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Models for supercritical motion in a superfluid Fermi liquid
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We study the drag force on objects moving in a Fermi superfluid at velocities on the order of the Landau
velocity vL. The expectation has been that vL is the critical velocity beyond which the drag force starts to
increase toward its normal-state value. This expectation is challenged by a recent experiment measuring the heat
generated by a uniformly moving wire immersed in superfluid 3He. We introduce the basis for the calculation of
the drag force on a macroscopic object using the Fermi-liquid theory of superfluidity. As a technical tool in the
calculations, we propose a boundary condition that describes diffuse reflection of quasiparticles from a surface
on a scale that is larger than the superfluid coherence length. We calculate the drag force on steadily moving
objects of different sizes. For an object that is small compared to the coherence length, we find a drag force
that is in accordance with the expectation. For a macroscopic object, we need to take into account the spatially
varying flow field around the object. At low velocities, this arises from ideal flow of the superfluid. At higher
velocities, the flow field is modified by excitations that are created when the flow velocity locally exceeds vL.
The flow field causes Andreev reflection of quasiparticles and thus leads to change in the drag force. We calculate
multiple limiting cases for a cylinder-shaped object. In the absence of quasiparticle-quasiparticle collisions, we
find that the critical velocity is larger than vL and the drag force (per cross-sectional area) at 2vL is reduced by an
order of magnitude compared to the case of a small object. In a collision-dominated limit, the flow shows signs
of instability at a velocity below vL.
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I. INTRODUCTION

For many purposes it would be beneficial to travel quickly.
The problem is that higher velocities generally require more
power. Often the force needed to move an object increases
rapidly beyond a critical velocity. For example, an airplane
exceeding the velocity of sound requires more power as it
starts to emit a cone of sound waves [1]. These waves are sta-
tionary in the frame fixed to the airplane. A related energy-loss
mechanism appears for fast charged particles in a medium,
observed as Cherenkov radiation, when the particle velocity
exceeds the velocity of light in the medium [2]. A similar
situation occurs in media supporting waves or elementary
excitations which have nontrivial dispersion. For example,
there is a critical velocity for emission of waves on the surface
of liquid [3,4]. For ships, this critical velocity is impracti-
cally low, but nevertheless the power consumption of a ship
increases rapidly when the ship velocity exceeds the phase
velocity of relevant surfaces waves (leading to the concept of
hull speed). The leading waves, and the only ones in linear
approximation, have a phase velocity whose component in
the direction of the ship equals the ship velocity and thus
are stationary in the frame of the ship. The same concept
applies to objects moving in superfluids. In this context, the
condition is known as the Landau criterion. Landau suggested
that superfluidity results from the absence of this type of
stationary elementary excitations [5]. Such a linear-response
critical velocity has been observed in the boson superfluid 4He
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under pressure with ions [6]. There is evidence of a similar
critical velocity in the fermion superfluid 3He, also obtained
with ions [7].

Often the critical velocity derived from a linear theory
is considered as an upper limit of low-dissipation motion.
Namely, there can be other, more complicated and nonlinear
effects that lead to large dissipation already at lower velocities.
In particular, there can be eddies in the fluid. In superfluids,
the eddies consist of quantized vortices. For most experiments
in superfluids with either a moving macroscopic object or
flow, the motion becomes dissipative at such low velocities
that even achieving the Landau velocity becomes difficult
[8–12].

Against this background, it came as a surprise that Bradley
et al. [13] reported observation of low-dissipation motion of a
macroscopic object in superfluid 3He at velocities exceeding
twice the Landau critical velocity. The experiment was made
in superfluid 3He-B at temperatures T well below the super-
fluid transition temperature Tc. The moving object was a wire
able to move at a constant velocity for a time span of ∼100 ms.
The dissipation increased gradually with increasing velocity,
but there were no particular features that could be interpreted
as a critical velocity.

The purpose of this article is to present some theoretical
models that are related to fast motion in a Fermi superfluid.
We start by setting up the problem and explaining some basic
concepts that are used in the calculations (Sec. II). For a
pointlike impurity, we calculate the force which, according
to expectation, vanishes at T = 0 for velocities below the
Landau velocity, v < vL, and starts to increase toward its
normal state value for v > vL (Sec. IV). The situation is more
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complicated for an object larger than the coherence length
scale. First, the superfluid flow around the object causes An-
dreev reflection of quasiparticles. This reduces the number of
scattered quasiparticles that are able to escape from the object
and thus reduces the force on the object. We demonstrate
this by calculating the drag force on a cylinder assuming
an ideal-fluid flow field (Sec. V). Second, the flow field is
modified by local pair breaking already at object velocities
less than vL. We calculate self-consistently the velocity field
in two extreme cases. In the limit of no collisions between
quasiparticles, we show that a local supercritical flow could
be stable in some range of object velocities (Sec. VI). The
opposite extreme is that full equilibrium is achieved through
collisions in the region near the object. In this case, we find
indication of instability, possibly toward vortex formation
(Sec. VII). As a technical tool in the calculations, we propose
a mesoscopic diffuse-scattering boundary condition in the
superfluid state (Sec. III).

II. BASIC CONCEPTS

We study a rigid object moving at velocity v in an other-
wise stationary medium. By Galilean invariance, this problem
is equivalent to a flow of the medium past a stationary object.
We call the latter frame of reference the object frame, which
will be very useful in the following. There is an important
difference between the case of a single object, the case studied
here, and the case of there being a distribution of objects
that fill the volume under study. The latter case appears,
for example, in impure superconductors under superflow. We
briefly return to this topic after discussion of Fig. 2.

In general, there will be a drag force opposing the mo-
tion of the object. For example, consider a fluid that can
be described by hydrodynamic theory. In the Navier-Stokes
equations, the force is caused by viscous terms [14,15]. At
low velocities, the force is linear in velocity. With increasing
velocity, the viscous terms and nonlinear convective terms
in the Navier-Stokes equations cause the flow to separate
from the object surface. This leads to eddies and a wake,
which increase the drag. These effects, however, are not our
main interest in the following, and thus we assume that they
are small. Neglecting both the viscous and the nonlinear
terms in the Navier-Stokes equations means that the system
is sufficiently described by the linearized Euler equation to-
gether with the linearized continuity equation and boundary
conditions. Under these assumptions, the force vanishes for an
object moving at a constant, low velocity. Below we implicitly
make the same assumptions in the more detailed theories we
use.

The linearized equations allow also the determination of
the elementary excitations of the system. For example, the
hydrodynamic equations for a simple fluid have one type
of elementary excitation, the longitudinal sound wave. The
angular frequency ω of the wave is related to the wave vector
k by a linear dispersion relation ω = ck, where c is the sound
velocity. Let us consider the problem of emission of sound
from a rigid object moving at constant velocity v. For this,
we change to the object frame. In this frame, the frequency
of the excitation is ω′ = ω − v · k according to the Galilei
transformation. Since the source is stationary in the object

frame, the only wave that the object generates in the linear
approximation corresponds to zero frequency, ω′ = ω − v ·
k = 0, that is,

ω = v · k. (1)

This has to be satisfied simultaneously with the dispersion
relation ω = ck. As a result, no waves are generated at v < c.
When v > c there is a wavefront that forms a cone of angle
α with v = v x̂, so that sin α = kx/k = c/v. The waves carry
off energy, and thus a dissipative force is exerted on the object
when v exceeds the critical velocity c.

More generally, we can assume a medium with a general
dispersion relation ω(k) of the waves. In quantum mechanics,
we can alternatively speak of the energy ε = h̄ω and mo-
mentum p = h̄k of an elementary excitation. It is standard
to define phase velocity vp, the velocity of the wave crests,
and group velocity vg , the velocity of a wave packet. For an
excitation with wave vector k, these are

vp(k) = ω(k)

k
k̂, vg (k) = ∇k ω(k). (2)

The condition for a rigid object to emit elementary excitations
is the same as was discussed above and given in Eq. (1). Thus,
the emitted waves need to satisfy simultaneously ω = v · k
and ω(k). As v · k � vk, we must have v � ω(k)/k in order
to be able to create an excitation with wave vector k. The
minimum of the right-hand side is the velocity below which
no excitations can be created,

vL =
[
ω(k)

k

]
min

. (3)

This is known as the Landau velocity and the condition v <

vL as the Landau criterion for superfluidity [5]. In order to find
the minimum, the gradient of ω(k)/k with respect of k should
vanish. This means that for the excitation created just at the
Landau velocity, the phase and group velocities are equal. At
a slightly larger v, there will be two types of emitted waves,
one with group velocity larger than vL and one with a smaller
group velocity. In order to be able to neglect the viscous force
at v < vL, we have to assume that no elementary excitations
are excited initially. This means a temperature that is small
compared to the minimum of h̄ω. For simplicity, we take the
limit of zero temperature, T = 0.

