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Robust parity-mixed superconductivity in disordered monolayer transition metal dichalcogenides

David Möckli* and Maxim Khodas
The Racah Institute of Physics, The Hebrew University of Jerusalem, Jerusalem 9190401, Israel

(Received 24 July 2018; revised manuscript received 31 August 2018; published 24 October 2018)

Monolayer NbSe2 is a nodal topological Ising superconductor at magnetic in-plane fields exceeding the
Pauli limit, with nodal points strictly on high-symmetry lines in the Brillouin zone. Here, we use a combined
numerical and group-theoretical approach in real space to characterize the unconventional superconducting state
in monolayer transition metal dichalcogenides. Even with a conventional pairing interaction, the superconducting
state is intrinsically parity mixed and robust against onsite disorder. The interplay between the Zeeman
magnetic field, strong spin-orbit interaction, and electronic orbital content confer the unique superconducting
and topological properties. The discussion also extends to strongly hole-doped MoS2 and its relatives.
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I. INTRODUCTION

Magnetic fields and impurities affect superconductivity in
various ways. For conventional Bardeen-Cooper-Schrieffer
(BCS) superconductors, magnetic fields are detrimental to
superconductivity in mainly two ways: the first is due to the
coupling of the superconducting order parameter to the charge
that confines the electrons to orbits leading to “orbital limit-
ing”; and the second originates from the Zeeman coupling to
the spin by breaking up Cooper pairs leading to “paramagnetic
limiting.” In most superconductors, the paramagnetic effect is
negligible because the orbital upper critical field Hc2 is much
lower than the paramagnetic limit HP. However, for in-plane
magnetic fields applied to quasi-two-dimensional (quasi-2D)
materials, electronic dynamics is restricted to the basal plane
such that the orbital effect is negligible, and the critical field is
given by HP. Conversely, conventional BCS superconductors
are robust against scalar disorder according to Anderson’s
criteria [1], whereas disorder usually suppresses unconven-
tional pairing states [2–4]. In this paper, we obtain the un-
conventional superconducting state in monolayer NbSe2 and
transition metal dichalcogenides in general, which withstand
in-plane magnetic fields beyond the paramagnetic limit [5–
11], and investigate how the disorder affects the parity-mixed
superconducting state.

Transition metal dichalcogenides (TMD) exhibit chemical
versatility as compared to graphene [12]. They are layered
Van der Waals materials of chemical structure MX2, where
M is a group-(4–10) transition metal and X is a group-16
chalcogen atom (X = S, Se, or Te). We focus on the hexag-
onal monolayer polytype (1H) with crystal point group D3h.
Among the most famous examples is the group-6 direct band-
gap semiconductor molybdenum disulfide (MoS2) that has
promising applications in next-generation electronic devices
[13–15], and the superconducting metal niobium diselenide
(NbSe2) known for its wealth of electronic and magnetic
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phases [6,16–19]. The crystal of TMDs in bulk form possesses
a global inversion center, but a monolayer is noncentrosym-
metric. Viewing the monolayer crystal from above (along
the c axis), 1H-TMDs form a hexagonal lattice similar to
graphene, but with two inequivalent sublattices that break
inversion [20]. The lack of a definite parity allows for the
emergence of unconventional superconducting states [21–27],
and the potential to realize topological superconductivity [28–
33]. Although parity lacks, the basal mirror symmetry restricts
the crystal electric field to in-plane directions, such that the
spin-orbit magnetic induction points in the out-of-plane direc-
tion. This peculiar form of spin-orbit coupling (SOC) locks
the spins in the out-of-plane direction. For this reason, the
superconducting state that develops from the normal state is
frequently referred to as Ising superconductivity, or Zeeman
protected superconductivity [6,29,34–38].

To be specific, we take monolayer NbSe2 as our basic
model, which on the band structure level is qualitatively
similar to heavily hole-doped monolayer MoS2. Therefore,
our analysis is relevant not only for metallic TMDs such
as NbSe2 and TaS2, but extends to all the semiconducting
cousins of MoS2 in the strongly hole-doped (p-doped) regime.

Previous studies of the effect of scalar impurities on the
superconducting state in TMD monolayers used a minimalist
model mimicking graphene with two inequivalent sublattices,
and predict a suppression of the critical field by dilute impu-
rities due to intervalley scattering [40,41]. On the other hand,
strong SOC together with a residual chiral symmetry is known
to protect unconventional order parameters against disorder
respecting this symmetry [42]. Here, we use a realistic three-
orbital tight-binding model to investigate the structure of the
superconducting state that emerges from the Ising spin-locked
normal state Hamiltonian [7,11], and focus on the effect of
a paramagnetic limiting in-plane magnetic field, and the role
of scalar impurities taking into account the orbital degree
of freedom. We employ a combined group-theoretical and
numerical analysis of the symmetries of the emergent uncon-
ventional superconducting state. While group theory provides
us with a classification of the allowed pairing symmetries, the
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self-consistent real-space Bogoliubov–de Gennes simulations
(BdG) finds the amplitude and the structure of the super-
conducting pairing correlations. We attribute the remarkable
robustness of the unconventional superconducting state to the
Ising SOC and the orbital wave-function orthogonality.

This paper is organized as follows: In Sec. II, we intro-
duce the normal state real-space tight-binding Hamiltonian
of monolayer TMDs. In Sec. III, we introduce the basic ele-
ments of unconventional Ising superconductivity and provide
a group-theoretical analysis of the onsite pairing correlations.
In Sec. IV, we present the essentials of the Chebyshev–BdG
expansion method (also known as the kernel polynomial
method), which is used to solve the real-space Hamiltonian.
In Sec. V, we show the results of the numerical simulations,
focusing on the superconducting state that self-consistently
emerges from the normal state correlations, the effect of
an in-plane paramagnetically limiting field and onsite scalar
impurities. In Sec. VI, we discuss the significance of the
results and contrast them with the relevant literature. The
Appendices contain the technical details.

II. TIGHT-BINDING MODEL

In this section, we present the normal state real-space tight-
binding model and the basic properties of monolayer TMDs.

A. Crystal and orbital structure

A 1H-TMD monolayer consists of a transition metal layer
sandwiched between two chalcogen layers. Both the transition
metal and chalcogen layers are triangular lattices intertwined
with respect to each other. The view along the c axis shows the
resultant hexagonal lattice structure in prismatic coordination
[see Fig. 1(a)]. Hereafter, we refer to the 1H-MX2 structure
as a TMD monolayer. The point-group symmetry of a TMD
monolayer is D3h, the symmetry of a triangle endowed with
a basal mirror plane σh. Although an inversion center lacks,
several mirror planes exist; see Fig. 1. This changes in bilayer

2H-TMD’s, where inversion is restored and the point-group
symmetry enlarges to D3d .

The Bloch states of TMD monolayers at the Fermi level
receive a dominant orbital contribution from the 4d transition
metal orbitals, and the chalcogen p orbitals contribute less
[43–45]. It is, therefore, possible to construct a low-energy
three-orbital tight-binding model of TMD monolayers, tak-
ing into account hopping only between transition metal 4d

orbitals [46]. Within D3h, one can use the orbitals dz2 , dxy ,
and dx2−y2 as a minimal basis set. Liu et al constructed such
a tight-binding model in momentum space [47]. In this paper,
we reformulate the momentum space model in real space. The
details are explained in Appendix A. In our figures, we adopt
the RGB color scheme dz2 (red), dxy (green), and dx2−y2 (blue)
to refer to the orbitals.

B. Normal state Hamiltonian

The normal state Hamiltonian HN contains the four terms

HN = H0 + HSO + HZ + HD, (1)

where H0 is the bare tight-binding Hamiltonian, HSO contains
the SOC interaction, HZ is the Zeeman term arising due to an
in-plane magnetic field, and HD adds random onsite disorder.
We detail each term below.

The bare tight-binding term is given by

H0 =
∑
〈i,j〉

∑
μ,ν,σ

t
μν

ij c
†
iμσ cjνσ +

∑
i,μ,σ

(εμ − μ0)c†iμσ ciμσ . (2)

The operator c
†
iμσ creates an electron in orbital μ at an atomic

transition metal site i with spin projection σ . The hopping
amplitudes t

μν

ij are included up to third nearest neighbors,
and their values fit the band structure and orbital weights as
calculated by first-principle methods [33,47]. We explain the
details for obtaining all hopping amplitudes in real space in
Appendix A. In the second term, εμ is an onsite energy of the
orbital μ, and μ0 is the chemical potential.

The direction of the SOC magnetic induction BSO fol-
lows from the specific form of the electric crystal field ∇V .

FIG. 1. Crystal structure of H-polytype TMDs with trigonal prismatic coordination. Violet atoms show the transition metal M and yellow
atoms are the chalcogens X. (a) The dashed green box shows the unit cell of 2H-MX2. The black dot indicates the inversion center present in
2H-MX2. (b) Top view of 1H-MX2. Inversion lacks, but there is basal mirror σh plane and three perpendicular mirrors to the plane according
to the point group C3v . One of the C3v mirrors is indicated by σv . The blue arrows show the direction of the in-plane crystal field, and the
symbols

⊙
and ⊗ indicate the antisymmetric out-of-plane Ising spin-orbit magnetic induction BSO. (c) The minimal set of 4d orbitals used

for the tight-binding model. The orbitals are dz2 (red), dxy (green), and dx2−y2 (blue). Because of the basal mirror symmetry σh, the 4dxy and
4dxz orbitals do not participate. The use of VESTA software aided in the elaboration of (a) and (b) [39].
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Because the coordination of the chalcogen atoms respects
the mirror σh, ∇V is confined to the in-plane direction.
Therefore, BSO ‖ p × ∇V is antisymmetric throughout the
unit cell, where p is momentum. Thus, BSO is dubbed an
Ising SOC field because it locks the spins in the out-of-plane
direction, making them robust against in-plane magnetic fields
[6,7,29,35–38].

In the tight-binding model, we include atomic SOC stem-
ming from the heavy transition metal. The z component of the
orbital angular momentum operator Lz acts on its eigenkets
as Lz|l, m〉 = m|l, m〉 (h̄ = 1). The Lz eigenkets |l, m〉 are
related to the orbital states {|dz2〉, |dxy〉, |dx2−y2〉} by

|dz2〉 = |2, 0〉; |2,±2〉 = 1√
2

(|dx2−y2〉 ± i|dxy〉). (3)

In the basis of {|dz2〉, |dxy〉, |dx2−y2〉}, the matrix representa-
tion of Lz is

Lz =

⎡
⎢⎣0 0 0

0 0 2i

0 −2i 0

⎤
⎥⎦. (4)

One can verify that all the elements of Lx and Ly are zero
[43]. Therefore, the SOC Hamiltonian involves the two in-
plane orbitals [48] and can be written as

HSO = iλSO

∑
i,σ,σ ′

(σz)σσ ′c
†
i,x2−y2,σ

ci,xy,σ ′ + H.c., (5)

where σz is the third Pauli matrix. Although this term is local,
together with the parity lacking H0 provides an antisymmetric
splitting of the electronic states, while still preserving time-
reversal symmetry. For the present form of the SOC, the z

component of the spin is a good quantum number. The specific
form of (5) determines the structure of the induced triplet
Cooper pair correlations.

The Zeeman term is responsible for the paramagnetic
limiting effect and reads as

HZ = −gμB

2

∑
i,μ

∑
σ,σ ′

B · σ σσ ′c
†
iμσ ciμσ ′ , (6)

where μB is the Bohr magneton and σ = (σx, σy, σz) is the
vector of Pauli matrices. For perpendicular magnetic fields
applied to TMD monolayers, the g factor is known to differ
from its free electron value [49]. However, in this paper we
examine only in-plane magnetic fields. Since BSO has no
in-plane component, we adopt g = 2 for simplicity [25].

Onsite scalar disorder

In this paper, we investigate the effect of the Anderson and
dilute disorder. In both cases, the disorder is realized as an
onsite random scalar potential diagonal in the orbital index.
Such a short-range disorder is our way to model the intraor-
bital elastic scattering with arbitrary scattering momenta. The
onsite disorder Hamiltonian reads as [50]

HD =
∑
i,μ,σ

W
μ

i c
†
iμσ ciμσ , (7)

where {Wz2

i ,W
xy

i ,W
x2−y2

i } = {Wz2

i ,Wi,Wi}, and both Wz2

i
and Wi are random disorder potentials. For Anderson disorder,

the random potentials follow a uniform distribution in the
interval [−W/2,W/2]. For dilute disorder, we use a Gaussian
distribution for the disorder potentials with standard deviation
W . In both cases, W can be interpreted as the disorder
strength. For our results, the choice of the probability distri-
bution is immaterial, and we study Gaussian dilute disorder to
contrast our results with the literature [41].

For each realization of the onsite disorder Wz2

i ∝ Wi. Here,
we considered different realizations of the disorder acting
on |dz2〉 and on {|dx2−y2〉, |dxy〉} orbitals as if they were
independent. We have verified that using a single realization
for all the orbitals leads to the same results. This can be
explained as follows. The disorder is diagonal in orbital index.
Moreover, the states crossing the Fermi level have either
|dz2〉 or {|dx2−y2〉, |dxy〉} orbital content. Therefore, the two
components of the disorder do not interfere.

In the dilute disorder scenario, disorder potential is present
at a small fraction of randomly chosen sites at an impurity
concentration Cimp = Nimp/Nsites 	 1. The scattering rate of
dilute disorder is then [41,51]

h̄

τ
= π Cimp ρ(EF)

〈
W 2

i

〉
, (8)

where ρ(EF) is the density of states per unit cell per spin
species at the Fermi level.

III. ISING SUPERCONDUCTIVITY

In this section, we comment on the specificities of uncon-
ventional Ising superconductivity, provide a group-theoretical
analysis of onsite pairing correlations, and present the super-
conducting interaction Hamiltonian.

