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Optimizing the proximity effect along the BCS side of the BCS-BEC crossover
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The proximity effect, which arises at the interface between two fermionic superfluids with different critical
temperatures, is examined with a nonlocal (integral) equation whose kernel contains information about the size
of Cooper pairs that leak across the interface. This integral approach avoids reference to the boundary conditions
at the interface that would be required with a differential approach. The temperature dependence of the pair
penetration depth on the normal side of the interface is determined over a wide temperature range also varying
the interparticle coupling along the BCS side of the BCS-BEC crossover independently on both sides of the
interface. In this way, the size of Cooper pairs evolves from being much larger than (BCS limit) the interparticle
distance to being comparable with (unitarity limit, halfway between the BCS and BEC limits) the interparticle
distance. Conditions are then found for which the proximity effect is optimized in terms of the extension
of the pair penetration depth.
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I. INTRODUCTION

Recently, a novel approach for designing and tailoring en-
tirely new classes of materials through “proximity effects” has
been suggested, which could overcome limitations inherent to
more conventional (such as doping) methods [1]. Quite gener-
ally, proximity effects can rely on superconducting, magnetic,
or topological properties. Here, we consider theoretically the
proximity effect that arises across the interface between two
superconductors with different critical temperatures. In this
situation, the paired state in the superconductor at the left (L)
of the interface, keeping a temperature T below its critical
temperature T L

c , leaks into the superconductor at the right
(R) of the interface whose critical temperature T R

c is instead
smaller than T . The novelty is that the (left) superconductor
with higher-temperature T L

c can be made to reach the so-
called unitarity limit of the BCS-BEC crossover where the
size of the Cooper pairs becomes comparable with the inter-
particle spacing [2] in order to study the optimal conditions
for the proximity effect to occur.

The above is a typical problem in inhomogeneous super-
conductivity, which can, in principle, be treated in terms of the
Bogoliubov–de Gennes (BdG) equations with the inclusion of
boundary effects [3,4]. As summarized in Ref. [5], however,
most of the early knowledge about the proximity effect was
gained in terms of the linearized Gor’kov equation for the
gap parameter [4], which holds in the vicinity of the critical
temperature. More recently, the BdG equations were used [6]
to demonstrate the connection between the proximity effect
and the Andreev reflection [7].

A characteristic quantity in the context of the proximity
effect is the (temperature dependent) pair penetration depth
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(or thickness of the leakage region on the normal side of the
interface, which we will refer to as ξR according to our ref-
erence geometry). This quantity was estimated theoretically
in Ref. [8] in terms of the Eilenberger formalism [9] (or of
its simplified Usadel version for the dirty limit [10]), which
is a “quasiclassical” approximation that greatly reduces the
complexity of the Gor’kov equations by averaging out the fast
oscillations (on the order of the Fermi wavelength) arising
in the relative coordinate of Cooper pairs. By this approach
in Ref. [8] it was possible to explore a wide interval of
temperature which extends away from the immediate vicinity
of the critical temperature although still in the weak-coupling
(BCS) regime of the superconducting coupling when a well-
defined underlying Fermi surface is present.

Experiments could as well be directed at determining the
temperature dependence of the pair penetration depth on
the normal side also in systems where the superconducting
coupling may not be so weak along the lines of the original
experimental work of Ref. [11]. In that work, critical-current
measurements were performed in high-Tc superconducting-
normal-superconducting junctions, yielding an exponential
dependence of the critical current on the thickness of the
barrier which is a characteristic feature of the proximity effect.
In particular, from Fig. 4 of Ref. [11] one can identify a two-
slope dependence of the decay length in different temperature
regimes (in the vicinity of T R

c and of T L
c ), a result which is in

line with that obtained theoretically in Ref. [8] (albeit in the
weak-coupling regime only).

This two-slope dependence of the pair penetration depth
was qualitatively put in relation in Ref. [12] with the different
temperature dependences that, in the normal phase above Tc,
characterize the healing length (due to interpair correlations)
and the pair coherence length (due to intrapair correlations).
In Ref. [12], however, the change in slope between these two
lengths could be clearly identified only over a temperature
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range on the order of the Fermi temperature TF , whereas in the
proximity effect the pair penetration depth can be determined
only over a much more limited temperature range since, in
practice, T L

c � TF . In addition, in Ref. [12] the two lengths
were separately determined by two independent calculations,
which could thus not identify them as the separate limiting
values (close to and far away from the critical temperature
Tc) of the same physical length. In Ref. [12], the study of
these two lengths was systematically extended to the whole
BCS-BEC crossover throughout which the system evolves
with continuity from the presence of large overlapping Cooper
pairs (BCS regime) to the presence of dilute composite bosons
(BEC regime).

With these premises, it appears highly desirable to study
theoretically the proximity effect when either one of the
fermionic systems at one side of the interface (or when even
both of them) spans the whole BCS side of the BCS-BEC
crossover up to the highest attainable temperature in the
superfluid phase. To this end, here we approach the problem in
terms of a nonlocal (integral) equation for the gap parameter,
which contains a kernel that depends on the gap parameter
itself in a highly nonlinear way and thus extends the linearized
Gor’kov equation used originally in Ref. [3] not only away
from the vicinity of the critical temperature, but also along
the BCS-BEC crossover. This integral equation was derived
in Ref. [13] by a double coarse-graining procedure applied
to the BdG equations, which deals with the magnitude and
phase of the gap parameter on a different footing (for this
reason, the equation was referred to as the NLPDA equa-
tion with the acronym standing for nonlocal phase density
approximation). The properties and range of validity of the
NLPDA equation were later discussed in Ref. [14] where an
efficient practical method for finding its solution numerically
was also provided. A key property, which renders the NLPDA
equation ideally suited to deal with the proximity effect, is
that the spatial extension of its kernel corresponds to the size
of the Cooper pairs for any coupling throughout the BCS-BEC
crossover.

By making use of this approach, we will determine the
pair penetration depth ξR on the normal side of the interface
over a wide temperature range and under quite different
physical conditions on the two sides of the interface thereby
enabling us to identify the limiting behaviors (close to T R

c

and to T L
c ) of this length in terms of a single calculation.