The most commonly observed dispersive waves are the
waves on the surface of water [3,4]. The factors determining
the dispersion are gravity and surface tension. These waves
have a critical velocity of 23 cm/s (under standard conditions).
The wave pattern generated by a ship can to a large extent be
explained by linear gravity waves, which have vg = vp/2.

We now concentrate on a Fermi superfluid. Serene and
Rainer have formulated a general quasiclassical approach
[16]. For consistency, our notation below is close to theirs.
The energy of a quasiparticle excitation with momentum p is

ε( p) =
√

[ξp + u( p̂)]2 + �2 + a( p̂), (4)

where ξp = vF (p − pF ), pF is the Fermi momentum, vF =
pF /m∗ is the Fermi velocity, m∗ is the effective mass, and
p̂ = p/p is the direction of the momentum. The superfluid
has energy gap �. Compared to Ref. [16], we simplify a bit
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by dropping the p̂ dependence of �. This can be justified in
the B phase of superfluid 3He at low velocities. The dispersion
relation (4) also depends on quasiparticle potentials u and a

(denoted by ũ and ã in Ref. [16]), which by definition are
even and odd in the momentum direction, u(− p̂) = u( p̂) and
a(− p̂) = −a( p̂). According to the quasiclassical assumption,
all energies in the theory are small compared to the Fermi
energy ∼vF pF . That is, ξp, �, u, a, ε � vF pF , and we
calculate everything only in the leading order of these small
quantities.

In equilibrium in the rest frame of the superfluid, the
quasiparticle potentials vanish, u = a = 0. We see that in this
case the minimum excitation energy is �, and it is achieved at
the Fermi surface p = pF . There are two types of excitations,
particle type with p > pF and hole type with p < pF . Their
group velocities are vF ξp p̂/

√
ξ 2
p + �2, which for hole-type

excitations are in the direction opposite to momentum. The
Landau criterion (3) gives the critical velocity

vL = �

pF

(5)

with a vanishingly small correction in the quasiclassical ap-
proximation [17].

It is useful to look at the dispersion (4) in a frame moving
at velocity v with respect to the rest frame of the fluid. In this
case, u = 0 but a = −pF p̂ · v [in accordance with the Galilei
transformation discussed above in connection with Eq. (1)].
The dispersion relation at a subcritical velocity is depicted
in Fig. 1(a). The excitation energies are given by the blue
lines, which have ε > 0. In addition, Fig. 1(a) has black lines
corresponding to the negative branch of the square root in (4).
These can be considered as quasiparticle states that are filled
in the ground state. Removing a fermion from such a state of
momentum p is equivalent to an excitation with momentum
− p. Considering both the negative and positive energy states
is called the semiconductor picture [18]. One advantage of
this picture is that we can see in Fig. 1(a) that there are more
filled states with negative p than with positive p. This just
corresponds to superflow with velocity vs = −v, since we are
in a frame that is moving at velocity v with respect to the
superfluid rest frame.

Figure 1(b) describes the dispersion of superfluid quasipar-
ticles seen in a frame moving at a supercritical velocity. In this
case, the part of the dispersion relation with negative square
root (4) has positive energy (branches C and D). These states
are filled in superfluid equilibrium state, whereas the states
with positive square root are empty. In order to avoid double
representation of states, Fig. 1(b) uses the excitation picture,
where only positive energy states are shown.

Suppose now that the moving frame is the object frame.
The object scatters quasiparticles between states at the same
energy. At a subcritical velocity, this has no effect since at
a given energy all states are either filled or empty. At a
supercritical velocity, there can be scattering from the filled
states C and D to the empty states A and B. Such scattering
causes a drag force on the object. This scattering process
is called pair breaking as it reduces the number of Cooper
pairs. It should be noted, however, that this scattering process
remains also in the limit v � vL and also in the case � = 0.

(a)

(b)

FIG. 1. A sketch of the equilibrium excitation spectrum (4) seen
from a frame moving at (a) a subcritical velocity vk = 0.5vL and (b) a
supercritical velocity vk = 1.5vL. The abscissa gives the momentum
p parallel to an arbitrary direction k̂, and vk is the component of the
velocity in that direction. Figure (a) uses the semiconductor picture,
which includes also negative-energy states. It has the advantage of
showing the filled states (black lines) that lead to supercurrent to the
left. Figure (b) uses excitation picture where only positive-energy
states are shown. An object at rest in (b) frame leads to scattering
from the filled states C and D to the empty states A and B. States
A and C are particle type (motion in the same direction as the
momentum), while B and D are hole type (motion in the direction
opposite to the momentum).

In the latter case, there are no pairs and the scattering is just
the same as the elastic impurity scattering that causes the
electrical resistivity of normal state metals at T = 0.

Figure 2 shows the allowed quasiparticle states for ar-
bitrary momentum direction cos θ = p̂ · v̂. We see that
for energies 0 < ε < pF v − � there are incoming ground-
state quasiparticles in momentum directions cos θ < −(� +
ε)/pF v. These are scattered elastically to empty states with
momentum directions cos θ > (� − ε)/pF v. The particle-
type ground-state quasiparticles [C in Fig. 1(b)] come from
the front direction. The hole-type ground-state quasiparticles
[D in Fig. 1(b)] come from the back direction, as their
propagation direction is opposite to the momentum direction.
The outgoing particle-type excitations [A in Fig. 1(b)] come
out predominantly (depending on ε and v/vL) from the front
direction and hole-type excitations [B in Fig. 1(b)] come from
the back direction.
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FIG. 2. The quasiparticle energies as a function of direction
cosine cos θ = p̂ · v̂ in a frame moving at supercritical velocity v =
1.5vL with respect to the superfluid. A stationary object in this frame
can scatter ground-state quasiparticles (gray) to the empty excited
states (blue) in the energy range limited by the dashed horizontal
lines.

Let us comment on the relation of the present problem of
a moving impurity with gapless superconductivity. The latter
can appear, for example, in superconductors under superflow
[18–20]. The quasiparticle energies are similar to those pre-
sented in Figs. 1 and 2, but the difference is that quasiparticle
equilibrium has already been achieved by scattering. That is,
all states with positive energies are empty, while those with
negative energies are filled. Superfluid can still flow in this
state as long as some pairs survive, keeping the quasiparticle
energies asymmetric. Applied to a p-wave superfluid, namely
3He-B, this problem has been studied in Refs. [21,22]. These
studies imply that superfluid flow is in principle possible at
velocities exceeding the Landau velocity (5), but they do not
imply an increased critical velocity for a moving object [23].
Another case of gapless superconductivity appears in systems
with gap nodes, for example, in the A phase of superfluid 3He
[24]. There superflow is possible, although vL vanishes. We
are not aware of calculations of the pair breaking by moving
objects in such systems.

In Sec. III, we formulate a simple boundary condition
that can be used to calculate the distribution of scattered
quasiparticles. In Sec. IV, this is used to calculate the force
on a small object. By small, we mean in comparison with the
superfluid coherence length ξ0 = h̄vF /2πkBTc.

The moving object we consider in particular (besides the
small one) is a circular cylinder of radius R to mimic a
wire. We assume that the cylinder diameter 2R is large in
comparison with the superfluid coherence length, R � ξ0. We
assume the cylinder is moving at velocity v perpendicular to
its axis in an initially stationary superfluid. We need to define
three different regions, which are illustrated in Fig. 3: (1) The
surface layer at the cylinder surface of thickness on the order
of ξ0. (2) The near region around the cylinder of size on the
order of the cylinder radius R. (3) The far region at distances
r � R.

The surface layer has bound quasiparticle states at energies
below the gap �. The bound quasiparticles collide with the
wire wall at intervals ξ0/vF ∼ 10−9 s. This time is short
compared to the oscillation or acceleration timescales of the
wire, which are 10−3 s or longer. Thus we assume that the
distribution of these states always remains in equilibrium in
the cylinder frame. It should be noted that this assumption

surface layer

far region

near region

ow lines

a quasiparticle t
rajectory

P

Q

FIG. 3. A sketch of a wire moving in a superfluid. The curves
are flow lines of the superfluid seen in the rest frame of the wire
according to the ideal fluid model (8); see also Fig. 6(a). The maximal
velocity is reached at points P and Q where the velocity vs (r ) is
twice as large as far from the wire. The near and far regions and
a thin surface layer on the wire surface are indicated. An example
quasiparticle trajectory hitting the wire is shown.

automatically excludes the dissipation mechanism proposed
by Lambert [25,26] and similar arguments presented in later
work [13,27,28]. Another objection against this mechanism is
that the bound states are not found to cross zero energy, at
least for small objects [29].