In a single orbital system with both time-reversal and inver-
sion symmetry, we can classify the superconducting phases by
parity: either even-parity spin-singlet or odd-parity spin-triplet
[52]. In noncentrosymmetric systems such as monolayer
TMDs, a definite parity lacks, and the superconducting states
are parity mixed [21,22,24,25]. We denote pairing operators
as �̂, expectation values as � ≡ 〈�̂〉, and matrices whose
elements are expectation values as [�]. We refer to the �’s as
pairing correlations, and to � = U� as superconducting or-
der parameters, where U is a pairing potential with dimension
of energy, and � is dimensionless. We introduce a combined
label I = {μν

ij } for the lattice sites i and j, and orbitals μ and
ν, such that a general pairing correlation �

μν

ij,σσ ′ = 〈ciμσ cjνσ ′ 〉
is abbreviated as �I,σσ ′ . We might use different bases for [�]
matrices. We use the notation [�ij,σσ ′] for the orbital basis,
and [�I ] for the spin basis. Then, in the most general case,
a superconducting pairing correlation in spin space can be
parametrized as

[�I ] = (ψI + dI · σ )iσy =
[−dI,x + idI,y ψI + dI,z

−ψI + dI,z dI,x + idI,y

]

=
[
�I,↑↑ �I,↑↓
�I,↓↑ �I,↓↓

]
. (9)

The matrix [�I ] can describe onsite (i = j) pairing, or Cooper
pairs with the participating electrons placed at different sites
i 
= j. In this paper, we compute onsite and nearest-neighbor
pairing correlations. Similarly, Eq. (9) describes intraorbital
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and interorbital pairing for μ = ν and μ 
= ν, respectively. If
either dI = 0 or ψI = 0, the matrix [�I ] is antisymmetric or
symmetric in spin indices, respectively. In the single orbital
case, the coexistence of both implies a lack of a definite parity.
No such restriction exists in multiorbital systems [53]. In these
systems, the SOC generically induces the triplets in addition
to the singlets.

The singlet part of �I,↑↓ is odd under spin permutation
ψI → −ψI , and therefore the complex scalar function ψI

parametrizes singlet Cooper pairs that are even under the
combined interchange of site and orbital indices (iμ) ↔ (jν).
The triplet order parameter is parametrized by a complex
d-vector dI = (dI,x, dI,y, dI,z). The d-vector is even in spin
indices, and odd under the combined exchange of site and
orbital indices (iμ) ↔ (jν). This implies that in the single
orbital systems, the onsite superconducting correlations are
necessarily singlet. In the multiorbital systems, the triplet
correlations are allowed with the onsite order parameter which
is odd under exchange of orbitals.

Whereas singlet Cooper pairs are strongly paramagnet-
ically limited, triplets might have protected components
against the action of a Zeeman field B. For strong SOC fields,
the d-vector is parallel to the SOC magnetic induction BSO

[21,30,54–56]. Therefore, in the absence of external magnetic
fields, the d-vector in monolayer TMDs is perpendicular to
the layer with dI = (0, 0, dI,z). 2D Ising superconductors
have a superconducting triplet component in �I,↑↓ that is not
suppressed by paramagnetic limiting. In the absence of an
external magnetic field �I,↑↑ = �I,↓↓ = 0. The application
of a magnetic field or the presence of a substrate generating
Rashba SOC will populate these terms. We show a schematic
example in Fig. 7.

The singlet and triplet channels are not decoupled from
one another. Generally, quasiparticle excitation energies will
depend on cross terms such as ψd∗

z + ψ∗dz (see Appendix B
for an explicit example). This means that although dz is
insensitive to in-plane magnetic fields, it is indirectly sup-
pressed through the coupling with the singlet component ψ .
Conversely, the presence of dz greatly enhances the paramag-
netic limit BP. An enhanced critical field is reported in many
experiments [7,9,35,38].

A. Group-theoretic analysis of the onsite pairing correlations
with and without SOC

Since our calculations are performed in real space, it is
instructive to derive the most generic form of the onsite corre-
lations from the symmetry considerations. We first discuss the
case without SOC in Sec. III A 1. In Sec. III A 2 we perform
the analysis of the local Cooper correlations in the presence of
SOC. In both cases, our main focus is on the superconducting
state that has the symmetry of the lattice A′

1. This symmetric
state is referred to as s-wave superconductivity for shortness.

1. Local Cooper correlations in the absence of SOC

In the absence of SOC, the wave function of the pair is a
direct product of the orbital and spin wave functions. As the
total spin of a Cooper pair is a good quantum number, the
spin part is either singlet or triplet. It is, therefore, sufficient
to classify the orbital part of the onsite wave functions which

TABLE I. The character table of the irreps of the double group
D′

3h. Classes are listed in the first line. The A′
1,2, A′′

1,2 and E′, E′′ are
vector irreps used to describe the symmetry properties of the D3h-
symmetric systems without SOC. The irreps labeled by the single
(double) prime are even (odd) under σh. The spinor irreps Ē1, Ē2,
and Ē3 are two dimensional and provide the description of the D3h-
symmetric systems with SOC. For these irreps the 2π rotation around
any axis, Q = −1. For vector irreps Q = 1.

D′
3h E Q 2σh 2C3 2C2

3 2s3 2Qs3 6σv 6U2

A′
1 1 1 1 1 1 1 1 1 1

A′
2 1 1 1 1 1 1 1 −1 −1

E′ 2 2 1 −1 −1 −1 −1 0 0
A′′

1 1 1 −1 1 1 −1 −1 −1 1
A′′

2 1 1 −1 1 1 −1 −1 1 −1
E′′ 2 1 −1 −1 −1 1 1 0 0
Ē1 2 −2 0 1 −1

√
3 −√

3 0 0
Ē2 2 −2 0 1 −1 −√

3
√

3 0 0
Ē3 2 −2 0 −2 2 0 0 0 0

has to be even in the case of spin singlet and odd in the case
of the spin triplet. The orbital part is classified in accordance
with the D3h symmetry group. The {|dz2〉} orbital transforms
as A′

1 while the two orbitals {|dxy〉, |dx2−y2〉} transform as E′.
Clearly, the {|dz2〉} orbital gives rise to the spin singlet

�̂
A′

1
iis1

=
∑
σ,σ ′

(iσy )σσ ′ciz2σ ciz2σ ′ . (10)

The symmetric (antisymmetric) part of the direct product
E′ ⊗ E′ gives the singlets (triplets). Referring to the character
table (Table I), among the singlets there is one consistent with
the s-wave symmetry of the superconducting state,

�̂
A′

1
iis2

=
∑
σ,σ ′

(iσy )σσ ′[cixyσ cixyσ ′ +cix2−y2σ cix2−y2σ ′]. (11)

In addition, we obtain a pair of spin-singlet onsite correlations
transforming as E′ analogous to the d-wave order parameter:

�̂E′
iis3,1 =

∑
σ,σ ′

(iσy )σσ ′[cixyσ cix2−y2σ ′ + cix2−y2σ cixyσ ′ ],

�̂E′
iis3,2 =

∑
σ,σ ′

(iσy )σσ ′[cixyσ cixyσ ′ − cix2−y2σ cix2−y2σ ′]. (12)

The triplets are necessarily A′
2 symmetric:

�̂
A′

2
iit =

∑
σ,σ ′

(σx )σσ ′[cixyσ cix2−y2σ ′ − cix2−y2σ cixyσ ′ ]. (13)

In the s-wave superconductor without SOC, only the combi-
nations (10) and (11) may acquire a finite expectation value.
The triplet correlations [Eq. (13)] are not allowed. In the next
section, we demonstrate that the triplets are present along with
singlets, once the SOC is turned on.

2. Local Cooper correlations in the presence of SOC

At finite SOC, the onsite orbital states split into
three doublets {|2,+2 ↑〉, |2,−2 ↓〉}, {|2, 0 ↑〉, |2, 0 ↓〉}, and
{|2,−2 ↑〉, |2,+2 ↓〉} transforming as Ē1, Ē2, and Ē3, re-
spectively (see Table I). As follows from the Table I, each
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FIG. 2. The electronic structure of the three-orbital tight-binding model for 1H-NbSe2. (a) The density of states of the band structure in
(b). The first Brillouin zone inset shows a schematic projection of the Fermi surface. Gold bands have spin projection ↑, and blue spin ↓. The
arrows show the cuts plotted in (b). The spin projection shows that while inversion is broken, time reversal is respected. (b) Band structure
along high-symmetry lines. The colors show the orbital content of the bands. SOC vanishes on the high-symmetry line �M . (c) 3D version
of the band structure, focusing on the Fermi level crossing bands, which corresponds to the shaded gray region in (b). The brown hexagon
delimits the first Brillouin zone at the Fermi level.

of the three doublets gives rise to exactly one combination
of s-wave symmetry denoted below as ˆ̄�ii1, ˆ̄�ii2, and ˆ̄�ii3,
respectively. The dz2 orbital is unaffected by SOC and gives
rise to the local correlation identical to Eq. (10):

ˆ̄�ii2 = �̂
A′

1
iis1

. (14)

The s-wave correlations constructed out of the other two
orbitals, dxy and dx2−y2 , read as

ˆ̄�ii1 = ci2+2;↑ci2−2;↓ − ci2+2;↓ci2−2;↑,

ˆ̄�ii3 = ci2−2;↑ci2+2;↓ − ci2−2;↓ci2+2;↑ . (15)

The combinations listed in Eqs. (14) and (15) condense in the
s-wave superconductor. Among the three combinations, only
the ˆ̄�ii2 [Eq. (14)] derived from the dz2 orbitals is a pure spin
singlet.

The correlations ˆ̄�ii1(3) in Eq. (15) contain singlet and
triplet components. These singlet and triplet combinations can
be explicitly written using Eq. (3) as

ˆ̄�ii1 − ˆ̄�ii3 = �̂
A′

1
iis2

, ˆ̄�ii1 + ˆ̄�ii3 = i�̂
A′

2
iit , (16)

respectively. The factor of i in front of the triplet component
in Eq. (16) is required by the time-reversal invariance. The co-
existence of the singlet and triplet onsite correlations induced
by the SOC is indeed verified numerically (see Fig. 4). It also
follows from Eq. (16) that the d-vector introduced in Eq. (9)
points out of the plane. This can be traced to the horizontal
mirror symmetry and has been confirmed numerically as well
(see Fig. 4).

The above group-theoretical considerations apply as is to
the � point in the reciprocal space. This implies the double
degeneracy of the bands at � [see Fig. 2(b)]. Indeed, the
states at � realize the double group of D′

3h that has only
two-dimensional spinor irreducible representations (irreps).
As another important implication of the symmetry, we point
out the double degeneracy along high-symmetry �M lines
[see Fig. 2(a)]. In this case, the two mirrors crossing along
�M ensure the vanishing of the SOC induced splitting. As

a result, the Cooper pairs of electrons with momenta along
�M are pure spin singlets. As the SOC vanishes on �M ,
the external magnetic field generates nodes along �M once
the Zeeman splitting exceeds the superconducting gap. This is
discussed in more details in Sec. VI C.

B. Pairing interaction

We consider the onsite attraction in the three-orbital model.
Here, we neglect the SOC induced renormalization of the
interaction term of the Hamiltonian and construct the latter
ignoring SOC.

The interactions respecting the symmetry of the crystal
are A′

1 scalars. We limit the consideration to the local, onsite
interactions. They are constructed by forming bilinear com-
binations of the onsite correlations listed in Sec. III A 1 and
give

HS = − 1

2

∑
i

[
Uz2(

�̂
A′

1
iis1

)†
�̂

A′
1

iis1
+ U

(
�̂

A′
1

iis2

)†
�̂

A′
1

iis2

+ (
U ′(�̂A′

1
iis1

)†
�̂

A′
1

iis2
+ H.c.

)+
∑
k=1,2

U ′′(�̂E′
iis3,k

)†
�̂E′

iis3,k

+ V
(
�̂

A′
2

iit

)†
�̂

A′
2

iit

]
. (17)

See Appendix E 3 for proof. Equation (17) is the most general
form of the local pairing Hamiltonian allowed by the sym-
metry in the three-orbital model. It is rich enough to contain
three A′

1 singlets {Uz2
, U,U ′}, one singlet of E′ symmetry

(U ′′), and one triplet channel of A′
2 (V ) symmetry. Since our

goal is to study the emergence of the triplet correlations as an
intrinsic property of the system, we set V = 0 unless stated
otherwise. In addition, we study the s-wave superconductivity,
and therefore set the attractive amplitude in the E′ channels
to zero U ′′ = 0. This is legitimate as within the mean field
approach channels of different symmetry decouple. The cou-
pling between the two s-wave singlets does not affect any of
our results, and we set U ′ = 0.
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As a result, using (10) and (11) we rewrite (17) as

HS = − Uz2
∑
i,σ

c
†
iz2σ

c
†
iz2,−σ

ciz2,−σ ciz2,σ

− U
∑
i,σ

∑
α,β

c
†
iασ c

†
iα,−σ ciβ,−σ ciβ,σ , (18)

where the orbital indices {α, β} run over the in-plane orbitals
{dxy, dx2−y2}. After mean field decoupling we obtain

HS =
∑
iσ,σ ′

(iσy )σσ ′�z2

iσσ ′c
†
iz2σ

c
†
iz2σ ′ + H.c.