In addition, by this approach we will have the flexibility of
modeling the interparticle coupling and the trapping potential
in a physically smooth way across the interface that separates
the left and right superconductors, and we will avoid at the
same time any reference to the boundary conditions at the
interface [3,4]. This property could, in turn, be used to identify
“effective” boundary conditions for the gap parameter and its
derivative across the interface, which may then be adopted in
local (differential) versions of the present approach.

The main results of our calculations are as follows:
(i) For given coupling on the left of the interface, the pair

penetration depth ξR on the right is found to increase (thereby
amplifying the relevance of the proximity effect) when the
bulk values �L and �R , reached by the gap profile deep on the
left and right of the interface, respectively, differ appreciably
from each other. This finding could also be used in reverse in

cases one would instead like to attenuate the occurrence of the
proximity effect.

(ii) When the coupling on the left of the interface is
increased toward the unitary limit such that the Cooper pair
size decreases and becomes comparable with the interparticle
distance, the pair penetration depth ξR on the right is found to
decrease too. At the same time, however, there is an increase
in the range of temperatures over which the proximity effect
can occur. Optimizing the proximity effect may thus require
one to compromise between these two contrasting behaviors.

(iii) The temperature dependence of ξR turns out to repro-
duce the behaviors in the vicinity of both T R

c and T L
c that

were anticipated in Ref. [8] (although in that reference for the
extreme weak-coupling limit only). Our calculations extend
these findings over a much wider coupling range along the
BCS side of the BCS-BEC crossover.

(iv) The pair penetration depth ξR turns out to be essentially
independent from the shape of the barrier, a feature which can
be readily varied within the present approach.

(v) A “negative” proximity effect also occurs for the left
superconductor with the higher-temperature T L

c , resulting in
a marked depression of the gap profile which can extend far
away from the interface.

In contrast to the present approach, more conventional
treatments of the proximity effect in terms of the BdG
equations [15] have largely focused on the region close to
the interface (thereby not extracting the behavior of ξR), have
described the interfacial scattering by a simple δ-function
potential, have not pushed the calculation to the vicinity of
the bulk transition temperature in the superconducting region,
and, most importantly, have been limited only to the BCS
(weak-coupling) limit of the BCS-BEC crossover. However,
consideration of the BCS-BEC crossover appears important
not only for ultracold Fermi gases and nuclear systems [2],
but also for recently acquired growing attention in condensed
matter where experimental signatures of preformed Cooper
pairing have been reported for Fe-based superconductors
[16]. In addition, the conditions for the BCS-BEC crossover
to occur could soon be purposely arranged in the emerging
class of superconducting metamaterials [17] whereby the
optimization of the proximity effect should prove especially
relevant to the purpose.

The paper is organized as follows. Section II sets up the
treatment of the proximity effect in terms of the NLPDA
equation. Section III presents our numerical results for the
profile of the gap parameter under a variety of circumstances
from which we are able to extract the temperature dependence
of both the pair penetration depth ξR and the coherence
(healing) length ξL on the right and left of the interfaces,
respectively. This information is then used for optimizing the
proximity effect along the BCS-BEC crossover, and Sec. IV
gives our conclusions. Finally, in the Appendix, a summary
is given of the numerical procedure that solves the NLPDA
equation in one dimension (1D) for the problem at hand.

II. PROXIMITY EFFECT IN TERMS OF THE (INTEGRAL)
NLPDA GAP EQUATION

In this section, we briefly recall the structure of the NLPDA
equation, that was obtained in Ref. [13] and further analyzed
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in Ref. [14], and reduce it to a one-dimensional form that
corresponds to the proximity effect of interest when the gap
parameter varies across the interface between two supercon-
ductors with different critical temperatures. To this end, we
will need to specify the shape of the (smooth) variation of
the coupling constant across the interface as well as of the
external potential which is required to keep the (left plus right)
compound system at thermodynamic equilibrium.

A. The NLPDA equation

In Ref. [13], the following (integral) equation for the local
gap parameter �(r):

− m

4πaF

�(r) =
∫

dR K (r − R|r)�(R) (1)

=
∫

dQ
π3

e2iQ·rK (Q|r)�(Q) (2)

(referred to as the NLPDA equation) was obtained by a suit-
able coarse-graining procedure applied to the BdG equations.
(We set h̄ = 1 throughout.) The kernel of this equation reads

K (Q|r) =
∫

dk
(2π )3

{
1 − 2fF [E+(k; Q|r)]

2E(k; Q|r)
− m

k2

}
, (3)

where m is the fermion mass, fF (E) = (eE/(kBT ) + 1)−1 is
the Fermi function at temperature T (kB being the Boltzmann
constant),

E±(k; Q|r) =
√(

k2

2m
+ Q2

2m
− μ(r)

)2

+ |�(r)|2 ± k
m

· Q,

(4)
and 2E(k; Q|r) = E+(k; Q|r) + E−(k; Q|r). In the above
expression, μ(r) = μ − V (r) is the local chemical potential
in the presence of an external potential V (r) and |�(r)| is
the magnitude of the local gap parameter. (As they stand, the
above expressions do not include the effects of a magnetic
field.) In addition, the kernel,

K (R|r) =
∫

dQ
π3

e2iQ·RK (Q|r), (5)

in (real) R-space results from Fourier transforming the kernel
(3) in (wave-vector) Q space.

The left-hand side of the NLPDA equation [in either form
(1) or (2)] contains the scattering length aF for the two-
fermion problem. In terms of this quantity, one can form
the dimensionless coupling parameter (kF aF )−1 that spans
the BCS-BEC crossover [2], where kF = (3π2n0)1/3 is the
Fermi wave vector with (uniform) particle density n0. This
parameter ranges from (kF aF )−1 � −1 in the weak-coupling
(BCS) regime when aF < 0 to (kF aF )−1 � +1 in the strong-
coupling (BEC) regime when aF > 0 across the unitary limit
when |aF | diverges [in practice, the “crossover region” −1 �
(kF aF )−1 � +1 is of most interest].