The flow around the cylinder has to satisfy mass con-
servation. In the time-independent case, this means that the
divergence of the mass current vanishes,

∇ · j = 0. (6)

At T = 0 and vs < vL, all the flow is superflow, j = j s =
ρsvs , and the superfluid density equals the liquid density, ρs =
ρ = mnf . Here m is the fermion mass and nf = p3

F /3π2h̄3

is their equilibrium number density. The superfluid velocity is
given by the gradient of the phase,

vs = h̄

2m
∇ψ. (7)

These imply the Laplace equation ∇2ψ = 0, and one easily
finds the flow field around the cylinder,

h̄

2m
ψ (r ) = −v cos ϕ

(
R2

r
+ r

)
. (8)

This gives vs in the cylinder frame. We have represented r in
cylindrical coordinates (r, ϕ, z) with the cylinder at the origin
aligned along the z axis. Some flow lines are drawn in Fig. 3.
It is noteworthy that the maximum velocity, which is reached
at points P and Q, is twice the velocity v in the far region.

The flow field around a macroscopic object causes the
quasiparticle energy (4) to vary locally. A possible variation of
the allowed energies on a quasiparticle trajectory is depicted
in Fig. 4. Consider first a thermally excited hole-type quasi-
particle entering from the right. In the energy range M′, it hits
the wire and is scattered there. In the energy range N′, it can-
not reach the wire since at some locations in the near region
of the wire its energy is not in the allowed range. Instead, the
quasiparticle will be Andreev reflected back as a particle-type
quasiparticle [30]. There is only a small momentum transfer
in Andreev reflection, | p′ − p| � pF , and the momentum is
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K
L
M

K’
L’
M’

N

N’

surface near region far region

FIG. 4. The allowed quasiparticle energies on a trajectory. Here
s is the parameter along the trajectory measured from the point on
the object surface (Fig. 3). The figure gives filled quasiparticle states
with momentum to the left that are lifted from the lower gap edge
E = −�, as in Fig. 1(a). These are denoted by K, L, M, and N.
Correspondingly, there are empty quasiparticle states with momen-
tum to the right whose energies are reduced from the upper gap
edge E = +�, denoted by K′, L′, M′, and N′. The filled states are
responsible for the superflow past the object. The figure corresponds
to a low velocity where ε1, ε2, and ε3 are all positive. With increasing
velocity, the energies εi decrease and cross zero. With ε1 < 0, the
filled states K are lifted above the empty states K′ but there is
no scattering between these states as they are not in contact with
the object surface (as long as we neglect quasiparticle-quasiparticle
scattering). With ε2 < 0, the particles at states L start to scatter
to states L′ (and corresponding states on other trajectories hitting the
same point on the surface). The reduced current carrying capacity of
states L leads to redistribution of current pattern in the near region of
the object. With ε3 < 0, the scattered quasiparticles can escape from
the near region to the far region and lead to dissipative force on the
object. The velocity required for ε3 to cross zero is higher than the
Landau velocity vL = �/pF .

transferred to the superfluid condensate, not the wire. Thus,
when an incoming quasiparticle is Andreev reflected before
reaching the wire surface, it does not contribute to the force
on the wire. This effect has been extensively studied by the
Lancaster group in order to calculate the thermal damping
force on a wire [31–34]. We point out that Andreev reflection
is important also at T = 0 at large velocities. Namely, at
the Landau velocity the states N′ start shifting to negative
energies. In spite of this, states N′ remain empty because of
the energy barrier that separates them from the scattered states
at the wire surface. Thus the trajectory in Fig. 4 contributes to
force only at a higher velocity v > vL, when ε3 crosses zero
and scattered quasiparticles can escape from the near region.
In Sec. V, we calculate the force on a cylinder assuming the
quasiparticle potential is fixed by ideal-fluid flow field (8),
a = pF p̂ · vs . We indeed find that the force becomes nonzero
at a velocity vc that is larger than the Landau velocity (5).

Another effect that has to be taken into account is that the
local superfluid velocity at points P and Q (Fig. 3) exceeds
the Landau velocity already at v = vL/2. Thus, depairing
in the near region takes place starting from this velocity. In
Fig. 4, this appears as scattering from states of the type L
to L′ at velocities where ε2 is negative. This modifies the
flow field around the object from the ideal flow profile (8). In
Secs. VI and VII, we calculate the flow field at v > vL/2 in
two extreme cases and estimate its effect on the drag force.

The theory behind all the calculations is the Fermi liquid
theory of superfluidity. A review of this theory is given by
Serene and Rainer [16]. Here we use only the low-frequency,
long-wavelength limit of the general theory, which is
described in Sec. 7 of the review [16]. The quasiparticle distri-
bution is expressed by particle-type and hole-type distribution
functions φB1( p̂, r, ε, t ) and φB2( p̂, r, ε, t ), which describe
excitations traveling at velocities v = ±vF p̂

√
ε̃2 − |�|2/ε̃,

respectively. In addition to momentum direction p̂ and energy
ε, the distributions depend on location r and time t in the gen-
eral case. We use the short-hand ε̃ = ε − a. The excitations
can also have magnetic properties, which are described by
vector distribution functions φB1 and φB2 [35]. In this study,
we neglect magnetic excitations. The distribution functions
take values in the range [− 1

2 , 1
2 ] and their equilibrium form is

φB1 = φB2 = − 1
2 tanh(ε/2T ). Under a Galilei transformation

to a frame moving at uniform velocity v, the distribution
functions change as φBi ( p̂, ε) → φBi ( p̂, ε + pF p̂ · v).

We give here the equations of the low-frequency dynamics
in the simplified form that we use. An essential quantity is the
antisymmetric quasiparticle potential a. In the approximation
where we neglect all Fermi liquid interactions higher than first
order, F s

l = 0 for l � 2, we have a( p̂, r, t ) = α(r, t ) · p̂ and

α = mvF vs + 1

2

F s
1

1 + 1
3F s

1

∫
d�p

4π
p̂

∫ Ec

−Ec

dε

×
{

|ε̃|√
ε̃2 − |�|2

θ (ε̃2 − |�|2)(φB1 + φB2)

}
. (9)

Here
∫

d�p denotes integration over the unit sphere of p̂,
Ec is a high-energy cutoff, and θ (x) is the Heaviside step
function. The parameter F s

1 is related to the effective mass m∗
by m∗/m = 1 + F s

1 /3. The distributions φB1 and φB2 carry
independent information only on positive energies as they are
related by φB1( p̂, r, ε, t ) = −φB2(− p̂, r,−ε, t ). As a first
test of Eq. (9), consider full equilibrium but seen from a frame
moving with velocity v. The quasiparticle distribution is then
given by φBi = − 1

2 tanh [(ε + pF p̂ · v)/2T ]. Substituting
this into Eq. (9) gives a = −pF p̂ · v, which was claimed
above. The second test is that at T = 0 and vs < vL, a
consistent solution of Eq. (9) with quasiparticles in equilib-
rium is a = pF p̂ · vs . For known distribution functions and a,
the mass current density is given by

j (r, t ) = mvF N (0)
∫

d�p

4π
p̂

∫ Ec

−Ec

dε

×
{

|ε̃|√
ε̃2 − |�|2

θ (ε̃2 − |�|2)(φB1 + φB2)

}
, (10)

where 2N (0) = m∗pF /π2h̄3 is the quasiparticle density of
states at the Fermi surface. It is worth noting that also the
supercurrent is contained in Eq. (10) through a even though
the distribution functions take their equilibrium values, as
discussed in connection with the semiconductor model above
(Fig. 1). An additional condition is that the mass current
has to be conserved, which in a time-independent case leads
to Eq. (6). Equations (6), (7), (9), and (10) form a set that
determines vs at supercritical velocities for given φB1, φB2,
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and |�|. One more equation that determines �( p̂, r ) is needed
in general, but here we mostly assume |�| to be a constant, for
simplicity. Once the flow field and the distribution functions
are known, we can calculate the stress tensor,

↔
�(r, t ) = vF pF N (0)

∫
d�

4π
p̂ p̂

∫ Ec

−Ec

dε

×{θ (ε̃2 − |�|2)(φB1 − φB2)}. (11)

The force exerted on a surface with area dA and normal n̂ is
then given by (n̂ · ↔

�) dA.

III. BOUNDARY CONDITION

In this section, we introduce a mesoscopic version of the
diffuse boundary condition for Fermi superfluids. The diffuse
boundary condition is a commonly used model to describe the
reflection of radiation or particles from a surface. The basic
assumption is that the reflected radiance is independent of
the direction of the incoming radiation. The combination of
diffuse and specular reflection has commonly been applied to
normal-state Fermi liquids. The application to the superfluid
state can be more complicated, in particular if the superfluid
state is modified in a surface layer. This typically occurs
in non-s-wave superconductors, where the order parameter
has nontrivial structure on the length scale of the superfluid
coherence length ξ0 from the surface. A quasiparticle reflected
from the surface can be Andreev reflected back to the surface
from the surface layer. The classical diffuse reflection model
is insufficient to properly include the repeated Andreev and
bare surface reflections, and one needs a model that works on
the quantum level. See Refs. [36–39] for discussion of some
of these models. These quantum models give the “dressed”
reflection of a bulk quasiparticle, where the surface layer
modifies the bare reflection at the surface. The reflected
distribution generally has a smooth background and peaks
in the specular and retroreflection directions [35,40]. For
many problems, these quantum calculations are too compli-
cated. As an alternative, we formulate here a model that
mimics the diffuse reflection on a mesoscopic scale (>ξ0).
This model satisfies all the necessary conservation laws for
elastic scattering. Its analytic form simplifies its application
to many problems. It provides a kind of first approximation,
against which more sophisticated reflection models can be
compared with.

