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Solvable two-dimensional superconductors with l-wave pairing
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We analyze a family of two-dimensional BCS Hamiltonians with general l-wave pairing interactions,
classifying the models in this family that are Bethe-ansatz solvable in the finite-size regime. We show that these
solutions are characterized by nontrivial winding numbers, associated with topological phases, in some part of
the corresponding phase diagrams. By means of a comparative study, we demonstrate benefits and limitations
of the mean-field approximation, which is the standard approach in the limit of a large number of particles. The
mean-field analysis also allows us to extend part of the results beyond integrability, clarifying the peculiarities
associable with the integrability itself.
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I. INTRODUCTION

Superconductivity, a phenomenon that is typical in
condensed-matter physics but also relevant in nuclear and sub-
nuclear physics (see, for instance, [1,2]) takes its origin from
pairing between fermions. It is typically described assuming
an interacting (pairing) Hamiltonian and solving it via the
mean-field (MF) approximation [3], which explicitly violates
particle number conservation. While this limitation has a
small effect on macroscopic systems, it can lead to dramatic
deviations when fluctuations are important, i.e., when dealing
with a fixed small number of particles. This justifies the
interest in the study of exactly solvable models that avoid any
approximation at the price of assuming specific forms of the
interactions, like in the so-called Richardson model [4] with
s-wave pairing (l = 0). This model is known to be integrable,
and its exact solution is known to be related to the Gaudin
spin Hamiltonians [5,6]. This exact-solution approach allowed
various generalizations of the Richardson-Gaudin models
[7–9], relevant for condensed-matter and nuclear physics.
In general, Richardson-Gaudin particle-conserving integrable
models can be classified into rational, hyperbolic, and trigono-
metric classes. Within this classification, a realization of the
hyperbolic model is the px + ipy model, which has been
extensively studied [10–16], also in the presence of interfaces
with normal conductors (see e.g. [17–19]).

These examples motivate the need for analyzing integrable
models for superconductivity by elucidating the physics of
some delicate aspects of strongly correlated quantum systems
(see also [20]). Particularly intriguing is the possibility to
include pairing interactions with higher angular momentum
(a pivotal example being the d wave, i.e., l = 2, even chiral)
in two-dimensional (2D) systems due to their direct impli-

*llepori81@gmail.com
†marco.roncaglia.it@gmail.com

cation for high-temperature superconductivity [21]. Among
the plethora of compounds and lattice schemes belonging to
this family, we report the very recent realization of high-
temperature (and likely d-wave) superconductivity on twisted
bilayer graphene [22]. Still on the experimental side, the p-
wave (l = 1) pairing is present in 3He [23] and in strontium
ruthenates [24,25], while f -wave pairing occurs, for instance,
in superfluid 3He [26,27]. Moreover, new progress in the
physics of ultracold Fermi gases opens up the possibility to
design superconductive pairings up to the h wave (l = 5; see,
e.g., [28–35]).

Motivated by these possibilities and by the considerable
theoretical interest in the high-wave superconductivity, in the
present paper we analyze a large family of 2D BCS models
with arbitrary l-wave (lx + i ly) pairing interaction. A particu-
lar attention is focused on the phase content of these models.
We first discuss (Sec. II) the cases that can be exactly solved
via the Bethe ansatz in a finite-size system. Later, we describe
a standard MF analysis (Sec. III), and we compare the results
from the two different approaches studying the topological
properties of their solutions (Sec. IV). In this way, further
insight is also achieved for the cases where integrability does
not hold, as well as for the role of integrability itself.

The family of superconductive models that we are going to
study is described by Hamiltonians of the form

H =
∑

k

εkc
†
kck − g

∑
kk′

(kx − iky )l (k′
x + ik′

y )lc†kc
†
−kc−k′ck′ .

(1)

Here c
†
k is the creation operator of 2D fermions with momen-

tum k = (kx, ky ), and g is the coupling constant, positive for
an attractive interaction. Notice that the interaction term cre-
ates and annihilates pairs of fermions with opposite momenta.
In order to keep the widest generality, at the beginning of
our analysis we do not adopt any particular choice for the
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single-particle energy εk, assuming only that it is a function
of the modulus k ≡ |k|.

In Eq. (1), we have dropped the spin index {↑,↓} in the
Fermi operators, so spinless fermions are formally considered.
If, instead, the Cooper pairs are spinful, the symmetry of their
spin wave functions is univocally determined by the Fermi-
Dirac statistics. In fact, when l is even, the Cooper pairs form
a spin singlet (antisymmetric), while when l is odd, they are in
the triplet sector (symmetric and polarized). In both cases, the
structures of the Bethe-ansatz equations and of the spatial part
of the exact Cooper wave functions (introduced in Sect. II) in
the presence of integrability are the same as in the spinless
model described in Eq. (1).

