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Voltage-induced thin-film superconductivity in high magnetic fields
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We predict that superconductivity in mesoscopic thin films can be stabilized in high magnetic fields if the
superconductor is driven out of equilibrium by a DC voltage bias. For realistic material parameters and temper-
atures, we show that superconductivity is restored in fields many times larger than the Chandrasekhar-Clogston
limit. After motivating the effect analytically, we perform rigorous numerical calculations to corroborate these
findings and present concrete experimental signatures. On the technical side, we also introduce a formulation of
the nonequilibrium kinetic equations that both generalizes and simplifies previous results.
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I. INTRODUCTION

It is well known that magnetism is harmful to conven-
tional superconductivity; the mechanisms responsible are a
diamagnetic orbital effect and paramagnetic spin effect. The
orbital effect refers to the Lorentz force felt by electrons
moving in a magnetic field, which forces the electronic con-
densate to rotate. That requires kinetic energy and eventually
makes condensation unfavorable. This can be neglected in
thin films with in-plane fields, since currents perpendicular
to the plane are suppressed [1]. The spin effect refers to the
magnetic spin splitting of the electronic dispersion relation.
Since a conventional Cooper pair consists of two electrons
with opposite spins, this results in a momentum mismatch
between the electrons in the pair. In clean systems, this
may lead to an inhomogeneous superconducting state [2–4].
However, in dirty thin films, impurity and surface scattering
prevent such an FFLO state from forming [2], and the spin
effect just causes depairing instead. Superconductivity can
therefore survive only up to the Chandrasekhar-Clogston limit
m = �0/

√
2 [5,6], where m is the Zeeman splitting of the

magnetic field and �0 the zero-temperature gap of a bulk
superconductor. In this paper, we show that this fundamen-
tal limit can be circumvented using a surprisingly simple
trick: voltage biasing the superconductor. The results are
directly applicable to the dawning field of superconducting
spintronics, where stabilizing superconductivity in proximity
to magnetic elements is paramount [7–10].

Figure 1 illustrates relevant experiments. The centerpiece
is a thin-film superconductor exposed to an in-plane magnetic
field. In theory, it does not matter whether this field is provided
by a proximity effect or external source. However, a proximity
effect provides a fixed field strength, limiting the parameter
space one can explore with a single sample. On the other
hand, externally inducing a Zeeman field m ∼ �0 requires
tens of teslas. Thus, the ideal solution is a combination:
A ferromagnet produces a large offset m = m0 ∼ �0, while
an external field tunes it to m = m0 + μBHext, where μB is
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the Bohr magneton. Finally, the superconductor is voltage
biased via tunneling contacts, providing an additional control
parameter.

In Fig. 1(a), the voltage is applied across the superconduc-
tor. This both induces a nonequilibrium distribution there and
injects a current that can be used as an observable. In Fig. 1(b),
transverse wires are used to manipulate the distribution with-
out any charge accumulation or current injection [11–13].
Herein, we focus on Fig. 1(a) and assume �e < ξ < L < �in

for an elastic mean free path �e, diffusive coherence length ξ ,
system length L, and inelastic scattering length �in.

While both spin-split and voltage-biased superconductors
have been investigated for a long time, a number of inter-
esting discoveries have been made in recent years [14–27].
For instance, Bobkova and Bobkov [14] pointed out that
there is a regime around the Chandrasekhar-Clogston limit
where both a superconducting and normal state are allowed.
This bistability means that if the field is varied adiabatically,
and the metastable states relax slowly, one might observe a
superconducting hysteresis effect. Snyman and Nazarov [15]

FIG. 1. Suggested experiments. A magnet induces a field
m = m0 in the superconductor, while an external field Hext shifts it
to m = m0 + μBHext. The spin-split superconductor is then subjected
to a voltage bias V , which stabilizes the superconducting state.
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had previously predicted the same kind of bistability in
voltage-biased superconductors. Moreover, their results for
the gap were similar to previous results for spin-split super-
conductors as discussed by Moor et al. [16], who showed that
the gap equations for spin-split and voltage-biased supercon-
ductors are equivalent. Given the close analogy between these
phenomena, a natural question is: What happens when both
are present?

II. ANALYTICAL MOTIVATION

Let us first consider a conventional superconductor in
equilibrium, without any fields or voltages. The order param-
eter then satisfies a self-consistency equation � = N0λF (�),
where the gap function F (�) is given by [28–30]

F (�) = 1

2

∫ +ωc

−ωc

dε Re[f (ε)] h(ε). (1)

Here, N0 is the density of states (DOS) at the Fermi level,
λ the BCS coupling constant, f (ε) = �/

√
ε2 − �2 the pair

amplitude, h(ε) = tanh(ε/2T ) the distribution function, ε the
quasiparticle energy, ωc the Debye cutoff, and T the temper-
ature. We measure energies relative to the zero-temperature
gap �0, temperatures relative to the critical temperature Tc,
and set the cutoff ωc = 30�0. Finally, in the weak-coupling
limit the above are related by N0λ ≈ 1/ log(2ωc/�0) and
�0 ≈ πe−γ Tc, where γ ≈ 0.57722 is the Euler-Mascheroni
constant [28].

In response to a Zeeman-splitting field m, the quasiparticle
energies become spin split according to ε → ε ± m, and
the pair amplitude in Eq. (1) therefore ends up taking
the form [f (ε + m) + f (ε − m)]/2. On the other hand,
when a voltage V is applied over the superconductor, the
electronic distribution functions of the contacts are shifted to
h(ε ± eV/2). By linear combination of the electron and
hole distributions, this can be decomposed into a charge
mode [h(ε ± eV/2) − h(ε ∓ eV/2)]/2 and energy mode
[h(ε ± eV/2) + h(ε ∓ eV/2)]/2 [13,29,31]. The charge
mode, which is related to charge accumulation, relaxes
quickly inside the superconductor [17]. The energy
mode, on the other hand, remains constant throughout the
superconductor and couples to the order parameter in Eq. (1)
instead of h(ε). For further discussion of the relevant modes,
see Sec. V. In reality, voltage biasing the superconductor also
induces a supercurrent, which manifests as a phase winding
of the pair amplitude f (ε) and a suppression of the gap. In
the tunneling limit, this phase winding is small enough to be
neglected in the self-consistency equation. However, when
we later in this paper study the system fully numerically, we
also take phase-winding and nonequilibrium spin modes into
account. Making the above modifications to Eq. (1), we find
that for a field m and voltage V the gap function becomes

F (�,m, eV/2)

= 1

8

∫ +ωc

−ωc

dε Re[f (ε − m) + f (ε + m)] h(ε + eV/2)

+1

8

∫ +ωc

−ωc

dε Re[f (ε − m) + f (ε + m)] h(ε − eV/2).

(2)

FIG. 2. Analytically calculated phase diagrams for a voltage-
biased spin-split superconductor at (a) T = 0 and (b) eV/2 = m.
The inset shows numerical results, which qualitatively match the
analytical ones. For comparison, we overlaid phase transition lines
for V = 0 in (b), where red marks the onset of bistability and black
where superconductivity vanishes entirely.