Our starting point is the low-frequency superfluid dynam-
ics as described in Sec. II. The boundary condition can be used
for arbitrary bulk gap amplitude |�( p̂, r, t )|, either singlet or
triplet. In addition to the expression for mass current (10), we
need to define the number current density of excitations [41],

j e(r, t ) = vF N (0)
∫

d�p

4π
p̂

∫ Ec

−Ec

dε

×{θ (ε̃2 − |�|2)(φB1 − φB2)}. (12)

Our goal is to set up boundary condition to describe elastic
reflection from a planar piece of an impenetrable wall. We
study the problem in the rest frame of the wall, and denote
the surface normal with n̂. The boundary condition have to
obey conservation laws. Mass conservation requires that the

mass current component perpendicular to the wall has to
vanish, n̂ · j = 0. In addition, it is shown in Ref. [41] that the
excitation number current has to be conserved by elastic scat-
tering, n̂ · j e = 0. In the energy representation used above, the
energy conservation is automatically satisfied if the outgoing
excitations are at the same energy as the incoming ones.

On the surface we define

A(ε) =
∫

n̂· p̂<0
d�p|n̂ · p̂|N ( p̂, ε)φB1( p̂, ε)

−
∫

n̂· p̂>0
d�p|n̂ · p̂|N ( p̂, ε)φB2( p̂, ε),

B(ε) =
∫

n̂· p̂<0
d�p|n̂ · p̂|�( p̂, ε)φB1( p̂, ε)

+
∫

n̂· p̂>0
d�p|n̂ · p̂|�( p̂, ε)φB2( p̂, ε). (13)

Here we have dropped the parameters r and t for simplicity,
and defined

�( p̂, ε) = θ ([ε − a( p̂)]2 − |�( p̂)|2), (14)

ν( p̂, ε) = |ε − a( p̂)|√
[ε − a( p̂)]2 − |�( p̂)|2 , (15)

N ( p̂, ε) = ν( p̂, ε)�( p̂, ε). (16)

We see that A and B are fully determined by the incoming ex-
citations. We now state the boundary condition by expressing
the outgoing distributions as

φB1( p̂, n̂ · p̂ > 0, ε) = g(ε)

2
[ν−1( p̂, ε)A(ε) + B(ε)],

φB2( p̂, n̂ · p̂ < 0, ε) = g(ε)

2
[−ν−1( p̂, ε)A(ε) + B(ε)]. (17)

By this construction, we can satisfy the conservation laws n̂ ·
j = n̂ · j e = 0 by fixing

g−1(ε) =
∫

n̂· p̂>0
d�p n̂ · p̂ �( p̂, ε), (18)

provided that n̂ · α = 0 and |�( p̂)| = |�( p̂)|. Here p̂ = p̂ −
2n̂(n̂ · p̂) is the direction of specular reflection. The first
condition just means that there is no flow through the surface.
The second condition limits the possible forms of the gap
amplitude on the surface, but it should not be too restrictive.
The condition is fulfilled, e.g., for s-wave superfluids and the
two bulk phases of superfluid 3He, the A phase and the B
phase.

We now study some properties of the boundary condition
(17). It represents diffuse reflection, since the outgoing dis-
tribution depends on the incoming one through A and B,
which depend only on energy. In the normal state |�| = 0,
and the boundary condition (17) reduces to the standard dif-
fuse boundary condition where g = 1/π . We see that φB1 =
φB2 = φ(ε) is a consistent solution of the boundary condition
for any a. There is conversion between the branches, that is,
an incoming particle-like excitation is reflected as holelike
excitation and vice versa. Branch conversion takes place
predominantly at low energies ε ∼ |�|. At higher energies,
the conversion becomes small because

√
ε̃2 − |�|2/|ε̃| → 1.
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The conversion also vanishes for a = 0 and constant
|�( p̂)| = � because in this case the factor

√
ε̃2 − |�|2/|ε̃| =√

ε2 − �2/|ε| is a function of energy only, and such factors
cancel in substituting (13) into (17). The boundary condition
(17) seems to be the simplest generalization of the normal-
state diffusive boundary condition to superfluid state that
satisfies the conditions n̂ · j = n̂ · j e = 0.

IV. A SMALL OBJECT

In this section, we calculate the drag force on a small object
using a modified version of the boundary condition introduced
in Sec. III. We assume the object to be small compared to
the coherence length but sufficiently big that we can neglect
its recoil in collisions with quasiparticles. A negative ion
in superfluid 3He could fall under this characterization; see
Refs. [42,43] for reviews. Small objects have been extensively
studied using the quantum approach, modeling the scattering
of quasiparticles from the object by scattering phase shifts
[44–48]. We are interested in the motion of the object at
velocities exceeding the Landau critical velocity. This prob-
lem was previously studied by Bowley assuming a constant
cross section [49] and by Ashauer and Rainer using the quan-
tum approach [29,41,50]. Ashauer and Rainer give examples
of the scattered quasiparticle distributions, but do not calculate
the drag force.

We study the problem in the rest frame of the object,
with the object located at the origin. The diameter of the
object is denoted by d. We assume that d � ξ0. The boundary
condition of Sec. III was formulated for a piece of wall
with normal n̂. In order to satisfy conservation of mass and
excitation number, we required that the normal components of
j and j e vanish at the surface, n̂ · j = n̂ · j e = 0. In the case
of a small object, we use a slightly modified approach. We are
only interested in the behavior of the flow at a scale λ � d

where the object is essentially pointlike. We require that the
conservation of mass and excitation number are satisfied at
this scale, meaning that the mass flux and the excitation flux
through a sphere of radius r ∼ λ around the object have
to vanish,

∫
r2d�r r̂ · j = ∫

r2d�r r̂ · j e = 0. Here
∫

r2d�r

denotes integration over a sphere of radius r , and r̂ is the radial
unit vector of the spherical coordinate system.

Following closely Sec. III, we define coefficients A and B

that depend on incident distributions,

A(ε) =
∫

d�pN ( p̂, ε)φB1( p̂,−r p̂, ε)

−
∫

d�pN ( p̂, ε)φB2( p̂, r p̂, ε),

B(ε) =
∫

d�p�( p̂, ε)φB1( p̂,−r p̂, ε)

+
∫

d�p�( p̂, ε)φB2( p̂, r p̂, ε). (19)

Note that since the object is essentially pointlike, the incident
distributions with momentum direction p̂ come from direc-
tions r̂ = ± p̂. We propose a boundary condition where the

scattered distributions are given by

φB1( p̂, r p̂, ε) = g(ε)

2
[ν−1( p̂, ε)A(ε) + B(ε)],

φB2( p̂,−r p̂, ε) = g(ε)

2
[−ν−1( p̂, ε)A(ε) + B(ε)], (20)

with

g−1(ε) =
∫

d�p�( p̂, ε). (21)

This satisfies the conservation laws
∫

r2d�r r̂ · j =∫
r2d�r r̂ · j e = 0, conserves energy, and has the same

properties as the boundary condition in Sec. III.
To proceed, we assume that the object moves at a constant

velocity v in the laboratory frame. Since the object is small,
it does not disturb the fluid flow nor the gap. This means
that there is a uniform flow vs = −v in the rest frame of the
object with α = pF vs and |�( p̂)| = �. Incident distributions
are zero-temperature equilibrium distributions in the labora-
tory frame, φB1( p̂,−r p̂, ε) = φB2( p̂, r p̂, ε) = 1/2 − θ (ε +
pF v · p̂).

Calculating the integrals in Eq. (19) we see that A(ε) = 0
and

g(ε)B(ε)

2
=

{
1
2

ε
�−α

when |ε| � α − �

1
2 − θ (ε) when |ε| > α − �

. (22)

To calculate the force F exerted on the object, we integrate
the radial component of the stress tensor (11) over a sphere of
radius r ∼ λ centered at the origin, resulting in

F = θ (v − vL)
(v − vL)2(v + vL)

v3
Fn. (23)

Here Fn = −pF nf σv is the force in the normal state [51],
nf is the number density of fermions, and σ is the cross
section of the particle. Similar calculation, but apparently with
somewhat different assumptions, was made by Bowley [49].
His result is smaller than the one in Eq. (23) by a factor of
1 − vL/v.