The familiar s-wave case corresponds to l = 0 and to the
singlet sector of the spin wave function. This is the sole
non-symmetry-breaking case under parity and time-reversal
transformation. The breaking of these symmetries for l � 1
leads to different kinds of exact solutions, introducing non-
trivial topological properties of the paired states (according
to the tenfold classification of the topological insulators and
superconductors; see, e.g., [36–39]).

II. EXACT SOLUTION IN THE INTEGRABLE CASES

A. General setting

In the present section we address the exact solution of the
Hamiltonian in Eq. (1). We find that the precise forms of εk
and of the Cooper wave functions are constrained by requiring
the integrability.

The first step to proceeding is to notice that when only a
single fermion occupies the level in k or −k (i.e., without
its partner), it decouples from the ground-state dynamics due
to the interaction in Eq. (1). So it is convenient to restrict
ourselves to the dynamics of the Cooper pairs, having cre-
ation operators b

†
k = c

†
kc

†
−k (see, e.g., [7]). Accordingly, the

Hamiltonian in Eq. (1) takes the form

H =
∑

k

2 εk b
†
kbk − g B

†
0B0. (2)

Due to the particular factorized form of the interaction in
Eq. (1), H is now quadratic in terms of the new operator
B

†
0 = ∑

k zk b
†
k, where zk = (kx − iky )l are called pairing

functions. Clearly, if the bk operators were truly bosonic, the
Hamiltonian would be directly diagonalizable. However, bk
are instead hard-core bosons obeying the following commuta-
tion relations:

[bk, b
†
k′ ] = δkk′ (1 − 2 b

†
kbk ). (3)

As a trial wave function for p pairs, we take the following
general ansatz:

|�p〉 =
p∏

ν=1

B
†
Jν

|0〉, B
†
J =

∑
k

wk(J ) b
†
k, (4)

and we impose the eigenvalue equation

(H − Ep )|�p〉 = 0, (5)

where the total energy Ep is given by the sum of the pair
energies, Ep = ∑p

ν=1 EJν
.

The next two sections will be devoted to the solution of
Eq. (5) for one single pair and for multipair configurations.
Generally, these solutions are obtained using the algebra of
the pseudobosonic commutation relations to shift H in Eq. (5)
through the operators B

†
Jν

contained in |�p〉, until H acts on
the vacuum |0〉, giving zero [40]. As the detailed calculation
is rather cumbersome, it is presented in Appendix A.

B. One-pair case

By restricting the eigenvalue equation in Eq. (5) to one pair
|�1〉 with energy EJ , we obtain the condition

wk(J ) = g
zk

2εk − EJ

∑
k′

z∗
k′ wk′ (J ). (6)

Multiplying both sides by z∗
k and summing in k (which is

customary for the gap equations in the BCS theory [41,42]),
unless the “order parameter” W (J ) = ∑

k z∗
kwk(J ) is zero,

we obtain the Richardson equation for one pair,

1 − g
∑

k

|zk|2
2εk − EJ

= 0, (7)

as well as the expressions for the ansatz’s coefficients,

wk(J ) = gW (J )
zk

2εk − EJ

, (8)

proportional to the wave function zk
2εk−EJ

. The proportionality
factors g W (J ) do not depend on k; thus, they are irrelevant
and can be neglected, as they affect only normalizations and
global phases. Consequently, without any loss of generality,
we can retain the wave function

wk(J ) = zk

2εk − EJ

. (9)

Notice that the spatial wave function (9) has the same parity
of l under the transformation k → −k. This fact has a direct
consequence on the symmetry of the spin part of the wave
function, as discussed in the Introduction. Moreover, if two
spins {↑,↓} are involved in the Cooper pair, still at fixed l, the
forms of the Hamiltonian in Eq. (2) and of the commutators
in Eq. (3) (as well as the consequent ones including the
operators BJ ; see Appendix A) remain unchanged. Therefore,
the structures of the Bethe-ansatz equations and of the spatial
part of the exact Cooper wave functions also do not change.

