
theory and should be associated with the dimer phase.

2. σ̄AC stacking

At λ < 1, we find that the critical J⊥ for both the transition
from KSL to intermediate phase DIM’ and from DIM’ to DIM
are lowered—this is in contrast to the previous case, where the
transition from phase DIM’ to the DIM is independent of the
anisotropy λ. The fact that the DIM’-DIM transition depends
on λ is due to the fact that an anisotropy λ < 1 now weakens
the x bonds, and thus has an influence on the energetics of
the DIM’ phase in the σ̄AC stacking, thus also influencing the
critical J⊥/K for this (mean-field) transition.

At λ � 0.78, the phase DIM’ eventually terminates, yield-
ing a first-order transition between the KSL and dimer phases
(cf. Fig. 9). A further intermediate phase emerges at λ � 0.58,
with mean-field parameters being identical to those of the
MAC-phase (modulo necessary permutations relating the
different stackings) obtained in the AB-stacked model (cf.
above).

As for the AB stacking, the emergence of this phase can
be elucidated by an effective model of chains with the links

being the strong bonds, alternating between upper and lower
layer. We note that below λ � 0.58, the phase diagram is
fully equivalent to the phase diagram in the AB stacking.
We emphasize that in the AC stacking discussed here, the
couplings between the chains are only of Kx-type (as opposed
to AB stacking, where the chains are coupled both via Ky

and Kx), however, the corresponding mean-field parameters
for coupling the chains vanish, such that the mean-field phe-
nomenology for this phase is identical to the AB stacking.

IV. SERIES EXPANSION

While the Majorana mean-field theory described above is
exact in the limit J⊥/K = 0, it is not expected that results re-
garding the location and critical properties of phase transitions
in the bilayer Kitaev model are quantitatively reliable. How-
ever, progress can be made by considering series expansions
starting from exactly known limits.

In this work, we perform two series expansions. The first
is about the limit of isolated J⊥ dimers, i.e., in the dimer
phase where the nondegenerate ground state is adiabatically
connected to the product state of singlets for J⊥ = 0 and
excitations corresponds to spin-one triplons (dressed triplets)
[36]. The goal of this expansion is to extract expressions for
the ground-state energy and the one-triplon dispersion up to
high orders in perturbation. The second expansion is about
the limit of isolated Kz-Ising dimers (equivalently about Kx-
or Ky-Ising dimers). Here the ground state is extensively
degenerate and the purpose of the expansion is to derive an
effective low-energy theory for the anisotropic limit of the
Kitaev models, which results in two topologically ordered
Wen plaquette models coupled by the interlayer Heisenberg
exchange J⊥. Technically, both high-order expansions can
be realized with the help of perturbative continuous unitary
transformations (pCUTs) [37,38] and we describe its generic
aspects in the following.

One can always rewrite any Hamiltonian H exactly as

H = H0 +
Nλ∑
j=1

λjV (j ), (19)

where the sum runs over appropriate supersites and the λj are
the perturbative parameters. For the bilayer Kitaev model we
use two different dimers, J⊥ or Kz dimers, as supersites which
have an equidistant spectrum bounded from below.

The unperturbed part of H is diagonal in the dimers i of
the lattice and can be written as

H0 = E0 + Q, (20)

where E0 denotes a constant and Q is a counting operator of
local excitations. This decomposition of H0 is always possible
as long as the local spectrum of a supersite is equidistant.

Supersites interact via the perturbation V ≡ ∑
j λjV (j ).

For the bilayer Kitaev model, the perturbation V couples two
dimers in each of the two expansions. As a consequence of
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Eq. (20), one can rewrite Eq. (19) as

H = H0 +
N∑

n=−N

T̂n, (21)

so that [Q, T̂n] = nT̂n. Physically, the operator T̂n ≡∑
j λj T̂

(j )
n corresponds to all processes where the change of

energy quanta with respect to H0 is exactly n. The maximal
(finite) change in energy quanta is called ±N . For the bilayer
Kitaev model, N = 2 in both expansions.

In pCUTs, Hamiltonian (21) is mapped model-
independently up to high orders in perturbation to an effective
Hamiltonian Heff with [Heff ,Q] = 0. The general structure
of Heff is then a weighted sum of operator products T̂n1 · · · T̂nk

in order k perturbation theory. The block-diagonal Heff

conserves the number of quasiparticles (qp). This represents
a major simplification of the quantum many-body problem,
since one can treat each quasiparticle block, corresponding
only to a few-body problem, separately.

The more demanding part in pCUTs is model-dependent
and corresponds to a normal ordering of Heff for which the
explicit processes of H0 and V have to be specified. This is
most efficiently done via a full graph decomposition in linked
graphs using the linked-cluster theorem and an appropriate
embedding scheme afterwards. The details of the two expan-
sions can be found in Secs. V and VI.

V. SERIES EXPANSION IN THE DIMER PARAMAGNET

In this section, we list our findings for the perpendicular-
dimer pCUT starting from the limit J⊥/K � 1. In the follow-
ing, we set J⊥ ≡ 1 for convenience. Our results are comple-
mented by bond-operator theory as detailed in Appendix.

As from Sec. IV, the ground-state energy is obtained
from 〈0|Heff|0〉, where |0〉 = ∏

l |sl〉 is the product state
of isolated J⊥ dimers. For all stackings AA, AB, and
AC, we have obtained O(9) expansions of type E0 =∑

l+m+n�9 al,m,nK
x,lKy,mKz,n. Table I displays the coeffi-

cients of these series in the isotropic limit, i.e., Kx = Ky =
Kz ≡ K for all stackings. As can be read off from this table,
vacuum fluctuations for AA are strongest, leading to the
largest corrections to the ground-state energy. For the AB
stacking, e.g., only the quadratic term is significant.

For the one-particle excitations, i.e., Q = 1, we use
that for the effective Hamiltonian the parity, i.e., the
type α = x, y, z of the triplet is conserved upon disper-
sion, and we employ translational invariance of the hon-
eycomb lattice with its underlying two-site basis. In turn,
all dispersions E(k)α,μ, with μ = 1, 2 labeling two dis-
persing bands, follow from diagonalization of 2×2 matri-
ces of type heff (k)α,μν = ∑

rμ,rν
eik·δrμν 〈αrμμ|Heff |αrνν〉 −

δδrμν ,0E0, where |αrνν〉 refers to a parity-α triplet, on site rν ,
of basis element ν = 1, 2. We note that at general locations
in k space, the corresponding secular equation can imply that
E(k)α,μ is nonanalytic in Kx,y,z.

A. AA stacking

First, up to O(9) and consistent with the conservation laws
discussed, as well as the bond-operator theory detailed in

TABLE I. Expansion coefficients cn for ground-state energy E0

and energy gap � at BZ center � in isotropic case. Expansions are
of type

∑
n cnK

n.

n 0 1 2 3 4 5 6

E0,AA − 3
2 0 − 3

8 0 15
128 0 − 21

256

E0,AB − 3
2 0 − 3

16 0 1
256 0 1807

1179648

E0,AC − 3
2 0 − 1

4 0 11
384 0 − 10769

1769472

�AA 1 − 1
2

3
8

1
16 − 27

128 − 9
256

3
16

�AB 1 − 1
2 − 1

4
31
128

91
3072 − 7249

73728
8681

589824

�x
AC 1 − 1

2 − 1
4

11
32

29
192 − 4025

9216
42251
884736

�
y/z
AC 1 − 1

2
1
16

13
128 − 5

96
1505
73728 − 11359

294912

n 7 8 9

E0,AA 0 4941
65536 0

E0,AB 0 − 1217957
2264924160 0

E0,AC 0 13542397
10192158720 0

�AA
281

8192 − 13491
65536 − 5041

131072

�AB
801589

14155776 − 855668113
20384317440 − 52654093663

2446118092800

�x
AC

12128615
21233664 − 992526557

2038431744 − 667089160007
1223059046400

�
y/z
AC

3537217
84934656 − 1302565679

40768634880
30446086361

815372697600

Appendix, we find that all triplets remain dispersionless for
AA stacking.