B. The density equation

The NLPDA integral equation (1) [or (2)] is highly non-
linear in the gap parameter �. It thus generalizes the linear
integral equation adopted in Refs. [3–5] to deal with the
proximity effect, which (by construction) was valid only in
the vicinity of the superconducting transition T L

c when � is

small (with respect to kBT L
c ). The NLPDA equation can then

be applied for all temperatures in the superfluid phase and
can span the BCS-BEC crossover for arbitrary values of the
coupling parameter (kF aF )−1 once it is supplemented by the
density equation to determine the thermodynamic chemical
potential μ,

n(r) =
∫

dk
(2π )3

{
1 − ξ (k|r)

E(k|r)
{1 − 2f [E(k|r)]}

}
, (6)

where ξ (k|r) = k2

2m
− μ(r) and E(k|r) =√

ξ (k|r)2 + |�(r)|2 [13]. The expression (6) holds with
a real gap parameter in the absence of currents.

C. Variation of the coupling constant across the interface

In Refs. [3–5] two different values of the interparticle inter-
action were considered for the semi-infinite systems on the left
(L) and right (R) of the interface separating them at x = 0. By
a similar token, here we attribute two different values of the
coupling parameter (kF aF )−1 to the half-systems on the left
and right of the interface and assume translational invariance
on the y-z plane parallel to the interface in such a way that
both the external potential V (x) and the gap parameter �(x)
depend only on x. To avoid too sharp a behavior about x = 0,
it is convenient to smooth out the x profile of the coupling
parameter over a length σ (on the order of k−1

F ) by introducing
the model function,

g(x) ≡ − m

4πaF (x)
= 1

2
[gR + gL + (gR − gL)Gσ (x)], (7)

where gL = −m/(4πaL
F ) and gR = −m/(4πaR

F ) are the
asymptotic values on the left and right sides, respectively,
of the interface. For most calculations, we will consider the
function Gσ (x) of the form

Gσ (x) = tanh
( x

σ

)
; (8)

for the sake of comparison, however, we have sometimes
utilized also the following function with compact support:

Gσ (x) = tanh

⎛
⎝ x

σ√
1 − (

x
σ

)2

⎞
⎠ [ |x|

σ
� 1

]

= sgn
( x

σ

) [ |x|
σ

� 1

]
. (9)

A typical profile of g(x) with the choice (8) is shown in
Fig. 1(a).

D. Choice of the external potential

The potential V (x), that enters the NLPDA equation (1)
[or (2)] and the density equation (6) through the local chemi-
cal potential μ(x), can be modeled in several ways, depending
on the experimental conditions one is after. Here, we consider
the following choice for V (x).

We assume that the system on the left (right) of the
interface extends to −∞ (+∞) such that away from the
interface in the bulk region it approaches a homogeneous
superconductor with coupling (kF aL

F )−1 [(kF aR
F )−1] and bulk

(asymptotic) value μL (μR ) of the chemical potential. For
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FIG. 1. Characteristic spatial profiles of (a) the coupling con-
stant g(x ) of Eq. (7) (in units of mkF ), (b) the external potential
V (x ) of Eq. (11) [in units of the Fermi energy EF = k2

F /(2m)],
and (c) the gap parameter �(x ) (in units of �L) obtained by
solving the NLPDA equation in the form (14). For this example,
we have taken (kF aL

F )−1 = −1.0 and (kF aR
F )−1 = −2.34 such that

T L
c /TF = 0.12 and T R

c /TF = 0.015, T /TF = 0.09 such that T R
c <

T < T L
c , μL/EF = 0.971, μR/EF = 0.993, and �L/EF = 0.154.

(Here TF = EF /kB is the Fermi temperature.) We have also taken
σ = 5k−1

F for the parameter that enters Eqs. (7)–(11). The dashed
lines in panel (c) represent the asymptotic expressions (16) and (17)
from which ξR and ξL are extracted at given T .

simplicity, we further assume that the density has the same
bulk (asymptotic) value of n0 = k3

F /(3π2) on both sides of
the interface. At a given temperature, this corresponds to the
value of n(−∞) obtained from Eq. (6) with chemical potential
μL and �(−∞) = �L and to the value of n(+∞) obtained
from Eq. (6) with chemical potential μR and �(+∞) = �R .
However, since at equilibrium the thermodynamic chemical
potential μ must maintain the same value across the whole
system, the situation can be kept thermodynamically stable
only in the presence of an external potential V (x), which
makes the local chemical potential μ(x) = μ − V (x) entering
Eq. (6) interpolate smoothly between the asymptotic values of
μL and μR . In analogy with Eq. (7), we write

V (x) = μ − 1
2 [(μR + μL) + (μR − μL)Gσ (x)], (10)

whereby V (−∞) = μ − μL and V (+∞) = μ − μR . At a
given temperature, the arbitrariness on the value of μ can
be eliminated by fixing μ = μL, which corresponds to a
homogeneous system with density n0 and coupling (kF aL

F )−1.
In this way, V (−∞) = 0 and the expression (10) reduces to
the form

V (x) = 1
2 (μL − μR )[1 + Gσ (x)], (11)

which depends on temperature through the temperature de-
pendence of both μL and μR . In particular, when T R

c < T L
c

one expects μL < μR such that V (x) � 0 from Eq. (11). A
typical profile of V (x) is shown in Fig. 1(b). The potential
V (x) thus acts as a barrier that effectively prevents the parti-
cles from flowing from the right toward the left of the interface
while trying to take advantage of the smaller local value of
the chemical potential. Accordingly, close to the interface one
expects the local density n(x) to somewhat deviate from its
bulk value n0, possibly leading to a depression on one side
and to an enhancement on the other side of the interface. In
a condensed-matter system, this situation would correspond
to the presence of an electrostatic dipole layer across the
boundary surface [18].

E. Solution of the NLPDA equation across the interface

Under the above circumstances, the gap parameter in Q
space that enters the right-hand side of Eq. (2) reduces to the
form

�(Q) = π2δ(Qy )δ(Qz)�(Qx ). (12)

Correspondingly, the NLPDA equation (2) simplifies as
follows:

g(x)�(x) =
∫ +∞

−∞

dQ

π
e2iQxK (|Q||x)�(Q), (13)

with the notation of Eq. (7) and where we have set Qx → Q

in Eq. (13) to shorten the notation. Note that in the expression
(13) we have emphasized the fact that the kernel K depends
on the magnitude |Q| of Q.