Following the same approach as Moor et al. [16], we substitute
ε′ ≡ ε ± eV/2 into the above to express the voltages as equiv-
alent magnetic fields. Formally, the integration limits have to
be shifted accordingly—but since ωc 	 �,m, eV/2, this is
inconsequential. After some reordering, the result becomes

F (�,m, eV/2) = F (�,m − eV/2, 0)/2

+ F (�,m + eV/2, 0)/2. (3)

At this point, we find three properties worth remarking.
Firstly, the right-hand side is invariant under eV/2 ↔ m. In
other words, the gap responds in precisely the same way
to an applied voltage and magnetic field. Moreover, plotted
as a function of these two control parameters, the super-
conducting gap should be symmetric around the diagonals
eV/2 = ±m. Secondly, in spin-split superconductors without
any voltage, it is known that a superconducting solution
� = �0 exists as long as the magnetic field m < �0. Applied
to Eq. (3) above, � = �0 should remain a valid solution for
|m| + |eV/2| < �0. Part of this regime is bistable and admits
a normal-metal solution as well. Finally, we note that the
effects of a voltage and magnetic field cancel in the first term
but act constructively in the second. This becomes especially
clear if we tune the voltage to eV/2 = m, where we find the
peculiar result:

F (�,m,m) = [F (�, 0, 0) + F (�, 2m, 0)]/2. (4)

The first term is just the gap function in the absence of fields
and voltages, which by itself always results in superconduc-
tivity at low temperatures. The second is the gap function for
a superconductor with a magnetic field 2m, which only con-
tributes to superconductivity until m = �0/2. We therefore
expect the combination to yield a bulk gap until m = �0/2,
but also produce a weaker superconducting solution for much
higher fields, since half the gap function is independent of m.

In Fig. 2, we show phase diagrams for the voltage-
biased spin-split superconductor, which were calculated using
Eq. (2). For more details on how the phases were clas-
sified, and in particular how bistability was checked, see
Appendix A. Figure 2(a) demonstrates all the qualitative
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features motivated above: Superconducting solutions exist for
eV/2 ≈ m and |eV/2| + |m| < �0, and are symmetric around
eV/2 = m. For eV/2 ≈ m, the system is not even bistable but
only admits superconducting solutions. In other words, no sta-
ble normal-state solution exists along eV/2 ≈ m at low tem-
peratures, even for fields much larger than the Chandrasekhar-
Clogston limit. For high magnetic fields m > �0, the effect
is particularly striking: There is no superconductivity in the
system until a voltage eV/2 ≈ m is applied. In other words,
a voltage bias can be used to allow coexistence of super-
conductivity and a Zeeman-splitting magnetic field that is
much larger than both the Chandrasekhar-Clogston limit and
the bulk gap.

Figure 2(b) shows the temperature dependence for
eV/2 = m. This is clearly a low-temperature effect: The
limiting magnetic field seems to diverge as T → 0, while
a comparison with the overlays indicate that the cancella-
tion becomes insignificant after ∼0.4Tc. However, the plot
also shows that superconductivity is stabilized in high fields
m > �0 at temperatures up to T ≈ 0.25Tc, which for niobium
corresponds to reasonable value ∼2.3 K. Going down to
∼1 K, one can even expect superconductivity for m > 2�0.

Note that the stabilization of superconductivity for
eV/2 = m is similar to an effect previously reported by
Bobkova and Bobkov [26,27]. They found that if one applies
a spin-dependent voltage eV↑/2 = −eV↓/2 = m, which can
be achieved using voltage-biased half-metallic contacts, su-
perconductivity is recovered. Our effect is, however, qualita-
tively different, since it arises for a spin-independent quasi-
particle distribution and purely electric voltage bias using
normal metal contacts. Related effects were demonstrated
in Refs. [32–35], which found that the critical current in
Josephson junctions behaved symmetrically with respect to
voltages and magnetic fields.

III. NUMERICAL APPROACH

We use the quasiclassical formalism [13,22,29,36,37],
where observables are described via an 8×8 propagator in
Keldysh ⊗ Nambu ⊗ spin space,

ǧ =
(

ĝR ĝA

0 ĝK

)
. (5)

The components are related by ĝK = ĝRĥ − ĥĝA and
ĝA = −τ̂3ĝ

R†τ̂3, where ĥ is the distribution matrix, and
τ̂3 = diag(+1,+1,−1,−1) is a Pauli matrix in Nambu space.
It is therefore sufficient to determine the retarded propaga-
tor ĝR and distribution matrix ĥ. It is commonly stated that
ĝR describes the equilibrium state, while ĥ describes the
nonequilibrium one. However, this is actually incorrect for
a superconductor, since ĝR implicitly depends on ĥ via the
self-consistently determined gap �. In practice, one therefore
has to alternate between solving a diffusion equation for ĝR , a
kinetic equation for ĥ, and a self-consistency equation for �,
until all three converge.

The propagator is governed by the Usadel equation [37],

iξ 2∇(ǧ∇ǧ) = [�̂ + ετ̂3 + mσ̂3, ǧ]/�0, (6)

where �̂ = antidiag(+�,−�,+�∗,−�∗) is the gap matrix,
σ̂3 = diag(+1,−1,+1,−1) a Pauli matrix in spin space.

The film is voltage biased via tunneling contacts, which we
model with Kupriyanov-Lukichev boundary conditions [38]
to normal reservoirs with chemical potentials μ = ±eV/2
relative to the superconductor. The interfaces are character-
ized by the ratio of tunneling to bulk conductance, which
we set to a moderate value GT /G0 = 0.3. For an 8ξ thick
Nb superconductor, this corresponds to an average channel
transparency of ∼1%. Finally, we set the superconductor
length L = 8ξ ; in general, we found a stronger recovery of
superconductivity for longer junctions, but at L = 8ξ the
gap had nearly saturated. We also performed a number of
tests using transparent interfaces and found similar results as
long as the superconductor was made sufficiently long; this
indicates that the results are not very sensitive to the specific
material parameters used. The retarded propagator ĝR was
Riccati parametrized for stability [39] and solved for in the
same way as usual [40]. The gap function can be written as an
integral of the singlet anomalous component of the Keldysh
propagator ĝK [28]. Physical observables, such as the current
and DOS, were calculated from the quasiclassical propagators
using standard formulas [9,13,22,29,36].

We modeled inelastic scattering using the Dynes approx-
imation ε → ε + 0.01i�0 [41,42]. While this is a very good
approximation for the spectral features, it does not produce the
expected decay of the energy mode due to inelastic scattering.
We note that in the most relevant temperature range for exper-
iments (below ∼1 K), electron-electron interactions are the
dominant contribution to the inelastic scattering length [43],
which appears to diverge at lower temperatures [44]. A more
rigorous modeling of the electron-electron interaction is be-
yond the scope of this paper and left for future work.

As for the kinetic equations, we have derived a form which
generalizes and simplifies previous results. Our approach is
similar to the treatment of nonequilibrium S/N systems in
Refs. [13,29] and especially the treatment of S/F systems
with spin-flip and spin-orbit scattering in Refs. [19–22].
However, we extend their results to a Usadel equa-
tion with a completely general second-order self-energy
∇(ǧ∇ǧ) ∼ [�̂(1) + �̂(2)ǧ�̂(2), ǧ] and derive accompanying
boundary conditions for strongly polarized magnetic inter-
faces based on Ref. [45]. We do not make any simplifying
assumptions, so the results can be used for systems with volt-
ages, spin voltages, temperature gradients, spin-temperature
gradients, and any combination of spin projections. The final
result is an explicit linear second-order differential equation
with a simple form,

Mnm∇2hm = −(∇Mnm + Qnm) · ∇hm

− (∇ · Qnm + Vnm + Wnm) hm, (7)

where we sum over repeated indices. The distribution is
parametrized as an 8-element vector h, which describes all
charge, spin, heat, and spin-heat degrees of freedom. The
coefficients M , Q, V , W are 8×8 matrices that depend on
the retarded propagator ĝR and self-energy factors �̂(1), �̂(2)

but not the distribution h. In addition to being simple and
general, this formulation is very efficient numerically since
all coefficients are independent of h; in fact, it takes less time
to solve than the Riccati-parametrized equations for ĝR . For
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FIG. 3. We set eV/2 = m and investigate how m affects (a) the
order parameter and (b) the DOS at T = 0.01Tc. The dashed line was
calculated analytically using Eq. (2) at T = 0, while the colored lines
were calculated numerically at T > 0.

more details about the kinetic equations, see Appendices B
and C.