B. Isotropic AB and AC stackings

Figure 10 displays the dispersion of both x triplons on a
path along high-symmetry directions in the BZ for K = 0.9 at
O(9). As is evident, even at this rather large interdimer cou-
pling, the dispersion is strongly anisotropic, with dominant
triplet hopping along the x-connected zigzag chains. While
at intermediate order of the expansion, we find exceptions,
there is a stable trend for the gap, i.e., the minimum of the
dispersion to be located at the BZ center, i.e., at k = � for
both AB- and AC stacking. For AB stacking, the x, y, z

Γ

1.4

1.1

Γ ΓM

0.5

0.8

0
K1 K1

K1

K2

K2

M

E(k)

FIG. 10. Dispersion E(k)α,μ for AB stacking, α = x, and μ =
1, 2 (Ocher, black) along high-symmetry directions in BZ. (Insets)
Dispersion contours for μ = 1, 2 (blue, orange).
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FIG. 11. [(a)–(c)] O(9) gap for all stackings and all distinct
triplet types vs K (in units of J⊥ ≡ 1) for the isotropic case:
Bare gap-series (bold solid black), Padé (solid red), and dLog-Padé
(dashed blue). (b) Bare upper μ = 2-triplet band-gap (thin solid
black) and noninteracting two-particle continuum (gray hatched).

triplons are degenerate up to rotational symmetry. For AC
stacking, the x triplon has an energy slightly lower than that
of the y and z triplons and marks the gap at �.

At �, the secular equations for the dispersions are complete
squares, allowing to express the series for the gap � =∑

n cnK
n without additional expansions of square roots. In

Table I, the coefficients cn are listed up to O(9). In Fig. 11,
the gap is analyzed in three ways.

First, the bare series is shown. In addition to that in
Fig. 11(b) the minimum of the upper triplet branch is also
depicted. As is evident from the boundary of the bare two-
triplet continuum of the lower triplet branch, also shown in
this panel, the upper triplet excitations are likely to decay into
multiparticle continua and will therefore be discarded from
further discussion. All bare series depicted turn critical at
K ∼ 1.

To assess this, we have generated order-[m, n] dLog-Padé
approximants to the bare gap-series for a reasonable set of
[m, n] ∈ [1 . . . 5, 1 . . . 8]. As is clear from the behavior of the
majority of these approximants in Figs. 11(a)–11(d), and in
stark contrast to all bare gap-series, for none of the stackings
a gap closure in the dimer phase seems likely in the range of
parameters J⊥/K ∼ 0.5 relevant to the MMFT at λ = 1. For

FIG. 12. Density of dLog-Padé approximant poles vs λ,J⊥/Kz

for AB- (left) and σ̄AC stacking (right). Extracted from Kz series for
fixed λ = Kx,y/Kz. Bin size δλ, δJ⊥/KZ ∼ 0.03 with color coding
from single poles (dark blue) to O(100) poles (green to red) per bin.

the AC stacking, higher order series would be of interest, to
further corroborate this.

Finally, Fig. 11 also displays plain [m, n]-Padé approx-
imants. Evidently, they are very similar to the dLog-Padé
approximants. This appears to be consistent with a (weak)
first-order transition, or the condensation of multiparticle
modes yielding a second-order phase transition, as expected
for a topological phase transition.

C. Anisotropic AB and σ̄AC stackings

Now, we turn to the triplet gap for anisotropic coupling.
For both AB and σ̄AC stacking and at λ = 0, we face de-
coupled 1D Kz-J⊥≡1 zigzag chains. These exhibit an ex-
act gap-closure � = 1 − Kz/2 at an intrachain wave vector
k‖,c = 0, consistent with the formation of a symmetry broken
macrospin state per chain (cf. Sec. VII), showing no disper-
sion along straight lines connecting the � and M points. First,
and as a direct check of our pCUT evaluation of E(k)α,μ,
which in practice is of O(9) in Kx,y,z, we find that this is the
case indeed.

Second, this exact critical behavior at λ = 0 can be ex-
tended to finite λ using dLog-Padé approximants. This al-
lows for direct comparison with the MMFT phase diagrams
from Figs. 4 and 9. To perform this analysis, and as shown
in Fig. 12, we scan the (λ, J⊥/KZ)-plane using [m, n]-
dLog-Padé approximants for a reasonable set of [m, n] ∈
[0 . . . 8, 0 . . . 8] to a sufficiently large number of series of a
single parameter Kz, generated from the gap-series depending
on all of Kx,y,z, such that Kx,y varies with Kz along lines
of slope λ, with Kx = Ky = λKz. All pole locations of the
dLog-Padé approximants are recorded in a 2D histogram,
the contours of which are shown in Fig. 12. As is very
obvious from this plot, and apart from a few spurious poles,
the continuous gap closure of the fully decoupled limit can
be traced up to λ ∼ 0.5 along an essentially vertical line.
This strongly corroborated the straight line for the MAC-DIM
transition found in Figs. 4 and 9, although with a shift of the
transition line to J⊥/Kz = 0.5.

We note that in contrast to the isotropic case, only z triplons
are the low-energy modes, accounting for the gap for λ < 1 in
AB-stacking, as well as for λ 	 1 in the σ̄AC-stacking. For
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the latter, and to revert back to the x triplon featuring the gap
in the isotropic case, the low-energy modes have to switch
roles between z and x triplons for some λ′ ∈ [0, 1]. While
the precise location of this point requires higher orders of the
pCUT, we speculate that λ′ ≈ 0.5.

For the critical wave vector kc of the gap closure, the series
results in two distinct scenarios. For σ̄AC, the linkage of the
1D Kz-J⊥≡1 zigzag chains by pairs of parallel Kx bonds
prevents dispersion of y and z triplets transverse to the zigzag
chains, identical to the lack of dispersion in any direction for
the AA stacking. Therefore the gap closure for the DIM-MAC
transition for the σ̄AC stacking does not select a specific k
point, but continues to occur along straight lines in momentum
space connecting the � and M points. This is consistent with a
transition into a state with intrachain antiferromagnetic order,
but interchain degeneracy. In contrast to this, for the AB
stacking, and already at the second order, i.e., O(KxKy ), the
series allows for triplet dispersion transverse to the zigzag
chains. We find that kc = 0 is selected for λ �= 0. This implies
a nondegenerate macrophase for the AB case and indicates
that the nature of the MAC phase depends sensitively on the
stacking.

D. Stability of the DIM phase

The fact that the triplons are strictly localized in the AA
stacking suggests that the dimer phase is more stable against
the effect of finite K , compared with the AB or σAC/σ̄AC
stackings. Consequently, we hence expect the critical J⊥/K

for the breakdown of the topological ordered spin-liquid phase
to be smaller than in stackings with dispersing triplons, as also
illustrated in the phase diagrams in Fig. 1.

VI. EFFECTIVE PLAQUETTE MODELS AND QUANTUM
PHASE TRANSITION IN THE ANISOTROPIC

AA AND σAC STACKINGS

In this section, we focus on the anisotropic limit of the bi-
layer Kitaev model with AA stacking and we ask the question
how the Abelian phases of the Kitaev model break down when
the interlayer coupling J⊥ is turned on. To this end, we derive
an effective model about the dimerized limit Kx,Ky, J⊥ 	
Kz of the bilayer Kitaev model using the pCUT method along
the lines of Refs. [40,41], as also outlined in Sec. IV. We
show that the exact local conserved quantities allow an exact
duality mapping of the most relevant low-energy sector of the
effective model for the AA stacking. This enables us to predict
a second-order quantum phase transition in the (2+1)D Ising
universality class between the Abelian topological phase and
the trivial quantum paramagnet upon increasing J⊥/K .