The force in Eq. (23) vanishes at velocities lower than vL

since the object cannot scatter quasiparticles. At velocities
much higher than the critical velocity vL the force approaches
the normal state value. Figure 5 shows the ratio F/Fn as a
function of velocity. As a comparison, the figure also shows
the force calculated in a case where we do not use the
boundary condition (20), but instead assume that the scattered
distributions are equilibrium distributions in the object frame,
φB1( p̂, r p̂, ε) = φB2( p̂,−r p̂, ε) = 1/2 − θ (ε). We see that
the qualitative behavior is similar in both cases. Critical
velocities are equal, and the results agree near the critical
velocity. At larger velocities, the diffuse boundary condition
(20) yields a slightly larger force.

V. A LARGE OBJECT IN THE COLLISIONLESS
APPROXIMATION

In this section, we apply the boundary condition of
Sec. III to a cylinder of finite radius R � ξ0 moving at
constant velocity v = v x̂ perpendicular to its axis ẑ. We
assume zero temperature T = 0 and no collisions between
quasiparticles. We use the boundary condition to calculate the
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FIG. 5. Drag force as a function of velocity for a small pointlike
object (diameter � ξ0, see Sec. IV) and for a macroscopic cylinder
(diameter � ξ0, see Sec. V). The solid black line (dashed red line)
represents the force exerted on the pointlike object (macroscopic
cylinder) assuming that the scattered distributions are given by the
diffuse boundary condition, Eq. (20) [Eq. (17)]. The dot-dashed
green line (dotted blue line) represents the force exerted on the
pointlike object (macroscopic cylinder) assuming that the scattered
excitations are given by equilibrium distributions in the object frame,
1/2 − θ (ε). We have assumed zero temperature, constant gap, no
collisions between quasiparticles, and ideal flow field. For both
objects, there is a clear critical velocity. For the pointlike object,
the critical velocity equals the Landau velocity. In the case of the
cylinder, the critical velocity is shifted to ∼1.12vL due to the spatial
dependence of the flow field. At high velocities v � vL, the forces
approach the normal state values.

stress tensor for a given flow field. Finally, we use the results
to calculate the drag force exerted on the cylinder assuming
an ideal flow field around the cylinder. The purpose of this
calculation is to demonstrate that even though the cylinder
scatters quasiparticles at velocities v > vL/2, the spatially
varying flow field can prevent them from escaping from the
vicinity of the cylinder, thus reducing the force significantly.

We shall work in the rest frame of the cylinder. Because
there are no collisions between excitations, the distribution
functions satisfy [16] p̂ · ∇φBi ( p̂, r, ε) = 0. Inside the gap,
i.e., at points where [ε − a( p̂, r )]2 − |�( p̂, r )|2 < 0, the dis-
tribution functions are not defined. Thus the distribution func-
tions are piecewise constant along trajectories r = r0 + s p̂,
where r0 is fixed and s ∈ R. Andreev reflection occurs at
points [ε − a( p̂, r )]2 − |�( p̂, r )|2 = 0. At these points, the
distribution functions are equal, φB1( p̂, r, ε) = φB2( p̂, r, ε).

In order to determine the scattered distributions (17), we
need to calculate the coefficients A, B, and g from Eqs. (13)
and (18). We split the integrals over p̂ into two parts, over
free states and over bound states. Free states are such that, at
given ε, no Andreev reflection occurs at a trajectory along p̂.
In Fig. 4, these correspond to regions M and M′. This means
that the value of the incident distribution at the surface is equal
to the value of the distribution at the far region, which we take
to be the equilibrium distribution in the laboratory frame,

φfree
B1 ( p̂, n̂ · p̂ < 0, ε) = φfree

B2 ( p̂, n̂ · p̂ > 0, ε)
= φ∞

Bi ( p̂, ε) = 1
2 − θ (ε + pF v · p̂).

(24)

Bound states, on the other hand, are such that Andreev reflec-
tion occurs at some points of a trajectory along p̂. In Fig. 4,
these correspond to regions L and L′. Since the distributions
φB1 and φB2 are equal at the point of Andreev reflection, the
incident distribution φB1 is equal to the scattered distribution
φB2, and vice versa,

φbound
B1 ( p̂, n̂ · p̂ < 0, ε) = g(ε)

2
[−ν−1( p̂, ε)A(ε) + B(ε)],

φbound
B2 ( p̂, n̂ · p̂ > 0, ε) = g(ε)

2
[ν−1( p̂, ε)A(ε) + B(ε)].

(25)

Note that the regions K, K′, N, and N′ in Fig. 4 are not relevant
here, since we are discussing points on the surface of the
cylinder.

Inserting the incident distributions into Eq. (13) leads to a
self-consistency equation for A and B,

[
−4g−1 +

∫
free

d�p|n̂ · p̂|�( p̂, ε)

]
gA

2
+

[∫
free

d�p(n̂ · p̂)N ( p̂, ε)

]
gB

2
=

∫
free

d�p(n̂ · p̂)N ( p̂, ε)φ∞
Bi ( p̂, ε),

[∫
free

d�p(n̂ · p̂)ν−1( p̂, ε)�( p̂, ε)

]
gA

2
+

[∫
free

d�p|n̂ · p̂|�( p̂, ε)

]
gB

2
=

∫
free

d�p|n̂ · p̂|�( p̂, ε)φ∞
Bi ( p̂, ε). (26)

Here we have transformed the integrals over bound states
into integrals over free states using the identity

∫
d�p =∫

free d�p + ∫
bound d�p. This is a linear system of two equa-

tions and two unknowns, but the coefficients are quite compli-
cated. What can we say about the solution?

Let us consider a fixed point r0 on the surface of the
cylinder. Free states satisfy [ε − a( p̂, r )]2 − |�( p̂, r )|2 > 0
along the whole trajectory r = r0 + s p̂. Here s � 0 if n̂ · p̂ >

0 and s � 0 if n̂ · p̂ < 0. Let us denote E±( p̂, r ) = a( p̂, r ) ±
|�( p̂, r )|. In addition, let us denote the maximum and the
minimum of E±( p̂, r ) along the trajectory by E±

max( p̂, r0)

and E±
min( p̂, r0), respectively. We can then split the free states

into two categories, F1 = { p̂ | E+
max( p̂, r0) < ε} and F2 =

{ p̂ | E−
min( p̂, r0) > ε}.

If both F1 and F2 are empty, Eq. (26) tells us that A = 0,
but leaves B unspecified. Since all states are bound, it is natu-
ral to assume that they are in equilibrium with the cylinder. We
therefore have gA/2 = 0 and gB/2 = 1/2 − θ (ε). If either
F1 or F2, but not both, is empty, we see that the solution to
Eq. (26) is gA/2 = 0 and gB/2 = 1/2 − θ (ε). If neither F1

nor F2 is empty, then we need to calculate the coefficients in
Eq. (26) numerically.
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Let us study the regions F1 and F2 more closely. Region
F1 is empty when min p̂ {E+

max( p̂, r0)} � ε. Region F2 is
empty when max p̂ {E−

min( p̂, r0)} � ε. For pure singlet or pure
triplet superfluid, we have E−(− p̂, r ) = −E+( p̂, r ). This
means that region F2 is empty when min p̂ {E+

max( p̂, r0)} �
−ε. Thus, neither of the regions is empty when |ε| <

− min p̂ {E+
max( p̂, r0)}. If we define

E (r0) = − min
p̂

{E+
max( p̂, r0)}θ

(
− min

p̂
{E+

max( p̂, r0)}
)

,

(27)

then the only nontrivial region of energies where we need to
calculate A and B numerically is |ε| < E . When |ε| � E , the
scattered distributions are φB1( p̂, n̂ · p̂ > 0, ε) = φB2( p̂, n̂ ·
p̂ < 0, ε) = 1/2 − θ (ε). Physically the fact that E is zero
means that no quasiparticles can escape from the vicinity of
the cylinder.

The drag force exerted on the cylinder is given by

F = l

∫ π

−π

Rdϕn̂ · ↔
�(R, ϕ). (28)

Here l is the length of the cylinder and ϕ is the azimuthal

angle around the cylinder. The stress tensor
↔
� is given by

Eq. (11). We split the integral over p̂ again into two parts, over
free states and over bound states. Substituting the incident and
scattered distributions into the integrand yields

↔
�(R, ϕ) = 2vF pF N (0)

∫ E

0
dε

∫
free

d�p

4π
p̂ p̂�( p̂, ε)

×
{

g(ε)A(ε)

2
ν−1( p̂, ε)+g(ε)B(ε)

2
sgn(n̂ · p̂)

− sgn(n̂ · p̂)φ∞
Bi ( p̂, ε)

}
. (29)

Because of symmetries, the force is purely opposite to the
direction of motion, i.e., F = −F v̂. We see that the force
vanishes when E = 0 at all points on the surface of the
cylinder. This means that the critical velocity can be defined
as the smallest velocity for which E > 0.