The integral equation (13) can be solved using general
method developed in Appendix B of Ref. [14] where the
Fourier transform of a function with a given spatial symmetry
in D dimensions was calculated in terms of the eigenfunc-
tions of the harmonic oscillator. In the Appendix below this
method is further adapted to the present 1D case whereby the
gap parameter �(x) is neither symmetric nor antisymmetric
across the interface at x = 0, and the coupling parameter g(x)
depends on x. The end result is the following discretized
expression of the 1D-NLPDA integral equation (13) [19]:

g

(
xj√
2λ

)
�

(
xj√
2λ

)

= 1

yj

N−1∑
n=0

N∑
j ′=1

inST
jnSnj ′K

(
λ|xj ′ |√

2

∣∣∣∣ xj√
2λ

)

×
N−1∑
n′=0

N∑
j ′′=1

(−i)n
′
ST

j ′n′Sn′j ′′yj ′′�

(
xj ′′√

2λ

)
. (14)

In this expression: (i) xj√
2λ

refers to values of x in real

space and λxj√
2

to values of Q in wave-vector space, (ii)
the points {xj ; j = 1, . . . , N} correspond to the zeros of the
(normalized) Hermite polynomial HN (x) [cf. Eq. (A16)], (iii)
the matrix elements of the orthogonal matrix S are given by
Eq. (A10), (iv) the positive definite weights wj are obtained
by the normalization condition (A17) for the eigenvectors of
the eigenvalue problem (A16), and (v) the quantity yj is given
by Eq. (A10). The (positive) parameter λ is meant to add
extra flexibility to the numerical calculations. The number of
points N in the two (x and Q) meshes and the parameter λ
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can be varied to achieve optimal convergence of the Fourier
transforms from �(x) to �(Q) and vice versa. A typical
profile for �(x) obtained in this way is shown in Fig. 1(c).

The discretized version (14) of the 1D-NLPDA equation is
solved until self-consistency is achieved by following closely
the prescriptions discussed in Appendix B of Ref. [14]. In
practice, the values of the gap �(x) are explicitly calculated
over a coarse mesh of M points (we have taken M = 350
in most calculations). A numerical interpolation is then used
to generate the N (> M ) values of �(x) needed in Eq. (14)
(typically, N = 30M proves sufficient). This interpolation is
required to avoid unwanted oscillations of small wavelengths
which would be generated otherwise. Finally, the value of
the parameter λ entering Eq. (14) is chosen in such a way
that the N zeros of the Hermite polynomials extend over a
spatial range which is three times wider than that covered by
the M points utilized for the profile of �(x) (typically, we
have taken λkF = 10). For the needs of the present paper, the
self-consistent solution of Eq. (14) has been achieved in a few
hundred cases.

III. NUMERICAL RESULTS

The numerical solution of the integral equation (14) has
been performed in several cases by varying the coupling
constants (kF aL

F )−1 at the left and (kF aR
F )−1 at the right of

the interface as well as the width σ of the separating barrier.
In particular, we have considered the values of (kF aL

F )−1 =
(−1.0, 0.0) such that T L

c /TF = (0.12, 0.50), and we have
correspondingly adapted the value of (kF aR

F )−1 such that
T L

c /T R
c = (8, 4, 2) [20]. In addition, we have taken kF σ =

(2.5, 5.0, 10.0) for the choice (8) and kF σ = 5.0 for the
choice (9) of Gσ (x). This wide choice of input parameters will
enable us to draw some definite conclusions about the way the
proximity effect can be optimized (or, in reverse, depressed).

A. Profile of the gap parameter across the interface under
various circumstances

The basic results of the present calculation are represented
by the gap profiles �(x) across the interface. Several ex-
amples of these profiles are shown in Figs. 2 and 3 for
(kF aL

F )−1 = −1.0 and (kF aL
F )−1 = 0.0, respectively, with the

choice of kF σ = 5.0 for the barrier (8). In each figure, the
three panels refer to the cases (a) T L

c /T R
c =8, (b) T L

c /T R
c =4,

and (c) T L
c /T R

c = 2. In each panel, several temperatures are
further considered according to the expression,

T

T L
c

= ν + (1 − ν)
T R

c

T L
c

(0 � ν � 1), (15)

such that T = T R
c for ν = 0 and T = T L

c for ν = 1. In
particular, in Figs. 2 and 3 we have chosen the values of
ν = (0.05, 0.25, 0.50, 0.75, 0.95).

It is also interesting to compare the gap profiles �(x) for
different shapes of the barrier. This is performed in Fig. 4
where several values of the barrier width σ are used for
the choice (8) and a single value of σ is considered for the
choice (9). In particular, panel (b) of Fig. 4 shows that, on
the right side of the interface, the gap profile is essentially
independent from the shape of the barrier. This result gives

0.2

0.4

0.6

0.8

1

(a)

(kFaF
L)-1 = -1

0.2

0.4

0.6

0.8

1

(b)

Δ
/Δ

L
0

0.2

0.4

0.6

0.8

1

-100 -50 0 50 100

(c)

xkF

FIG. 2. Gap profiles �(x )/�L for (kF aL
F )−1 = −1.0 when (a)

T L
c /T R

c = 8, (b) T L
c /T R

c = 4, and (c) T L
c /T R

c = 2. The various
curves refer to different temperatures chosen according to the ex-
pression (15), where ν = 0.05 (full line), ν = 0.25 (dashed-dotted
line), ν = 0.50 (dotted line), ν = 0.75 (dashed line), and ν = 0.95
(dashed-double-dotted line).

us confidence that the values of the pair penetration depth ξR ,
that we will extract from �(x) for x > 0 to characterize the
proximity effect, will not appreciably depend on a specific
choice of the barrier. In addition, this finding (about a well-
defined gap profile which is present on the normal side of
the interface) could be used to identify definite values for the
effective boundary conditions across the interface on the gap
parameter and its derivative, which may be then adopted in
local (differential) approaches to the problem. For the sake of
definiteness, in what follows we limit ourselves to consider a
barrier specified by the form (8) with kF σ = 5.0.