A. Mapping

In the limiting case Kx = Ky = J⊥ = 0, the model is a
collection of isolated Kz dimers. Each dimer has four possible
configurations: two low-energy states {|↓↓〉, |↑↑〉} with energy
−Kz/4 and two high-energy states {|↓↑〉, |↑↓〉} with energy
Kz/4. One can then interpret the change from a ferromagnetic
to an antiferromagnetic dimer configuration as the creation
of a particle, with an energy cost that we set equal to 1
by choosing Kz = 2. These particles are hardcore bosons

hopping on the sites of an effective bilayer square lattice,
together with an effective spin-1/2 indicating which kind of
(anti)-ferro dimer configuration is realized. We choose the
following mapping [40,41]:

|↑↑〉 = |⇑0〉, |↓↓〉 = |⇓0〉, |↑↓〉 = |⇑1〉, |↓↑〉 = |⇓1〉,
(22)

where the left (right) spin is the one of the black (white)
site of the dimer, and double arrows represent the state of
the effective spin. Let us denote by b

†
mi (bmi ) the creation

(annihilation) operator of a hardcore boson at the site i of
the layer m = 1, 2 of the effective bilayer square lattice,
and τα

mi the Pauli matrices of the effective spin at the same
site in the same layer. With these notations, the number of
hardcore bosons in the system is Q = ∑

m,i b
†
mibmi and the

Hamiltonian (1) can be rewritten as

H = −N

2
+ Q +

∑
κ∈{K,⊥}

(
T

(κ )
0 + T

(κ )
+2 + T

(κ )
−2

)
, (23)

where N is the number of Kz dimers. The couplings between
Kz dimers in the same Kitaev layer are then given by

T
(K)

0 = −
∑
m,i

(
Kx

4
t
m,i+n1
m,i + Ky

4
t
m,i+n2
m,i + H.c.

)
,

T
(K)
+2 = −

∑
m,i

(
Kx

4
v

m,i+n1
m,i + Ky

4
v

m,i+n2
m,i

)

= (
T

(K)
−2

)†
, (24)

with hopping and pair creation operators t and v:

t
m,i+n1
m,i = b

†
m,i+n1

bm,i τ x
m,i+n1

, (25)

t
m,i+n2
m,i = −i b†m,i+n2

bm,i τ
y

m,i+n2
τ z
m,i , (26)

v
m,i+n1
m,i = b

†
m,i+n1

b
†
m,i τ x

m,i+n1
, (27)

v
m,i+n2
m,i = i b†m,i+n2

b
†
m,i τ

y

m,i+n2
τ z
m,i , (28)

and the vectors n1 and n2 as shown in Fig. 13. The
interaction between the two layers due to J⊥ translates

+
45◦ rotation
to the left

FIG. 13. The left picture shows the original bilayer brick wall
lattice with plaquettes p in each layer m = 1, 2. The spin-1/2
degrees of freedom of the bilayer Kitaev model reside on the black
and white circles. The mapping replaces the two spins 1/2 degrees of
each Kz dimer into a hard-core boson and a pseudospin 1/2. These
degrees of freedom reside on the blue circles of the bilayer square
lattice depicted on the right side.
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into

T
(⊥)

0 = J⊥
4

∑
i

[
(b†1ib2i + b

†
2ib1i )(1 + �τ1i · �τ2i )

+ 2τ z
1iτ

z
2i [2n̂1i n̂2i − (n̂1i + n̂2i )] + 2τ z

1iτ
z
2i

]
(29)

T
(⊥)
+2 = J⊥

4

∑
i

b
†
1ib

†
2i

(
1 + τ x

1iτ
x
2i + τ

y

1iτ
y

2i − +τ z
1iτ

z
2i

)
= (T (⊥)

−2 )†. (30)

Note that the mapping from the original bilayer Kitaev model
(1) to the Hamiltonian (23) is exact [40,41].

B. Effective spin model

Next we apply the pCUT method [37,38] to Eq. (23). The
main idea is to transform (23), which does not conserve the
number of hardcore bosons into an effective Hamiltonian Heff ,
which satisfies [Heff ,Q] = 0. This effective Hamiltonian is a
sum of q-quasiparticle (QP) operators with q ∈ N [38]. Here
we are only interested in the 0QP sector q = 0 where the
effective model reduces to a pure spin model in terms of the
pseudospin degrees of freedom �τ shown as blue circles in
Fig. 13. Up to order four in Kx , Ky , and J⊥, we find

H0QP
eff =

∑
m∈{1,2}

H0QP
m,Kitaev,eff + H0QP

⊥,eff, (31)

where the first term represents the well-known Wen-plaquette
model [39] in each Kitaev layer m,

H0QP
m,Kitaev,eff = E0 − Cp

∑
p

Ŵm,p, (32)

with the constant contribution

32E0/N = −16 − ((Kx )2 + (Ky )2) − ((Kx )4 + (Ky )4)/64,

(33)

and Cp = (Kx )2(Ky )2/512, Ŵm,p = τ
y

1 τ z
2 τ

y

3 τ z
4 (see Fig. 14

for notation of the plaquette sites), and N the number of
Kz dimers. Higher orders of the effective model inside the
Kitaev layers correspond to multiplaquette terms [40,41]. The
contributions of the intralayer couplings J⊥ to the effective

FIG. 14. (a) Effective bilayer square lattice. (b) Notation of the
four sites associated to a plaquette p. (c) Effective two-dimensional
square lattice. The dual pseudospin 1/2 operators act in the centers of
the plaquettes. These centers also form a square lattice shown with
the dashed lines. Little orange squares indicate the sites where the
sublattice rotation is performed.

model can be written as

H0QP
⊥,eff =

∑
n,m

H(n,m)
⊥,eff , (34)

where n ∈ {1, 2, 4} and m ∈ {0, 2} denotes the order of per-
turbation in J⊥ and Kκ with κ ∈ {x, y}, respectively, in which
the terms appear. These terms are given by

H(1,0)
⊥,eff = 1

2
J⊥

∑
i

τ z
1,iτ

z
2,i ,

H(1,2)
⊥,eff = − 1

32
J⊥

∑
i

∑
κ=x,y

K2
κ τ z

1,iτ
z
2,i ,

H(2,0)
⊥,eff = − 1

8
J 2

⊥
∑

i

(
1 + τ x

1,iτ
x
2,i + τ

y

1,iτ
y

2,i − τ z
1,iτ

z
2,i

)
,

H(2,2)
⊥,eff = − 1

512
J 2

⊥
∑

i

∑
κ=x,y

K2
κ

[
13 − 2 τ z

1,iτ
z
2,i

+ 10
∑

α=x,y

τ α
1,iτ

α
2,i + 5

( ∑
α=x,y

τ α
1,iτ

α
2,i

)

×
⎛
⎝ ∑

β=x,y

τ
β

1,i+nκ
τ

β

2,i+nκ

⎞
⎠ −

( ∑
α=x,y

τ α
1,iτ

α
2,i

)

× (
τ z

1,i+nκ
τ z

2,i+nκ
+ τ z

1,i−nκ
τ z

2,i−nκ

)
+ 5 τ z

1,iτ
z
2,iτ

z
1,i+nκ

τ z
2,i+nκ

]
,

H(4,0)
⊥,eff = 1

32
J 4

⊥
∑

i

(
1 + τ x

1,iτ
x
2,i + τ

y

1,iτ
y

2,i − τ z
1,iτ

z
2,i

)
. (35)

The decoupled Wen-plaquette models in the limit J⊥ = 0
are exactly solvable and realize topologically ordered ground
states with Abelian anyons as elementary excitations. Next,
we tackle the question how the intralayer coupling J⊥ destroys
this topological order within the effective low-energy descrip-
tion.