C. Many pairs

Similar to the one-pair case in the previous subsection, the
ansatz in Eq. (4) for the p-pair case reads

|�p〉 =
p∏

ν=1

B
†
Jν

|0〉, B
†
J =

∑
k

zk

2εk − EJ

b
†
k, (10)

where we have assumed the expression in Eq. (9) for the
wave functions. The solution of Eq. (5), discussed in detail
in Appendix A, yields the following final equations analogous
to Eq. (7). These solutions can be classified into three groups,
depending on the form of zk:

(1) The pairing function zk is independent of k. A relevant
case is obtained by fixing zk = 1; therefore, from Eq. (A9) we
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get the well-known Richardson equations

1 − g
∑

k

1

2εk − EJν

+ 2g

p∑
μ=1( 	=ν)

1

EJμ
− EJν

= 0, (11)

whose solutions give the pair energies EJν
[7]. It is important

to observe that here we have not imposed any restrictions
on εk; thus, any dispersion relation (including the flat band
εk = 0) allows integrability in this case.

(2) In addition to the original s-wave case zk = 1, we
can also include the choice zk = exp[iφ(k)], where φ(k) is
a real function of momentum. Like in the previous case, the
energy solutions are given by Eq. (11), and again there are no
restrictions on εk. The present choice, possibly implementable
in ultracold-atom setups by laser-assisted tunneling processes
[28], extends the previous case, allowing for possible phases
with nontrivial topology (see Appendix C).

(3) The pairing function is zk ∝ (kx − iky )l . Since in this
case |zk|2 depends on k (for l 	= 0), we are forced to have
|zk|2 ∝ εk in order to guarantee integrability. As a conse-
quence, after the substitution |zk|2 = α εk = α k2l , Eq. (A9)
becomes

1 − g̃
∑

k

εk

2εk − EJν

+ g̃

p∑
μ=1( 	=ν)

EJμ

EJμ
− EJν

= 0, (12)

with g̃ = g α. For l = 1, our result coincides with the p-
wave solution found in [11], with a massivelike dispersion
εk ∝ k2. Remarkably, Eq. (12) also holds for the exact solution
of the interesting d-wave case, where the relative angular
momentum l = 2 imposes a quartic dispersion εk ∝ k4.

In [8,11] a detailed analysis was performed for case 3,
with εk = k2n and n = l = 1, both by a MF approach in the
thermodynamic limit and by comparing its results with the
properties of the exact wave function from the solution of
the Bethe-Ansatz equations. The topological aspects of the
obtained phases were also discussed.

In the following, we generalize the latter analysis to the
wider situation where n, l � 1, l (n) is assumed to be an
integer (half integer), and n, l are allowed to be different. If
l 	= n, integrability is broken, so that only a MF approach can
be used. If, instead, n = l, deeper knowledge is achieved by
studying again the topological properties of the exact wave
functions.

We mention finally that integrability is not spoiled if an
additional constant is added to the quasiparticle dispersion εk,
as done in [43]. There Eqs. (11) and (12) were written in an
implicit manner. Moreover, if n 	= l, integrability can some-
times be preserved if additional Hamiltonian terms are added;
an explicit example is given in [44].

III. MEAN-FIELD ANALYSIS

A. General formalism

In this section we analyze the MF properties of the Hamil-
tonian in Eq. (1). Following the standard approach to MF
superconductivity [41,42], we find that the MF quadratic
Hamiltonian, in the thermodynamic limit and in the grand-

canonical ensemble, derived from the one in Eq. (1), is

H = Ec +
∑

k

[ξk c†k ck + �(kx + iky )lckc−k + H.c.], (13)

where Ec is the condensation energy, defined below, and
ξk = (εk − μ) = (k2n − μ) is the rescaled dispersion. In the
chemical potential μ, the Hartree terms are also included,
coming from the Wick contractions of the interaction term
in the Hamiltonian of Eq. (1). According to the analysis
performed in Sec. II, the integrable cases correspond to n = l;
however, for the sake of completeness, here we do not fix n

and l to be equal in this MF treatment.
The Hamiltonian in Eq. (13) describes potentially realistic

cases if n = 1 and l = 2 (when two spins are considered) [42]
and if n = l = 1 [23–25].

In Eq. (13) we set � = ∑
k′ g (k′

x + ik′
y )l 〈c−k′ck′ 〉, with

〈c−k′ck′ 〉 being the vacuum expectation value of the super-
conductive ground state. Therefore, the gap function can
be written as �k = � (kx + iky )l ; the quantity (kx + iky )l

coincides, up to a constant, with the spherical harmonic Y l
l (k̂)

projected in the 2D plane (expected to be the more stable one
in the absence of external strains or pressures; see, e.g., [42]).