IV. PHYSICAL OBSERVABLES

Figure 3 highlights some properties of the configura-
tion eV/2 = m that stabilizes superconductivity. Figure 3(a)
compares the analytical and numerical approaches: Even
though the former neglects both inelastic scattering and
spatial variations, we find an impeccable agreement at low
temperatures. Beyond the point m = �0/2, the gap sud-
denly starts to decrease with m. At finite temperatures,
we find that superconductivity remains until m ≈ 2�0 at
T = 0.1Tc and m ≈ �0 at T = 0.2Tc, in agreement with
Fig. 2(b).

Figure 3(b) shows the DOS in the center of the super-
conductor, which can be observed by scanning tunneling
microscopy (STM). These predictions are interesting: At
m ≈ �0/2, a gigantic zero-energy peak develops throughout
the superconductor without destroying the singlet conden-
sate. For m 	 �0, another unusual state develops, manifest-
ing as two half-filled BCS gaps far from the Fermi level
ε = 0. However, these are not unreasonable results: It
is exactly what one would expect from a BCS DOS
N (ε) = N0 Re[|ε|/√ε2 − �2], if one uses the gaps � in
Fig. 3(a) and introduces spin splitting ε → ε ± m. For
m ≈ �0/2 ≈ �(m = �0/2), this results in two BCS shapes
that are shifted so that their coherence peaks overlap at
ε = 0, causing a zero-energy peak to manifest. At higher
fields m 	 �0, we instead see two disjoint BCS shapes.
The spin-resolved DOS (not shown) confirms that there is
actually a full spectral gap in the spin-down DOS at ε = +m

and spin-up DOS at ε = −m, causing the spin-independent
DOS in Fig. 3(b) to exhibit two apparently half-filled spectral
gaps.

In Fig. 4, we present another experimental signature.
Figure 4(a) shows that for a fixed field m = �0, no supercon-
ductivity exists without a voltage bias. At eV/2 ≈ �0, super-
conductivity is suddenly stabilized; taking the superconductor
to be, e.g., niobium, the gap is then restored to � ≈ 0.36 meV
at T ≈ 1 K and � ≈ 0.22 meV at T ≈ 2 K. This manifests
as a spike in the otherwise ohmic current flowing through the
junction, causing an excess current of ∼5% at 1 K and ∼1%

FIG. 4. Numerically calculated gap � for (a) fixed field m = �0

and varying voltage, and (b) fixed voltage eV/2 = �0 and varying
field. The temperatures T are given in the legends above. Panels
(c) and (d) show the corresponding deviations δI from the normal-
state current I = GV due to superconductivity, which have been
normalized to the current I0 at eV/2 = �0.

at 2 K. Figure 4(b) demonstrates that the same qualitative
behavior is expected for a fixed voltage eV/2 = �0 and
varying magnetic field. This shows that there is similarly a
regime where an applied magnetic field is required to induce
superconductivity. Although Fig. 2 shows that the stable
superconducting regime eV/2 ≈ m should be padded by a
bistable regime, this bistable regime shrinks considerably at
finite inelastic scattering and temperature. So while we do
find bistability numerically for low temperatures T = 0.01Tc,
the bistable regime is almost nonexistent for the parameters in
Fig. 4.

V. DISTRIBUTION FUNCTION

In this section, we show how the numerically calculated
distribution function ĥ varies as a function of position x and
energy ε. Since a full decomposition and exposition of the
distribution function takes a lot of space to visualize, we
focus on the parameters m = eV/2 = �0 at a low tempera-
ture T = 0.01Tc. We note that the results for other magnetic
fields and voltages are qualitatively similar to the ones shown
here, and the results at higher temperatures are basically just
thermally smeared.

Following the notation of Appendix B, we parametrize the
distribution function in terms of the modes hn = Tr[ρ̂nĥ]/4.
For a system with a homogeneous magnetic field along the
z axis, only four components may be nonzero: the energy
mode h0, spin-energy mode h3, charge mode h4, and pure
spin mode h7. Numerically, these have only been calculated
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FIG. 5. Nonequilibrium modes hn of the distribution function ĥ

as a function of position and energy. Note that the color bars used for
the different panels differ by several orders of magnitude.

for positive energies ε > 0. However, the energy and spin-
energy modes are by definition odd functions of ε, while the
charge and spin modes are even functions of ε; these energy
symmetries can be used to obtain the distribution at ε < 0.

The results are shown in Fig. 5. We see that the energy
mode h0 agrees perfectly with the analytically expected result

h0 = 1
2 {tanh[(ε + eV/2)/2T ] + tanh[(ε − eV/2)/2T ]},

(8)

which at low temperatures gives h0 = 0 for 0 < ε < eV/2
and h0 = 1 for ε > eV/2, where eV/2 = �0 here. In general,
an energy-mode excitation relaxes over the inelastic scattering
length, which we take to be long compared to the system size.
However, the Dynes model used for the inelastic scattering
herein does not describe the energy-mode decay properly.

The charge mode is an order of magnitude smaller than
the energy mode at the interfaces. Since the voltages ±V/2 at
the interfaces are opposite, the charge mode is also forced to
be an antisymmetric function of position. In total, the charge
mode is therefore much smaller than the energy mode even
at the interfaces and vanishes completely deeper inside the
superconductor. This helps to explain the remarkably accurate
agreement between the analytical and numerical calculations
and legitimizes the approximation ĥ ≈ h0ρ̂0.

In addition to the energy and charge modes, which were
explained in previous sections, we see that there is also a
small spin-energy and pure spin mode in the system. However,
these are roughly two orders of magnitude smaller than the
energy mode, which explains why these are not essential for
the analytical understanding presented earlier.

The origin of the spin-energy mode is actually straightfor-
ward. As can be read out from Fig. 3(a), the self-consistent
order parameter � ≈ �0/4 for m = eV/2 = �0. Figure 3(b)
and related discussion shows that this causes two gaps in

FIG. 6. Occupation number n(ε) at different positions. The dis-
tribution has a two-step shape throughout the superconductor, but a
local charge accumulation distorts it slightly near the interfaces.

the DOS: a hard gap in the spin-down DOS centered at
ε = +m = +�0 and a hard gap in the spin-up DOS centered
at ε = −m = −�0. This spin-split superconducting state is
then coupled to a reservoir at a voltage eV/2 = +�0 at the
left end x = 0. There is therefore a region (3/4)�0 < ε < �0

where spin-up quasiparticles are injected while the spin-down
band has a hard gap. At the right end x = 8ξ , the material
similarly couples to a reservoir at a voltage −eV/2 = −�0.
This causes spin-down quasiparticles to be drained from the
region −�0 < ε < −(3/4)�0, while the spin-up band has
a hard gap. Thus, one has effectively injected spin-up elec-
trons for (3/4)�0 < ε < �0 and injected spin-down holes for
−�0 < ε < −(3/4)�0, which is an excitation of the spin-
energy mode. Note that this energy region where the charge
mode of the voltage-biased reservoirs couple to a spin-energy
mode in the superconductor is the same region where the
charge mode in the superconductor is slightly weakened.