C. Duality mapping

The bilayer Kitaev model with AA stacking exhibits an
exact conserved quantity �̂p for each plaquette p, see also
Sec. II B. As a consequence, also [H0QP

eff , �̂p] = 0 for all
p holds, and the Hilbert space splits in decoupled blocks
for each set of eigenvalues ±1 of the �̂p operators, which
can be therefore studied independently. Interestingly, in both
limits, J⊥ = 0 as well as J⊥ → ∞, the exact ground states
of the isolated Wen-plaquette models and the product state
of singlets on J⊥ bonds belong to the Hilbert space sector
where all eigenvalues of �̂p operators are +1. If there is
therefore only a single phase transition between the gapped
topologically ordered phase and the gapped dimer phase,
then it has to take place in this sector and can be either
a transition of first or second order. If other Hilbert space
sectors play a role for the ground-state phase diagram, then
these phase transitions between different sectors are definitely
first-order phase transitions. One additional reason why these
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other sectors play most likely no role for the quantum crit-
ical behavior of the bilayer Kitaev model is that elementary
excitations of the topologically ordered phase, i.e., a single
eigenvalue Ŵm,p = −1 on a certain plaquette p, as well as
single triplons in the dimer phase are exactly localized due
to the exact conservation laws. These gapped excitations are
therefore very unlikely to close the gap and drive a quantum
phase transition. We therefore focus in the following on the
sector where all eigenvalues of �̂p operators are +1.

In this Hilbert space sector, an exact duality mapping is
possible by introducing pseudospin 1/2 operators τ̃ α

p centered
on plaquettes p. Indeed, in order to ensure �̂p eigenvalue on p

to be +1, either both wp’s have to be +1 or −1. This local Z2

degree of freedom can be represented by the diagonal Pauli
matrix τ̃ z

p in the pseudospin bases |↑〉 and |↓〉 for the two
combinations. In this pseudospin language, the sum of the
isolated Wen-plaquette models translates to an effective dual
field term

H̃field = 2E0 − 2Cp

∑
p

τ̃ z
p (36)

so that the topological phase corresponds to a trivial polarized
phase with ground state |↑ . . . ↑〉 in the dual pseudospin
language. Flipping a spin costs energy 4Cp and represents the
elementary gapped excitation in this phase.

The terms proportional to J⊥ introduce quantum fluctu-
ations with respect to the field term. Focusing on first- and
second-order terms in J⊥, the dual expressions read

H̃⊥ = −1

8
J 2

⊥N + J̃ xx
1

∑
τ̃ x
p τ̃ x

p′

− J̃ xx
2

∑
τ̃ x
p τ̃ x

p′ + J̃4

∑
τ̃ x
p1

τ̃ x
p2

τ̃ x
p3

τ̃ x
p4

(37)

with

J̃ xx
1 = J⊥

2

[
1 − 1

16
((Kx )2 + (Ky )2)

]
+ J 2

⊥
8

(38)

and J̃4 = J̃ xx
2 = J 2

⊥/8. The sums are taken over the dark
plaquettes of the little pictograms. The dual pseudospin oper-
ators for the higher-order contributions can also be expressed
solely via τ̃ x

p . Finally, we perform the sublattice rotation τ̃ x
p ≡

−τ̃ x
p , τ̃

y
p ≡ −τ̃

y
p , and τ̃ z

p ≡ τ̃ z
p about the z axis in pseudospin

space for two consecutive antidiagonals [see orange squares in
Fig. 14(c)], which results in the more convenient expression

H̃ = H̃field + H̃⊥

= Ẽ0 − h̃z

∑
p

τ̃ z
p − J̃ xx

1

∑
τ̃ x
p τ̃ x

p′

− J̃ xx
2

∑
τ̃ x
p τ̃ x

p′ − J̃4

∑
τ̃ x
p1

τ̃ x
p2

τ̃ x
p3

τ̃ x
p4

(39)

where Ẽ0 = 2E0 − 1
8J 2

⊥N , h̃z = 2Cp, and all interactions are
ferromagnetic.

D. Quantum phase transition for AA stacking

In this section, we study (39) in order to describe the
breakdown of the topologically-ordered phase as a function of
J⊥, which translates in the dual language to the quantum phase
transition out of the polarized phase at large fields h̃z and a Z2

symmetry-broken ferromagnetic phase whenever the interac-
tions are dominant. Interestingly, to leading order in J⊥, the
effective model is just a collection of infinitely many decou-
pled one-dimensional transverse-field Ising chains along one
diagonal of the square lattice formed by plaquette centers. The
latter can be solved exactly and a second-order quantum phase
transition in the 2D-Ising universality class is known to take
place at h̃z = J̃ xx

1 . This translates to (Kx )2(Ky )2 = 256J⊥ in
the bilayer Kitaev model in units of Kz = 2. Hence a tiny
coupling J⊥ ∝ λ4 closes the gap of the topological phase and
induces its breakdown.

The exact dimensional reduction to decoupled one-
dimensional systems is destroyed by the second-order con-
tributions in J⊥ and the original two-dimensionality of the
bilayer Kitaev model is restored although it stays strongly
anisotropic for small J⊥. The order-two interactions J̃ xx

2 and
J̃ xx

4 both favor a ferromagnetic state. In case J̃ xx
4 is set to

zero, one has two decoupled two-dimensional transverse-field
Ising models on anisotropic square lattices. Here the phase
transition remains second order and is in the 3D-Ising univer-
sality class. In contrast, if only h̃z and J̃ xx

4 are finite (so that
both two-spin Ising interactions are zero), then one obtains
the Xu-Moore model [42,43], which itself is isospectral to the
compass model [44–46] and to the toric code in a transverse
field [47]. All these models possess a self-duality so that the
phase transition takes place at h̃z = J̃ xx

4 and is strongly first
order. As a conclusion, if all interactions in (39) are finite, one
either has a second-order 3D-Ising transition or a first-order
transition.

In the following, we argue that the quantum phase tran-
sition in the bilayer Kitaev model, which corresponds to a
specific path in the coupling space of the effective model (39),
is most likely a 3D-Ising transition. To this end, we perform
a mean-field calculation by introducing the one-parameter
product state wave function

|α〉 =
∏
p

(cos(α) |↑〉p + sin(α) |↓〉p ), (40)

so that both limiting ground states are taken into account
exactly. The polarized phase is realized for α = 0 and the
two ferromagnetic ground states correspond to α = ±π/4.
The mean-field energy per plaquette of (39) is then readily
calculated and reads

eMF
0 = −h̃z(cos2(α) − sin2(α)) − 16J̃4 sin4(α) cos4(α)

− 4
[
J̃ xx

1 + J̃ xx
2

]
sin2(α) cos2(α). (41)

If one sets h̃z = 1 to fix the overall energy scale, we have
located the phase transition between the polarized and the
ferromagnetic phase numerically as a function of J̃ xx

1 , J̃ xx
2 ,

and J̃4. The obtained mean-field phase diagram is plotted in
Fig. 15.

We stress that this mean-field approach captures the or-
der of the phase transition correctly in all limiting cases,
i.e., second-order phase transitions for the one-dimensional
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FIG. 15. The mean-field phase diagram of (39) as a function of
J̃ xx

1 , J̃ xx
2 , and J̃4. The blue (orange) regions are phase transitions of

second- (first-) order. The red (black) points indicate the exact (mean-
field) critical values for the 1d-TFIM on the J̃ xx

1 axis, the 2D-TFIM
on the dashed cyan line, and the toric code in a transverse field on the
J̃4 axis. The purple line is the rescaled physical path generated for
Kx = Ky ≈ 0.25, which pierce the phase transition surface at J̃ xx

2 ≈
J̃4 ≈ 0 and J̃ xx

1 ≈ 1. As a consequence, it is the second-order region
which is relevant for the quantum phase transition in the anisotropic
AA-stacked bilayer Kitaev model.

transverse-field Ising chain (J̃ xx
1 or J̃ xx

2 only), second-order
phase transition for the two-dimensional transverse-field Ising
model on the square lattice (J̃ xx

1 = J̃ xx
2 and J̃4 = 0), and

first-order phase transition for pure J̃4. Obviously, the value
of the quantum critical points are only correct in a qualitative
manner as can be seen when comparing the exact and mean-
field results indicated by black and red circles in Fig. 15.

Most importantly, the quantum phase transition is of sec-
ond order in a relative wide range of couplings when moving
away from the J̃ xx

1 axis. Keeping in mind that (i) the quantum
criticality induced by the first-order contribution in J⊥ takes
place exactly on the J̃ xx

1 -axis for small values of J⊥ = Cp

and (ii) higher-order corrections (like the second order) are
small for small J⊥, we conclude that the phase transition in
the bilayer Kitaev model in the anisotropic limit is most likely
a second-order 3D-Ising transition, and we expect the scaling
of the critical interlayer coupling to be J⊥ ∝ λ4.