We conclude this section by applying the above results to
the case of ideal flow around the cylinder. The ideal velocity
field is given by Eqs. (7) and (8), while the α field is given by
α = pF vs . We also assume that the gap amplitude is constant,
|�( p̂, r )| = �. Note that the ideal flow field is not consistent
with Eqs. (6), (7), (9), and (10) at velocities v > vL/2. It is,
however, a reasonable starting point. Self-consistent flow will
be considered in Secs. VI and VII.

Figure 5 shows the force as a function of v in the case of the
ideal flow. The unit of force is chosen to be the normal-state
value [51] Fn = 43π

48 pF nf vlR. We see that the critical velocity
is increased from vL and is now approximately 1.12vL. This
is slightly smaller than 8vL/7, which is when ε3 crosses zero
(at s = √

3R) on a trajectory along p̂ = v̂ starting from either
P or Q (see Figs. 3 and 4). For velocities v < 2vL, the ratio
F/Fn is nearly an order of magnitude smaller than in the
case of the small object. This shows the importance of the
spatial variation of the flow field. At high velocities, the force
approaches the normal state value. It is again interesting to

compare the force we obtained above with the force that is
obtained if, instead of the boundary condition (17), we assume
that the scattered distributions are equilibrium distributions
in the object frame, φB1( p̂, n̂ · p̂ > 0, ε) = φB2( p̂, n̂ · p̂ <

0, ε) = 1/2 − θ (ε). This is also shown in Fig. 5. As in the
case of the small object, the two different boundary conditions
lead to a qualitatively similar force. Both boundary conditions
yield the same critical velocity. The results agree near the
critical velocity but start to deviate slightly from each other
at larger velocities where the diffuse boundary condition (17)
produces larger force.

VI. SELF-CONSISTENT FLOW IN THE COLLISIONLESS
APPROXIMATION

We shall now study how the excitations modify the ideal-
fluid flow field around the cylinder. We assume that there are
no collisions between quasiparticles. We also assume zero
temperature T = 0 and constant gap |�( p̂, r )| = �.

Let us define

I (r ) =
∫

d�p

4π
p̂

∫ Ec

a( p̂,r )+�

dεN ( p̂, ε, r )

×
{[

φB1( p̂, ε, r ) + 1

2

]
+

[
φB2( p̂, ε, r ) + 1

2

]}
.

(30)

Using Eqs. (9) and (10) we can write the mass current density
j as a sum of two parts,

j = mnf vs + 3m∗nf

pF

I . (31)

The first part here is explicitly proportional to the superfluid
velocity, while the second part depends on excitations. Indeed,
if there are no excitations present, then φBi = −1/2, and
thus I = 0. The set of equations (6), (7), (9), and (10) that
determine the flow can be written as

α = pF vs + F s
1 I, (32)

∇2ψ = − 2m

h̄pF

(
3 + F s

1

)∇ · I, (33)

vs = h̄

2m
∇ψ. (34)

The integral in (30) is calculated over the upper branches
of states in Figs. 1, 2, and 4, denoted by blue color. In order
to carry out the integration, we need to know the distribution
functions φBi for these states. Let us consider a fixed point
r0 in the fluid. Since we assumed that there are no collisions
between quasiparticles, the distribution functions φBi ( p̂, ε, r )
are piecewise constant along trajectories r = r0 + s p̂, s ∈ R,
as we saw earlier.

If the excitations originate from the far region, then we
assume equilibrium in the laboratory frame, φBi = φ∞

Bi =
1/2 − θ (ε + pF v · p̂).

If the excitations originate from the surface of the cylinder,
then the distributions are determined by the boundary condi-
tion (17), φBi = φbc

Bi . We saw in Sec. V that when the velocity
of the cylinder is below the critical velocity, the scattered
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distributions are φbc
Bi = 1/2 − θ (ε). At higher velocities, the

scattered distributions are smoothed, and their widths are
given by 2E . The corrections to I caused by smoothing of
the scattered distributions are of order E . This means that
at velocities near the critical velocity, where E is small, the
approximation φbc

Bi ≈ 1/2 − θ (ε) is a decent one. We already
saw this earlier when we calculated the force exerted on the
small object and on the cylinder assuming ideal flow; see
Fig. 5. We shall therefore approximate φbc

Bi = 1/2 − θ (ε) in
order to simplify the calculations.

Finally, it is possible that there are excitations trapped in
the fluid, φBi = φ

trap
Bi . These excitations cannot reach either

the far region or the surface of the cylinder, but are instead
localized somewhere in the flow field, bouncing back and
forth due to repeated Andreev reflections. In this case, we
consider two different models.

In model 1, we assume that the excitations are in equi-
librium with the local flow, φ

trap
Bi = 1/2 − θ (ε − a), meaning

that the states are always empty, since ε � a + �. The reason-
ing behind this model is that, once the equilibrium is reached,
there is no way for the excitations to scatter into these states.

In model 2, we assume two different distributions depend-
ing on p̂. On trajectories that do not intersect the cylinder, the
excitations are still in equilibrium with the local flow, φ

trap
Bi =

1/2 − θ (ε − a). On trajectories that do intersect the cylinder,
however, we assume that the excitations are in equilibrium
with the cylinder, φ

trap
Bi = 1/2 − θ (ε). The reasoning behind

this model is the following. In the experiment, the wire starts

from rest and is accelerated until it reaches velocity v. At
velocities below vL/2, there are no excitations present any-
where, since the local flow velocity is below vL everywhere.
At higher velocities, excitations start to emerge from regions
on the surface of the wire where the flow velocity exceeds
vL. These excitations, in turn, modify the flow near the wire.
It could then be possible that the flow field is modified in
such a way that some of these excitations get trapped in the
fluid. Note that since the excitations originate from the surface
of the cylinder, their p̂ points either toward or away from
the cylinder, and their distributions are determined by the
boundary condition, which we assumed to be the equilibrium
distribution 1/2 − θ (ε).

In reality, the acceleration of the wire is a complicated
process which should be modeled dynamically, but here we
consider these two simple extremes. A third model, where
we assume that all of the excitations trapped in the fluid
are in equilibrium with the cylinder, φ

trap
Bi = 1/2 − θ (ε), is

considered in Sec. VII. This equilibrium could be achieved
through quasiparticle-quasiparticle collisions.

At fixed r and p̂, we split the integration region over energy
into sets M′, L′, N′, and K′ according to Fig. 4. In regions M′,
L′, and N′ the excitations originate either from the far region
or the surface of the cylinder, depending on p̂ and the type
of the excitation (B1 or B2). In region K′, the excitations are
trapped in the fluid. Substituting the distributions into Eq. (30)
yields

I (r ) =
∫

hit+

d�p

4π
p̂
{∫ Ec

εmax

dεN ( p̂, ε, r )

[
φbc

B1( p̂, ε, r ) + 1

2

]
+ 2

∫ εmax

ε2

dεN ( p̂, ε, r )

[
φbc

B1( p̂, ε, r ) + 1

2

]}

+
∫

hit−

d�p

4π
p̂
{∫ Ec

εmax

dεN ( p̂, ε, r )

[
φbc

B2( p̂, ε, r ) + 1

2

]
+ 2

∫ εmax

ε2

dεN ( p̂, ε, r )

[
φbc

B2( p̂, ε, r ) + 1

2

]}

+
∫

hit

d�p

4π
p̂
{

2
∫ εmin

ε0

dεN ( p̂, ε, r )

[
φ

trap
Bi ( p̂, ε, r ) + 1

2

]}
. (35)

Here
∫

hit+ (
∫

hit−) means integration over trajectories that intersect the cylinder with n̂ · p̂ > 0 (n̂ · p̂ < 0), and
∫

hit = ∫
hit+ + ∫

hit−.
The limits of energy integration are defined as ε0( p̂, r ) = a( p̂, r ) + �, ε2( p̂, r ) = amax<( p̂, r ) + �, ε3( p̂, r ) = amax>( p̂, r ) +
�, εmin = min{ε2, ε3}, and εmax = max{ε2, ε3}. Here amax<( p̂, r0) [amax>( p̂, r0)] is the maximum of a( p̂, r ) toward (away from)
the cylinder along r = r0 + s p̂.

Let us now consider each of the models separately. In model 1, we denote I = I1 and substitute φbc
Bi = 1/2 − θ (ε), φ

trap
Bi =

1/2 − θ (ε − a) into Eq. (35). In model 2, we denote I = I2 and substitute φbc
Bi = 1/2 − θ (ε), φ

trap
Bi = 1/2 − θ (ε) into Eq. (35).