Finally, in Fig. 6, we show how the spin-independent
occupation number n(ε) = [1 − h0(ε) − h4(ε)]/2 depends on
position. This has a two-step Fermi-Dirac-like shape through-
out the superconductor but has some variation through the
superconductor due to the varying charge mode.

VI. CONCLUSION

We have shown that superconductivity can coexist
with a Zeeman-splitting magnetic field far beyond the
Chandrasekhar-Clogston limit m = �0/

√
2 if the supercon-

ductor is exposed to a voltage bias eV/2 = m. We present
concrete setups for observing this effect in Fig. 1 and provide
two experimental signatures: the peculiar spin-split DOS in
Fig. 3, which can be measured using an STM, and the excess
current in Fig. 4, which produces a significant deviation from
the otherwise ohmic behavior. If we take the superconductor
to be niobium, the signals should be very strong at 1 K, and
should be observable at m = �0 for temperatures up to 2 K.

Possibilities for future work include investigating how ro-
bust this superconducting state is with respect to spin-flip scat-
tering, spin-orbit scattering, and orbital depairing. It would
also be interesting to check if a similar effect exists for un-
conventional high-temperature superconductors. Finally, our
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setup might be used as a circuit element for superconducting
spintronic junctions. For instance, the m ≈ �0/2 curve in
Fig. 3(b) shows a gigantic zero-energy peak inside the super-
conductor, which is reminiscent of an intrinsic odd-frequency
superconductor. An even more peculiar behavior might arise
for m 	 �0, when the spectral gaps of the spin bands do not
overlap.
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APPENDIX A: PHASE DIAGRAMS

The self-consistency relation for the superconducting gap
can be written � ∼ F (�,m, eV/2) in the presence of a
magnetic field m and voltage bias V , as discussed in the
main paper. The simplest way to solve such equations is
by fixpoint iteration: For each field m and voltage V , one
chooses an initial guess � = �1 and calculates successive
values using �n+1 ∼ F (�n,m, eV/2). This is repeated until
the difference |�n+1 − �n| between iterations drops below
some acceptance threshold, at which point the system is said
to have converged to a fixed point for the gap. These fixed
points that the system converges toward correspond to minima
in the free energy; this is not straightforward to verify within
the Usadel formalism but can be found by comparison to
the Ginzburg-Landau [14] and Bogoliubov-de Gennes [46]
formalisms. Alternatively, it can be argued more heuristically
that the Usadel equation should be possible to derive by
minimizing some free energy—and its self-consistent solution
should converge towards these minima.

In many cases, the magnitude of the gap converges to-
wards the same fixed point for any finite initial guess � �= 0.
This fixed point is then called a stable solution, since the
system converges back to the same point after perturbations.
Some care must be taken with the normal-state solution
�= 0: Mathematically, this is always a solution to the self-
consistency equation. However, below the critical temperature
of the superconductor, it actually corresponds to a local
maximum in the free energy. In this case, one finds that
even infinitesimal perturbations of the initial state results in
a divergence away from this point, which is why it is called
an unstable solution. These solutions are not very interesting
from a physical point of view and can be discarded.

However, in some systems, the situation is more com-
plicated. In a spin-split superconductor, there is a parame-
ter regime �0/2 < m < �0 where the gap converges to a
superconducting solution � = �0 for large initial guesses
but a normal-state solution � = 0 for small guesses. Both
solutions are locally stable in the sense that they are robust to
small perturbations and correspond to different local minima
of the free energy [14]. These two minima are separated by
an energy barrier, which manifests as an unstable solution

� = �0
√

2m/�0 − 1 where the free energy of the system is
maximized [47]. In a voltage-biased superconductor, the exact
same situation occurs for �0/2 < eV/2 < �0 [15]. Other
situations where multiple locally stable solutions can exist
include optically pumped systems [48], complex Josephson
junctions [49], and supercooled type-I superconductors in a
magnetic field [30].

Originally, this bistability was resolved by comparing the
energies of the two minima, since the system should eventu-
ally relax to the global minimum. In the magnetic case, this
yields the Chandrasekhar-Clogston limit m = �0/

√
2 as the

exact transition point in the interval �0/2 < m < �0, where
a first-order phase transition takes place [5,6]. However, if
the magnetic field is varied adiabatically beyond this point, the
superconductor can in principle remain in a local minimum for
some time before collapsing to the global minimum. Thus, one
might observe a kind of superconducting hysteresis effect in
this regime, and a more accurate characterization might be to
call it bistable or hysteretic [14,15]. In this paper, we take this
view and therefore classify the phase diagram of the junction
into superconducting, bistable, and normal regions, where the
bistable one might exhibit either a superconducting hysteresis
or first-order phase transition depending on the relaxation
times of the metastable states. Since it is not straightforward
to accurately calculate the free energy itself within the Usadel
formalism, we do not calculate the thermodynamic transi-
tion lines, but these can be assumed to lie in the bistable
regime.

After introducing the terminology, we now demonstrate
how the phase diagram itself was calculated. In Figs. 7(a)–
7(c), we visualize how the superconducting gap � changes
depending on the initial guess. Figure 7(a) in particular vi-
sualizes the spin-split superconductor discussed above. For
m < �0/2, the gap increases for � < �0, decreases for
� > �0, and always converges to � = �0. This is a stable
superconducting regime. Conversely, for m > �0, the gap
decreases to � = 0 regardless of our initial guess. This is a
stable normal-state solution. But for the intermediate regime
�0/2 < m < �0, there are three distinct solutions for the
gap [47]: a superconducting one � = �0, a normal one �= 0,
and an unstable one in between. This is an example of the
bistability discussed above. Figure 7(b) shows the correspond-
ing case for a voltage-biased superconductor, which behaves
identically [15,16]. Note that in Fig. 7(c), we also find a
brief bistability between two superconducting solutions at
m = eV/2 ≈ �0/2; such regions were classified as supercon-
ducting and not bistable in this paper.

Figures 7(d)–7(f) display how the superconducting states
were classified, using similar colors to Fig. 2. In practice, two
different initial guesses � = 10−4�0 and � = 1.01�0 are
sufficient to identify both solutions in bistable regimes; this
was done for 400×400 values of m and eV/2 to construct
Fig. 2. We note that our Fig. 7(d) is in agreement with
Ref. [47], and Fig. 7(e) is in agreement with Ref. [15], while
Fig. 7(f) is a result obtained in this paper.

APPENDIX B: KINETIC EQUATIONS

Here, we derive an explicit linear ordinary differential
equation for the distribution function ĥ. The result is a
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FIG. 7. Flow of the superconducting gap � between self-consistency iterations for (a) varying magnetic field m but zero voltage V = 0,
(b) varying voltage V but zero magnetic field m = 0, and (c) matched magnetic field and voltage m = eV/2. The gap spontaneously increases
in blue regions, decreases in red regions, and comes to a standstill in white regions. Panels (d) and (f) show the inferred solutions for the gap,
classified as superconducting (yellow), bistable (red), normal (black), and unstable (gray), i.e., using a color scheme similar to Fig. 2.

highly computationally efficient form of the kinetic equa-
tions, which is also relatively straightforward to implement
numerically.