E. Quantum phase transition for σAC stacking

We now discuss the transition out of the Kitaev spin
liquid in the σAC stacking. The replacement of the strong
Kx bonds for the σAC-stacked model, the introduction of
hardcore bosons and pseudospins, as well as the derivation
of the effective low-energy spin model work along the same
lines as for the AA stacking. It is especially the effective
network of supersites, which is different for the anisotropic
limit as illustrated in Fig. 16. In addition, the treatment of
the corresponding effective low-energy pseudospin model is
different, since the exact conserved quantities �̂p for the AA
stacking do not exist anymore.

We therefore use again the pCUT to transform (23) into
an effective Hamiltonian Heff which satisfies [Heff ,Q] = 0.
Obviously, the 0QP effective pseudospin model in terms of

FIG. 16. Illustration of the four different anisotropic limits:
(a) AA stacking, (b) AB stacking, (c) σAC stacking when replacing
Kz bonds by supersites (shown as filled blue circles), and (d) σ̄AC
stacking when replacing Kx bonds by supersites (shown as filled red
circles). The grey lines represent interlayer J⊥ interactions. Note that
the thick grey lines in (a) and (d) refer to the effective interaction
from two J⊥ couplings between the supersites. The green, red, and
blue lines refer to Kx , Ky , and Kz interactions in the two Kitaev
layers, respectively.

�τ is identical within the two Kitaev layers. It is only the
orientation of effective plaquettes in the two layers which is
different for the σAC stacking with anisotropy, as illustrated
in Fig. 17(d). We therefore again find a Wen-plaquette model
up to order four perturbation theory within the layers. The
Wen-plaquette operator Ŵm,p in layer m and plaquette p is
proportional to (Ky )2(Kz)2 for the limit Ky,Kz 	 Kx in this
order. An essential difference between the different cases is
the effective interaction between the layers due to J⊥. Here we
have calculated the two leading orders in J⊥ and fourth orders
in Ky and Kz, which certainly represent the most important
terms as for the AA stacking discussed above. The effective
model can be expressed as

H0QP
eff =

∑
m∈{1,2}

H0QP
m,Kitaev,eff + H0QP

⊥,eff, (42)

where the first term represents the Wen-plaquette model in
each Kitaev layer m with plaquette operators Ŵm,p as illus-
trated in Fig. 17(d) and the second term is identical to the AA
stacking H0QP

⊥,eff = H(1,0)
⊥,eff + H(1,0)

⊥,eff, since again two J⊥ cou-
plings connect neighboring supersites. As a consequence, this
limit of the σAC stacking behaves similar to the AA stacking
as already seen in the mean-field treatment. One has a trivial
phase for Ky,Kz 	 J⊥, which is adiabatically connected to
isolated J⊥ dimers for Ky = Kz = 0 [see Fig. 16(d)], and a
topological phase for the other limit of weakly coupled Kitaev
layers. It is reasonable that the quantum phase transition
between both phases is, as discussed for the AA stacking,
either second-order in the (2+1)D Ising universality class
or of first-order. The main difference to the AA stacking is
that the Wen-plaquette operators are not the same type on
opposite plaquettes of the two layers [see Fig. 17(d)], since
in the current case the Ky and Kz couplings are rotated by
90◦ from one Kitaev layer to the other. As a result, there exist
no exact conserved quantities �̂p and the effect of H0QP

⊥,eff on
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FIG. 17. Illustration of the plaquette operators Ŵm,p for Kitaev
layer m = 1 (left) and m = 2 (right) for the different anisotropic
limits: (a) AA stacking, (b) AB stacking, (c) σ̄AC stacking when
replacing Kz bonds by supersites (shown as filled blue circles), and
(d) σAC-stacking when replacing Kx bonds by supersites (shown as
filled red circles). The numbering 1–4 of the plaquette sites refers to
the definition of the Wen-plaquette operator Ŵp = τ

y

1 τ z
2 τ

y

3 τ z
4 in all

cases.

the excitations of the topological phase is different. In leading
order in J⊥, there are almost no mobile excitations (plaquettes
with ωm,p = −1) at all, e.g., single excitations on one of the
two Kitaev layers are not allowed to hop. One exception are
two excitations located on the different Kitaev layers as close
as possible, but not exactly on top of each other, which are able
to move but only in one dimension. Altogether, the constraint
mobility of the excitations in the topological phase point
towards a first-order phase transition in the σAC stacking for
Ky,Kz 	 Kx similarly to the toric code in a transverse field
[47].

VII. EFFECTIVE CHAIN MODELS AND MACROSPIN
PHASES IN THE AB AND σ̄AC STACKINGS

Considering the discussion in Secs. III and V C, it has
become evident that at strong anisotropies the AB- and σ̄AC-
stacked models result in a striking geometry of chains con-
sisting of the strong bonds (as illustrated in Fig. 6), with weak
residual interactions between them. In the MMFT, this geome-
try resulted in an effective one-dimensional dispersion for the

itinerant Majorana fermions. Similarly, the series expansion
(based on the limit J⊥ 	 K) features triplons dispersing
along these chains.

The purpose of this section is to study the consequences
of this particular geometry. Our approach is twofold: we first
consider the case of K � J⊥ and λ 	 1 and construct an
effective Ising model for pseudospins formed from Kz dimers.
Secondly, in order to study the transition from DIM to the
MAC phase, we consider the case K 	 J⊥ and successive
triplon condensation, obtaining a transverse-field Ising chain
(TFIC) as an effective model in the low-energy subspace
spanned by interlayer-dimer singlet and triplet states. The
symmetry-broken phase of the TFIC corresponds to the MAC
phases, with the ground state corresponding to an essentially
classical macrospin. Finally, we discuss possible interactions
between these macrospins in the respective stackings.

A. Effective model for Kitaev dimers at K � J⊥

The effective geometries for the AB- and σ̄AC-stacked
models in the limit Kx,Ky 	 Kz are shown in Figs. 16(b)
and 16(c). Up to order four in Kx , Ky , and second order in J⊥
we find for these two cases

H0QP
eff =

∑
m∈{1,2}

H0QP
m,Kitaev,eff + H0QP

⊥,eff, (43)

where the first term represents the well-known Wen-plaquette
model in each Kitaev layer m as in Eq. (32), where, however,
the notation of the plaquette sites in Ŵp = τ

y

1 τ z
2 τ

y

3 τ z
4 depends

on the stacking and on the layer m as illustrated in Figs. 17(b)
and 17(c).

The contributions of the intralayer couplings J⊥ to the
effective model can be written in the simple form

H0QP
⊥,eff = −J 2

⊥
16

N⊥ +
(

1

4
J⊥ + 1

16
J 2

⊥

)

×
∑

i

(
τ z

1,iτ
z

2,i+ δx
2

+ τ z

2,i+ δx
2

τ z
1,i+δx

)
, (44)

where the sum runs over all supersites of one Kitaev layer
[filled blue circles in Figs. 16(b) and 16(c)].

One important difference compared to the AA stacking is
the macrospin phase triggered by the effective Ising interac-
tions in Eq. (44) due to J⊥. Indeed, for Kx = Ky = 0, one has
isolated Ising chains in both cases [Figs. 17(b) and 17(c)], so
that a subextensive degeneracy 2Nc with Nc number of Ising
chains arises due to the two exact ground states |↑↓↑↓ . . .〉
and |↓↑↓↑ . . .〉 of each Ising chain in this limit. Considering
the Wen-plaquette operator, which connects neighboring Ising
chains, as a perturbation on this degenerate manifold, no ef-
fective interaction between the ground state arises up to order
eight perturbation theory in Kx,Ky , since acting with Ŵm,p

on the same plaquette p leads to the same energy reduction of
each degenerate ground state. Altogether, there is no obvious
perturbative mechanism to lift this degeneracy in within this
effective model. In the opposite limit J⊥ 	 Kx,Ky 	 Kz in
Eq. (43), as for the AA stacking, one has a gapped topological
phase for the weakly coupled Kitaev layers. Consequently,
there must be also a quantum phase transition between this
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topological and the macrospin phase discussed before, which
is most likely of first-order nature.