B. Asymptotic behavior of the gap parameter
on both sides of the interface

Out of the numerical results for �(x) like those reported
in Figs. 2 and 3, one can extract both the pair penetration
depth ξR and the coherence (healing) length ξL according to
the following procedure. At a given temperature T , we fit the
behavior of �(x; T ) for kF x � 1 through the expression,

�(x; T ) ∼ γR (T )e−x/ξR (T )

xD−2+η
+ �R (T ), (16)
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FIG. 3. Gap profiles �(x )/�L for (kF aL
F )−1 = 0.0 when (a)

T L
c /T R

c = 8, (b) T L
c /T R

c = 4, and (c) T L
c /T R

c = 2. Conventions for
the various curves are the same as in Fig. 2.

whereas for kF x � −1 we make use of the specular expres-
sion,

�(x; T ) ∼ �L(T ) − γL(T )ex/ξL(T )

|x|D−2+η
. (17)

In all fits that we have performed, it turns out that the
optimal value of D + η is 2.5. We have then set η = 0 and
interpreted D = 2.5 as an effective dimensionality, which is
intermediate between D = 2 of the planar boundary surface
separating the left (L) and right (R) superconductors and D =
3 of the space in which this surface is embedded. Note that the
expressions (16) and (17) correspond to the generic behavior
of the correlation function for the order parameter in a homo-
geneous medium [21] and are here recovered by the spatial
behavior of the order parameter itself for the inhomogeneous
problem we are considering [22]. In the expressions (16) and
(17), note also the presence of the temperature-dependent
(and positive definite) prefactors γR (T ) and γL(T ), which
are needed for obtaining accurate fits of the asymptotic gap
profiles.

C. Optimizing the proximity effect in terms of ξ R

Figure 5 shows the results for ξR (T ) obtained from a
fit of the form (16) for the coupling values of (kF aL

F )−1 =
−1.0 (upper panel) and (kF aL

F )−1 = 0.0 (lower panel). In
each panel, three different cases are reported with T R

c /T L
c =

1/8, T R
c /T L

c = 1/4, and T R
c /T L

c = 1/2. For both couplings
of the left superconductor, it is seen that ξR attains larger
values as soon as the coupling of the right superconductor
differs appreciably from that of the left superconductor. This
implies that the relevance of the proximity effect is amplified
when the bulk values of �L and �R differ appreciably from

0
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0.8

1

-100 -50  0  50  100
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xkF

(kFaF
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(b)

Δ/
Δ L

xkF

FIG. 4. The gap profile �(x )/�L for (kF aL
F )−1 =

−1.0, T L
c /T R

c = 8, and T = 1.04T R
c is shown for several

values of the barrier width σ of Eq. (8): kF σ = 2.5 (full line),
kF σ = 5.0 (dotted line), and kF σ = 10.0 (dashed-dotted line).
Also reported are the results for the choice (9) with kF σ = 5.0
(dashed-double-dotted line) and of the fitting (18) (dashed line)—see
below. Panel (a) shows the whole profile of �(x ) both on the left
and on the right of the interface, whereas panel (b) focuses on the
right side of the interface from which the pair penetration depth ξR

of interest is extracted.

each other, a criterion that could be exploited in practice to
optimize the spatial extension of the proximity effect. For
the sake of example, typical values of �L and �R at zero
temperature are reported in Table I for the cases of interest.

When comparing the sets of values for ξR that corre-
spond to (kF aL

F )−1 = −1.0 and (kF aL
F )−1 = 0.0 as reported

in panels (a) and (b) of Fig. 5, respectively, one notes that
those for (kF aL

F )−1 = −1.0 result always larger than those
for (kF aL

F )−1 = 0.0. This is in line with the fact that, for a
homogeneous system, the Cooper pair size ξpair is smaller for
(kF aL

F )−1 = 0.0 (where kF ξpair = 1.1) than for (kF aL
F )−1 =

−1.0 (where kF ξpair = 3.4) [23] such that the leakage region
on the normal side of the interface associated with the prox-
imity effect should correspondingly be smaller. On the other
hand, one should also recall that, in absolute value, the range
of temperatures over which the proximity effect can occur
increases from (kF aL

F )−1 = 0.0 to (kF aL
F )−1 = −1.0 to the

extent that the corresponding critical temperature T L
c is higher

when (kF aL
F )−1 = 0.0. Optimizing the proximity effect may

thus require one to compromise between these two contrasting
behaviors, depending on the physical circumstances of inter-
est.

D. Limiting behaviors for the temperature dependence of ξ R

The numerical results for ξR (T ) reported in Fig. 5 can be
further analyzed for temperatures close enough to T R

c and
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FIG. 5. The pair penetration depth ξR (in units of k−1
F ) is shown

vs the reduced temperature t = T/T L
c for the coupling values (a)

(kF aL
F )−1 = −1.0 and (b) (kF aL

F )−1 = 0.0. In each panel, three cases
are reported for T R

c /T L
c = t1 = 1/8 (dots), T R

c /T L
c = t2 = 1/4 (dia-

monds), and T R
c /T L

c = t3 = 1/2 (stars). (The lines are guides to the
eye.)

T L
c . To this end, we resort to the analytic results that were

obtained in Ref. [8] for the extreme weak-coupling (BCS)
limit only and utilize them for stronger couplings reaching the
unitary limit in order to fit the temperature dependence of ξR

and ξL obtained above out of the expressions (16) and (17).
Accordingly, we represent the temperature dependence of ξR

both close to T R
c and close to T L

c (as well as of ξL close to T L
c )

in the following way:

ξR (T ) = A
(+)
R√

T − T R
c

[
T � T R

c

]
, (18)

ξR (T ) = A
(−)
R√

T R
c − T

[
T � T R

c

]
, (19)

ξR (T ) = BR

T

[
T R

c � T � T L
c

]
, (20)

ξL(T ) = A
(−)
L√

T L
c − T

[
T � T L

c

]
, (21)

where “�” and “�” signify “in the vicinity of” and “�”
signifies “well above than.”

TABLE I. Values of �L and �R (in units of the Fermi energy
EF ) at zero temperature for the couplings of interest [20].