+
∑
iσ,σ ′

∑
α,β

(iσy )σσ ′�α
iσσ ′c

†
iβσ c

†
iβσ ′ + H.c., (19)

with the superconducting order parameters given by

�
μ

iσσ ′ = (iσy )σσ ′Uμ〈ciμσ ciμσ ′ 〉 = (iσy )σσ ′Uμ �
μμ

ii,σσ ′, (20)

where μ runs over all orbitals and from (17) we have
(Uz2

, Uxy, Ux2−y2
) = (Uz2

, U,U ). The superconducting or-
der parameters (20) can be parametrized like (9), and must
be self-consistently determined. Although the pairing Hamil-
tonian (19) only involves onsite intraorbital pair correlations
�

μμ

ii,σσ ′ , the spin-locked normal state and more specifically
SOC induces more general pairing correlations �

μν

ij,σσ ′ includ-
ing interorbital pairs.

IV. NUMERICAL METHOD

The model presented in the previous section is a real-space
mean field Bogoliubov–de Gennes (BdG) Hamiltonian HBdG.
Since mean field Hamiltonians are bilinear in the operators,
one can in principle find the eigenvalues and eigenvectors by
exact numerical diagonalization. However, solving a matrix
lattice Hamiltonian of large dimension D using exact diago-
nalization methods rapidly turns into an intractable task. The
dimension of the Hamiltonian matrix HBdG is determined by
the degrees of freedom:

D = sites × orbitals × spins × electron/hole. (21)

As an example, within an exact BdG approach with 40 ×
40 atoms, one orbital, no SOC, and electron-hole symme-
try, the corresponding matrix Hamiltonian has dimension
D = (40 × 40) × 1 × 1 × 2 = 3200. Such matrices are still
tractable for self-consistent exact diagonalization. In [57],
exact diagonalization is performed on a matrix with dimen-
sion D = 9000. In our multiorbital system with SOC, a
real-space 40 × 40 lattice has a Hamiltonian of dimension
D = (40 × 40) × 3 × 2 × 2 = 19 200. Doing self-consistent
calculations on 19 200 × 19 200 matrices using exact diag-
onalization is very time consuming and memory expensive
on typical desktop computers. Solving such matrix sizes (or
even much bigger) is feasible within a Chebyshev Green’s
function expansion approach, even on a desktop computer. In
the following sections we summarize the main elements of
the method, and for a detailed account, we refer the reader to
Refs. [58–61].

A. Chebyshev expansion of the Green’s function

We are interested in the retarded Green’s function G(E) =
(E − HBdG)−1 evaluated immediately above the real axis. A
common choice of expansion polynomials are the Cheby-
shev polynomials of the first kind defined by Tn(x) =
cos(n arccos x), where x ∈ [−1, 1]. They are known for their
good convergence properties and recursive relation Tn+1 =
2xTn(x) − Tn−1(x), with T0(x) = 1 and T1(x) = x. Because
the Chebyshev polynomials are defined on [−1, 1], one has to
rescale HBdG into the dimensionless form H̃BdG = (HBdG −
b1̂)/a, where a is an upper bound estimate for the energy
spectrum, and b is the center of the spectrum. We indicate
all rescaled quantities with a tilde. Similarly, Ẽ = (E − b)/a.
Since BdG Hamiltonians have built-in electron-hole symme-
try, b = 0 and a ≈ Emax. One can expand the retarded Green’s
function in terms of the Tn(H̃BdG) as [58–61]

G(E + i0) = 1

E − HBdG + i0

= −1

a

i√
1 − Ẽ2

∞∑
n=0

(2−δn0)Tn(H̃BdG)e−in arccos Ẽ .

(22)

In practice, one truncates the series at an expansion order
N − 1 and the Green’s function G(E + i0) and the Hamil-
tonian HBdG are projected onto a basis involving sites, or-
bitals, and spins, such that the argument of the Tn(x)’s are
D-dimensional matrices. The truncation introduces spurious
oscillations in the Green’s function known as Gibbs oscil-
lations [58]. To correct for these oscillations, guarantee the
positivity of the poles, and improve convergence, we include
the Jackson kernel in the summand of Eq. (22) defined as

gn = (N − n + 1) cos
(

nπ
N+1

)+ sin
(

nπ
N+1

)
cot

(
π

N+1

)
N + 1

. (23)

Other kernels with different convergence properties also can
be used [58,61].

B. Recursive implementation and resolution

We wish to determine matrix elements of the retarded
Green’s function 〈α|G(E + i0)|β〉. This amounts to the eval-
uation of the expansion moments 〈α|Tn(H̃BdG)|β〉 = 〈α|ψn〉.
With the starting vectors |ψ0〉 = T0(H̃BdG) = |β〉 and |ψ1〉 =
T1(H̃BdG) = H̃BdG|β〉, all vectors |ψn〉 up to an arbitrary order
N − 1 can be recursively obtained using the relation |ψn+1〉 =
2H̃BdG|ψn〉 − |ψn−1〉. The core operation of the algorithm
is then a sparse matrix vector multiplication of the type
H̃BdG|ψ〉, a process that can be efficiently parallelized. This
shows the main advantage of the method as opposed to exact
diagonalization.

The Chebyshev expansion, however, suffers from a draw-
back related to the resolution around the Fermi level E = 0.
Because the method requires one to rescale the entire spectral
range of H̃BdG, the resolution is set by a. Also, the zeros of
the Chebyshev polynomials Tn(Ẽ) are sparser around E = 0
(where high resolution is needed), and denser around the
spectrum ends of [−1, 1]. Therefore, if the energy scale of
the superconducting gap centered at E = 0 is � 	 a, one has
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to guarantee that the expansion order N is sufficiently large
to resolve the smallest energy scale of interest: in this case �.
More precisely, the zeros of Tn(Ẽ) are Ẽk = cos[π/N (k +
1/2)] such that the least resolution around Ẽ = 0 is given by
(for N odd)

�E

a
= Ẽ(N−1)/2 − Ẽ(N−3)/2 = sin

π

N
≈ π

N
. (24)

Therefore, the bandwidth-gap ratio a/� should be of the same
order of N . We expand on more specific computational details
in Appendix D.

C. LDOS and superconducting gaps

We define normal and anomalous (superconducting) com-
ponents of the retarded Green’s function, respectively, as

G
μν

ij,σσ ′ (E + i0) = 〈ciμσ (E − HBdG + i0)−1c
†
jνσ ′ 〉, (25)

F
μν

ij,σσ ′ (E + i0) = 〈ciμσ (E − HBdG + i0)−1cjνσ ′ 〉, (26)

and a similar anomalous component involving creation opera-
tors is omitted. The electronic local density of states (LDOS)
relates to (26) via

ρi(E) = − 1

π

∑
μ,σ

Im G
μμ

ii,σσ (E + i0). (27)

From this we also can extract the partial orbital contributions
ρiμ(E) to the LDOS.

A general pairing correlation �
μν

ij,σσ ′ = 〈ciμσ cjνσ ′ 〉 is re-
lated to the anomalous Green’s function via [61]

�
μν

ij,σσ ′ = i

∫ ∞

−∞

dE

2π
f (E)

[
F

μν

ij,σσ ′ (E + i0)−F
μν

ij,σσ ′ (E − i0)
]
,

(28)

where f (E) = (eE/kBT + 1)−1 is the Fermi distribution. Un-
like the LDOS that is always a real quantity, the �

μν

ij,σσ ′ involve
the evaluation of the Green’s function in both upper and lower
complex half-planes. However, due to electron-hole symmetry
of the BdG Hamiltonian, one can show that the anomalous
Green’s function and the matrix elements of Tn(H̃BdG) have
the properties

F
μν

ij,σσ ′ (E − i0) = F
νμ

ji,σ ′σ (−E + i0),

〈ciμσ |Tn(H̃BdG)|cjνσ ′ 〉 = (−1)n+1〈cjνσ ′ |Tn(H̃BdG)|ciμσ 〉.
(29)

These properties are derived in Appendix C. With this,
Eq. (28) simplifies to

�
μν

ij,σσ ′ =
∞∑

n=1

Dnμn, μn = 〈ciμσ |Tn(H̃BdG)|cjνσ ′ 〉, (30)

where the zeroth-order expansion moment has dropped out
from the sum because μ0 = 0,1 and all the information about

1The zeroth-order expansion moment should not be mistaken with
the chemical potential.

temperature is contained in

Dn = 2

π

∫ 1

−1
dẼ f̃ (Ẽ)

cos(n arccos Ẽ)√
1 − Ẽ2

≈ 2

N

N−1∑
k=0

f̃ (Ẽk ) cos
nπ

N

(
k + 1

2

)
, (31)

where Ẽk = cos[π/N (k + 1/2)] are the Chebyshev abscissas
and a Chebyshev-Gauss quadrature was used to obtain the
second line (see Appendix D). At T = 0 the integral or the
sum in Eq. (31) can be evaluated analytically. The coefficients
Dn are supplemented with the Jackson kernel defined in
Eq. (23). The second line of Eq. (31) has the form of a
cosine Fourier transform, such that one can use a fast Fourier
transform algorithm to perform the integral efficiently.

If H̃BdG is real, then the list of expansion moments {μn} is
also real and no imaginary part of �

μν

ij,σσ ′ develops. However,

if H̃BdG contains imaginary elements, such as coming from
SOC, �

μν

ij,σσ ′ might develop an imaginary part accordingly.
For a pairing interaction in the A′

1 channel in (17), only the
elements �

μμ

ii,σσ ′ are self-consistently updated and converged.
Once the �

μμ

ii,σσ ′ converged, one can probe any pairing corre-
lation �

μν

ij,σσ ′ .

V. RESULTS

In this section, we present the results of our numerical
simulations. We show magnetic field–temperature phase dia-
grams with and without SOC demonstrating the enhancement
of the critical field, find the onsite and nearest-neighbor su-
perconducting pairing correlations, and explore the effects of
onsite scalar impurities on the phase diagram.

A. Magnetic field–temperature phase diagrams

1. Setting up the parameters without SOC

We first examine the clean case (W = 0) without SOC
(λSO = 0) and use it as a reference system. Applying a mag-
netic field B in the x direction, the Hamiltonian HBdG =
HN + HS contains only real matrix elements. It then fol-
lows from (30) that no imaginary expansion moments μn

can be generated, and as a consequence the pairing correla-
tions �

μν

ij,σσ ′ are real. Because singlet and triplet components
transform as ψI → ψ∗

I and dI → −d∗
I under time-reversal

operation, no triplet correlations can be induced without SOC
at zero magnetic fields.

We assume an attractive interaction in the A′
1 channel,

as introduced in (17) with Uz2 = U . In principle, one can
adjust U such that the order parameters vanish at the system’s
superconducting critical temperature Tc. In monolayer 1H-
NbSe2, Tc ≈ 2 K [5,6]. This yields a BCS zero-temperature
gap �(0) = 1.76kBTc ≈ 0.3 meV, and the ratio between the
SOC and superconducting energy scales is estimated to be of
order λSO/�(0) ∼ 200 [35]. To be able to accurately calculate
energy scales below 1 meV, the resolution of the Chebyshev
expansion method should have μeV precision. This means
that according to (24), the number of Chebyshev expansion
moments would have to be of order N = πa/(�E) ∼ 107.
This is intractable if one needs to do a large amount of
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FIG. 3. Magnetic induction-temperature superconducting phase diagrams showing the enhancement of the paramagnetic critical field due
to Ising SOC. (a) The case for λSO = 0. Above the point at T ∗ ≈ 0.57Tc the transition changes from first order to second order. The black point
indicates the tricritical point. (b) Phase diagram with λSO/�z2 (0) ≈ 17, showing strong enhancement of the critical magnetic field. Here, BP

and Tc are taken from the case with λSO = 0. The dashed line shows the paramagnetic transition line obtained in (a), and the arrow indicates the
constant temperature cut that is analyzed throughout the paper. (c) Constant temperature cut of the phase diagrams at T ≈ 0.37Tc. The curves
dropping below BP correspond to the case without SOC, and the curves dropping at B ≈ 4BP show the enhancement due to SOC. �z2 (0) is
the maximum value of the superconducting gap of the 4dz2 orbital for the λSO = 0 case.

self-consistent calculations. Therefore, in this paper, we use
N = 104 (unless explicitly stated), which allows us to ac-
curately resolve energy scales above 0.1 meV and examine
ratios up to λSO/�(0) ≈ 17. Although the SOC-gap ratio is
typically an order of magnitude larger in monolayer TMDs,
we are still operating in the regime where � < λSO � EF,
where EF is the Fermi energy. Therefore, we use U = 0.42
eV, which yields the largest zero-temperature superconducting
gap of �z2 (0) ≈ 12 meV with λSO = 0. All subsequent plots
involving superconducting order parameters are normalized
with respect to �z2 (0).

To perform the numerical simulations, we consider a 40 ×
40 triangular lattice with periodic boundary conditions. Start-
ing with random initial conditions, the superconducting order
parameters (20) converge self-consistently below 10 μeV
precision. In Fig. 3(a) we map out a magnetic induction-
temperature phase diagram with λSO = W = 0. At T = 0, we
obtain a paramagnetic critical field of BP ≈ 250 T. We use this
value as normalization in subsequent plots. The color gradient
shows the amplitude of �z2

i↑↓ = U 〈ciz2↑ciz2↓〉 (abbreviated as
�z2 ). The color gradients for the other order parameters
�xy(x2−y2 ) are very similar and, for this reason, we only show
�z2 . Below the temperature T ∗ ≈ 0.56Tc, the transition line
is of first order, and above T ∗ it is of second order [62].
Inside the critical field transition line, the superconducting
order parameters only vary appreciably above T ∗.

2. With SOC: Enhancement of the critical magnetic field

We now examine the case where λSO is an order of magni-
tude larger than the superconducting energy scales, and for
this we set λSO = 0.2 eV, such that λSO/�z2 (0) ≈ 17. The
phase diagram in Fig. 3(b) shows a fivefold enhancement
of the paramagnetic critical magnetic field with respect to
the λSO = 0 case. This enhancement is due to the form of
the Ising SOC interaction (5), which locks the spins in the
out-of-plane direction, and makes superconductivity robust

against in-plane magnetic fields. Many experiments report an
enhancement of the upper critical field in Ising superconduc-
tors, and might even be more exaggerated with respect to our
simulations depending on the TMD family, because of the
larger λSO/� ratio [35–38].