B. Effective model for interlayer dimers at J⊥ � K

We now approach the MAC phases from the dimer phase,
Kz 	 J⊥, by first discussing a Kz-J⊥ Ising-Heisenberg chain
which is formed at λ = 0. This chain can be mapped exactly
on a transverse-field Ising chain so that its quantum phase
diagram is known exactly as a function of Kz/J⊥. Indeed,
if we use the four states |s〉 and |tα〉 with α ∈ {x, y, z} of
Heisenberg dimers as a basis to describe the Ising-Heisenberg
chain, then it can be readily seen that Ising interaction between
dimers only affect the states |s〉 and |tz〉 while the other two
triplet states are not affected at all. We therefore can introduce
a pseudospin 1/2 on each Heisenberg dimer by identifying
|↓〉 ≡ |s〉 and |↑〉 ≡ |tz〉. In terms of pseudospin-1/2 Pauli
matrices τ̃ α with α ∈ {x, y, z}, the Heisenberg interaction
then becomes, up to an irrelevant constant, an effective field
term J⊥/2

∑
d τ̃ z

d where the sum runs over all dimers d. The
intradimer Ising interaction always flips the pseudospin state
on two adjacent dimers. As a consequence, it corresponds
also to an (effective) Ising interaction in terms of pseudospins
and reads (Kz/4)

∑
〈d,d ′〉 τ̃

x
d τ̃ x

d ′ . In total, this gives an effective
transverse-field Ising chain

Hc = J⊥
2

∑
d

τ̃ z
d − Kz

4

∑
〈d,d ′〉

τ̃ x
d τ̃ x

d ′ , (45)

which is known to realize a continuous quantum phase transi-
tion in the 2D Ising universality class for 2J⊥ = ±Kz.

Coming back to the full bilayer Kitaev model for λ = 0, we
have a collection of decoupled Ising-Heisenberg chains where
each TFIC possesses a quantum phase transition at 2J⊥ = Kz.
This is also evident from the series expansion (cf. Sec.V C),
in which the triplon gap closes at J⊥/Kz = 0.5, also in the
presence of finite λ. Note that the MMFT shows the critical
J⊥/Kz � 0.4 and is thus also close to the exact value.

For 2J⊥ > Kz, each chain has a unique gapped ground
state which is adiabatically connectected to the product state
of singlets |s〉 · · · |s〉, |↓〉 · · · |↓〉 in pseudospin language, being
the ground state for Kz = 0. Obviously, coupling the chains
λ �= 0 in this parameter regime, one still has a unique ground
state corresponding to the featureless dimer paramagnet.

However, the situation is different for 2J⊥ < Kz. Then,
for λ = 0, each Ising-Heisenberg chain is in one of the two
ground states of the symmetry-broken phase and there is a de-
generate manifold of 2Nc states with Nc the number of chains.
Note that the individual chain ground states are adiabatically
connected to the Ising ground states |⇒〉 ≡ | → · · · →〉 and
|⇐〉 ≡ |← · · · ←〉 for J⊥ = 0. The chain states |⇒〉 and
|⇐〉 can therefore be interpreted as the two orientations of
a large macrospin. We, however, emphasize that in terms
of the microscopic Kitaev model, the respective macrospin
ground states correspond to antiferromagnetic configurations
of the local moments. The full bilayer Kitaev model for
λ = 0 and 2J⊥ < Kz is then effectively a chain of decoupled
macrospins.

= Vd,d

Ky
Kz

KxJ⊥

= Vd,dKy

Kz

KxJ⊥

(2) AB

(1) σ̄AC

FIG. 18. Effective chains consisting of dimers coupled by Kz.
Effective brick-wall models are obtained by replacing each dimer
by a pseudospin. (1) For the σ̄AC stacking, there is an intrachain
coupling Ky , and the chains are coupled via Vd,d ′ , which consists
of Kx couplings. (2) In the case of AB stacking, both inter and
intrachain couplings are due to Kx and Ky interactions.

C. Macrospin interactions and classical spin liquid

The final question is what kind of effective interaction
between the macrospins is introduced for finite λ and whether
or not this interaction leads to a unique ground state. In the
series-expansion treatment in Sec. V C, it was found that the
triplon gap closes at �k = 0 in the AB stacking, corresponding
to a ferromagnetic macrospin interaction (yielding an antifer-
romagnetically ordered state for the local moments). We call
this phase MAC-AF in Fig. 1.

In the σ̄AC-stacked model, however, the triplon gap closes
along a line in momentum space, which is consistent with
a macroscopic degeneracy between the macrospins. We thus
deduce that this phase realizes a classical spin liquid, dubbed
MAC-L, formed of macroscopically large spins with no resid-
ual interaction.

We complement the results from the series expansion
with analytical arguments by peturbatively integrating out the
microscopic Kx and Ky interactions to (possibly) obtain an
effective interaction for the macrospins |⇐〉 and |⇒〉.

a. σ̄ AC stacking. A schematic model for the chains and
inter and intrachain interactions is shown in Fig. 18. Since the
Ky interaction acts within each chain, it does not affect the
degeneracy of the macrospins. The perturbation V however,
which couples the effective chains (described by the states
|⇒〉 , |⇐〉), acts solely on the x components of the micro-
scopic local moments. For simplicity, we consider the action
of V on two isolated dimers d, d ′,

Vd,d ′ = −Kx
(
Sx

d,0S
x
d ′,1 + Sx

d,1S
x
d ′,0

)
, (46)

where 0,1 describe the two positions within each dimer. As
described in Sec. II B, all stackings possess a C∗

α symmetry of
rotating all spins by π around the α axis. Now perform (C∗

x ) :
(Sx, Sy, Sz) → (Sx,−Sy,−Sz) on every second chain, de-
noting this operation U . It is clear that Vd,d ′ and thus also V is
symmetric under this symmetry operation (as is Hc), while the
macrospin orientation is reversed, i.e., U |⇐〉 = |⇒〉. We thus
find that for all powers n the matrix elements of V n between
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neighboring macrospins fulfill

〈⇒⇒ |V n| ⇒⇒〉 = 〈⇒⇐ |V n| ⇒⇐〉 , (47)

such that parallel and antiparallel macrospin configurations
remain degenerate to all orders in perturbation theory in Kx .
These considerations are consistent with the fact that in the
series expansion the gap of the triplet dispersion closes along
a line in momentum space (cf. Sec. V C) in the anisotropic
limit. The MAC-phase in the AC stacking thus realizes a phase
with macroscopic degeneracy, dubbed “Macro-spin liquid”
(MAC-L).

b. AB stacking. For the AB-stacked model, we consider the
perturbation V to act on the product states built from isolated
dimers d and d ′, which now reads

Vd,d ′ = −(
KxSx

d,0S
y

d ′,1 + KyS
y

d,1S
x
d ′,0

)
, (48)

with Kx = Ky = λKz and λ 	 1. For an effective
Hamiltonian Heff to lift the degeneracy between the
chains, we require that �Lift = 〈⇒⇒ |Heff | ⇒⇒〉 −
〈⇒⇐ |Heff | ⇒⇐〉 �= 0. Again considering the action of
V on two isolated dimers, we find that

�Lift ∝ ±( 〈
sd t

z
d ′
∣∣Heff

∣∣t zd sd ′
〉 + 〈sdsd ′ |Heff

∣∣t zd tzd ′
〉 )

(49)

in the singlet-triplet basis for two local dimers, comprising
the matrix elements for the transfer of a single triplet between
two chains, and the creation/annihilation of a triplets on both
dimers. In perturbation theory we find that these two processes
cancel to all orders considered by us: the matrix element for
the transfer of a triplet involve intermediate states with mixed
triplet flavors (such as ∼ |txd t

y

d ′ 〉), which have a complex over-
lap with the initial state |t zd sd ′ 〉. The matrix element between
any mixed intermediate state and the flipped dimer |sd t

z
d ′ 〉 has

an opposing complex phase, leading to an overall positive
sign for the transfer process (this argument can be iterated
in higher orders of perturbation theory, as the mixed |tx ty〉
and |ty tx〉 remain the only accessible intermediate states),
while the second term in Eq. (49) carries a negative sign.
Since the energies for the excited intermediate states are equal,
we find that �Lift = 0. Effects due to intrachain interactions
(which is essentially a third-nearest-neighbor coupling) do not
give rise to new intermediate states which would alter above
considerations.