(kF aL
F )−1 (kF aR

F )−1 T L
c /TF T R

c /TF �L/EF �R/EF

−1.0 −2.36 0.12 0.015 0.20 0.026
−1.0 −1.92 0.12 0.030 0.20 0.053
−1.0 −1.48 0.12 0.060 0.20 0.104

0.0 −1.45 0.50 0.063 0.69 0.108
0.0 −1.00 0.50 0.125 0.69 0.208
0.0 −0.53 0.50 0.250 0.69 0.388

0
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120

160
(a)

(kFaF
L)-1 = -1

  0

 25

 50

 75 (b)

ξ R
k F

 10
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 30

0 0.2 0.4 0.6 0.8 1

(c)

ν

FIG. 6. The pair penetration depth ξR (in units of k−1
F ) is reported

vs the variable ν of Eq. (15) for (kF aL
F )−1 = −1.0, in the three

cases when T L
c /T R

c = 8 (dots: upper panel), T L
c /T R

c = 4 (diamonds:
middle panel), and T L

c /T R
c = 2 (stars: lower panel). In addition, fits

to these symbols are obtained with the expressions (18) close to T R
c

(full lines) and (20) close to T L
c (dashed lines).

The results of these fits for ξR are shown in Fig. 6 for
(kF aL

F )−1 = −1.0 and in Fig. 7 for (kF aL
F )−1 = 0.0 where

in each case T L
c /T R

c = 8 (upper panel), T L
c /T R

c = 4 (middle
panel), and T L

c /T R
c = 2 (lower panel). Note that, to draw
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FIG. 7. Pair penetration depth ξR (in units of k−1
F ) vs the variable

ν of Eq. (15) for (kF aL
F )−1 = 0.0. Conventions and symbols are the

same as in Fig. 6.
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TABLE II. The coefficients of the expressions (18) and (19),
obtained by fits through the numerical values of ξR and ξL over
the appropriate temperature ranges, are reported in a few cases of

interest. Here, A
(±)
R is in units of

√
T R
c

2mTF
, A

(−)
L is in units of

√
T L
c

2mTF
,

and BR is in units of T R
c .

(
kF aL

F

)−1 (
kF aR

F

)−1
T L

c /TF T R
c /TF A

(+)
R A

(−)
R BR A

(−)
L

−1.0 −2.36 0.12 0.015 192.7 119.7 198.9 5.7
−1.0 −1.92 0.12 0.030 60.9 38.5 74.7 5.6
−1.0 −1.48 0.12 0.060 19.7 15.4 32.1 5.7

0.0 −1.45 0.50 0.063 19.1 14.5 26.1 1.2
0.0 −1.00 0.50 0.125 6.6 5.4 9.8 1.2
0.0 −0.53 0.50 0.250 2.4 2.3 4.3 1.2

these three different cases over the same horizontal scale, we
have identified the reduced temperature T/T L

c in terms of
the variable ν of Eq. (15) such that T = T R

c when ν = 0 and
T = T L

c when ν = 1. In each case, the numerical values for ξR

(symbols) are fitted close to T R
c via the expression (18) (full

lines) and close to T L
c via the expression (20) (dashed lines).

The values of all coefficients entering the expressions (18)–
(21) are reported in Table II for all cases considered in Figs. 6
and 7. These results confirm the occurrence of a two-slope
dependence for the temperature-dependent pair penetration
depth (corresponding to the full and dashed lines, respectively,
in Figs. 6 and 7) as was anticipated in the Introduction. In
addition, these results can be regarded as assessing the quite
good accuracy of our numerical calculations.

E. Density profile across the interface

As anticipated in Sec. II D, the presence of the external
potential (11) is expected to somewhat modify the density
profile near the interface, despite the fact that the bulk density
is assumed to have the same value of n0 on both sides of
the interface. To determine the amount of this effect, we
have evaluated the density profile n(x) by performing the
wave-vector integration in the expression (6) in spherical
coordinates with the local values of �(x) and μ(x) as they
vary across the interface. The results of this calculation are
shown in Fig. 8 for (kF aL

F )−1 = −1.0 and using a barrier
specified by the form (8) with kF σ = 5.0 when T L

c /T R
c = 8

(upper panel), T L
c /T R

c = 4 (middle panel), and T L
c /T R

c = 2
(lower panel). In each panel, different curves correspond to
different temperatures taken between T R

c and T L
c with the

same convention as in Fig. 2. Note that, close to the interface
in all cases, small (less than 3%) deviations occur for n(x)
from its bulk value of n0. In addition, at the lowest temperature
(which in each panel is 95% close to T R

c over the interval
T L

c − T R
c ), the depression in n(x) on the left side of the

interface is accompanied by a corresponding enhancement on
the right side of the interface (full curves). This dip-and-peak
profile is soon washed out for increasing temperature.

F. Width of the kernel of the NLPDA equation
across the interface

The spatial width of the kernel K of the NLPDA equation
(1) was shown in Ref. [14] to correspond to the Cooper pair

0.97

 0.98

 0.99

  1

(a)

(kFaF
L)-1 = -1

 0.98

 0.99

  1
(b)

n/
n 0

0.985

0.99

0.995

1

-50 0 50

(c)

xkF

FIG. 8. Density profiles (in units of the bulk density n0) for
(kF aL

F )−1 = −1.0 when (a) T L
c /T R

c = 8, (b) T L
c /T R

c = 4, and (c)
T L

c /T R
c = 2. Conventions for the various curves are the same as in

Fig. 2.

size over the whole coupling-vs-temperature phase diagram
up to the critical temperature. This result was obtained using
the values of � and μ that correspond to a homogeneous
system for given temperature and coupling. In the present
context, however, where both �(x) and μ(x) vary across the
interface at x = 0 in the temperature interval T R

c < T < T L
c

of interest, the width of the kernel K of the 1D-NLPDA
equation is also expected to depend on x.

To extract this dependence, we consider the kernel in real
space [24],

K (x|x0) =
∫ +∞

−∞

dQ

π
e2iQxK (|Q||x0), (22)

which is an even function of x and is calculated according to
an expression similar to Eq. (A13) of the Appendix. Here, x0

is the spatial point whereby the values of the local gap �(x0)
and chemical potential μ(x0) enter the kernel K (|Q||x0) in
Eq. (13). A typical profile of K (x|x0) is shown in Fig. 9.