The condensation energy EC is given by

EC = −4
∑

k,k′>0

�k�
∗
k′

gkk′
= A

M�2

g
, (14)

where the integer M denotes the number of states in the region
of phase space considered and gkk′ is the two-body potential
appearing in the full Hamiltonian expressed in momentum
space. In a general case, the quantity A explicitly depends on
the assumed form of gkk′ . For the Hamiltonian in Eq. (1), this
potential reads

gkk′ = −g(kx − iky )l (k′
x + ik′

y )l , (15)

so that A = 1. As we will check in the following, an important
feature of the ground-state free energy FGS is that, when
expressed as a sum on the momenta via the gap equation, it
does not depend on A.

The Bogoliubov spectrum corresponding to the Hamilto-
nian in Eq. (13) is

λk =
√

ξ 2
k + �2k2l (16)

(with k denoting again the modulus of kx − iky). This spec-
trum is gapless at μ = 0 and k = 0.

The ground-state free energy FGS = EGS + μN, N = 2p,
corresponding to the spectrum in Eq. (16), is

FGS =
∑
k>0

(
ξk − λk

)+ M�2

g
+ μN, (17)

independent of A, as anticipated. The Bogoliubov coeffi-
cients are

|uk|2 = 1

2

⎛
⎝1 + ξk√

ξ 2
k + �2k2l

⎞
⎠, |vk|2 = 1 − |uk|2, (18)

so that the MF wave function results:

w
(MF)
k = vk

uk

= λk − ξk

� (kx + i ky )l
. (19)
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The equations for � and μ are as follows:

∂FGS

∂�
= 0 → M

g
= 1

2

∑
k>0

k2l

λk

, (20)

∂FGS

∂μ
= 0 → N =

∑
k>0

(
1 − ξk

λk

)
. (21)

The last equation can also be written as

μ
∑
k>0

1

λk

= N +
∑
k>0

k2n

λk

− M

2
, (22)

which, in the case of n = l, becomes, from Eq. (20),

μ
∑
k>0

1

λk

= N + 2
M

g
− M

2
. (23)

Using Eq. (20), the ground-state free energy is written as

FGS =
∑
k>0

(
ξk − λk + �2

2

k2l

λk

)
+ μN (24)

and, exploiting Eq. (22), also as

FGS =
∑
k>0

k2n

(
1 − 2k2n − 2μ + �2 k2(l−n)

2 λk

)
. (25)

If n = l, the latter expression shows a duality between dif-
ferent MF solutions, in that two solutions (labeled 1 and
2) are related by the equations μ1 = −μ2 and �2

1 − 2 μ1 =
�2

2 − 2 μ2, such that the corresponding free energies coincide:
F

(1)
GS = F

(2)
GS . If n = l = 1, this duality is justified by the exact

solution of the Richardson equations (11).
Once one considers working in a lattice, as opposed to

the continuum, the above analysis can be extended straight-
forwardly. Some spin models are, indeed, quadratic in Fermi
operators in momentum space with pair creation [45]. For
sufficiently small interaction strength ∝ g, we expect that
superconductivity involves only quasiparticles with momenta
within a small range δk ≈ g

1
n around the Fermi momentum

kF . Here the lattice dispersion, with discretized momenta,
can be expanded in powers of k, such that it ends up in a
power-law dispersion. At that point, the MF analysis proceeds
as described before.

B. Mean-field phase diagram

Using the derived expressions for the ground-state free
energy, for the wave functions of the Bogoliubov excitations,
and for the self-consistency equations, it is interesting to
characterize the phase diagram of the Hamiltonian in Eq. (13)
as a function of g and of the (average) filling N/M ≡ x.

Various transition lines, between different quantum phases,
can be identified. A notable transition occurs at μ = 0, where
the spectrum in Eq. (16) is gapless at k = 0. There the MF
wave function behaves as

w
(MF)
k ≈

⎧⎨
⎩

(kx − iky )l k2(n−l) if μ < 0 and n � l,

(kx − iky )l if μ < 0 and n < l,
1

(kx+iky )l if μ > 0.
(26)

This transition has a nature similar to the Read-Green one
described in the case n = l = 1 [8,11,14,46] (and found to be

a third-order transition in [14]); for this reason in the following
the same name will be adopted for it. The condition μ = 0
translates, from Eq. (23), to the relation

x = 1

2

(
1 − 4

g

)
. (27)

The line identified by this equation does not depend on the
distribution of the momenta, thus is topologically protected
against every perturbation changing it and possibly breaking
the integrability of the Hamiltonian in Eq. (1).