The starting point is the Usadel equation [37,50], which
describes diffusive materials in the quasiclassical limit. In
terms of the matrix current Ǐ ≡ D(ǧ∇ǧ) and self-energy �̌,
the Usadel equation can be written ∇ · Ǐ = −i[�̌ , ǧ] [51,52].
However, for our purposes, we only require the Keldysh
component:

∇ · Î
K = −i[�̌ , ǧ]K. (B1)

As we will see later, it will prove prudent to introduce a set
of basis matrices ρ̂n that span block-diagonal spin-Nambu
space,

ρ̂0 ≡ τ̂0σ̂0, ρ̂1 ≡ τ̂0σ̂1, ρ̂2 ≡ τ̂0σ̂2, ρ̂3 ≡ τ̂0σ̂3; (B2)

ρ̂4 ≡ τ̂3σ̂0, ρ̂5 ≡ τ̂3σ̂1, ρ̂6 ≡ τ̂3σ̂2, ρ̂7 ≡ τ̂3σ̂3. (B3)

Here, τ̂0 ≡ diag(+σ0,+σ0) and τ̂3 ≡ diag(+σ0,−σ0) are
the diagonal basis matrices in Nambu space, while
σ̂i ≡ diag(σi, σ

∗
i ) forms a complete basis for the spin struc-

ture, where σi are the Pauli matrices. This lets us rewrite the
distribution matrix ĥ as

ĥ = hnρ̂n, (B4)

where we use the summation convention on the right-hand
side and define the coefficients hn as traces with the basis
matrices,

hn ≡ 1
4 Tr[ρ̂nĥ]. (B5)

The kinetic equations take a simple form when written in
terms of hn instead of ĥ, while Eq. (B4) makes it trivial to
reconstruct the matrix structure afterwards. When implement-
ing our results numerically, hn is treated as a real-valued 8-
vector, while the kinetic equations will involve 8×8-matrices
operating on it.
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1. Decomposition of the current

Combining Ǐ = D(ǧ∇ǧ) and ĝK = ĝRĥ − ĥĝA, we find
that the Keldysh component of the matrix current is

Î
K = D[(ĝR∇ĝR )ĥ − ĥ(ĝA∇ĝA)]

+ D[(∇ĥ) − ĝR (∇ĥ)ĝA]. (B6)

Substituting in the parametrization ĥ = hmρ̂m, we see that the
coefficients hm and ∇hm can be factored out of the brackets,

Î
K = D[(ĝR∇ĝR )ρ̂m − ρ̂m(ĝA∇ĝA)] hm

+ D[ρ̂m − ĝRρ̂mĝA] ∇hm. (B7)

If we then multiply the entire equation by ρ̂n/4 from the left
and take the trace, the resulting equation can be written

In = Qnmhm + Mnm∇hm, (B8)

where we have defined the quantities

In ≡ 1

4
Tr[ρ̂nÎ

K
], (B9)

Qnm ≡ D

4
Tr[ρ̂mρ̂n(ĝR∇ĝR ) − ρ̂nρ̂m(ĝA∇ĝA)]], (B10)

Mnm ≡ D

4
Tr[ρ̂nρ̂m − ρ̂nĝ

Rρ̂mĝA]. (B11)

This has a straightforward interpretation [13,20,22,29]. The

traces of ρ̂nÎ
K

are proportional to the spectral charge, spin,
heat, and spin-heat currents, meaning that In describes the
physically observable currents in the system. The right-hand
side of Eq. (B8) then relates this to the distribution function hm

and its derivative ∇hm. The term proportional to hm can be
nonzero even in equilibrium, which means that Qnm can be
identified as the supercurrent contribution. On the other hand,
the term proportional to ∇hm requires an inhomogeneous
distribution function, so Mnm is a resistive contribution.

If we now go back to the Usadel equation, and multiply that
by ρ̂n/4 from the left and take the trace, we find the equation:

∇ · In = − i

4
Tr

{
ρ̂n[�̌ , ǧ]K

}
. (B12)

This will later be combined with Eq. (B8) to derive the kinetic
equations. First, however, we need to express the right-hand
side of the equation in terms of the distribution function hm.

2. First-order self-energy terms

When describing phenomena such as superconductivity
and ferromagnetism, the self-energy matrix �̌ = �̂ is diag-
onal in Keldysh space and independent of the propagator ǧ.
This simplifies the commutator in Eq. (B12):

[�̌ , ǧ]K = [�̂ , ĝK ]. (B13)

Substituting in ĝK = ĝRĥ − ĥĝA and ĥ = hmρ̂m, we find:

[�̌ , ǧ]K = [�̂ , ĝRρ̂m − ρ̂mĝA]hm. (B14)

Going back to Eq. (B12), we therefore find that

∇ · In = −Vnmhm, (B15)

where we have defined the quantity

Vnm ≡ i

4
Tr{ρ̂n[�̂ , ĝRρ̂m − ρ̂mĝA]}. (B16)

Finally, we note that using the cyclic property of the trace, the
above can be rewritten in the alternative form

Vnm = i

4
Tr{[ρ̂n , �̂](ĝRρ̂m − ρ̂mĝA)}. (B17)

Since all our basis matrices ρ̂n commute with both τ̂0 and τ̂3,
we see that Vnm = 0 for a normal metal where �̂ = ετ̂3. This
implies that in the absence of other self-energy terms, all
currents In must be conserved in normal metals.

3. Second-order self-energy terms

When describing phenomena such as spin-dependent scat-
tering and orbital depairing [20], each self-energy contribution
takes the form �̌ = �̂ǧ�̂. Substituting this into the right-hand
side of Eq. (B12), an explicit calculation yields

[�̌ , ǧ]K = �̂ĝR�̂ĝK + �̂ĝK�̂ĝA

− ĝR�̂ĝK�̂ − ĝK�̂ĝA�̂. (B18)

We recognize the right-hand side as a commutator with �̂,

[�̌ , ǧ]K = [�̂ , ĝR�̂ĝK + ĝK�̂ĝA]. (B19)

We then multiply by ρ̂n from the left and take the trace,

Tr{ρ̂n[�̌ , ǧ]K} = Tr{ρ̂n[�̂ , ĝR�̂ĝK + ĝK�̂ĝA]}. (B20)

Using the cyclic property of the trace, this can be rewritten as

Tr{ρ̂n[�̌ , ǧ]K} = Tr{[ρ̂n , �̂](ĝR�̂ĝK + ĝK�̂ĝA)}. (B21)

Substituting in ĝK = ĝRĥ − ĥĝA, the right side becomes

Tr{[ρ̂n, �̂](ĝR�̂ĝRĥ − ĥĝA�̂ĝA + ĝR[ĥ, �̂]ĝA)}. (B22)

Substituting the parametrization ĥ = hmρ̂m into the above,
and substituting the result back into Eq. (B12), we find that

∇ · In = −Wnmhm, (B23)

where we have defined the quantity

Wnm ≡ i

4
Tr{[ρ̂n , �̂]

×(ĝR�̂ĝRρ̂m − ρ̂mĝA�̂ĝA + ĝR[ρ̂m , �̂]ĝA)}.
(B24)

4. Deriving the kinetic equation

In the previous subsections, we have shown that for
a system described by a general second-order self-energy
matrix �̌, which has contributions of the types �̌ = �̂(1)

and �̌ = �̂(2)ǧ�̂(2), the nonequilibrium distribution function
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satisfies the equations

∇ · In = −(Vnm + Wnm)hm, (B25)

In = Qnmhm + Mnm∇hm. (B26)

Combining these equations, we find a differential equation for
the distribution function components hm:

Mnm∇2hm = −(∇Mnm + Qnm) · ∇hm

− (∇ · Qnm + Vnm + Wnm) hm. (B27)

This is an explicit linear differential equation for the distribu-
tion hm. This can be made manifest by first multiplying by the
8×8 matrix M−1 from the left and then rewriting the equation
in terms of a 16-element state vector (h,∇h).