Unlike the λSO = 0 case, the critical transition line is
always of second order [10], in stark contrast to ordinary
paramagnetically limited superconducting thin films [63–66].
From the finite-temperature cross section at T = 0.37Tc in
Fig. 3(c), one can clearly identify the first-order phase tran-
sition without SOC, and the second-order phase transition
with Ising SOC. Our numerical calculations show that �xy =
�x2−y2 holds, which is a requirement of symmetry imposed
by the A′

1 pairing interaction (18).

B. Pairing correlations

Real-space BdG theory benefits from the ability to self-
consistently find the superconducting pairing correlations
�

μν

ij,σσ ′ = 〈ciμσ cjνσ ′ 〉 that emerge from the spin-locked normal
state. We will show that no other attractive pairing channel
other than A′

1 is necessary to induce triplet correlations.
We choose to probe for onsite and nearest-neighbor (NN)
superconducting correlations.

For each correlation, whether it is local or of nearest-
neighbor type, the matrix [�I ] in spin space introduced in (9)
has a spectral form

[�I ][�I ]† = + (|ψI |2 + |dI |2)σ0

+ (ψI d∗
I + ψ∗

I dI︸ ︷︷ ︸
��I

+i dI × d∗
I︸ ︷︷ ︸

��T

) · σ . (32)

Here, σ0 is the 2 × 2 unit matrix. This shows the explicit
coupling of the singlet and triplet components, and potentially
a net Cooper pair spin polarization idI × d∗

I . The first line (32)
proportional to σ0 is unitary. The coupling ψI d∗

I + ψ∗
I dI is
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nonunitary in inversion I and idI × d∗
I in nonunitary in time

reversal T [67].
Writing the time-reversal operator as T = iσyK, where K

is the conjugation operator; by comparing [�I ] to T [�I ]T −1,
we infer that under time-reversal operation ψI → ψ∗

I and
dI → −d∗

I . With this, one can verify that idI × d∗
I is the

only term that breaks time reversal in (32). Therefore, for the
discussion in real space, the superconducting state remains
time-reversal symmetric if ψI is real, and the d-vector com-
ponents are purely imaginary.

Our simulations reveal that �I,↑↓ remains time-reversal
symmetric even in the presence of an in-plane magnetic
field. A magnetic field induces real dI,x and dI,y in �I,↑↑
and �I,↓↓, whereas dI,z remains purely imaginary. In the
following sections, we discuss time-reversal-symmetric and
time-reversal-breaking (TRB) pairing correlations separately.

1. Time-reversal-symmetric correlations

From the discussion in Sec. III, we already know that at
zero magnetic field correlations of the type �I,↑↑ = �I,↓↓ = 0.
This is numerically verified. We now look at the onsite sub-
matrix of �I,↑↓ in the orbital basis {dz2 , dxy, dx2−y2}, and write

[�ii,↑↓] =

⎡
⎢⎣ �z2 �xy,z2 �x2−y2,z2

�z2,xy �xy �x2−y2,xy

�z2,x2−y2 �xy,x2−y2 �x2−y2

⎤
⎥⎦

=

⎡
⎢⎣�z2 0 0

0 �xy d0,z

0 −d0,z �x2−y2

⎤
⎥⎦. (33)

The site and spin indices of the matrix elements were omitted
and are implicit for clarity, that is, for instance, �z2

ii,↑↓ = �z2

and d0,z = d
x2−y2,xy

ii,z . The diagonal intraorbital pairing corre-
lations in (33) are the only ones that form the superconducting
order parameters �

μ

iσσ ′ = (iσy )σσ ′Uμ�
μμ

ii,σσ ′ , which converge
self-consistently. After reaching self-consistent convergence
for the (necessarily real and singlet) diagonal elements, we
probe the content of the off-diagonal elements. We find that
for finite SOC, �x2−y2,xy = −�xy,x2−y2 = d0,z is purely imag-
inary, which corresponds to the A′

2 symmetric triplet state
(13). This is also known as an orbital-singlet state [42,68].
Because the SOC matrix (4) does not involve dz2 , the matrix
elements elements in (33) involving dz2 are zero. This induced
triplet component clearly reflects the structure of the angular
momentum matrix Lz (4).

Similarly, again after converging the order parameters
�

μ

iσσ ′ , we probe the contents of the nearest-neighbor pairing
correlations

[�Rn,↑↓] =

⎡
⎢⎢⎣

�z2

Rn
�

xy,z2

Rn
�

x2−y2,z2

Rn

�
z2,xy

Rn
�

xy

Rn
�

x2−y2,xy

Rn

�
z2,x2−y2

Rn
�

xy,x2−y2

Rn
�

x2−y2

Rn

⎤
⎥⎥⎦, (34)

where Rn = jn − i is the vector connecting nearest-neighbor
bonds for some fixed site i, and n ∈ [1, 6] labels the six nearest
neighbors, and the spin indices for the matrix elements were
again omitted. There is a 3 × 3 matrix for each direction
n. We find that all elements of [�Rn,↑↓] are populated. All

elements have a real and imaginary part, and by comparing
[�Rn,↑↓] with [�Rn,↓↑], we can identify Re [�Rn,↑↓] with the
spin-singlet pairing correlations, and Im [�Rn,↑↓] with the
spin triplet. To make a connection with the parametrization
introduced in (9), we can write each element of (34) as

�
μν

Rn
= Re �

μν

Rn
+ i Im �

μν

Rn
= ψ

μν

Rn
+ d

μν

Rn,z
. (35)

Among the matrix elements of (34), the simplest and domi-
nant is �z2

Rn
, which corresponds to the rotationally symmetric

orbital dz2 . We, therefore, use �z2

Rn
as an illustrative example

for the purpose of discussion. Whereas �z2 in (33) is nec-
essarily singlet [see (10)], �z2

Rn
is mixed. The self-consistent

procedure reveals that the correlations �z2

Rn
have a direction

(n) dependent modulation of the form

�z2

Rn
= 〈ciz2↑ci+Rn,z2↓〉 =

singlet︷︸︸︷
ψNN

triplet︷ ︸︸ ︷
+i(−1)n+1|dNN,z| . (36)

The singlet component remains direction independent, but the
imaginary triplet component induced by SOC alternates its
sign from neighbor to neighbor [see Fig. 4(c)]. SOC induces
the triplet component |dNN,z|. Triplets are only suppressed
through the coupling with the singlets. Because of this, at high
magnetic fields, the triplets are favored. In fact, triplet Cooper
pairs continue to condense with increasing magnetic field.
The relative amplitude ϕ = arctan(|dnn,z|/ψnn) measures the
increasing amount of the triplets over the singlets with in-
creasing field.

To gain more insight into �z2

Rn
, it is instructive to examine

the Fourier transform of (36). We obtain

�z2

nn(k) =
∑
Rn

�z2

Rn
eik·Rn

= + 2ψnn

[
cos kx + 2 cos

(
kx

2

)
cos

(
ky

√
3

2

)]

+ 4|dnn,z|
[
− sin kx + 2 sin

(
kx

2

)
cos

(
ky

√
3

2

)]
.

(37)

Both the singlet and triplet parts have nodal lines at which
�z2

nn(k) = 0. For the singlet component, the nodal line is
closed and is even in k. For the triplet component, the nodal
line coincides with the six �M lines and is odd in in k. The
shape of the nodal line of �z2

nn(k) = 0 evolves with increasing
ϕ. At the critical angle ϕc ≈ 30◦, the nodal line changes its
topology, which is shown in Fig. 4(d). Also, it is interesting to
note that the momentum structure of the triplet component is
identical to the SOC g-vector discussed in the context of Ising
superconductivity in TMDs [11,36,38,69,70]; see Appendix B
for more details. This is no coincidence and reflects the fact
that triplets are induced by SOC.

We stress that although (37) has a momentum dependence
in the first Brillouin zone, it is in orbital basis, not band
basis. This means that although (37) is nodal, this does not
necessarily mean that the superconducting gap function in
band basis is nodal. To obtain the band-dependent gaps from
BdG, one would have to include the pairing correlations of
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FIG. 4. Magnetic field dependence of the superconducting pairing correlations at T ≈ 0.37Tc. (a) The three superconducting onsite order
parameters �z2 (red line), �xy (green line), and �x2−y2 (blue line). Among the many induced correlations, here we show the onsite interorbital

triplet d0,z (black line), the nearest-neighbor correlation �z2

Rn
along Rn (orange) for some fixed n, and the time-reversal-breaking (TRB)

onsite component dz2

Rn,y (dashed violet line) induced by the x-directed magnetic field. The order parameters (indicated by �) have dimension

of energy, but the correlations are dimensionless. (b) The singlet Re �z2

Rn
= ψnn and triplet parts |Im �z2

Rn
| = |dnn,z|. The evolution of ϕ =

arctan(|dnn,z|/ψnn ) shows the increasing imbalance between the singlet and triplet components with increasing field. (c) Nearest-neighbor
modulation of the induced triplet component. The color bar shows the antisymmetric sign modulation of the triplet component of �z2

nn (k).
(d) The nodal line of �z2

nn (k) in the first Brillouin zone for ϕ = 20◦ and 45◦. The transition in topology of the nodal line occurs at ϕc ≈ 30◦.

all pairs on the lattice and rotate the Hamiltonian to band
basis. We perform this analysis for a simplified model in
Appendix B.

The pairing correlations �
xy

Rn
and �

x2−y2

Rn
have a similar

triplet modulation as �z2

Rn
, but because of the lower symme-

try of the orbitals, |�xy(x2−y2 )
Rn

| is direction dependent. For

�
x2−y2,xy

Rn
, it is the singlet component, not the triplet, that

has a sign alternation. For the interorbital terms involving

z2, �
xy(x2−y2 ),z2

Rn
, both singlet and triplet components have

a modulated sign. For the interorbital matrix elements, the
symmetry �

αβ

Rn
= (�βα

Rn+3
)∗ holds.

2. Onsite time-reversal-breaking correlations

A finite magnetic field induces nonunitary triplets with
spin polarization SI = i〈d∗

I × dI 〉 and populate [�ii,↑↑] and
[�ii,↓↓] with polarization direction pointing along the exter-
nal magnetic in-plane field. For an in-plane field, the self-
consistent procedure reveals a d-vector of the form d =
(dI,x, dI,y, dI,z) and d∗

I = (dI,x, dI,y, d
∗
I,z), such that dI,x and

dI,y are real, and dI,z is purely imaginary. The reality of dI,x

and dI,y breaks time reversal. Consequently, the components
of polarization are

SI = i[dI,y (dI,z − d∗
I,z),−dI,x (dI,z − d∗

I,z), 0]

= 2 Im dI,z(−dI,y, dI,x, 0), (38)

revealing no out-of-plane Cooper pair spin polarization, con-
sistent with the in-plane magnetic field. Looking at onsite
correlations and a magnetic field applied along Bx , [�ii,↑↑] =
[�ii,↓↓] = d

x2−y2,xy

ii,y Lz/2, where Lz is given by (4), and

d
x2−y2,xy

ii,y is the y component of the d-vector involving orbitals
4dx2−y2 and 4dxy . Since dI,x = 0 for onsite pairing correla-
tions, S points along the x direction as expected.

C. Scalar impurities

In this section, we show how scalar onsite disorder affects
the normal and the superconducting states.

1. LDOS of the normal state

One of the hallmarks of Ising superconductors is the
absence of Zeeman splitting due to the spin locking by
SOC [8]. To show this, we plot the local density of states
(LDOS) ρi(E) [Eq. (27)] with its partial orbital contributions
of an arbitrarily chosen atom with λSO = 0, and see a clear
Zeeman splitting with the application of an in-plane field of
B = 500 T, where the splitting is �Z = μBB ≈ 30 meV; see
Figs. 5(a) and 5(b). Turning now to Fig. 5(c), where B = 0
with λSO = 0.1 eV, it seems as if the top peak is split by
a Zeeman field, but actually corresponds to SOC splitting.
For this reason, Ising SOC is frequently referred to as an
effective Zeeman field, but one has to keep in mind that SOC
preserves time-reversal symmetry, whereas a Zeeman field
breaks it. For λSO = 0.1 eV, one can estimate the spin-orbit
magnetic induction BSO ≈ λSO/(2μB) ≈ 864 T. Adding
now an in-plane field of B = 500 T [Fig. 5(d)], no Zeeman
splitting of the peaks appears. This explains the absence of
Zeeman splitting in experiments [8].

In Figs. 5(e)–5(h) we show the case for finite λSO and
B = 0, for increasing uniformly distributed disorder with
strength W . Usually, a disorder energy scale larger than the
energy scale associated to unconventional superconducting
energies W > � is strongly detrimental for unconventional
superconducting states [3,4,42]. An appreciable difference of
the partial LDOS contributed by the dxy and dx2−y2 orbitals is
only seen above a disorder strength of W = 100 meV, that is,
when the energy scale of disorder becomes comparable to EF.

2. Robust unconventional superconductivity

We now examine the effect of disorder on the super-
conducting correlations in (33) and (34). Usually, isotropic
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FIG. 5. The LDOS in the normal state for the Fermi level crossing bands for various combinations of SOC, in-plane magnetic fields, and
Anderson disorder strengths. Here, we simulated a 120 × 120 triangular lattice with N = 1200 Chebyshev expansion moments. The Gibbs
oscillations are slightly visible. (a) No Ising SOC at zero fields. (b) Addition of an in-plane field of B = 500 T. Zeeman spin spitting is best
seen at the top peaks, indicated by the arrows. (c) With Ising SOC at zero fields. The SOC magnetic induction acts as an effective out-of-plane
Zeeman field but preserves time-reversal symmetry. The SOC-split bands are indicated by the arrows. (d) Addition of a field of B = 500 T,
demonstrating the absence of Zeeman splitting due to the Ising locking mechanism. (e) Same situation as in (c), but now with random onsite
disorder strength W = 10 meV, comparable to the superconducting energy scale. The probability distribution used here is uniform. There
is no visible difference (at the EF scale) with respect to (c). (f)–(h) Increasing W up to 200 meV. Deviations between the partial LDOS
correspondent to the dxy and dx2−y2 (which are identical in the clean case) orbitals become more pronounced.

s-wave singlet superconducting correlations are robust against
scalar impurities [1], whereas unconventional correlations are
strongly suppressed [4].