Another notable line, denoted as the (generalized) Moore-
Read line [11,47], is found for every n = l, parametrized by
the relation μ = �2

4 ; along this line the condition FGS = 0
holds: the same free energy of the vacuum, intended as the
absence of fermions (x = 0), is obtained for the superconduc-
tive ground state. Notice that, in order to obtain this result, the
positiveness of μ is crucial. The condition μ = �2

4 is fulfilled
on the line

x =
(

1 − 4

g

)
, (28)

a result found by exploiting Eq. (21). There the mass gap does
not vanish, but the ground-state free energy is discontinuous
in the thermodynamic limit.

As for the case n = l = 1 [11,47], the duality mentioned in
the previous section holds, at least at the MF level, between a
point (g, xw ) in the weak-pairing regime (μ > 0) and a point
(g, xs ) in the strong-pairing regime (μ < 0); these points are
related to each other by the relation

xw + xs =
(

1 − 4

g

)
, (29)

which is still obtained directly from Eqs. (21) and (23).
Therefore, the Read-Green line is self-dual, while the MR
state is dual to the vacuum, where x = 0.

The Read-Green and Moore-Read lines meet at the point
g = 4, where the limit x = 0 is achieved.

By a direct numerical analysis of the MF free energy in
Eq. (25), performed on various cases with n 	= l, we have
found strong indications that the Moore-Read line does not
persist out of the integrability [48], as FGS 	= 0.

If n = l, the minimum EGAP of λk , Eq. (16), is

EGAP =
⎧⎨
⎩

|μ| if μ < �2

2 ,

�

√
μ − �2

4 if μ > �2

2 .
(30)

The condition μ = �2

2 defines a third notable transition line,
the so-called Volovik line [8,11]. Along it a first-order quan-
tum phase transition, reminiscent of the Higgs transition,
occurs [23]. The same line depends on the distribution of
the momenta; thus, it is not topologically protected (and its
presence must be verified beyond the MF approach, adopted
in the following). Setting μ = �2

2 and exploiting Eqs. (20) and
(23), we find that, if n = l, the Volovik line reads explicitly as

x = 1

2

(
1 − 1

M

∑
k>0

2k2l − �2

λk

)
. (31)

From a numerical study of λk in Eq. (16), we conclude that
the Volovik line does not survive if n < l since EGAP always
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arises at k 	= 0. On the contrary, if n > l, EGAP is located at
k = 0 for some values of � and μ, so that a Volovik line can
still be identified [the defining equation, similar to (31), is not
easily writable as a closed formula].

IV. TOPOLOGICAL PROPERTIES

In this section we give a deeper characterization of the MF
phase diagram, sketched in the previous section, studying the
topology of the various identified phases. Focusing first on the
case n = l, we start by taking the MF Cooper wave function
w

(MF)
k in Eq. (19) to calculate the topological invariant [8]:

IMF = 1

4π

∫
S2

dk wk, (32)

where S2 is the sphere of radius |k| = 1 obtained from
the plane R2 by the inverse of the stereographic projection
[49,50]. We obtain IMF = l if μ > 0 and IMF = 0 if μ < 0.
This result matches the previously found values IMF = 1 for
the p-wave case [8,11,46] and IMF = 2 for the d-wave case
[46]. As generally expected (see, e.g., [38]), IMF is sensitive to
the vanishing of the energy for the Bogoliubov quasiparticles,
occurring at μ = 0. Finally, it is worth noticing that, although
the location of the Read-Green line is independent of the
momentum distribution and of the Bogoliubov dispersion law
λk , the (topological) phases bounded by it depend on l. This
index can affect the topology since it induces global (on the
entire set of allowed momenta) and not smooth (l is discrete)
modifications on λk .

The topological content of the phase diagram can be
inferred not only from the MF wave function of a single
Cooper pair, Eq. (19), but also from the MF ground-state
wave function, following a procedure common in the study
of topological insulators and superconductors [49]. In partic-
ular, denoting by |uk〉 the positive-energy eigenvector of the
quadratic Hamiltonian in Eq. (13), IMF is expressed as the
integral on the momentum space of the Berry curvature:

IMF = 1

4 π

∫
S2

dk ∇k × 〈uk|∇k|uk〉. (33)

The equivalence between the two MF calculations for IMF

stems directly from the fact that |uk〉 is an excited state
obtained by breaking a Cooper pair. In turn, expression (33) is
also equivalent to the spin-texture one [46,49,51],

IMF = 1

8 π

∫
S2

dk εabcεij d̂a (k) ∂ki
d̂b(k) ∂kj

d̂c(k) (34)

[(i, j ) = {x, y} and (a, b, c) = {1, 2, 3}], obtained expressing
the Hamiltonian (13) in terms of the Pauli matrices in the basis
(ck, c−k )T : H = ∑

k d̂(k) · σ . Direct numerical calculation of
both expressions (33) and (34) confirmed the result IMF = l if
μ > 0.