Note that all coefficient matrices depend only on the equi-
librium solution and can be precalculated before solving the
kinetic equation. The coefficients do, however, depend on
position, since the equilibrium propagators and self-energy
terms may do so. In practice, one might therefore wish to
precalculate the Jacobian of the differential equation at the
discrete positions where the equilibrium problem was solved
and then interpolate between these when solving the kinetic
equation. In our experience, linear interpolation may lead to
convergence issues, while, e.g., Catmull-Rom cubic splines
work very well [53].

APPENDIX C: BOUNDARY CONDITIONS

In order to solve Eq. (B27), we also need boundary
conditions. In some cases, a satisfactory approximation can
be obtained using transparent boundary conditions for the
propagator ǧ. The corresponding boundary conditions for the
distribution are then trivial to obtain: hn is equal on both sides
of the interface.

For more realistic interfaces, the boundary conditions are
often written in terms of the matrix current Ǐ that is flowing
outwards from the interface. This directionality means that
one typically has to flip the sign of the boundary condition at
one end of a material, where the current is directed opposite
from the coordinate axis. Furthermore, let us assume that this
matrix current is a linear function of the distribution ĥ; we
will later prove that this is the case for spin-active tunneling or
reflecting interfaces. Denoting the distribution on “this” side
of the interface as hm, and on the “other” side as hm, we get

In = Cnmhm − Cnmhm. (C1)

Extracting the component In flowing out of the interface from
Eq. (B8), and denoting the normal derivatives by ∇ → ∂ ,

Mnm ∂hm + (Qnm + Cnm)hm = Cnmhm. (C2)

If one uses a numerical solver that minimizes interface resid-
uals, this is a very suitable form of the equation; but if one
requires an explicit form, the derivative ∂hm is also easy to

isolate. Note that the coefficients only depend on the equilib-
rium properties of the system and can therefore be precalcu-
lated. In the following derivations, we will use the notations

Cnm ≡ Tnm + Rnm, (C3)

Cnm ≡ T nm, (C4)

where T and R refer to the boundary condition contributions
from tunneling and reflection terms, respectively.

1. Spin-dependent tunneling contributions

We will now derive boundary conditions for magnetic
interfaces with spin-dependent tunneling. To leading order
in the tunneling probability, and all orders in the polariza-
tion, the matrix current at such an interface can be writ-
ten [40,45,54,55]:

2LǏ = Dt[F (ǧ) , ǧ]. (C5)

Here, ǧ refers to the propagator on “this” side of the interface,
ǧ to the “other” side, and the matrix function F is defined as

F (ǧ) = ǧ + P

1 + √
1 − P 2

{ǧ , m̂} + 1 − √
1 − P 2

1 + √
1 − P 2

m̂ǧm̂.

(C6)

The remaining parameters are the ratio t ≡ GT /G0 be-
tween tunneling conductance and bulk conductance, material
length L, interface polarization P , and magnetization matrix
m̂ ≡ m · σ̂ , where m is a unit vector pointing along the
average interface magnetization. Note that for unpolarized
interfaces, we get F (ǧ) = ǧ, which simplifies the boundary
condition above and the results below. For vacuum interfaces,
we can also set ǧ = 0.

We start our derivation by noting that since m̂ is diagonal
in Keldysh space, the function F has the following property:

F (ǧ)R,K,A = F (ĝR,K,A). (C7)

Applied to the commutator in Eq. (C5), we then get

Î K = Dt

2L
[F (ĝR )ĝK + F (ĝK )ĝA − ĝRF (ĝK ) − ĝKF (ĝA)].

(C8)

Substituting in ĝK = ĝRĥ − ĥĝA, and grouping similar terms,

Î K = Dt

2L
[F (ĝR )(ĝRĥ − ĥĝA) − (ĝRĥ − ĥĝA)F (ĝA)]

+ Dt

2L
[F (ĝRĥ − ĥĝA)ĝA − ĝRF (ĝRĥ − ĥĝA)]. (C9)

We then substitute in ĥ = hmρ̂m and ĥ = hmρ̂m, multiply by
ρ̂n/4 from the left, and take the trace. This results in a linear
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boundary condition In = T nmhm − Tnmhm, where we identify

Tnm ≡ Dt

8L
Tr{ρ̂n[(ĝRρ̂m − ρ̂mĝA)F (ĝA)

−F (ĝR )(ĝRρ̂m − ρ̂mĝA)]}, (C10)

T nm ≡ Dt

8L
Tr{ρ̂n[F (ĝRρ̂m − ρ̂mĝA)ĝA

− ĝRF (ĝRρ̂m − ρ̂mĝA)]}. (C11)

Finally, using the cyclic trace rule, these results simplify to:

Tnm = Dt

8L
Tr{[F (ĝA)ρ̂n − ρ̂nF (ĝR )](ĝRρ̂m − ρ̂mĝA)},

(C12)

T nm = Dt

8L
Tr{(ĝAρ̂n − ρ̂nĝ

R )[F (ĝRρ̂m − ρ̂mĝA)]}. (C13)

2. Spin-dependent reflection contributions

We will now derive the boundary coefficients for a spin-
mixing interface. These boundary conditions can either be
used alone, in the case of completely opaque interfaces to fer-
romagnetic insulators, or together with the tunneling bound-
ary conditions from the previous subsection. The spin-mixing
contribution to the matrix current is [40,45,55–57]:

2LǏ = −iDr[m̂′ , ǧ], (C14)

where r ≡ Gϕ/G0 is the ratio between the spin-mixing and
bulk conductances, and m̂′ ≡ m′ · σ̂ is the interface mag-
netization matrix. In the case of inhomogeneous magnetic
interfaces, m′ may be different from m, due to reflected
and transmitted quasiparticles experiencing different average
magnetizations.

Extracting the Keldysh component of the boundary condi-
tion, and substituting in ĝK = ĝRĥ − ĥĝA on the right side,

Î K = − iDr

2L
[m̂′ , ĝRĥ − ĥĝA]. (C15)

Substituting in ĥ = hmρ̂m, multiplying by ρ̂n/4 from the left,
and taking the trace, we find the current components

In = − iDr

8L
Tr{ρ̂n[m̂′, ĝRρ̂m − ρ̂mĝA]}hm. (C16)

Rewriting the commutator with the cyclic trace rule, and
identifying the trace as a boundary coefficient, we conclude
that this follows the pattern In = −Rnmhm, where

Rnm ≡ − iDr

8L
Tr{[m̂′ , ρ̂n](ĝRρ̂m − ρ̂mĝA)}. (C17)

3. Nonequilibrium reservoirs

The boundary conditions above require knowledge of the
distributions h in any reservoirs that couple to the system.
By a reservoir, we mean a bulk material with a homo-
geneous quasiparticle distribution, which may be either in
or out of equilibrium. In equilibrium, the electron density
ne = 〈�†�〉 should be described by Fermi-Dirac statistics
f (ε) = 1/[1 + exp(ε/T )], and the holes nh = 〈��†〉 by the
remaining probability 1 − f (ε), where the quasiparticle en-
ergy ε is measured relative to the Fermi level. This can
be used to derive that the distribution is simply given by
ĥ = [1 − 2f (ε)]ρ̂0 in equilibrium, which reproduces the con-
ventional expression ĥ = tanh(ε/2T )ρ̂0 [29,58].

Upon applying a voltage V , the chemical potential of
the reservoir is shifted by eV . This increases the electron
density but decreases the hole density and thus shifts the
electron and hole blocks of the distribution above in opposite
directions [29,59]:

ĥ =
(

tanh[(ε + eV )/2T ]σ0 0
0 tanh[(ε − eV )/2T ]σ0

)
.

(C18)

Substituted into Eq. (B5), one finds an energy mode h0 and
charge mode h4, while the spin-energy modes h1, h2, h3 and
spin modes h5, h6, h7 remain zero.