The Hamiltonian contains a randomly distributed onsite
potential W

μ

i with an orbital degree of freedom. The LDOS
and the local correlations [�ii,↑↓] vary from atom to atom. In
principle, one now should do self-consistency for all [�ii,↑↓]
separately since they respond to the LDOS. However, we are
interested in the overall behavior of the pairing correlations.
For this reason, using an averaged value of [�ii,↑↓] for all sites
suffices for our purpose.

In Fig. 6 we show the results of a simulation for a
single uniformly distributed disorder realization with W =
100 meV, an order of magnitude larger than the supercon-
ducting energy scale. Remarkably, no signs of suppression
are observed. Even a large amount of disorder does not
affect the qualitative features present in the clean case. We
only start seeing substantial suppression once W ≈ λSO. In
Fig. 5(a), one can see a slight difference in �xy 
= �x2−y2

due to the breaking of translational and rotational invariance.
In contrast to the clean case, the onsite triplet �x2−y2,xy =
Re �x2−y2,xy + i Im �x2−y2,xy now acquires a small random-
ized real part. It therefore now has a phase evolution
ϕon = arctan(Im�x2−y2,xy/Re�x2−y2,xy ) with varying mag-
netic field, which in the clean case remained strictly con-
stant with ϕon = ±π/2. The evolution of ϕon is shown in

Fig. 6(c). The most important qualitative features remain
intact: a strong enhancement of the critical paramagnetic
field and an increasing imbalance of the singlet and triplet
components.

We also simulated dilute disorder with an impurity concen-
tration of 2%, but very large disorder strength W = 1.8 eV.
Using a Gaussian probability distribution for the disorder
potentials, this corresponds to an estimated dimensionless
scattering rate (8) of h̄/(τkBTc ) ≈ 20, whereas superconduct-
ing energy scales are of order h̄/(τkBTc ) ∼ 1. The results are
indistinguishable from the ones presented in Fig. 6, showing
that superconductivity remains robust regardless if it is strong
dilute or Anderson disorder.

The A′
2 s-wave triplets �x2−y2,xy are onsite and do not

depend on the momentum k. For this reason, we checked if
�x2−y2,xy is intrinsically robust against the disorder, just like
the conventional A′

1 s-wave singlets. To do this, we considered
an attractive interaction in the triplet A′

2 channel only, that
is, V 
= 0 in (17) and all other channels set to zero. The A′

2
channel has an associated triplet order parameter �x2−y2,xy =
V �x2−y2,xy for which self-consistency is performed. Unlike
A′

1, the A′
2 channel is not paramagnetically limited. In the

clean case (W = 0), we observe some variation of �x2−y2,xy

with the field due to electronic structure changes. The sit-
uation remains qualitatively the same with the addition of
disorder. The A′

2 s-wave triplet state is therefore intrinsically
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FIG. 6. The effect of scalar impurities on the superconducting state. The qualitative properties as compared to the clean case remain
unaltered. (a) Superconducting order parameters and induced pairing correlations in the presence of disorder with Anderson disorder strength
W = 100 meV at T = 0.37Tc. (b) The evolution of ϕ = arctan(|dnn,z|/ψnn ), and (c) ϕon = arctan(Im �x2−y2,xy/Re �x2−y2,xy ). In the clean limit
ϕon = ±π/2. Note the inverted axis to emphasize the relative increase of triplets with increasing field. (d) Illustration of dilute scalar disorder
at Cimp = 2% concentration and W = 1.8 eV, and (e) random Anderson disorder on all sites. The color scale shows an arbitrary amplitude
and serves as a guide to the eye. (f) Phase diagram for W = 100 meV (uniform distribution) normalized with respect to the same values as in
Fig. 3. The phase diagram for the dilute disorder is indistinguishable.

robust against both paramagnetic limiting and scalar onsite
impurities.

VI. DISCUSSION

This section is dedicated to discussing the key implications
of our results that add to the understanding of unconventional
Ising superconductivity. Specifically, we focus on the second-
order paramagnetically limited phase transition, the protection
that SOC grants to the superconducting state against both
magnetic fields and onsite disorder, the role and structure of
the induced superconducting triplet components, nodal topo-
logical superconductivity, and we contrast our results with
existing literature and briefly discuss the role of Rashba SOC.

A. Second-order paramagnetic transition

In conventional superconducting thin films such as alu-
minum and beryllium under applied in-plane magnetic fields,
the paramagnetic effect determines the (upper) critical field
Bc ≈ Bc2. This is because the orbital critical field is sup-
pressed as the out-of-plane superconducting coherence length
does not fit the monolayer [5,63–66]. The critical field Bc is
then obtained by comparing the superconducting condensa-
tion energy ρ0�

2
0 with the normal state (χN − χS)B2

c /μ0 to
obtain at T = 0 [25,62,71]:

B2
c (0) = ρ0�

2
0

μ0(χN − χS)
χS→0= �2

0

2μ2
B

, (39)

where the Pauli normal state susceptibility χN ≈ 2μ0μ
2
Bρ0, ρ0

is the DOS at the Fermi level (per unit volume), and χS is the
magnetic susceptibility in the superconducting state. In singlet
superconductors χS = 0, and because of the discontinuous
difference between χN and χS, the phase transition is of the
first order. In the present case, the nonunitary triplet Cooper
pairs have an in-plane spin polarization and give a finite
contribution to the superconducting susceptibility χS. This
causes the phase transition to be of second order [10,35]. The
enhancement of Bc occurs as χS → χN.

B. Disorder robust superconductivity

The presence of SOC in the noncentrosymmetric crystal in-
duces triplet pairing correlations leading to an unconventional
parity-mixed superconducting state. Two natural questions
regarding the effect of disorder arise: (1) Is the unconventional
state robust? (2) Is the critical paramagnetic field suppressed?

1. Stability of Tc to the disorder

Generally, the Tc in the unconventional superconductors
is suppressed by the disorder. In our system, the supercon-
ducting state has a mixed parity. It is, therefore, a priori
not guaranteed to be stable against disorder. The triplet s-
wave superconductivity, in fact, is suppressed by nonmagnetic
disorder [72]. To examine the possible implication of this
result in the present context, let us look more closely into
the structure of the order parameter at the K (K ′) corners of
the Brillouin zone. There are two nonzero Cooper correlations
below Tc at the K (K ′) point, ψK;+↑ψK ′;−↓ and ψK;+↓ψK ′;−↑;
see Eq. (E7) for details. Here, all the ψK (K ′ );±↑(↓) are annihi-
lation operators of the Bloch electrons at momenta K (K ′) in
the orbital state, |dx2−y2〉 ± i|dxy〉 with spin ↑ (↓). The other
symmetry-allowed combinations have an energy far above the
Fermi level, and therefore play no role in superconductivity.

The triplet correlations 〈�̂triplet〉 = 1
2 [〈ψK;+↑ψK ′;−↓〉 −

〈ψK ′;−↑ψK;+↓〉] coexist with the singlet correlations
〈�̂singlet〉 = 1

2 [〈ψK;+↑ψK ′;−↓〉 + 〈ψK ′;−↑ψK;−↓〉] thanks to
the SOC. In the case of pure triplet correlations, the two order
parameters differ in sign: 〈ψK;+↑ψK ′;−↓〉 = −〈ψK ′;−↑ψK;+↓〉.
Hence, following the argument of [72], the spin-conserving
intervalley scattering is pair breaking. Indeed, as the
orbital wave functions of paired electrons are switched
[(K+) ↔ (K ′−)] as a result of the impurity scattering,
the triplet order parameter changes sign. In our system, in
addition to the intervalley scattering, there are other similar
sources of pair breaking. The gap near the � differs from the
gap near K (K ′). Quite generically the gap variations over
the Fermi surface make the interband scattering pair breaking
[73].
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Notwithstanding the above arguments, our numerical re-
sults show that Tc is stable against the disorder. We have
no suppression of the Tc even for a relatively strong disor-
der with the scattering rate exceeding the superconducting
gap. The resolution to this apparent contradiction lies in the
suppression of the pair-breaking impurity scattering thanks
to the orthogonality of the orbital wave functions. Specif-
ically, the important bands are centered around �, K , and
K ′( see Fig. 2). These bands receive weights predominantly
from |dz2〉, |dx2−y2〉 + i|dxy〉, and |dx2−y2〉 − i|dxy〉 orbitals,
respectively. For all three points �, K , and K ′, the rotation
by 2π/3 (C3) around the z axis is a symmetry operation. It
remains an approximate symmetry in the proximity of each
of the above three symmetry points. As the orbitals |dz2〉,
|dx2−y2〉 + i|dxy〉, and |dx2−y2〉 − i|dxy〉 acquire a factor of 1,
e−i2π/3 and ei2π/3 upon C3 rotation, respectively, the Bloch
states at �, K , and K ′ all transform differently under C3.
It follows that any disorder potential, commuting with C3,
does not induce scattering between the �, K , and K ′ points
because all the three points are eigenstates of C3 with different
eigenvalues. For instance, 0 = 〈K|[HD,C3]|K ′〉 = (ei2π/3 −
e−i2π/3)〈K|HD|K ′〉 and as a result we have 〈K|HD|K ′〉 = 0.
In our model, the onsite potential is certainly C3 symmetric,
which explains the observed stability of Tc against a nonmag-
netic disorder.

Our arguments parallel the explanation of the stability of
Tc against the disorder in MgB2 [74]. This superconductor
has two distinct bands relevant for the superconductivity
with π and σ orbital character, respectively. The suppressed
scattering between the π and σ bands reconciles the strong
enhancement of the resistivity with no change in Tc as the
nonmagnetic disorder is added.

The C3 symmetry plays a similar role of the approximate
chiral symmetry stabilizing the odd-parity superconductivity
as discussed in [42]. In both cases, the possible paired states
transform differently under a given symmetry. Then, the disor-
der respecting this symmetry does not cause the pair breaking.

2. Effect of the disorder on Bc

We now discuss the influence of the disorder on the
critical field Bc. Let us first describe the situation in the
clean case. Without SOC, paramagnetic limiting destroys
superconductivity when the Zeeman splitting �Z compares to
kBTc [75]. This suppression occurs as the states with opposite
spin polarization and opposite momenta differ by Zeeman
splitting in energy. As a result, the Cooper logarithms take
the form log(�/�Z) instead of log[�/(kBT )], where � is the
ultraviolet energy cutoff of the order of the Debye energy,
therefore, the Tc(B ) < Tc = Tc(B = 0). One may consider
the pairing of the states with the same spin polarization. Such
pairs, however, would necessarily be a spin triplet. In the
absence of the attraction in spin-triplet channel, such a pairing
cannot be realized.

In the presence of SOC and in-plane magnetic field, the
residual symmetry Th = σhT ensures that each state of a
given momentum k, |φk〉, is degenerate with the state with
the opposite momentum |φ−k〉 = Th|φk〉 (see Fig. 7). This
degeneracy ensures that the Cooper logarithms constructed
on these states, log[�/(kBT )], are not suppressed. Crucially,

in contrast to the case without SOC, the degenerate pairs

have a finite amplitude λSO/

√
λ2

SO + �2
Z to be in the spin-

singlet state and enjoy the attraction. Ignoring for the sake
of the argument the dz2 orbital, we conclude that the original
attraction U is renormalized as U ′ = Uλ2

SO/(λ2
SO + �2

Z) [40].
This leads to the Gaussian dependence of the critical tempera-
ture on the in-plane field, Tc(B ) = Tc exp[−B2/B2

0 ], where
gμBB0 ∝ λSO[Uρ(EF)]. Alternatively, it is consistent with
the inverted Gaussian shape of the critical field temperature
dependence Bc(T ), with its characteristic inflexion point [see
Fig. 6(f)]. At low temperatures we have Bc(T ) ∝ √

log(Tc/T )
in agreement with [41]. The actual transition line is rounded at
small temperatures [see Fig. 6(f)] as the superconducting gap
becomes small at large magnetic fields.

From the picture presented above, it is clear that the impu-
rities may affect Bc only via the interband and/or intervalley
scattering. Again, similar to the discussion in the previous
section, as such scattering is prohibited by C3 symmetry, no
suppression of Bc by impurities is expected. This is indeed
what we have found numerically.

C. Nodal superconducting phase

The possibility of driving a TMD monolayer to a nodal
topological superconductor supporting Majorana fermions
has recently been considered [30,33]. Here, we argue that the
quasiparticle dispersion is inevitably nodal at a high magnetic
field, and they occur strictly on �M . The fact that SOC
vanishes on �M has an important effect on the quasiparticle
dispersion at high magnetic fields. While SOC is finite in the
quasiparticle spectrum region E(k 
= �M ) and Zeeman splits
very weakly, the lines E(k = �M ) are strongly Zeeman split.
Then, at high fields, E(k = �M ) develops a pair of nodes
along each �M line [see Fig. 7(e)]. At some critical magnetic
field BT in the range BP � BT < Bc, the superconducting
phase transitions from a fully gapped phase to a nodal phase.
Here, BP is the paramagnetic limit in the absence of SOC,
and Bc is the paramagnetic limit in the presence of SOC.
The nodal transition is driven by the Zeeman effect, not by
the intrinsic nodal structure of the superconducting triplet
component in (37). In Appendix B we provide an explicit
model and demonstrate that the nodal phase appears at high
fields.