This yields

I1(r ) =
∫

hit

d�p

2π
p̂ θ [−amax<( p̂, r ) − �]{

√
a( p̂, r )2 − �2 −

√
[amax<( p̂, r ) − a( p̂, r ) + �]2 − �2}

−
∫

hit

d�p

4π
p̂ θ [−amax( p̂, r ) − �]{

√
a( p̂, r )2 − �2 −

√
[amax( p̂, r ) − a( p̂, r ) + �]2 − �2}, (36)

I2(r ) =
∫

hit

d�p

2π
p̂ θ [−a( p̂, r ) − �]{

√
a( p̂, r )2 − �2}

−
∫

hit

d�p

2π
p̂ θ [−amax>( p̂, r ) − �]{

√
a( p̂, r )2 − �2 −

√
[amax>( p̂, r ) − a( p̂, r ) + �]2 − �2}

+
∫

hit

d�p

4π
p̂ θ [−amax( p̂, r ) − �]{

√
a( p̂, r )2 − �2 −

√
[amax( p̂, r ) − a( p̂, r ) + �]2 − �2}. (37)
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In numerical calculations, we measure α, I , �, and ε in units of pF v, vs in units of v, r in units of R, and ψ in units of
2mvR/h̄. In these units, the flow equations (32), (33), and (34) may be written as

α = δvs + v0 + F s
1 I, (38)

∇2δψ = −(3 + F s
1 )∇ · I, (39)

∇δψ = δvs , (40)

where the field δvs = vs − v0 represents the modification to
the ideal flow v0 [see Eqs. (7) and (8)] caused by the presence
of excitations. For a given δvs the field α can be solved
from Eq. (38). Calculation of the integral I at location r0

requires a search for directions and energy ranges in which
excitations are able to escape the cylinder surface into the
surrounding liquid. These depend on the value of α along
trajectories r = r0 + s p̂ that intersect the cylinder surface.
In the discrete version of Eq. (38), the value of α(r0) may
thus depend on α(r ) at any point on these trajectories. This
means that we have no a priori knowledge of the form of the
Jacobian of Eq. (38) and sophisticated methods of solving α

are not available to us. We solve α using a simple fixed-point
iteration

α(k+1) = α(k) − α(k) − f (α(k) )

1 − M
, (41)

where f (α) is the right-hand side of Eq. (38). This is akin to
the Newton-Raphson method [52], but instead of calculating
the derivative of f (α) we approximate it with the parameter
M ∼ 2. We begin the iteration with α(0) = v0.

We use the finite difference method to solve the continuity
equation (39) in cylindrical coordinates. Because of symmetry
conditions, we only need to solve the system in a single
quadrant of the space surrounding the cylinder, 0 � ϕ � π/2
and 1 � r � R∞. Here R∞ is a computational cutoff radius.
The symmetry conditions translate to boundary conditions
(∂ϕδψ )(r, ϕ = 0) = δψ (r, ϕ = π/2) = 0. In addition, there
should be no flow through the surface of the cylinder and
the flow should not be modified far from the cylinder. For
δψ , these conditions mean (∂rδψ )(r = 1, ϕ) = (∂rδψ )(r =
R∞, ϕ) = 0. The cutoff radius R∞ needs to be sufficiently
large in order to satisfy the latter condition. We use R∞ = 6
and our lattice spacings are δr ∼ 10−2 and δϕ ∼ 10−2. The
lattice is more tightly spaced close to the cylinder surface.

We can expect the magnitude of δvs to approach zero as we
move away from the cylinder. For cylinder velocities below
vL/2, the term on the right-hand side of Eq. (39) disappears.
This means that, due to our boundary conditions, the quantity
δψ is identically zero and the ideal flow is unmodified. For
cylinder velocities above vL/2 but under vL, the Landau
velocity is exceeded locally, which leads to deviation from the
ideal flow in the near region. For cylinder velocities above vL,
the Landau velocity is exceeded even far from the cylinder, but
the right-hand side of Eq. (39) still approaches zero at large
distances as the solid angle covered by the cylinder becomes
small.

We employ the method of successive under-relaxation [52]
in an attempt to introduce stability to our iterative process.

Potential δψ at iteration step k is

δψ (k) = τδψ
(k)
C + (1 − τ )δψ (k−1), (42)

where δψ
(k)
C is solved from the continuity equation (39) using

I at iteration step k. We start the iteration from δψ (0) = 0.
For under-relaxation, the relaxation parameter τ ∈ ]0, 1[. All
numerical results use F s

1 = 5.4, which is the zero pressure
value in liquid 3He.

Results for the self-consistent α using I1 (36) and I2 (37)
are shown in Fig. 6 together with the ideal flow, for which
α = pF v0. In model 1 and model 2, when compared to the
ideal flow, the magnitude of α is reduced near the cylinder
surface. Excitations in this region cause a nonzero I and as a
result α must change in order for the self-consistency equation
(38) to be satisfied. Far away from the cylinder, the flow is
unmodified.

The difference between model 1 and model 2 arises from
the occupation of K′-type states. These do not directly interact
with the cylinder surface, but when occupied will locally
modify the superflow in a manner that reduces α in the vicinity
of the cylinder surface.

Figure 7 shows δvs fields corresponding to the α fields in
Figs. 6(b) and 6(c). The fields δvs are such that part of the flow
is driven to circumvent the areas close to the cylinder surface
where Landau velocity is exceeded locally. This reduces the
superfluid flow velocity toward the cylinder in the front region
and thus increases ε3 (Fig. 4). The same effect is present at
higher velocities where it leads to a reduction in the drag force
compared to the ideal-fluid case where I = 0. This effect is
greater in model 2 where K′-type states are in equilibrium
with the cylinder. Total mass current is given by Eq. (31).
The term proportional to I represents a quasiparticle current
flowing in a direction opposite to vs , ensuring that mass
current is conserved.

After we have solved the self-consistent flow field, we can
calculate the force exerted on the cylinder. This is given by
Eqs. (28) and (29). Since we have assumed that the scat-
tered distributions are 1/2 − θ (ε) when calculating the flow
field, we shall make the same assumption when calculating
the force. This means that we can substitute gA/2 = 0 and
gB/2 = 1/2 − θ (ε) into Eq. (29). As we saw in Secs. IV and
V, and in Fig. 5, this will likely underestimate the force com-
pared to using the exact boundary condition, but the difference
should be small in the vicinity of the critical velocity.

Figure 8 shows the force calculated for the ideal flow field,
model 1, and model 2. The critical velocities are equal in all
three cases, approximately 1.12vL. The self-consistent flow
fields, model 1 and model 2, both yield a force that is smaller
than in the case of the ideal flow field. The force for model 1 is
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(a) Ideal flow (b) Model 1 (c) Model 2

FIG. 6. The field α in units of pF v calculated in three different cases: (a) Ideal-fluid flow field, valid at v < 0.5vL, where α = pF vs and vs

is given by Eqs. (7) and (8). [(b), (c)] Two models for self-consistent flow at v = 0.8vL. The field α gives the quasiparticle potential a = α · p̂
in the dispersion relation (4). The gray segment of a disk represents the cylinder. The color gradient signifies the magnitude of the field,
and the stream lines indicate its direction. Contour lines of constant magnitude are also displayed at intervals of 0.1pF v. The distinguishing
feature of the self-consistent models is the suppression of α near the top surface of the cylinder, where locally vs > vL, to the degree that the
field maximum has detached from the cylinder surface. This happens for both models, but is more pronounced in model 2. In model 1, this
suppression leads to a sharp gradient of α near the cylinder surface.

slightly larger than for model 2, but the difference between the
two is small. The similarity in forces between the two models
is likely due to the fact that, despite the differences in the
α fields close to the cylinder, the energy ε3 of Fig. 4 along
quasiparticle trajectories is mostly the same. The states bound
to the vicinity of the cylinder affect the force only by means
of raising or lowering this energy barrier, which in this case is
minimal.

VII. EQUILIBRIUM IN THE NEAR REGION

In the previous section, we studied how the flow field
around a cylinder is modified when there are no collisions be-

tween quasiparticles. In this section, we assume the opposite
extreme where, due to quasiparticle-quasiparticle collisions,
full equilibrium with the cylinder has been achieved in the
near region. We assume that the far region is still in equilib-
rium with the laboratory frame and that the gap amplitude
there is isotropic, |�( p̂)| = �. This situation can only be
achieved at cylinder velocities v less than the Landau velocity
vL = �/pF . Unlike in the collisionless case, we allow the
gap amplitude to become anisotropic in the near region.
Parametrizing the momentum direction as p̂ = p⊥ + p‖α̂,
where p⊥ · α̂ = 0, the square of the gap amplitude in a p-
wave superfluid can be written as |�( p̂, r )|2 = �⊥(r )2p2

⊥ +
�‖(r )2p2

‖ .