In a more general spin-dependent reservoir, the distri-
bution matrix ĥ should contain components proportional to
σ1, σ2, σ3 as well. One way to describe such a spin depen-
dence is that spin-up and spin-down particles experience dif-
ferent voltages V↑ and V↓ and possibly different temperatures
T↑ and T↓ [22,60]. Physically, the most extreme realization of
this situation is given by half-metallic reservoirs, which only
have one metallic spin band that can couple to regular con-
ductors [26,40]. If we for simplicity take the spin-quantization
axis to be the z axis, introducing spin-dependent voltages and
temperatures yields

ĥ =

⎛
⎜⎜⎝

tanh[(ε + eV↑)/2T↑] 0 0 0
0 tanh[(ε + eV↓)/2T↓] 0 0
0 0 tanh[(ε − eV↑)/2T↑] 0
0 0 0 tanh[(ε − eV↓)/2T↓]

⎞
⎟⎟⎠.

This can also be parametrized in terms of an average
voltage V ≡ (V↑ + V↓)/2 and spin-voltage Vs ≡ (V↑ − V↓)/2;
in nonmagnetic materials, a gradient in the former gives
rise to a pure electric current and in the latter a
pure spin current. Similarly, one can define an aver-
age temperature T ≡ (T↑ + T↓)/2 and spin-temperature
Ts ≡ (T↑ − T↓)/2, whose gradients cause energy and spin-

energy currents. Finally, the physics of the system should
not depend on our arbitrary choice of coordinate axes, so
a corresponding expression for a general spin quantization
axis u = (u1, u2, u3) can be obtained using spin rotation
matrices.

Introducing spin voltages and spin temperatures as dis-
cussed above, performing a spin rotation to an arbitrary spin
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axis u, and again applying Eq. (B5), we find the general result:

h0 = [h++ + h+− + h−+ + h−−],

h1 = [h++ − h+− + h−+ − h−−] u1,

h2 = [h++ − h+− + h−+ − h−−] u2,

h3 = [h++ − h+− + h−+ − h−−] u3,

h4 = [h++ + h+− − h−+ − h−−],

h5 = [h++ − h+− − h−+ + h−−] u1,

h6 = [h++ − h+− − h−+ + h−−] u2,

h7 = [h++ − h+− − h−+ + h−−] u3. (C19)

For brevity, the above is written in terms of the distributions

hcs = tanh[(ε + cV + csVs )/(T + sTs )]/4, (C20)

which describe quasiparticles with a charge index c and spin
index s. For instance, h+− corresponds to c = +1 (elec-
trons) and s = −1 (spin-down), and so on. This describes a
quite general reservoir that can have a voltage, spin voltage,
temperature, and spin temperature, with an arbitrary spin-
quantization axis. The main possibility not accounted for is
that the spin splitting of the voltage and temperature could in
principle be in different directions. Also, it might be possible
to excite some even more exotic distributions via, e.g., optical
methods, which might be unnatural to describe in terms of
voltages and temperatures.

APPENDIX D: CONVERSION TO SUPERCURRENTS

For the numerical calculations presented in the main paper,
the interfaces between the superconductor and voltage-biased
reservoirs were assumed to be relatively opaque. However,
we also performed numerical tests for other parameter sets,
including voltage-biased N/S/N junctions with completely
transparent interfaces. These showed that superconductivity
remained stable in high magnetic fields m for a voltage
bias eV/2 = m, provided that the superconductor is suffi-
ciently long compared with the coherence length ξ . The fact
that a voltage drop can exist across a “superconductor” even in
the absence of interface resistance may seem a bit surprising.
The answer has previously been derived in, e.g., Refs. [13,17].
When a resistive current is injected into a superconductor via
ideal interfaces, there is actually a layer of thickness ∼ξ where
the resistive current is converted into a supercurrent. In other
words, there is still a “superconducting contact resistance” in
the transparent limit, and the associated voltage drop occurs
near the interfaces. For more details, see the numerical results
in Ref. [17].

In a superconductor with a spin splitting that exceeds
the order parameter, an even more peculiar situation arises.
Since the DOS is no longer gapped at the Fermi level, and
resistive currents are only converted into supercurrents in the
gapped regions of the energy spectrum, a long-ranged resistive
current can exist in the superconductor in this limit. On the
following pages, we derive an approximate analytical result
for the length scale over which resistive currents decay inside
strongly spin-split superconductors to explain this observa-
tion. The derivation itself makes a number of approximations,
some more reasonable than others, but the final analytical

equation is simple and agrees quite well with our numerical
observations.

We should stress that even though the superconductor can
harbor a long-ranged resistive current in this exotic state, the
name “superconductor” is still fitting. The most fundamental
way to justify it is that the material still exhibits a singlet order
parameter � and a spontaneously broken U (1) symmetry,
which are the hallmarks of a superconducting state. Another
perspective is that the material also supports dissipationless
currents when the order parameter has a phase winding. This
would perhaps be even clearer if we used the experimental
setup sketched in Fig. 1(b). There, no resistive current is in-
jected into the superconductor, and yet the same stabilization
effect at m = eV/2 occurs. If a supercurrent is then generated
using, e.g., a weak out-of-plane magnetic field, where the
flux couples directly to the phase, we would generate a pure
supercurrent in the system. The conclusion is that the abilities
of a material to host resistive or dissipationless currents over
long distances are not always mutually exclusive.

The starting point for our analytical derivation is Eq. (B27).
Let us assume that the system under consideration is roughly
homogeneous, so that ∇gR ≈ ∇gA ≈ 0, in which case
Q ≈ 0 and ∇M ≈ 0. Furthermore, let us assume that no
spin-flip scattering, spin-orbit scattering, or orbital depairing
effects are important in the system, so that the term W = 0 as
well. The kinetic equation then reduces to the much simpler
form

Mnm∇2hm = −Vnmhm. (D1)

In the most general case, M and V are 8×8 matrices while
h is an 8-vector. If one considers a system where only one
spin axis is relevant, such as a bulk superconductor with a
spin splitting along the z axis, this can be reduced to a system
of 4×4 matrices in the equation for a 4-vector h. This gives us
a system of coupled equations for the charge, energy, spin,
and spin-energy modes of the nonequilibrium distribution
function, which can in principle be solved explicitly.

We will now assume that the dominant relaxation process
of the charge mode inside a superconductor occurs via the di-
agonal terms. The charge mode is given by h4 in our notation,
so neglecting the coupling to other modes, we then get

∇2h4 ≈ −(V44/M44)h4. (D2)

Comparing this to the equation ∇2h4 = h4/λ
2 that would de-

fine an exponential decay, we can describe such a decay via an
energy-dependent charge relaxation length λ ≡ √−M44/V44.

The source term V44 can be calculated using Eq. (B17),

Vnm = i

4
Tr{[ρ̂n, �̂](ĝRρ̂m − ρ̂mĝA)}. (D3)

We are interested in the case n = m = 4, and since
the basis matrix ρ̂4 = τ̂3σ0, the commutator [ρ̂4, �̂]
vanishes for the self-energy terms corresponding to a
regular magnet �̂ = ετ̂3 + mσ̂3. The charge mode is
therefore controlled by the superconducting contributions
�̂ = �̂ = antidiag(+�,−�,+�∗,−�∗). If we choose a
real gauge, which is possible since we already assumed
that any supercurrents are negligible Q ≈ 0, this reduces to
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�̂ = �iτ̂1σ2. Substituted into the equation above, we find that

V44 = −�

4
Tr{[τ̂3, τ̂1σ2](ĝRτ̂3 − τ̂3ĝ

A)}. (D4)

Using [τ̂3, τ̂1] = 2iτ̂2 and ĝA = −τ̂3ĝ
R†τ̂3, this becomes

V44 = − i�

2
Tr{τ̂2σ2(ĝR τ̂3 + ĝR†τ̂3)}. (D5)

We then use the cyclic rule to move the τ̂3 matrices to the other
end of the trace, and use the Pauli identity τ̂3τ̂2 = −iτ̂1, and
finally apply Tr[A + A†] = 2 Re Tr[A] to simplify the result:

V44 = −� Re Tr{τ̂1σ2ĝ
R}. (D6)

This is essentially the same result as was used in Ref. [13] to
show that resistive currents decay over a length ∼ξ inside a
superconductor, except that we will attempt to use it for the
more general case of a spin-split superconductor.