These perturbative arguments, combined with the infor-
mation from the series expansion which signals a ferro-
magnetic interaction between the macrospins, suggest that
the corresponding bulk energy gain is nonanalytic (likely
exponential) in λ. This is not in contradiction with the rel-
evant transverse piece of the triplon dispersion scaling as
λ2 because the interaction of macrospins involves an infinite
number of single-particle excitations. Hence the AB stacking
at anisotropies realizes a gapped antiferromagnet (since each
macrospin corresponds to an antiferromagnetic ordering of
the local moments), dubbed MAC-AF.

VIII. STABILITY OF KSL AND INTERLAYER-COHERENT
π -FLUX PHASE

A. Perturbation theory in J⊥

The purpose of this section is to study the stability of
the KSL phase. We argue that, starting from two decoupled

Kitaev spin liquids in both layers and coupling them pertur-
batively (i.e., J⊥ 	 K), there can not be a gap opening in
the spectrum of the itinerant Majorana mode. We consider
low-energy processes which are below the flux gap of the
Kitaev model, and therefore leave each layer in the flux-free
ground states. It is clear that the only term, which directly
influences the spectrum involves a matter-Majorana in each
layer, ∼χ0

1iχ
0
2i . Considering H⊥ which acts with a local spin

operator Sα
j = iχ0

j χα
j (adding a matter-Majorana and creating

a flux pair adjacent to the α-bond emanating site j ) in each
layer, it is clear that such a process would necessarily also
change the number of flux excitations in each layer, and
therefore would not stay in the flux-free sector. These explicit
arguments are consistent with the fact that the perturbation
at hand is time-reversal symmetric, and the gaplessness of
the Kitaev spin liquid is protected against small time-reversal
symmetric perturbations [5].

Indeed, it has been argued that a generic lowest-order inter-
layer transport process transfers pairs of spinons between the
layers as these fractionalized excitations are nonlocal in nature
and thus result in vanishing matrix elements for single-spinon
hopping processes [48], such as �S1i · �S2i in the present case. In
this case, such a process would correspond to Majorana pair
hopping [49].

To study the effects of such a pair hopping term, we expand
the matter Majorana χ0 around the Dirac nodes and obtain
an effective (2 + 1)-dimensional action for a free fermion ψ .
Power counting yields [ψ] = 1 and thus a four-fermion pro-
cess which would correspond to Majorana pair hopping be-
tween the layers has [ψ̄ψ̄ψψ] = 4, and is therefore irrelevant
in (2 + 1) dimensions (as are even higher-order processes),
such that the KSL phase is stable for small J⊥/Kz.

B. Spontaneous interlayer coherence

Within our mean-field treatment, Sec. III, we do find a
transition to a state which, on the one hand, still possesses
several features of the Kitaev spin liquid and, on the other
hand, has nonvanishing amplitudes for interlayer hopping
of the Majorana fermions. This state thus resembles the
interlayer-coherent phases discussed previously for quantum
Hall bilayer systems [50]. We emphasize that, given that all
interlayer-transport operators are irrelevant, this phase has
to occur spontaneously, in similarity to exciton condensate
phases in electron-hole, and equivalently, electron-electron
bilayer systems [51].

In the MMFT, we observed that it is crucial for the gap
to occur that the Kitaev mean fields in the two layer occur
with opposite signs u

0,α
0 = −u

0,α
1 , which can be understood

by considering the symmetry properties of the dispersing
Majorana mode. We note that the Dirac nodes of the dispers-
ing χ0 band of the Kitaev spin liquid are protected against
(small) perturbations by combined time-reversal T and inver-
sion symmetry I. In the bilayer system at hand, a global in-
version symmetry also interchanges the layer index m, i.e., I :
(x, y,m) → (−x,−y,−m). Spoiling inversion symmetry by
choosing opposing signs for u0,α in the two layers, T I is no
longer a symmetry, which protects the nodal points, and a gap
is allowed to open upon applying a perturbation. This result
is also easily obtained in the Z2-gauge theory description, by
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performing a gauge transformation in one of the two layers
which flips the sign of the gauge field by applying the D =
4χ0χ1χ2χ3 operator on only one sublattice. This operation
reverses the sign for the interlayer hopping for the itinerant
Majoranas on those dimers connecting sites of this particular
sublattice, leading to a staggered hopping between the two
layers. The itinerant Majorana χ0 thus picks up a Z2 phase of
−1 when going around the plaquette P = Sα

1,ASα
1,BSα

2,BSα
2,A

(with a fixed, but arbitrary α = x, y, z). These interlayer
plaquettes thus contain a π flux, in resemblance of flux states
previously discussed for single-layer spin liquids [52,53].

On a mean-field level, the cumulant κ (P ) of the four-spin
plaquette can be seen to yield an order parameter for this flux
phase, as

〈κ (P )〉 = 〈
Sα

1,ASα
1,BSα

2,BSα
2,A

〉 − 〈
Sα

1,ASα
1,B

〉〈
Sα

2,ASα
2,B

〉
− 〈

Sα
1,ASα

2,A

〉〈
Sα

1,BSα
2,B

〉
(50a)

= −w0
Aw0

Buα
1 uα

2 − u0
1u

0
2w

α
Awα

B, (50b)

where we have used that 〈Sα
1,ASα

2,B〉 = 〈Sα
1,BSα

2,A〉 = 0. Within
our mean-field decoupling, it is thus evident that κ (P ) is only
finite if both w and u are finite, and κ (P ) is sensitive to a π

flux in the plaquette (which can be described, as above, by a
staggered interlayer hopping with uniform u1 = u2, or equiv-
alently by an antisymmetry u1 = −u2 and uniform interlayer
hopping). However, the utility of κ (P ) as an order parameter
for the flux phase beyond mean-field theory is unclear.

Importantly, the opening of a gap in the spectrum of the
Majorana mode in the model at hand can only be achieved
by introducing a π flux to the interlayer plaquettes. As the
dispersion of the itinerant Majorana fermion directly influ-
ences thermodynamic and response functions, the gapping of
the systems can be used as a diagnostic for the occurrence of
FLUX, in analogy to previous studies of flux phases [53].

IX. CONCLUSION AND OUTLOOK

We have presented a comprehensive study of bilayer Kitaev
models that differ in the stacking pattern of the Kitaev bonds.
At small J⊥/K , these models exhibit a Z2-fractionalized spin
liquid phase described by the Kitaev model in each layer.
We have studied the breakdown of this topological phase and
the transition to the dimer paramagnet by deriving effective
models in the anisotropic limit. Additionally, two further
stacking variants of the model lead to novel macrospin phases
[54,55] at finite J⊥/K and strong anisotropies, which can
be described in terms of macrospins emerging from inter-
layer chains. These macrospins can be either coupled fer-
romagnetically (realizing a microscopic antiferromagnet), or
remain degenerate and thus constitute a classical spin liquid.
Moreover, we have discussed the possibility of a flux phase
with spontaneous interlayer coherence to occur in bilayer
spin-liquid systems.