D. Residual chiral symmetry and topology

We now comment on the topology of the nodal phase.
Following the developments of Refs. [30,53], the basal mirror
symmetry σh present in monolayer TMDs has important im-
plications for superconductivity in 2D. In 3D, in the presence
of both time-reversal and inversion symmetries, the states at
each momentum k are doubly degenerate. The two states at k
and two states at −k can be combined to form one Cooper pair
which is parity-even singlet, or three Cooper pairs which are
parity-odd triplets [76]. In the absence of the above discrete
symmetries, the simple classification of Cooper pairs does
not apply, which generally affects the superconductivity. In
2D, the additional symmetries C2z = σhI and Th = σhT also
guarantee degeneracy at opposite momenta. The Hamiltonian
reported here lacks C2z, but still has Th.
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FIG. 7. (a) Schematic illustration of the adjustment of the Cooper pairs to an in-plane magnetic field. The size of the arrows reflects the
amplitude of the order parameters. The Cooper spin partners ↗ and ↘ are related by the symmetry Th = σhT , which ensure their degeneracy
at opposite momenta in 2D. Schematically, σhT ↗= σh ↙=↘. Cooper partners are paired at the same energy located at K and K ′ = T K .
(b) At B = 0, Cooper pairs respect time-reversal symmetry. (c) A finite B induces nonunitary triplets breaking time reversal (red arrows).
(d) Schematic quasiparticle dispersion along �M , where SOC vanishes. At zero field, the bands are spin degenerate, opening a pure singlet
gap around the Fermi level. (e) At a finite field in the range BT < B < Bc, a pair of nodes form along �M . Because the spin degeneracy around
the Fermi level is now lifted, no singlet gap can open. These nodes occur strictly along �M . If one slightly deviates from the �M line, a finite
SOC together with the Zeeman field induce nonunitary equal spin Cooper pairs, opening up a pure triplet gap around the Fermi level.

Within an extended Altland-Zirnbauer (AZ + I) classi-
fication scheme [30,53], the gapped superconducting phase
below BT is in the BDI class without topological charges
and no Majorana edge states. Above BT, the class transitions
to a nodal AIII class with associated Z topological charges.
The symmetries allowing for a topological classification of
point nodes supporting Majorana flat bands are I = C2zTh,
B = C2zP , where P refers to particle-hole symmetry; and
more importantly the chiral symmetry C = IB [30,53,77,78].
These operators fulfill

IH(k)I−1 = H(k), I2 = ±1 (AU),

BH(k)B−1 = −H(k), B2 = ±1 (AU),

CH(k)C−1 = −H(k), C2 = 1 (U), (40)

where H(k) is a BdG Hamiltonian in k space, AU indicates
antiunitarity, and U unitarity. With only Th present, monolayer
TMDs lack I and B, but still preserve the residual chiral
symmetry C = IB = ThP , which provides protection for the
topological point nodes. The chiral symmetry C is not affected
by onsite scalar impurities [79].

E. Effect of Rashba SOC

Experimental setups might also produce Rashba SOC com-
ing from a substrate. In contrast to Ising SOC, Rashba SOC
locks the spins in the in-plane direction with helical texture
[21,22,25]. This populates �I,↑↑ and �I,↓↓ in (9), which
correspond to triplet Cooper pairs that are unprotected against
in-plane magnetic fields. Therefore, the inclusion of Rashba
SOC suppresses the paramagnetic critical field, as it competes
for spins with Ising SOC [6,35].

In this paper, we only discussed onsite scalar disorder,
which preserves the D3h symmetry of the lattice. However, in
experimental settings, the monolayer is interfaced with other
materials via encapsulation or contact with a substrate. The
lattice mismatch at the interfaces is expected to introduce
long-range scattering potentials, which can break the D3h

symmetry of the monolayer. In this case, we speculate that
C3-breaking long-range disorder might lead to suppression of
both Tc and Bc.

VII. CONCLUSION

When little is known about the superconducting pairing
mechanism, group theory traditionally allows one to lay out
the menu of possible pairing symmetries and study the most
likely realizations [52]. In many cases, it is possible to pin-
point the pairing symmetries without detailed knowledge of
the pairing interaction. Among the (sometimes) large menu of
possible gap structures offered by group theory, the question
of which ones are in fact realized remains generally open.
In noncentrosymmetric materials, a parity-mixed supercon-
ducting state is allowed, but the degree in which singlets
and triplets mix remains mostly unclear on solely group-
theoretical grounds. In this work, the self-consistent BdG
theory provides us with the pairing amplitudes of the pairing
correlations classified by group theory. By assuming a pairing
interaction in the conventional s-wave A′

1 singlet channel
only, we have shown that the resulting superconducting state
is parity mixed.

Using this combined group-theoretical and real-space nu-
merical approach, we self-consistently obtained the uncon-
ventional superconducting state of 2D NbSe2, and investi-
gated how it responds to an external in-plane magnetic field
and scalar impurities. We focused on onsite and nearest-
neighbor pairing correlations. Because of the orbital degree
of freedom, an onsite A′

2 triplet is induced by SOC which
is structureless in k space and intrinsically robust against the
disorder. The magnetic field increases the imbalance between
triplet and singlet Cooper pairs and induces a nonunitary
component breaking time reversal.

Ising spin-orbit coupling not only enhances the upper
critical field, but also ensures robustness of the parity-mixed
superconducting state against the usually detrimental scalar
impurities. Moreover, the multiorbital nature of monolayer
TMDs is important for the robustness against the disorder. The
orthogonality of the orbital wave functions prevents interband
scattering. In this regard, taking into account the multiorbital
nature of TMDs essential because it cannot be mapped to a
minimal graphene model with two inequivalent sublattices.

Although the system lacks both time reversal and inver-
sion, monolayer TMDs subjected to in-plane magnetic fields
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possess a residual chiral symmetry C, which is a nonspatial
symmetry providing topological protection for Majorana flat
bands. Even though we did not elaborate on the details of the
nodal topological phase (which is left for a future prospect),
our results are consistent with recent reports of Zeeman field
driven nodes in the quasiparticle spectrum on �M [30,33].

We used monolayer NbSe2 as our base system, but our
work is also relevant for all TMD families. In fact, most
of the TMDs are very similar in band structure and orbital
weights [47], differing essentially in the position of the chem-
ical potential. For this reason, we speculate that strongly
hole-doped group-6 TMD show potential for superconducting
applications.

In the quest for new group-6 2D TMD superconductors, it
might be interesting to investigate possible superconducting
states in strongly hole-doped tungsten dichalcogenides such
as WS2, WSe2, and WTe2 [80]. The tungsten family is the
heaviest among the group-6 TMD and offers a giant spin split-
ting [48]. Other advantages as compared to the molybdenum
family is that tungsten is more abundant in nature, cheaper,
and less toxic. On the other hand, most group-5 TMDs are
metals, such as NbSe2 and TaS2. From the SOC perspective,
tantalum-based materials yield a larger spin splitting.
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APPENDIX A: REAL-SPACE TIGHT-BINDING MODEL

In this Appendix, we specify the tight-binding model intro-
duced in (2). This discussion applies to all TMD monolayers
with hexagonal polytype 1H. Without SOC, the tight-binding
model consists of the hoppings t

μν

ij on a transition metal
triangular lattice. Hopping distance between atomic lattice
sites i and j is included up to third nearest neighbors, and the
orbital indices μ and ν run over the minimal set of orbitals
{dz2 , dxy, dx2−y2}. On the triangular lattice, they transform
according to the point group of monolayer TMD’s D3h. For
each fixed direction of 〈i, j〉, there is a corresponding 3 × 3
matrix in orbital space specifying all the intraorbital (μ = ν)
and interorbital (μ 
= ν) hoppings. Considering the six nearest
neighbors, six second nearest neighbors, six third nearest
neighbors, and three orbitals, we therefore have (3 × 6) ×
32 = 162 matrix elements t

μν

ij to specify. Using the values
of the overlap integrals along the t

μν

R1
direction as reference

to obtain all the others, we list the 162 matrix elements in
Table III. Nearest-neighbor matrices are labeled by R̂n, second
nearest neighbor by Ŝn, and third nearest neighbor by T̂n,
where n runs from 1 to 6, as can also be seen in Fig. 8.

The tight-binding parameters that fit the transition metal
dominated bands in 1H-NbSe2 were adapted from [33], and
are listed in Table II. The Fourier transform of our real-space
tight-binding model in Eq. (2) with all the hoppings t

μν

ij given
in Table III yields the k-space tight-binding model developed
by Liu et al. [47]. A good checkup for the matrices in Table III

FIG. 8. Illustration of the first (blue) Rn, second (red) Sn = Rn +
Rn+1, and third nearest neighbors (green) Tn = 2Rn on the triangular
lattice. Chalcogen atoms are shown by faint yellow points.

is the property

1

6

6∑
n=1

R̂n =

⎡
⎢⎣

t0 0 0

0 t11 + t12/
√

3 0

0 0 t11 + t12/
√

3

⎤
⎥⎦, (A1)

and analogously for T̂n; and for the second nearest-neighbor
matrices

1

6

6∑
n=1

Ŝn =

⎡
⎢⎣r0 0 0

0 (r11 + r22)/2 0

0 0 (r11 + r22)/2

⎤
⎥⎦. (A2)

The matrix elements for the in-plane orbitals are the same,
which reflects the fact that they belong to the same irrep E′.
Together with the pairing interaction (18), Eqs. (A1) and (A2)
enforce �x2−y2 = �xy for the clean case.

The value of λSO that fits the band structure from first-
principle calculations is λSO = 78.4 meV. In Fig. 2 we used
λSOC = 100 meV for presentation, and the calculations were
performed using λSO = 200 meV, to obtain a sizable ratio
λSO/�z2 (0) as explained in Sec. V. The value of λSO =
200 meV is still low enough to avoid that the chemical
potential lies between the two spin-split bands crossing the
Fermi level, which is the situation described in Refs. [31,40].

TABLE II. Tight-binding fitting parameters for 1H-NbSe2

adapted from Ref. [33]. The units are in eV. The hoppings are overlap
integrals defined along the R1 direction.

1H-NbSe2

t0 t1 t2 t11 t12 t22

−0.2308 0.3116 0.3459 0.2795 0.2787 −0.0539
r0 r1 r2 r11 r12 r22

0.0037 −0.0997 −r1/
√

3 0.0320 0.0986 0
u0 u1 u2 u11 u12 u22

0.0685 −0.0381 0.0535 0.0601 −0.0179 −0.0425
ε0 ε1 ε2 μ0 λSO

1.4466 1.8496 1.8496 0 0.0784
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TABLE III. The 18 real-space tight-binding matrices [tμν

ij,n]3×3 in the basis of {dz2 , dxy, dx2−y2 }. The six rows (n) refer to the neighboring

directions, and the three columns to the first R̂n, second Ŝn, and third nearest neighbor T̂n, respectively. For each fixed direction and neighbor,
the correspondent 3 × 3 matrix contains the diagonal intraorbital hoppings (μ = ν), and the off-diagonal interorbital hoppings (μ 
= ν). The
T̂n have the same direction as the R̂n, and therefore also have the same form. Note the symmetry t

μν

ij,n = t
νμ

ij,n+3 and the properties in Eqs. (A1)
and (A2).

n R̂n Ŝn T̂n

t0 −t1 t2 r0 r2 − r2√
3

u0 −u1 u2

1 t1 t11 −t12 r1 r11 r12 u1 u11 −u12

t2 t12 t22 − r1√
3

r12 r11 + 2r12√
3

u2 u12 u22

t0 − t1+√
3t2

2 −−√
3t1+t2
2 r0 0 2r1√

3
u0 − u1+√

3u2
2 −−√

3u1+u2
2

2 t1−√
3t2

2
t11+3t22

4 −
√

3
4 (t11 − t22) + t12 0 r11 + √

3r12 0 u1−√
3u2

2
u11+3u22

4 −
√

3
4 (u11 − u22) + u12

−
√

3t1+t2
2 −

√
3

4 (t11 − t22) − t12
3t11+t22

4
2r2√

3
0 r11 − r12√

3
−

√
3u1+u2

2 −
√

3
4 (u11 − u22) − u12

3u11+u22
4

t0
t1+√

3t2
2 −−√

3t1+t2
2 r0 −r2 − r2√

3
u0

u1+√
3u2

2 −−√
3u1+u2

2

3 −t1+√
3t2

2
t11+3t22

4

√
3

4 (t11 − t22) − t12 −r1 r11 −r12
−u1+√

3u2
2

u11+3u22
4

√
3

4 (u11 − u22) − u12

−
√

3t1+t2
2

√
3

4 (t11 − t22) + t12
3t11+t22

4 − r1√
3

−r12 r11 + 2r12√
3

−
√

3u1+u2
2

√
3

4 (u11 − u22) + u12
3u11+u22

4

t0 t1 t2 r0 r1 − r1√
3

u0 u1 u2

4 −t1 t11 t12 r2 r11 r12 −u1 −u11 u12

t2 −t12 t22 − r2√
3

r12 r11 + 2r12√
3

u2 −u12 u22

t0
t1−√

3t2
2 −

√
3t1+t2

2 r0 0 2r1√
3

u0
u1−√

3u2
2 −

√
3u1+u2

2

5 − t1+√
3t2

2
t11+3t22

4 −
√

3
4 (t11 − t22) − t12 0 r11 + √

3r12 0 − u1+√
3u2

2
u11+3u22

4 −
√

3
4 (u11 − u22) − u12

−−√
3t1+t2
2 −

√
3

4 (t11 − t22) + t12
3t11+t22

4
2r1√

3
0 r11 − r12√

3
−−√

3u1+u2
2 −

√
3

4 (u11 − u22) + u12
3u11+u22

4

t0
−t1+√

3t2
2 −

√
3t1+t2

2 r0 −r1 − r1√
3

u0
u1+√

3t2
2 −

√
3u1+u2

2

6 t1+√
3t2

2
t11+3t22

4

√
3

4 (t11 − t22) + t12 −r2 r11 −r12
u1+√

3u2
2

u11+3u22
4

√
3

4 (u11 − u22) + u12

−−√
3t1+t2
2

√
3

4 (t11 − t22) − t12
3t11+t22

4 − r2√
3

−r12 r11 + 2r12√
3

−−√
3u1+u2

2

√
3

4 (u11 − u22) − u12
3u11+u22

4

APPENDIX B: ZEEMAN FIELD DRIVEN NODES IN THE
QUASIPARTICLE SPECTRUM

The evolution of the quasiparticle spectrum with the mag-
netic field is peculiar along high-symmetry lines where SOC
vanishes. Here, we argue that the quasiparticle spectrum
develops nodes along the high-symmetry line �M where
superconductivity remains purely singlet, which leads to a
nodal superconducting phase at high fields. The orbital degree
of freedom and a specific band structure are unimportant
for this discussion’s sake, and for this reason, we consider
a simpler model without the orbital degree of freedom. We
stress that the nodes generated through the arguments pre-
sented here come from the Zeeman field, not from the triplet
component.