In general, we can write the retarded propagator as

ĝR =
(+g +f

−f̃ −g̃

)
. (D7)

Multiplying this by τ̂1σ2 and taking the trace, we find that

Tr{τ̂1σ2ĝ
R} = Tr{σ2(f − f̃ )}. (D8)

Firstly, we can split the anomalous propagators into singlets
and triplets using the decomposition f = (fs + f t · σ )iσ2.

Secondly, when the superconducting gap � is purely real,
the singlet component satisfies f̃s = −fs . This leads us to the
conclusion that the only contribution to the trace of σ2(f − f̃ )
comes from the singlet part σ2(fs + fs )iσ2 = 2ifsσ0:

Tr{σ2(f − f̃ )} = 4ifs. (D9)

Thus, the final form of the source term V44 derived above is

V44 = 4� Im(fs ), (D10)

where as usual the singlet component fs ≡ (f↑↓ − f↓↑)/2.
We now turn to the matrix M , which can be interpreted as

an energy-dependent renormalized diffusion coefficient [29].
In previous sections, this quantity was defined as

Mnm = D

4
Tr{ρ̂nρ̂m − ρ̂nĝ

Rρ̂mĝA}. (D11)

We again set n = m = 4, and use ρ̂4 = τ̂3σ0, ĝ
A = −τ̂3ĝ

R†τ̂3,

M44 = D

4
Tr{τ̂3τ̂3 + τ̂3ĝ

RĝR†τ̂3}. (D12)

Applying the cyclic trace rule, and the identity τ̂ 2
3 = 1, we get

M44 = D

4
Tr{1 + ĝRĝR†}. (D13)

FIG. 8. DOS for a Zeeman-split superconductor with a magnetic field m. For simplicity, this was calculated using a non-self-consistent
analytical solution for a bulk superconductor with an exchange field, using an inelastic scattering parameter ε → ε + 0.01i�0.
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FIG. 9. Charge relaxation length for a Zeeman-split superconductor with a magnetic field m. The solid lines show the exact results from
Eq. (D20), which we see align very well with how the DOS looks in Fig. 8. The dotted lines show the approximation in Eq. (D21), which
manages to predict where the charge relaxation length is finite and infinite but does not replicate its precise shape.

One way to parametrize the retarded propagator ĝR is [9]

ĝR =
(

(gs + gt · σ ) (fs + f t · σ )iσ2

−iσ2(f̃s − f̃ t · σ ) −σ2(g̃s − g̃t · σ )σ2

)
. (D14)

Explicitly taking the complex transpose of this matrix, and using that σn are Hermitian while i is anti-Hermitian, we find

ĝR† =
(

(g∗
s + g∗

t · σ ) (f̃ ∗
s − f̃

∗
t · σ )iσ2

−iσ2(f ∗
s + f ∗

t · σ ) −σ2(g̃∗
s − g̃∗

t · σ )σ2

)
. (D15)

We now calculate the product ĝRĝR†, keeping only diagonal terms proportional to an even power of Pauli matrices, since terms
proportional to σ disappear when we later take the trace:

ĝRĝR† =
(|gs |2 + |gt |2 + |fs |2 + | f t |2 · · ·

· · · |f̃s |2 + | f̃ t |2 + |g̃s |2 + | g̃t |2
)

. (D16)

Due to the electron-hole symmetry of quasiclassical theory, it is reasonable to expect all magnitudes |gs |2, |gt |2, |fs |2,
| f t |2 to be invariant under tilde conjugation, even though the signs of the quantities themselves might change. Using this,
we find

Tr{1 + ĝRĝR†} = 4 + 4|gs |2 + 4|gt |2 + 4|fs |2 + 4| f t |2. (D17)

Going back to our result for M44, we find the final result:

M44 = D(1 + |gs |2 + |gt |2 + |fs |2 + | f t |2). (D18)

Putting together the pieces we have calculated so far, we find that the charge relaxation length λ = √−M44/V44 is:

λ =
√

D(1 + |gs |2 + |gt |2 + |fs |2 + | f t |2)

−4� Im fs

. (D19)
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Defining the coherence length ξ ′ ≡ √
D/�, which depends

on temperature via the self-consistent gap �, this becomes

λ = ξ ′

2

√
1 + |gs |2 + |gt |2 + |fs |2 + | f t |2

−Im fs

. (D20)

This is a somewhat general result, as it is valid regardless
what mixture of singlets and triplets is present in the system,
and we have not made any assumptions of weak proximity
or weak inverse proximity effect. The result does, however,
rest on two crucial assumptions. The first is that the charge
mode couples only weakly to the other nonequilibrium modes
of the distribution function, so that it was sufficient to consider
the diagonal parts of Eq. (D1). This should be a reasonable
approximation as long as either (i) the charge mode relaxes
over a shorter length scale than the other modes or (ii) the
coupling to the other modes is weak. The second assumption
is that the system is roughly homogeneous, so that we can
neglect variations in the propagator and the presence of any
supercurrents. In practice, this should be a fair approximation
if we consider a large superconductor with tunneling contacts.

Let us first consider the numerator of Eq. (D20). We see
that the numerator is always larger than 1. Furthermore, for
a normal metal |gs |2 = 1 while the other quantities are zero,
making the numerator simply equal to 2. On the other hand,
for a BCS superconductor, we get |gs |2 = |ε2/(ε2 − �2)|
while |fs |2 = |�2/(ε2 − �2)|. From this, we find that

|gs |2 + |fs |2 ≈ 1 in the limits |ε| � � and |ε| 	 � but di-
verges as ε → ±�. Thus, except near the coherence peaks of
a superconductor, the charge relaxation length should mainly
be controlled by the denominator in Eq. (D20), yielding the
approximation

λ ≈ ξ√−2 Im fs

. (D21)

If we again focus on a BCS superconductor, for e = 0 we find
fs = �/

√
ε2 − �2 for ε > 0. For energies outside the gap

ε > �, we see that Im fs = 0, yielding a charge relaxation
length λ → ∞. On the other hand, for energies inside the
gap ε � �, we find that Im fs = −1, yielding λ ≈ ξ/

√
2.

Thus, we found exactly the kind of behavior we were ex-
pecting: The charge mode is screened over a characteristic
length ∼ξ inside the gap but is not screened for energies that
reside outside the gap.

In Figs. 8 and 9, we show how the DOS N (ε) and ap-
proximate charge relaxation length λ(ε) vary with the spin
splitting m in a superconductor. The results confirm that
resistive currents decay over a length ∼ξ in gapped parts of
the spectrum, while a long-ranged resistive current can exist
in ungapped parts of the spectrum. This result agrees quite
well with our numerical results, where we observe that for
m = eV/2 > �, a resistive current contribution can persist
throughout the superconductor for the energy range between
the two spectral gaps.
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