We have made use of complementary methods in order
to study all regions of the phase diagrams for the problem
at hand; while the Majorana mean-field theory is exact in
the limit K � J⊥, series expansion techniques allow for a
controlled study of the dimer phase (for K 	 J⊥). Effective
models for the anisotropic limit allow for further insight into

the critical properties of the model at hand. Whenever the
respective methods can be expected to yield reliable results in
the same parameter regime, a comparison shows overall con-
sistency. The result obtained through MMFT for the critical
J⊥ for the MAC-DIM transition is in good agreement with
J⊥ = 0.5K as obtained from both series expansion and an
effective model. Moreover, both MMFT and series expansion
techniques yield a vertical shape for the transition line when
considering finite interchain couplings. With recent advances
in numerical methods, most notably iDMRG [56,57], reliable
quantitative studies of the bilayer Kitaev model are in princi-
ple possible and can be expected to yield further insight into
the phases and critical properties of the model.

Several materials with dominant Kitaev interactions have
been identified in recent years, most notably α-RuCl3 [58–60],
with an effectively layered crystal structure [61]. While syn-
thesis of honeycomb monolayers and subsequent restacking
has been reported [62], engineering an interlayer Heisenberg
interaction would be an interesting avenue for future experi-
mental efforts.

Our study has shown that the bilayer Kitaev model shows
an exciting phenomenology with several unexpected novel
phases. We hence believe that bilayer spin liquids and their
critical phenomena constitute a rich and promising field for
future studies.

Note added. Upon completion of this paper, we became
aware of parallel work on the bilayer Kitaev model: Ref. [63]
exclusively considered the AA-stacked bilayer model in the
isotropic case λ = 1, with results that are largely consistent
with ours. We note that they conclude the transition to be first
order, whereas our results appear more consistent with second
order.
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APPENDIX: BOND-OPERATOR THEORY

A simple and efficient description of the large-J⊥ dimer-
ized phase (DIM) is given by bond-operator theory [64],
where the spin-1 excitation (triplons) are treated as auxil-
iary bosons with a hard-core constraint. With |t0〉 = [|↑↓〉 −
|↓↑〉]/√2 being the singlet state, while |tx〉 = −[|↑↑〉 −
|↓↓〉]/√2, |ty〉 = i[|↑↑〉 + |↓↓〉]/√2, and |tz〉 = [|↑↓〉 +
|↓↑〉]/√2 the spin-1 triplet states, the triplon operators are
defined as t†γ |t0〉 = |tγ 〉 (γ = x, y, z). Note that the bond-
operator theory can be generalized to magnetically ordered
phases as well [65].

In terms of the triplon operators, the spin operators on each
layer are represented as follows:

Sα
i1,2 = 1

2 (±t
†
iαPi ± Pitiα − iεαβγ t

†
iβ tiγ ), (A1)

where Pi = 1 − ∑3
γ=1 t

†
iγ tiγ is the projection operator to han-

dle the constraint [66] of physical Hilbert space. Inserting the
above expressions in the bilayer Kitaev model, Eqs. (3)–(5),
one obtains an interacting triplon Hamiltonian. Expanding in
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the number of triplon operators, the leading term is H0 =
−3J⊥/4N , and the bilinear piece reads

Hμνδ

ha = J
∑
iα

t
†
iαtiα −

∑
〈ij〉1

[
Kx

4
(t†ix t

†
jx + t

†
ix tjx + H.c.)

+ Kμ

4
(t†iμt

†
jμ + t

†
iμtjμ + H.c.)

]

−
∑
〈ij〉2

[
Ky

4
(t†iy t

†
jy + t

†
iy tjy + H.c.)

+ Kν

4
(t†iν t

†
jν + t

†
iν tjν + H.c.)

]

−
∑
〈ij〉3

[
Kz

4
(t†izt

†
jz + t

†
iztjz + H.c.)

+ Kδ

4
(t†iδt

†
jδ + t

†
iδtjδ + H.c.)

]
, (A2)

where N is the number of dimer sites, and μνδ = x, y, z (or
permutations) denote the Kitaev couplings in layer 2 accord-
ing to the chosen stacking, see Sec. II. Fourier transforming
the triplon operators yields a momentum-space representation
of the bilinear Hamiltonian as

Hμνδ

ha,�k = 1

2

∑
�k,α

�
†
�k,α

M�k,α��k,α, (A3)

where � = [tA,�kα, tB,�kα, t
†
A,−�kα

, t
†
B,−�kα

]T , α = x, y, z is
triplon flavor, A and B the two sublattices, the matrix
M�k,α = 1 ⊗ h1,�kα + σ1 ⊗ h2,�kα with

h1,�kα = J⊥1 + h2,�kα, h2,�kα =
[

0 κα

κ∗
α 0

]
. (A4)

The parameter κα is defined as follows:

κα = − Kα
L

2
ei�k·( �L1,α+�L2,α )/2, with

Kα
L = Kα cos

[ �k · ( �L1,α − �L2,α )

2

]
, (A5)

where �L1,α = δα,x �a1 + δα,y �a2 and �L2,α = δμ,α�a1 + δν,α�a2,
and �a1,2 = {±x̂/2,

√
3ŷ/2} are the basis vectors of the trian-

gular Bravais lattice.
At the level of this harmonic approximation, the triplon

dispersion is simply given by the non-negative eigenvalues of
the non-Hermitian matrix �M�k,α , where � = σ3 ⊗ 1 with σ3

being the Pauli matrix. Since [h1,�kα, h2,�kα] = 0, the eigenval-
ues of �M�k,α are straightforward to obtain and we thus have
the following triplon dispersion:

ωα
A,B =

√
J⊥

(
J⊥ ± ∣∣Kα

L

∣∣). (A6)

For the AA stacking, i.e., μνδ → xyz, �L1,α = �L2,α

and so all the three triplons are dispersionless: ωα
A,B =√

J⊥(J⊥ ± |Kα|). Within the harmonic approximation, here
each triplon flavor is restricted to only one type of bond
and hence can not disperse. Actually, this fact remains true
even upon inclusion of the quartic terms. However, sixth-order
terms in triplons might add some dispersion. At the harmonic
level, the triplon gap closes for J⊥ = max(Kx,Ky,Kz) at all
points in the Brillouin zone.

For AB stacking (μνδ → yzx), the triplons are not re-
stricted to a specific bond and can move along zigzag chains
formed by bonds with same flavor from the two layers. For
instance, the ty mode can move along zigzag chains formed
by the Ky bonds in layer-1 and layer-2. Thus the triplons have
an effective one-dimensional dispersion, given by

ωx
A,B =

√√√√J⊥

(
J⊥ ±

∣∣∣∣∣Kx cos

(
Kx + √

3Ky

4

)∣∣∣∣∣
)

, (A7)

ω
y

A,B =
√

J⊥

(
J⊥ ±

∣∣∣∣Ky cos

(
Kx

2

)∣∣∣∣
)

, (A8)

ωz
A,B =

√√√√J⊥

(
J⊥ ±

∣∣∣∣∣Kz cos

(
Kx − √

3Ky

4

)∣∣∣∣∣
)

. (A9)

The minima of the respective dispersion is along a line
passing through the � point. Thus the triplon gap will close
at J⊥ = max(Kx,Ky,Kz) along a line in the Brillioun zone
connecting M-points on the opposite edges. Note that such a
feature also arises in the bilayer Kitaev model on a triangular
lattice.

In the case of AC stacking, i.e., μνδ → xzy, the tx triplon
is confined to the Kx bond only and hence it is dispersionless:
ωx

A,B = √
J⊥(J⊥ ± |Kx |). On the other hand, the remaining

two flavors of triplons move along zigzag chains and are
degenerate if Ky = Kz. Therefore, in this case, depending on
which triplon gap closes first, there will be gap closing either
along a line or in the entire Brillioun zone. For completeness,
we quote the ty,z dispersion here:

ω
y,z

A,B =
√√√√J⊥

(
J⊥ ±

∣∣∣∣∣Ky,z cos

(
Kx − √

3Ky

4

)∣∣∣∣∣
)

. (A10)

The overall dispersion results are perfectly consistent with
that obtained from the dimer series expansions in Sec. V.
Apparently, the 1D dispersions reflect the approach to the
MAC phases discussed in the main text.

Extending the bond-operator treatment beyond the har-
monic level is possible [67–69] but beyond the scope of
the present work. We expect that the properties of DIM are
equally well captured by the dimer series.
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