In a simple pseudo-single-orbital picture, one can model
the antisymmetric spin-orbit term via [38,69]

HASOC = −iλ
∑

n,σ,σ ′
(∇Vn × Rn) · σ σσ ′c

†
iσ ci+Rn,σ ′

=
∑

k,σ,σ ′
g(k) · σ σσ ′c

†
kσ ckσ ′ , (B1)

where

g(k) = λ

2

[
− sin kx + 2 sin

(
kx

2

)
cos

(
ky

√
3

2

)]
ẑ. (B2)

Here, ∇Vn is the crystal-field unit-vector direction according
to the blue arrows in Fig. 1(b), Rn are the nearest-neighbor
vectors and the second line in the Fourier-transformed version
in momentum space with the typical form of the antisym-
metric g-vector. Equation (B2) is found in several references
modeling Ising superconductors [11,36,38,69,70], and the
procedure (B1) is a simple motivation to quickly obtain g(k)
(see Fig. 9). Uncoincidentally, (B2) has the same structure as
the triplet component, as discussed below Eq. (37).

Therefore, we consider the Hamiltonian

H(k) =
∑
k,σ

ε(k)c†kσ ckσ +
∑
k,σσ ′

g(k) · σ σσ ′ c
†
kσ ckσ ′

− μB

∑
k,σσ ′

B · σ σσ ′ c
†
kσ ckσ ′

+
∑
k,σσ ′

[�σσ ′ (k)c†kσ c
†
−kσ ′ + H.c.], (B3)

Here, ε(k) = ε(−k) is the symmetric part of the band struc-
ture. The g-vector is given by (B2). The magnetic field B is the
Zeeman magnetic induction, and �σσ ′ (k) includes both sin-
glet and triplet pairing. Without loss of generality, we consider
an in-plane magnetic field B = Bx̂, and hence a d-vector of
the form d(k) = (0, dy (k), dz(k)). There is no dx component
because we are limiting the in-plane field to the x direction,
and Cooper pair spin polarization points along id × d∗ ‖
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FIG. 9. Contour plot of g(k) ‖ dz(k)ẑ according to Eq. (B2) with
the first Brillouin zone indicated by the hexagon. The colors show
the antisymmetric sign modulation. The g-vector vanishes along the
�M lines, which are indicated by the dashed lines. Since g(k) = 0
along �M , no triplets exist along this line, and superconductivity is
unprotected against Zeeman splitting.

B, which enforce dx = 0. Then, �↑↑(k) = �↓↓(k) = idy (k),
�↑↓(k) = ψ (k) + dz(k), and �↓↑(k) = −ψ (k) + dz(k).

In the basis of {c†k↑, c
†
k↓, c−k↑, c−k↓}, the Hamiltonian (B3)

can be written as a 4 × 4 matrix [H(k)] given by (μB = 1)

[H(k)]

=

⎡
⎢⎣

ε(k) + g(k) −B idy (k) ψ (k) + dz (k)

−B ε(k) − g(k) −ψ (k) + dz (k) idy (k)

−id∗
y (k) −ψ∗(k) + d∗

z (k) −ε(k) + g(k) B

ψ∗(k) + d∗
z (k) −id∗

y (k) B −ε(k) − g(k)

⎤
⎥⎦.

(B4)

We now analyze the quasiparticle dispersion E(k) deter-
mined by the characteristic equation det[[H(k)] − E(k)I] =
0 in some detail looking at specific cases.

1. Zero magnetic field

If B = 0, the Hamiltonian must preserve time reversal and
hence dy (k) = 0.2 Then, the dispersion simplifies to a familiar

BCS-type form

E2(k) = [ε(k) ± g(k)]2 + |�±(k)|2, (B5)

where

|�±(k)|2 = + |ψ (k)|2 + |dz(k)|2
± [ψ (k)d∗

z (k) + ψ∗(k)dz(k)]. (B6)

The Ising SOC g(k) yields split bands, which have a super-
conducting gap �±(k). The singlet-triplet coupling ψd∗

z +
ψ∗dz = 2|ψ ||dz| cos(ϕs − ϕt ), where ϕs(t ) is the phase of the
singlet (triplet) component, causes the spin-split bands to
have different gap values, namely, �+ and �−. Nodes in the
quasiparticle spectrum E(k) are only possible if �±(k) itself
is nodal.

2. No SOC

If g(k) = d(k) = 0, we obtain the situation of a Zeeman
split-singlet superconductor with dispersion

|E(k)| = |
√

ε2(k) + |ψ |2 ± B|. (B7)

All Cooper pairs are depaired once the Zeeman energy com-
pares to the superconducting condensation energy. No nodal
superconducting phase arises.

Alternatively, we also can look at g(k) = ψ (k) = 0. This
corresponds to a purely triplet superconductor with dispersion

E2(k) = + [ε(k) ± B]2 + |dy (k)|2 + |dz(k)|2
± i[dz(k)d∗

y (k) − d∗
z (k)dy (k)]. (B8)

The second line corresponds to the nonunitary triplet part id ×
d∗ = −i(dzd

∗
y − d∗

z dy ) = 2|dz||dy | sin(ϕz − ϕy ) that breaks
time reversal. A magnetic field does not suppress the d-vector
as opposed to the singlet case.

3. With SOC

We now include both SOC and magnetic field and set
dy = 0. This is justified if the SOC magnetic induction is
much larger than the external in-plane field. Then, we obtain

E2(k) = ε2(k) + g2(k) + B2 + |ψ (k)|2 + |dz(k)|2 ±
√

[2g(k)ε(k) + ψ (k)d∗
z (k) + ψ∗(k)dz(k)]2 + 4B2[ε2(k) + |ψ (k)|2].

(B9)

SOC induces the mixed term ψd∗
z + ψ∗dz. The term B2|ψ |2

couples the Zeeman field to the singlet order parameter, and is
responsible for paramagnetic limiting [81]. Note that there is
no such term for the triplets since they do not suffer paramag-

2Assuming that the superconducting state does not break time-
reversal symmetry spontaneously.

netic limiting. However, the cross term ψd∗
z + ψ∗dz indirectly

suppresses the triplet component. The simultaneous presence
of Ising SOC and the Zeeman field allows for the possibility
of magnetic field driven nodes in the quasiparticle spectrum
E(k) along �M . Along �M g(k) = 0, and the dispersion
(B9) reduces to (B7) and the absence of SOC eliminates triplet
superconductivity along this line. Therefore, at sufficiently
high fields, the quasiparticle dispersion E(k) develops a pair
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of nodes strictly along each E(k = �M ) line [see Fig. 7(e)].
Once one deviates from the �M lines, a finite SOC together
with the Zeeman field induces nonunitary equal spin pairing,
which opens up a gap around the Fermi level. Therefore, the
nodes appear strictly along �M , where no triplets are allowed
to exist.

APPENDIX C: ELECTRON-HOLE SYMMETRY

In this Appendix, we discuss the restrictions that electron-
hole symmetry imposes on the anomalous (superconducting)
Green’s functions. Bogoliubov–de Gennes (BdG) Hamilto-
nians have built-in electron-hole symmetry, such that the
center of the eigenvalue spectrum is b = 0. The discussion
here generalizes some remarks made by Berthod [61] for the
multiorbital case, and including both singlet and triplet pairing
channels.

A diagonalized BdG Hamiltonian can be written as H =∑
α |α〉Eα〈α|, where {Eα} are the eigenvalues and {|α〉} the

eigenvectors of H . We can define electron and hole ampli-
tudes as uα

iμσ = 〈α|c†iμσ 〉 and vα
iμσ = 〈α|ciμσ 〉, respectively.

Due to electron-hole symmetry of the BdG Hamiltonian,
if (Eα, uα

iμσ , vα
iμσ ) is a solution of the Hamiltonian, then

(−Eα, vα∗
iμσ ,−uα∗

iμσ ) is also a solution [82,83]. For the anoma-
lous Green’s function, this implies that

F
μν

ij,σσ ′ (z) = 〈ciμσ |(z − H )−1|cjνσ ′ 〉

=
∑

α

〈ciμσ |α〉〈α|cjνσ ′ 〉
z − Eα

=
∑

α

uα∗
iμσ vα

jνσ ′

z − Eα

= −
∑

α

vα
iμσuα∗

jνσ ′

z + Eα

=
∑

α

〈α|ciμσ 〉〈cjνσ ′ |α〉
−z − Eα

= 〈cjνσ ′ |(−z − H )−1|ciμσ 〉 = F
νμ

ji,σ ′σ (−z). (C1)

To calculate the anomalous Green’s functions F
μν

ij,σσ ′ (z)
we need the expansion moments 〈ciμσ |Tn(H̃ )|cjνσ ′ 〉. For BdG
Hamiltonian with b = 0, the rescaled Hamiltonian H̃ has
the same symmetries as H . Therefore, analogously to the
procedure in Eq. (C1), we have

〈ciμσ |Tn(H̃ )|cjνσ ′ 〉 =
∑

α

uα∗
iμσ Tn(Ẽα )vα

jνσ ′

= −
∑

α

vα
iμσ Tn(−Ẽα )uα∗

jνσ ′

= (−1)n+1〈cjνσ ′ |Tn(H̃ )|ciμσ 〉, (C2)

where in the last step we used the property of the Chebyshev
polynomials Tn(−x) = (−1)nTn(x).

We can use the symmetries obtained in Eqs. (C1) and
(C2) to simplify the difference of the anomalous Green’s
functions evaluated immediately above and below the real axis
F

μν

ij,σσ ′ (E + i0) − F
μν

ij,σσ ′ (E − i0), which is what is needed to
calculate the superconducting order parameters. Therefore,
together with the Chebyshev expansion (22) we have

F
μν

ij,σσ ′ (E + i0) − F
μν

ij,σσ ′ (E − i0) = F
μν

ij,σσ ′ (E + i0) − F
νμ

ji,σ ′σ (−E + i0)

= −1

a

i√
1 − Ẽ2

∞∑
n=0

(2−δn0)[〈ciμσ |Tn(H̃ )|cjνσ ′ 〉e−in arccos Ẽ−〈cjνσ ′ |Tn(H̃ )|ciμσ 〉e−in arccos(−Ẽ)]

= −1

a

i√
1 − Ẽ2

∞∑
n=0

(2 − δn0)〈ciμσ |Tn(H̃ )|cjνσ ′ 〉[e−in arccos Ẽ − (−1)n+1e−in arccos(−Ẽ)]

= −1

a

i√
1 − Ẽ2

∞∑
n=0

(2 − δn0)〈ciμσ |Tn(H̃ )|cjνσ ′ 〉2 cos(n arccos Ẽ). (C3)

This result is used to obtain (30) from (28).

APPENDIX D: COMPUTATIONAL DETAILS

In this Appendix, we comment on two technical details re-
lated to the Chebyshev expansion method: Chebyshev-Gauss
integration and fast Fourier transforms.

1. Chebyshev-Gauss quadrature

Given N discretized Chebyshev points xk = cos[π/N (k +
1/2)], integrals can be approximated by a Chebyshev-Gauss
quadrature [58]∫ 1

−1
dx f (x)g(x) ≈ 1

N

N−1∑
k=0

π

√
1 − x2

k f (xk )g(xk )

= 1

N

N−1∑
k=0

γkg(xk ). (D1)

This was used to obtain the final form of the temperature-
dependent coefficients Dn in Eq. (31). The advantage of this
is that the integrals not only become simple sums, but have the
form of a fast Fourier transform, which then allows an efficient
evaluation.