The content in topology obtained using the MF wave
functions can also be probed calculating the same quantity
as in Eq. (32) in terms of the exact wave function wk of a
single Cooper pair and then considering again the limit x = 0.
We implicitly assume that fluctuations beyond MF do not
change the MF phase diagram significantly; thus, the solution
of the Bethe-ansatz equations essentially leads to the same
phase diagram. This hypothesis will not be contradicted in the

FIG. 1. Mean-field phase diagram for n = l as a function of x

and g. The topological invariant IMF, relative to a single Cooper pair,
is reported, as well as the invariant I from the exact wave function in
Eq. (35). Notice the difference between MF and exact invariants in
the phases above the Moore-Read line. The different length scale for
the axes is chosen for sake of clarity of the picture. The Moore-Read
line disappears in general out of integrability if n 	= l.

following. The exact wave function, derived in Sec. II, reads,
up to an unimportant multiplicative constant,

wk = (kx − iky )l

2εk − E
, (35)

where E is the pair energy (complex in general [7]), derived
from the solution of the Richardson equations. The integral in
Eq. (32) can be recast as follows:

I = l2
∫ ∞

0
du

u(3l−1) − EĒ u(l−1)

[ul + (ul − E)(ul − Ē)]2
, (36)

with u = k2. The result of Eq. (36) is

I = l if E = 0,

I = 0 if E 	= 0.
(37)

An alternative derivation of the winding number I is discussed
in Appendix B; this turns out to be useful also for the
pure-phase case in Appendix C. Moreover, it would also be
interesting to extend the calculation of I to multipair states,
e.g., following the approaches in [44,52].

Referring to the MF diagram in Fig. 1, the condition
E = 0 in (37) is fulfilled if x = 0 at the intersection with the
Moore-Read line, where g = 4. This fact indicates that I = l

in the region between the Read-Green and Moore-Read lines,
while I = 0 in the other phases. Therefore, I matches the MF
phase diagram opposite to IMF: indeed, IMF is nonvanishing
also in the region to the right of the Moore-Read line, and
thus IMF does not detect this line. The described mismatch
is indeed interesting since it can indicate a general inability
of the topological invariants from the MF wave functions to
correctly detect some phases of (topological) insulators or
superconductors. In our case, the mismatch occurs since the
mass gap does not vanish on the MR line. It remains an open
question whether the origin of the puzzle is due to integrability
of the full model in Eq. (1). However, such interpretation
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is suggested by the fact that from the MF analysis the MR
line seems generally absent for n 	= l, where integrability is
broken (and no divergencies occur in the spectrum, a situation
found instead in the presence of long-range Hamiltonian
couplings; see [53] and references therein [54]).

We note finally that in [14] it has been suggested, for the
case n = l = 1, that the Moore-Read line does not identify a
genuine quantum phase transition, a possibility partly solving
the mismatch mentioned above. However, the same result
for I (different from zero only at E = 0) from the exact pair
wave function in [8] and in the present paper seems to rule
out this scenario.

V. DISCUSSION AND CONCLUSIONS

In this paper we have analyzed the physical features of
a large set of superconductive models for which an exact
solution is available, composed of two-dimensional systems
with a factorized form for the momentum-dependent interac-
tion. Besides the known cases of the s-wave pairing, solved
by Richardson [4], and p-wave pairing, discussed by Ibañez
et al. [11], we have found that, in general, l-wave pairing
is exactly solvable on a finite-size system, provided that the
single-particle dispersion is proportional to k2n, with n = l.

Analyzing the integrable case, we also found that the
topological invariants calculated in the framework of the
mean-field approach cannot reproduce correctly the phase
diagrams of the considered integrable models, in contrast to
the corresponding invariants obtained from the exact (Bethe-
ansatz) solutions. This discussion has shown the potential
inadequacy of the mean-field topological invariants to predict
the correct phase diagram of (topological) insulators and
superconductors, at least in peculiar situations. In our case, the
origin of this problem seems to be the (possible) presence of
quantum phase transitions without vanishing of the mass gap,
a feature possibly related to integrability. We notice that quite
recently a change in topology without mass gap closing, in the
presence of large interaction, was found numerically in [55].