The width of K (x|x0) is then determined for given x0 by
considering the function,

F (X|x0) =
∫ +X

xmax

dx K (x|x0), (23)

where xmax > 0 is the position of the maximum on the right
in the profile of K (x|x0) (which also depends on x0 and has
to be determined in each case). The function (23) is found to
converge asymptotically to a finite value of F (∞|x0) when
X → ∞. We thus look for the value of X̄(x0) of X such
that F (X̄|x0) differs from F (∞|x0) by, say, 10%. By our
definition, the width of the kernel K is identified with twice
the value of X̄(x0) for any given x0.
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FIG. 9. Typical spatial profile of the kernel K (x|x0) of the 1D-
NLPDA equation (in units of mk2

F ) for (kF aL
F )−1 = −1.0, T L

c /T R
c =

8, x0kF = 10, and temperature halfway between T R
c and T L

c . The
shaded area corresponds to the region over which the integral (23) is
calculated, whereas the double arrow represents the width 2X̄(x0) of
the kernel as identified by the procedure described in the text.

Figure 10 shows the quantity X̄(x0) determined in this
way vs x0 for the sake of example when (kF aL

F )−1 = −1.0
and T L

c /T R
c = (8, 4, 2). In each case, the various curves refer

to different temperatures according to the conventions of
Fig. 2. Note how, in each case, the shape of X̄(x0) resem-
bles a smoothed step function, which rises from X̄(−∞) to
X̄(+∞) > X̄(−∞) within a narrow interval on the order of
the variation of the function Gσ (x) entering Eqs. (7) and (11).

In addition, in Fig. 11 we have collected the values of
X̄(−∞) and X̄(+∞) from the three panels of Fig. 10 and
displayed them as functions of the absolute temperature T . It
turns out that X̄(−∞) on the extreme left and X̄(+∞) on the

1
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1.4
1.5
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FIG. 10. The quantity X̄(x0) [such that 2X̄(x0 ) identifies the
width of the kernel of the 1D-NLPDA equation] is shown vs x0 for
(kF aL

F )−1 = −1.0 when (a) T L
c /T R

c = 8, (b) T L
c /T R

c = 4, and (c)
T L

c /T R
c = 2. Conventions for the various curves are the same as in

Fig. 2.
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FIG. 11. The values of (a) X̄(−∞) and (b) X̄(+∞) collected
from Fig. 10 are shown vs t = T/T L

c . Dots, diamonds, and stars refer
to the values reported in panels (a)–(c), respectively, of Fig. 10.

extreme right of the interface are both decreasing functions
of T . In particular, X̄(−∞) decreases by about 10 % when
T/T L

c varies from 0.125 to 1, in line with what was found
in Ref. [12] for the temperature evolution of the Cooper pair
size below Tc in the homogeneous case at the mean-field level.
On the other hand, X̄(+∞) decreases more significantly over
the same temperature interval, which would now correspond
to temperatures above Tc in the homogeneous case for which
it can be calculated only once pairing fluctuations beyond
the mean field are properly included [12]. Note, finally, that
(twice) the values of X̄(+∞) on the right of the interface
are always smaller than the corresponding values of the pair
penetration depth ξR reported in Fig. 6 for the same coupling
and temperature interval thereby giving definite support to
the internal consistency of the procedure we have used for
identifying ξR .

IV. CONCLUDING REMARKS

In this paper, we have examined theoretically the proximity
effect at the interface between two superconductors with dif-
ferent critical temperatures under a variety of circumstances.
To the extent that the size of the Cooper pairs represents
a crucial ingredient for the proximity effect, we have been
able to vary this size appreciably by making the interparticle
coupling for both superconductors to vary along the BCS-
BEC crossover (although always remaining on the BCS side
of unitarity, which is where the Cooper pair size is comparable
with the interparticle distance). We have also been able to
consider temperatures quite close (up to 99%) to the critical
temperature of either superconductor as well as to modify the
shape of the interface separating the two superconductors in
order to assess the physical robustness of the calculations.

In this way, from the numerical profiles of the inhomoge-
neous gap parameter �(x) we have been able to extract the
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pair penetration depth ξR on the normal (by our convention,
the right) side of the interface as a function of both coupling
and temperature. This was performed in such an accurate
way that the temperature dependence of ξR was always found
to match the behaviors expected from the analytic estimates
made some time ago in Ref. [8] (although in that reference
only for what would today be referred to as the BCS limit of
the BCS-BEC crossover). On the basis of the values attained
by ξR under various physical circumstances, we have also
proposed a criterion for optimizing the occurrence of the
proximity effect.

All of this has been possible because the profiles �(x) of
the gap parameter have been obtained by solving numerically
the NLPDA integral equation in the form (14) instead of
solving the much more demanding BdG differential equations
from which the NLPDA equation was derived in Ref. [13] to
start with. To this end, we have utilized the method recently
provided in Ref. [14] for solving the NLPDA equation in
terms of a novel efficient algorithm for calculating the Fourier
transforms. In Ref. [14] it was further tested that using the
NLPDA instead of the BdG approach not only provides a con-
siderable gain in memory storage, but also results in a large
reduction of computational time (which was there quantified
in a factor of about 102 for the case of an isolated vortex
throughout the BCS-BEC crossover for which the solution of
the BdG equations is also available [25]).

Given the flexibility of the theoretical approach we have
adopted, one may hope that the present paper could stimulate
a revival of the experiments that adopt similar geometry and
physical arrangements, in particular, by extending the work of
Ref. [11] in a systematic way. In addition, when a stationary
current would be added to the present calculation (possibly in
the presence of a sandwich of different superconductors), the
local profile of the gap parameter associated with the prox-
imity effect could be experimentally measured by tunneling
spectroscopy as was performed in Ref. [26].
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APPENDIX: METHOD FOR THE NUMERICAL SOLUTION
OF THE 1D-NLPDA EQUATION

An efficient method to solve numerically the [Q-version
(2) of the] NLPDA equation was set up in Appendix B of
Ref. [14] in any dimension D. The method rests on the pecu-
liar properties of the Fourier transform of the wave functions
of the D-dimensional harmonic oscillator when expressed
in terms of the generalized Laguerre polynomials for a gap
parameter �(r) with a given spatial symmetry.