2. Fast Fourier transformation

One can obtain energy discretized spectral quantities effi-
ciently using fast Fourier transforms. If we discretize the re-
tarded Green’s function G(E + i0) on the Chebyshev interval
Tn(Ẽk ) = 0 ⇒ Ẽk = cos[π/N (k + 1/2)], then Eq. (22) gives

G̃(Ẽk + i0) =
N−1∑
n=0

(2 − δn0)

i

√
1 − Ẽ2

k

μne
−i nπ

Ñ
(k+ 1

2 ). (D2)
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Here, the expansion moments μn are to be understood as some
matrix element of interest 〈α|Tn(H̃ )|β〉, already recursively
obtained. The Green’s function (D2) also carries the indices α

and β, but are omitted for simplicity. Each one of these indices
specify the lattice site, the orbital, and the spin projection. The
form of the function

�k = i

√
1 − Ẽ2

k G̃(Ẽk + i0) =
N−1∑
n=0

(2 − δn0)μne
−i nπ

2N e−i nπ
N

k

(D3)

closely resembles that of a standard fast Fourier transforma-
tion of the type (apart from a factor of 2 in the last exponential)

�k =
N−1∑
n=0

λne
− 2πin

N
k, (D4)

for which many numerical libraries are available. For even
k = 2l, with l ∈ N we have

�2l =
N−1∑
n=0

λn︷ ︸︸ ︷
(2 − δn0)μne

−i nπ
2N e− 2πin

N
l, (D5)

which is of the same form of the desired Fourier transform
(D4). For odd k = 2l + 1 and the algebraic manipulations

exp − inπ

2Ñ
exp −2πin(Ñ − 1 − l)

Ñ

= exp − inπ

2Ñ
[1 + 4(Ñ − 1 − l)]

= exp − inπ

Ñ

[
1

2
+ 2Ñ − 1 − k

]
= exp i

nπ

Ñ

(
k + 1

2

)
,

(D6)

where in the third line we made the identification k → 2l + 1,
we can write

�∗
2l+1 =

N−1∑
n=0

(2 − δn0)μ∗
ne

−i nπ
2N e− 2πin

N
(Ñ−1−l). (D7)

We can therefore use Eq. (D4) with

λn = (2 − δn0)μ̄ne
−i nπ

2N , μ̄n =
{
μn, if n is even

μ∗
n, if n is odd

(D8)

with k ∈ [0, Ñ − 1]. We then have the relations �2l = �l

and �2l+1 = �∗
Ñ−1−l

, with l ∈ [0, Ñ/2 − 1]. If the original
Hamiltonian is real, then μn = μ∗

n, and a single fast Fourier
transform is sufficient. However, if the Hamiltonian has imag-
inary elements, then one has to do two fast Fourier transforms,
one for the even μn and another for the odd μ∗

n.
The scheme described above is useful if one needs the

whole spectral range of the Hamiltonian. If only a few en-
ergy points are needed, to resolve the superconducting gap
around the Fermi level for instance, then one can just evaluate
Eq. (D2) on the points Ẽ of interest.

APPENDIX E: GROUP THEORY

1. Structure of the superconducting order parameter at K point

In this Appendix, we construct the most general super-
conducting order parameter within the three-orbital model
consistent with the symmetry. Our strategy is to construct
the irreps of the full space group based on the star of the
vector K . The Cooper pairs are then obtained by projecting
the A′

1-symmetric part of the antisymmetric squares of these
irreps.

To construct the irreps of the space group based on the star
of K , we follow the standard procedure, and build the irreps
of the (double) group of K , C ′

3h, the so-called little group
irreps. In the spinless case, this procedure has been performed
in [20], and we extend it here to the case of particles with spin.

The star of K contains two rays, K and K ′. As the group of
K, C ′

3h is Abelian, all of its irreps are one-dimensional, and,
as a result, the irreps of the space group based on the star of K

are two dimensional. Similar to the case of no spin, the double
group of K is Abelian as expected. We only consider the xy

and x2 − y2 orbitals for clarity. The four-dimensional space
of the Bloch orbitals splits into four one-dimensional spaces:

ψK,+;↑ = 1√
N

∑
i

eiK·Ri ci2+2↑,

ψK,−;↑ = 1√
N

∑
i

eiK·Ri ci2−2↑,

ψK,+;↓ = 1√
N

∑
i

eiK·Ri ci2+2↓,

ψK,−;↓ = 1√
N

∑
i

eiK·Ri ci2−2↓ , (E1)

where Ri is the location of the transition metal ion in the
unit cell i, and N is the number of transition metal atoms.
The vectors Ri form the triangular Bravais lattice. The four
Bloch states listed in Eq. (E1) transform as 2Ē3, 1Ē3, 1Ē3, and
2Ē1, respectively. The characters of these irreps are listed in
Table IV.

Let us construct the whole space-group irreps now. Since
the considered crystal structure is symmorphic, it is sufficient
to fix the matrices corresponding to the point-group operations
forming the D′

3h group. We follow the standard procedure to
generate the four irreps of the space group given the four irreps
of the group of K [Eq. (E1)]. First, we fix the convention for
the partner of each of the states listed in Eq. (E1) forming the
K ′ ray of the star as follows:

ψ̄K,+;↑ = U ′′
2 ψK,+;↑ = −ψK ′,−;↓,

ψ̄K,−;↓ = U ′′
2 ψK,−;↓ = ψK ′,+;↑,

ψ̄K,+;↓ = U ′′
2 ψK,+;↓ = ψK ′,−;↑,

ψ̄K,−;↑ = U ′′
2 ψK,−;↑ = −ψK ′,+;↓ . (E2)

Instead of the rotation by π around the y axis U ′′
2 any other

operation transforming the states at K into states at K ′ could
be used. Notice that up to the sign the partner states coincide
with the action of the time-reversal operation on the states at
K . This is so because U ′′

2 flips the spin as well as transforms
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TABLE IV. Characters of 4 out of 12 irreps of the group of K , C ′
3h. The listed characters refer to the four irreps realized by the four states

in Eq. (E1). Here, α = exp(i2π/3).

C ′
3h E C3 C2

3 Q QC3 QC2
3 σh s3 s2

3 Qσh Qs3 Qs2
3

2Ē3 1 α1/2 α −1 −α1/2 −α −i −iα1/2 −iα i iα1/2 iα
1Ē3 1 α−1/2 α−1 −1 −α−1/2 −α−1 i iα−1/2 iα−1 −i −iα−1/2 −iα−1

1Ē1 1 −1 1 −1 1 −1 i −i i −i i −i
2Ē1 1 −1 1 −1 1 −1 −i i −i i −i i

(dx2−y2 ± idxy ) into (dx2−y2 ∓ idxy ). It follows that the time-
reversal operation does not require the doubling of the irreps
based on K .

Having constructed the irreps of the group of K , we
are going on and construct the whole space group of K .
Let us consider for definiteness the two-dimensional irrep
of the space group with the basis {ψK,+↑, ψ̄K,+↑}; the other
three irreps can be analyzed in a similar way. Any ele-
ment of the space group can be written as g = (tR|Dg ) =
tRDg , a product of the proper or improper rotation belong-
ing to D′

3h and tR is the translation by a vector of a Bra-
vais lattice R. The translations are represented by diagonal
matrices because (tR|E)ψK,+;↑ = exp(−iK · R)ψK,+;↑ and
(tR|E)ψ̄K,+;↑ = exp(−iK′ · R)ψ̄K,+;↑. Now, the rotational
part is constructed differently for the elements in the group
of K and for the rest of the elements. Consider an element in
the group of K , Dg ∈ C ′

3h such element is represented by a
diagonal matrix

(t0|Dg )K+↑ =
[2Ē3[Dg] 0

0 2Ē3[(U ′′
2 )−1DgU

′′
2 ]

]
, (E3)

where the 2Ē3 irrep realized on the state �K+↑ is specified
in Table IV. The rest of the elements of the point group D′

3h

belong to the coset U ′′
2 C ′

3h. Such that for any g 
∈ C ′
3h the

representing matrix reads as

(t0|Dg )K+↑ =
[

0 2Ē3[DgU
′′
2 ]

2Ē3[(U ′′
2 )−1Dg] 0

]
. (E4)

Equations (E3) and (E4) give the two-dimensional irreps of
the space group based on the state ψK+,↑ belonging to the
star of K . The elements containing no translations (t0|Dg )
form a subgroup isomorphic to D′

3h. Viewed in this way,
Eqs. (E3) and (E4) form the Ē1 (see Table I). The same is true
for the (t0|Dg )K−↓. Yet, the (tR|Dg )K+↑ and (tR|Dg )K−↓ are
inequivalent irreps of the whole space group which includes
translations. The remaining two states listed in Eq. (E2)
give rise to another pair of inequivalent irreps (tR|Dg )K+↓
and (tR|Dg )K−↑. The two sets of matrices (t0|Dg )K+↓ and
(t0|Dg )K−↑ form Ē3 irrep of D′

3h each (see Table I).

2. Projecting the s-wave Cooper pair states out of
antisymmetric products of irreps of a space group

In the previous section, we have constructed four space-
group irreps (tR|Dg )K+↑, (tR|Dg )K−↓, (tR|Dg )K+↓, and
(tR|Dg )K−↑ corresponding to the four states listed in Eq. (E2).
As all of these irreps are inequivalent and the superconduc-
tivity is s wave, we are allowed to extract the A′

1-symmetric
Cooper pair combinations from each of the four irreps above.

The projection of the antisymmetric squares of the four irreps
readily produces the four order parameters

�̂1 = ψK;+↑ψK ′;−↓ − ψK ′;−↓ψK;+↑,

�̂2 = ψK;−↑ψK ′;+↓ − ψK ′;+↓ψK;−↑,

�̂3 = ψK;+↓ψK ′;−↑ − ψK ′;−↑ψK;+↓,

�̂4 = ψK;−↓ψK ′;+↑ − ψK ′;+↑ψK;−↓ . (E5)

For each of the four irreps the number of independent A1 order
parameters is

1

24N

1

2

∑
Dg∈D′

3h

∑
i

[
χ2
[(

tRi |Dg

)]− χ
[(

tRi |Dg

)2]] = 1 ,

(E6)

which means that Eq. (E5) exhausts all possible Cooper
pairs at K (K ′). This also shows that there are no cross
correlations in the A′

1-symmetric state 〈ψK;±↑(↓)ψK′;∓↑(↓)〉 =
〈ψK;±↑(↓)ψK′;±↓(↑)〉 = 0.

In many cases including monolayer NbSe2, only two band
crossings are present near K (K ′). As a result, only two out of
four combinations listed in Eq. (E5) are of practical value:

�̂1 = ψK;+↑ψK ′;−↓, �̂4 = ψK;+↓ψK ′;−↓. (E7)

Out of the two order parameters in Eq. (E7), the singlet and
triplet can be formed:

�̂K,singlet = 1
2 (�̂1 + �̂4),

�̂K,triplet = 1
2 (�̂1 − �̂4). (E8)

The presence of the finite triplet correlations is due to the lack
of inversion symmetry and the SOC. As the SOC is turned
off, the order parameters �̂1 and �̂4 merge into a singlet, and
the triplet order parameter vanishes accordingly. The splitting
between �̂1 and �̂4 can be traced to the spin splitting of
bands at K (K ′). No such splitting occurs along �M and, as
a result, the superconducting order parameter along �M is a
pure singlet.

3. Bilinear scalar combinations constructed from operator sets
of definite symmetry

In this section, we derive all the possible bilinear combi-
nations out of the operators of a prescribed symmetry. We
denote the symmetry group as G with the number of elements
nG. We imagine having the (not necessarily Hermitian) op-
erators Oκ;α,j transforming as the given αth representation
of dimension Nα . The index j enumerates all the functions
transforming as α, such that j = 1, . . . , Nα . The index κ

144518-20
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enumerates the multiple sets of operators transforming as
the same irrep, α. If there are mα distinct sets of operators
transforming as α, κ = 1, . . . , mα .

We aim at listing all the linear combinations of products
[Oκ;α,j ]†Oκ ′;β,j ′ that are symmetric under the group G. By
assumption, the operators transform as

[Oκ;α,j ]′ =
Nα∑
l=1

T α
lj (g)Oκ;α,l . (E9)

Without loss of generality, the matrices can be assumed to
be independent of κα for a given α and unitary [T α (g)]† =
[T α (g)]−1. By taking the Hermitian conjugation of Eq. (E9)

we obtain the transformation law

[O†
κ;α,j ]′ =

Nα∑
l=1

[
T α

lj (g)
]∗

O
†
κ;α,l . (E10)

The last equation signifies the Hermitian conjugates O
†
κα ;α,l as

transforming according to the conjugated irrep. These irreps
may or may not be equivalent to the original irreps in the cases
when the characters are real or not. This is immaterial to the
statement we are about to show.

Consider the projection PA of any of the products
[Oκα ;α,j ]†Oκβ ;β,j ′ onto the trivial irrep, we call A. As all the
characters of A are equal to unity,

PA[O†
κ;α,jOκ ′;β,j ′ ] = 1

nG

∑
g∈G

Nα∑
l=1

Nβ∑
k=1

[
T α

lj (g)
]∗

T
β

kj ′ (g)O†
κ;α,lOκ ′;β,k. (E11)

Or, using the orthogonality properties of the matrices of unitary irreps, we obtain

PA[O†
κ;α,jOκ ′;β,j ′ ] = δαβδjj ′

Nα∑
l=1

Nβ∑
k=1

δlkO
†
κ;α,lOκ ′;β,k = δαβδjj ′

Nα∑
l=1

O
†
κ;α,lOκ ′;α,l . (E12)

Therefore, the most general scalar S of a kind considered
reads as

S =
∑
α;κ,κ ′

Uα;κ,κ ′

[
Nα∑
l=1

O
†
κ;α,lOκ ′;α,l

]
. (E13)

In the last sum, there are
∑

α m2
α independent com-

binations with arbitrary complex amplitudes Uα;κ,κ ′ . In
the cases when the operator S is required to be Her-
mitian for each α there are mα (mα + 1)/2 combina-
tions

∑Nα

l=1(O†
κ;α,lOκ ′;α,l + O

†
κ ′;α,lOκ;α,l ) and mα (mα − 1)/2

combinations
∑Nα

l=1 i(O†
κ;α,lOκ ′;α,l − O

†
κ ′;α,lOκ;α,l ) with real

coefficients.
For the case when O operators describe the supercon-

ducting correlations such as those listed in Sec. III A 1, the
combinations of the type OO are not allowed by the particle
conservation, and the combinations of O†O are the only
choice. In the case of Hermitian operators, the irreps are
real and the conclusion remains the same. The combinations
belonging to the same symmetry together produce a scalar as
described above.
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