In the nonintegrable cases n 	= l [as well as for other
perturbed models where interactions do not assume the special

form of Eq. (1)], exact wave functions analogous to Eq. (9)
cannot be derived because the Bethe ansatz is not applicable;
therefore, only the mean-field approach can be exploited.
The reliability of this approach out of the integrable regime
is suggested by its prediction about the general absence of
quantum phase transitions with a nonvanishing mass gap.
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APPENDIX A: BETHE-ANSATZ SOLUTION
OF EQUATION (5)

The eigenvalue equation in (5) can be written as([
H,

p∏
ν=1

B
†
Jν

]
− Ep

p∏
ν=1

B
†
Jν

)
|0〉 = 0, (A1)

where the commutator on the left side expands as

p∑
ν=1

⎧⎨
⎩
⎛
⎝ν−1∏

η=1

B
†
Jη

⎞
⎠[H,B

†
Jν

]⎛⎝ p∏
μ=ν+1

B
†
Jμ

⎞
⎠
⎫⎬
⎭. (A2)

Using the relations

[b†kbk, B
†
J ] = wk(J )b†k,

[B0, B
†
J ] =

∑
k

z∗
kwk(J )(1 − 2b

†
kbk ), (A3)

we find the expression for every single commutator appearing
in Eq. (A2):

[H,B
†
J ] = EJ B

†
J +

∑
k

(2εk − EJ )wk(J )b†k

−gB
†
0

∑
k

z∗
kwk(J )(1 − 2b

†
kbk ). (A4)

Putting Eq. (A4) in Eq. (A2) and using the basic relation
H |0〉 = 0, we find

H |�p〉 = Ep|�p〉 +
p∑

ν=1

⎡
⎢⎣
(∑

k

(2εk − EJν
)wk(Jν )b†k − gB

†
0

∑
k

z∗
kwk(Jν )

)⎛⎜⎝ p∏
η=1
η 	=ν

B
†
Jη

⎞
⎟⎠
⎤
⎥⎦|0〉

+
p∑

ν=1

⎧⎨
⎩
⎛
⎝ν−1∏

η=1

B
†
Jη

⎞
⎠2gB

†
0

(∑
k

z∗
kwk(Jν )b†kbk

)⎛⎝ p∏
μ=ν+1

B
†
Jμ

⎞
⎠
⎫⎬
⎭|0〉. (A5)

In the last term of Eq. (A5), we want to commute the operator b
†
kbk to the extreme right, where it annihilates the vacuum |0〉. To

this aim, we write this term as

p∑
ν=1

⎡
⎣2gB

†
0

⎛
⎝ν−1∏

η=1

B
†
Jη

⎞
⎠ p∑

μ=ν+1

⎧⎨
⎩
⎛
⎝ μ−1∏

η′=ν+1

B
†
Jη′

⎞
⎠[∑

k

z∗
kwk(Jν )b†kbk, B

†
Jμ

]⎛⎝ p∏
μ′=μ+1

B
†
Jμ′

⎞
⎠
⎫⎬
⎭
⎤
⎦|0〉. (A6)

At this point, it is crucial to use the following manageable form for the commutator in Eq. (A6):[∑
k

z∗
k wk(Jν ) b

†
kbk, B

†
Jμ

]
=
∑

k

z∗
k wk(Jν )wk(Jμ) b

†
k. (A7)
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In general, for every μ and ν, we want to express Eq. (A7) in
the form Cμ,νB

†
Jν

+ Dμ,νB
†
Jμ

, where Cμ,ν and Dμ,ν are some
coefficients. For this reason, we impose the condition∑

k

z∗
kwk(Jν )wk(Jμ)b†k = Cμ,νB

†
Jν

+ Cν,μB
†
Jμ

, (A8)

where we have used the symmetry under the exchange ν ↔ μ.
Assuming that Eq. (A8) is correct, then we find that the
eigenvalue equation (A5) holds, provided that

1 − g
∑

k

|zk|2
2εk − EJν

+ 2g

p∑
μ=1( 	=ν)

Cν,μ = 0, (A9)

where we have used the expression for the wave function
wk(J ) = zk

2εk−EJ
. Equation (A8) gives(

2εk − EJμ

)
Cμ,ν + (

2εk − EJν

)
Cν,μ = |zk|2

with two different kinds of solutions:
(1) In the s-wave case, |zk|2 = 1 and Cμ,ν = −Cν,μ =

(EJν
− EJμ

)−1. Thus, from (A9) we get the well-known
Richardson equation (11), with no restrictions on εk. Notice
that the condition |zk|2 = 1 is more general than the s-wave
case zk = 1.