For the 1D geometry of the proximity effect of interest
to the present paper where the gap parameter �(x) has both
even and odd components in x ↔ −x, one could thus split
into even and odd components both the coupling parameter
g(x) of Eq. (7) and the product g(x)�(x) which appears on
the left-hand side of Eq. (13), to end up with two coupled
equations for the even and odd components of �(x). Given the
simple 1D geometry of interest, however, one can most simply

rephrase the method developed in Appendix B of Ref. [14]
in terms of Hermite polynomials instead of generalized La-
guerre polynomials. For completeness, in the following we
will concisely report the relevant expressions needed to solve
numerically Eq. (13), which are obtained by rephrasing in
terms of Hermite polynomials the essential steps described in
Appendix B of Ref. [14], to which we refer the reader for
additional details.

Consider a 1D harmonic oscillator with mass m = 2λ2

and frequency ω = 1 (with the parameter λ introduced to
give additional flexibility to the numerical calculations). Its
(normalized) eigenfunctions have the form

ψn(x) = (2λ2)1/4e−λ2x2Hn(
√

2λx), (A1)

with

Hn(x) = 1

π1/4
√

2nn!
Hn(x), (A2)

where Hn(x) (n = 0, 1, . . .) are Hermite polynomials such
that ∫ +∞

−∞
dx e−x2Hn(x)Hn′ (x) = δnn′ . (A3)

The corresponding Fourier transform is given by

ψ̃n(Q) =
∫ +∞

−∞
dx e−2iQxψn(x)

= (−i)n
(

2π2

λ2

)1/4

e−Q2/λ2Hn

(√
2Q

λ

)
(A4)

(for clarity, in this Appendix we add a tilde to the symbol of
the Fourier transform).

Owing to the property of the Fourier transforms,∫ +∞

−∞
dx ψn(x)�(x) =

∫ +∞

−∞

dQ

π
ψ̃∗

n (Q)�̃(Q), (A5)

we can write in terms of the expressions (A1) and (A4),∫ +∞

−∞
dx e−x2Hn(x)ex2/2�

(
x√
2λ

)

= inλ√
π

∫ +∞

−∞
dx e−x2Hn(x)ex2/2�̃

(
λx√

2

)
. (A6)

The above expressions can be cast in an approximate form
useful for numerical calculations by introducing a Gaussian
quadrature of the form [cf. Eq. (A3)]

∫ +∞

−∞
dx e−x2Hn(x)Hn′ (x) =

N∑
j=1

wjHn(xj )Hn′ (xj ) = δnn′ ,

(A7)
where the points {xj ; j = 1, . . . , N} and the (positive definite)
weights {wj ; j = 1, . . . , N} have to be determined. We then
write for the left-hand side of Eq. (A6),

∫ +∞

−∞
dx e−x2Hn(x)ex2/2�

(
x√
2λ

)
�

N∑
j=1

Snjyj�

(
xj√
2λ

)
,

(A8)
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as well as for the right-hand side of Eq. (A6),∫ +∞

−∞
dx e−x2Hn(x)ex2/2�̃

(
λx√

2

)
�

N∑
j=1

Snjyj �̃

(
λxj√

2

)
,

(A9)
where we have introduced the quantities,

Snj = Hn(xj )
√

wj, yj = ex2
j /2√wj, (A10)

such that
N∑

j=1

SnjS
T
jn′ = δnn′ ,

N−1∑
n=0

ST
jnSnj ′ = δjj ′ . (A11)

Entering the results (A8) and (A9) into Eq. (A6), we obtain
approximately,

N∑
j=1

Snjyj�

(
xj√
2λ

)
= inλ√

π

N∑
j=1

Snjyj �̃

(
λxj√

2

)
, (A12)

from which we can extract, alternatively,

�

(
xj√
2λ

)
= λ√

πyj

N−1∑
n=0

N∑
j=1

inST
jnSnj ′yj ′�̃

(
λxj ′√

2

)
, (A13)

and

�̃

(
λxj√

2

)
=

√
π

λyj

N−1∑
n=0

N∑
j=1

(−i)nST
jnSnj ′yj ′�

(
xj ′√
2λ

)
, (A14)

where xj√
2λ

refers to values of x and λxj√
2

refers to values of Q

with the two meshes of x and Q points closely interlinked with
each other. In these expressions, both the number of points N

in the two meshes and the parameter λ can be varied to achieve
optimal convergence of the Fourier transform from �(x) to
�(Q) (and vice versa). The two results (A13) and (A14) taken
together provide an efficient algorithm to calculate the Fourier
transform of any function in 1D.

There remains to determine the sets of points {xj } and
the corresponding weights {wj } that appear in the definitions
(A10). To this end, we take advantage of the recursion relation
[27],

√
n + 1Hn+1(x) −

√
2xHn(x) + √

nHn(x) = 0, (A15)

which we apply recursively from n = 0 to n = N − 1 and
choose for x the N values x̄ such that HN (x̄) = 0. In this way,
we end up with the following N × N eigenvalue problem:

⎛
⎜⎜⎜⎜⎜⎜⎝

−√
2x̄ 1 0 · · ·

1 −√
2x̄

√
2 0 · · ·

0
√

2 −√
2x̄

√
3 0 · · ·

· · · · · · · · · · · · · · · · · ·
· · · 0

√
N − 2 −√

2x̄
√

N − 1
· · · 0

√
N − 1 −√

2x̄

⎞
⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎝

H0(x̄)
H1(x̄)
H2(x̄)

· · ·
HN−2(x̄)
HN−1(x̄)

⎞
⎟⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎜⎝

0
0
0
· · ·
0
0

⎞
⎟⎟⎟⎟⎟⎠. (A16)

By diagonalizing the real and symmetric matrix on the left-hand side of Eq. (A16), we obtain eventually the N (distinct) eigen-
values x̄j (with j = 1, 2, . . . , N) and the corresponding N eigenvectors [H0(x̄j ),H1(x̄j ),H2(x̄j ), . . . ,HN−2(x̄j ),HN−1(x̄j )],
whose normalization condition,

N−1∑
n=0

Hn(x̄j )Hn(x̄j ) = δjj ′

wj

(A17)

provides the weights wj according to the second identity in Eq. (A11).
The above results can be used to solve the 1D-NLPDA integral equation (13) with variable coupling constant g(x) in an

efficient way. The ensuing discretized form of this integral equation is reported in Eq. (14) of the main text.
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