(a) Model 1 (b) Model 2

FIG. 7. Modification to the ideal flow, δvs , in units of v at v = 0.8vL, corresponding to the quasiparticle potentials in Figs. 6(b) and 6(c).
The gray segment of a disk represents the cylinder. The color gradient signifies the magnitude of the field in question, and the stream lines
indicate its direction. Contour lines of constant magnitude are also displayed at intervals of 0.01v. The ideal flow is modified in a manner
that diverts the liquid from the regions where Landau velocity is exceeded locally. In addition to the mass flow proportional to vs , there is a
quasiparticle current ∝I that on top of the cylinder is to the right. The total current given by Eq. (31) is conserved.
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FIG. 8. Drag force exerted on a macroscopic cylinder (diameter
�ξ0) as a function of velocity in the collisionless approximation.
The force is calculated for three different flow fields, the ideal flow
(solid black line), model 1 (dashed red line), and model 2 (dotted
blue line); see Secs. V and VI. As a comparison, the figure also
shows the force exerted on a small pointlike object (diameter �ξ0)
(dot-dashed green line); see Sec. IV. In all cases, we have assumed
that the scattered distributions are equilibrium distributions in the
object frame, 1/2 − θ (ε), since this was used to calculate the flow
fields in model 1 and model 2. We have also assumed zero tempera-
ture, constant gap, and F s

1 = 5.4, corresponding to zero pressure in
liquid 3He.

We shall study the system in the rest frame of the cylinder
at T = 0. The flow obeys the same equations (32), (33), and
(34) as it did in the collisionless case. When calculating I ,
we can use distributions φBi = 1/2 − θ (ε) everywhere. These
describe equilibrium with the cylinder, which is required in
the near region. In the far region, I vanishes as it should, since
there are no excitations present.

Substituting the distributions and the gap amplitude into
Eq. (30) yields

I = −1

3
θ (α − �‖)

(α2 − �2
‖)3/2

α2 + �2
⊥ − �2

‖
α̂. (43)

We see from Eq. (32) that I and vs are parallel and subse-
quently we can express the mass current density as

j = ρs (vs )vs . (44)

Here ρs is the superfluid density, which depends on the
magnitude of the superfluid velocity. The value of ρs is
given by

ρs (vs ) = mnf − mnf

pF

(3 + F s
1 )

I (α(vs ))
vs

, (45)

where α(vs ) is the solution of the nonlinear equation

α = pF vs − F s
1

3
θ (α − �‖)

(α2 − �2
‖)3/2

α2 + �2
⊥ − �2

‖
. (46)
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FIG. 9. The equilibrium mass current j in units of j0 = mnf vL

for self-consistent gap (solid black line) and for constant gap �

(dashed red line), together with the parallel and perpendicular com-
ponents of the self-consistent gap, �‖ (dotted blue line) and �⊥
(dot-dashed green line), as functions of superfluid velocity vs , with
F s

1 = 5.4. See Refs. [21,22] for details.

We can write Eqs. (32), (33), and (34) as

∇ · [ρs (vs )vs] = 0, (47)

vs = h̄

2m
∇ψ. (48)

So far we have not specified the gap functions �‖ and �⊥.
Obviously, the correct choice would be to determine �‖ and
�⊥ self-consistently from the gap equation. This has been
done in Refs. [21,22]. The result is that for F s

1 = 5.4 both
�‖ and �⊥, as well as j , are single-valued functions of vs ;
see Fig. 9. (This is not the case for F s

1 = 0.) For vs < vL, the
gap components are constants and j grows linearly. Increasing
vs beyond vL, the parallel gap component �‖ drops rapidly
to zero. The perpendicular gap component �⊥ first grows
slightly. Current j drops sharply, recovering minutely as �⊥
begins to decrease. Both �⊥ and j go to zero at vs = 5.3vL.

The equilibrium problem now consists of finding the solu-
tion of Eqs. (47) and (48) with proper boundary conditions.
At v < vL/2, the solution is the ideal superfluid flow (8). We
have attempted to find a solution numerically at v > vL/2 but
have been unsuccessful.

In order to gain insight into the failure to find a sta-
ble solution at v > vL/2, we have considered an alternative
model. Instead of using the gap equation, we have assumed
a constant gap �‖ = �⊥ = �, which is independent of vs .
As seen in Fig. 9, in this case the mass current j first
increases slightly beyond vL, but after that is a monotonically
decreasing function of vs . It drops more slowly than in the
case of the self-consistent gap and does not vanish at any
finite vs .

Figure 10 displays numerical results for fields α and δvs =
vs − v0 in the case of the constant gap at v = 0.65vL. We
see that, unlike in the collisionless approximation, there is a
region near the top surface of the cylinder where the magni-
tude of α is larger than in the case of the ideal flow. In the
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(a) α (b) δvs

FIG. 10. Equilibrium in the near region assuming constant �: (a) α in units of pF v and (b) δvs in units of v. The parameters are v = 0.65vL,
T = 0, and F s

1 = 5.4. For α, the contour lines are placed at intervals of 0.1pF v and for δvs at intervals of 0.25v. Note that the magnitude of
δvs is much greater than in the collisionless case (Fig. 7), in spite of the smaller cylinder velocity.

same region, the length of δvs is an order of magnitude larger
than in the collisionless approximation. In fact, δvs is of the
same order as v0, thus significantly changing the flow pattern.
Outside this region, the flow is not significantly modified.
For our preferred lattice, the calculation becomes noncon-
vergent at velocities slightly greater than 0.7vL. Decreasing
the lattice spacing leads to nonconvergence at even lower
velocities.

What causes the difference between the collisionless mod-
els and the equilibrium models is the number of excitations
present in the flow field, which can be much larger in the
latter case. This also explains the instability of the flow in the
equilibrium models. In order to satisfy conservation of mass,
the local mass current on the y axis has to be larger than the
far-region value j∞ = mnf v. In ideal fluid j ∝ vs , and thus
the mass current can be increased simply by increasing the
superfluid velocity. Increasing vs beyond the Landau velocity
also builds up the excitation current ∝I opposite to the
direction of superflow, decreasing the total mass flow. In the
collisionless approximation, I is generally small, since only
those trajectories that collide with the object contribute to it.
This means that increasing vs still increases j , although at
a smaller rate than for ideal fluid. In the equilibrium model,
however, I is so large that j starts to decrease when vs is
increased from ∼vL, meaning that j has a maximum value.
Because of this, the equilibrium models have no solution at
high velocities, since it is not possible to satisfy conservation
of mass. The difference in convergence between the two
equilibrium models seems to have the same origin. In addition
to these two, we have tested other j (vs ) functions. It seems
that especially the sharp drop in j (vs ) at vs = vL is the cause
of the instability of the self-consistent-gap model.

The lack of convergence apparently means that the true
physical solution is not consistent with the assumptions made.
The theory presented here is limited to long-length-scale,
time-independent solutions with a singly defined phase ψ .
Thus, there could be an instability to some time-dependent
state that could have vortex-type structures.

VIII. SUMMARY

We have investigated objects moving in superfluid Fermi
liquid at velocities on the order of the Landau velocity. The
prevailing assumption that an object exceeding the Landau
velocity would experience a sudden onset of drag force
seems to hold true only for objects much smaller than the
coherence length. For a large object, the fluid has to be
pushed away from the object’s path, resulting in a spatially
varying flow field that affects the quasiparticle energies. This
leads to Andreev reflections that prevent some excitations
from escaping into the surrounding fluid. Perhaps counterin-
tuitively, the critical velocity is increased and the drag force
decreased.

This work was to a large extent motivated by the exper-
iment by Bradley et al. [13]. The drag force they measure
is reduced from the normal-state value by a factor on the
order of 10−5 at v = 2vL. In the absence of collisions between
quasiparticles, we calculate theoretically a reduction factor on
the order of 10−2. In the opposite, collision-dominated limit,
our calculation implies an instability. The main theoretical
problem concerning the interpretation of the experiment is
whether there could be an intermediate state between the
two limiting cases, one with additional shielding factor three
orders of magnitude greater compared to the collisionless
limit. Also, what is the nature of this state? Does it contain
vortices and in what configuration? Is it a stable or a transient
state?

There are several limitations in the present work. It is
limited to time-independent states. Only two extreme cases
of quasiparticle-quasiparticle collisions were studied. Vortex-
like structures were excluded. We have used a simple bound-
ary condition that ignores quantum processes such as An-
dreev reflection and generation of magnetic excitations in the
surface layer. We considered only uniform motion, which
leaves the occupation of trapped states ambiguous in the
collisionless limit. The assumption of a constant, isotropic gap
was also made in the collisionless limit. We have assumed
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zero temperature and a steplike distribution for the scattered
quasiparticles. The work presented here should be seen as the
first theoretical study of the drag force on a macroscopic ob-
ject exceeding the Landau velocity in a Fermi superfluid. We
hope our work stimulates further experimental and theoretical
studies on this topic.
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