(2) In the l-wave case, zk = (kx − iky )l depends on k (for
l 	= 0), and the coefficients are given by

Cμ,ν = |zk|2
2εk

EJν

EJν
− EJμ

, (A10)

but we must have |zk|2 ∝ εk to have a Cμ,ν independent of k.
As a consequence, after the substitution |zk|2 = α εk, Eq. (A9)
becomes Eq. (12).

APPENDIX B: ALTERNATIVE CALCULATION OF I

In this appendix we discuss an alternative derivation of the
winding number I , which is also useful for the pure phase case
in Appendix C, that can be performed by analyzing directly
the map ωk in the case of real E. In order to do that, we first
separate Eq. (35) as

ωk = [f−(k) + f+(k)] eiφkl, (B1)

with f−(k) = kl

k2l−E
, k < E1/2l , and f+(k) = kl

k2l−E
, k >

E1/2l . The part f+(k) eiφkl gives a contribution I+ = l to I

since f+(k) is monotonic in k and assumes values [0,∞), so
that f+(k) eiφkl covers l times (because of the phase l φk) the
entire plane R2 ∼ S2 (the identification relying again on the
stereographic projection).

Assuming now that E 	= 0, we put k = 1/p in f−(k),
obtaining f−(p) = − 1

E

pl

p2l−E
= −f+(p), with p > E1/2l .

Apart from the unimportant multiplicative factor E−1, we can
write (renaming p ≡ k)

ωk = [f−(k) − f−(k)] eiφkl = 0, (B2)

showing that I = 0 if E 	= 0. The minus sign in f−(p),
responsible for the vanishing result for I , is related to the fact
that, for k varying, f+(k) and f−(k) span the space R2 ∼ S2

in the opposite sense.

The situation is different if E = 0: in this case we get only

ωk = f+(k) eiφkl (B3)

and I = I+ = l.

APPENDIX C: PURE PHASE GAP

We can also calculate the topological index I in the case
when �(k) = eiφk̂ l . In this case, we have shown in Sec. II
that we have integrability no matter what the particular single-
particle dispersion εk is; therefore, we assume again ξ(l)(k) =
k2l . The exact wave function reads, in momentum space and
up to an unimportant multiplicative constant,

ωk = (kx − iky )l

kl (2εk − E)
. (C1)

In this case we obtain

I = 2l2
∫ ∞

0
dk

k(2l−1)[2k2l − (E + Ē)]

[1 + (k2l − E)(k2l − Ē)]2
. (C2)

This integral yields I = l
|E|2+1 , a pretty unexpected result

since, in general, an integer winding number should be ex-
pected. However, this result can be explained quite natu-
rally by analyzing the map (C1) directly. This map can be
expressed as

ωk = 1

k2l − E
eiφkl . (C3)

As for (35), we can write again

ωk = [f−(k) + f+(k)] eiφkl, (C4)

with f−(k) = 1
k2l−E

, k < E1/2l , and f+(k) = 1
k2l−E

, k >

E1/2l . We notice that f−(k) eiφkl is homotopic to a constant
map f̃−(k) = c since f−(k) = (−∞,− 1

E
] (the minus sign is

reabsorbable in the phase φk) and not every point of the target
stereographic plane R2 is covered by f−(k) eiφkl . Then we
can write

ωk = [f−(k) + f+(k)] eiφkl ∼ f−(k) eiφkl (C5)

(here the symbol ∼ means here “continuously deformable
to”). Since, again, f+(k) = [0,∞) and is monotonic, it yields
a contribution I+ = l to I for every value of E. However,
f−(k) gives a nonvanishing contribution to I , covering a part
of the sphere with area

I− = − 1

π

∫ 1
E

0
dk

2π k

(1 + k2)2
= − E2

E2 + 1
, (C6)

where the minus sign appears since |f−(k → ∞)| → ∞. This
contribution sums up to I+, giving the result (C2):

I = I+ + I− = l − l
E2

E2 + 1
= l

E2

E2 + 1
. (C7)

In spite of the value of I , the real winding number related to
(C1) is Ĩ = I+ = l since we know that f−(k) is homotopic to
a constant map, a fact also resulting in a value of |I−| smaller
than 1.

This result matches the fact that the BCS case and the (C3)
case are linked by the transformation in the gap � → �(k) =
� eiφkl . However, this map is continuous but not invertible,
wrapping l times: this is the reason Ĩ = l.
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In conclusion, the case (C3) describes a phase with wind-
ing number I = l N

2 (with N
2 being the number of Cooper

pairs in the ground state). However, the energy of Bogoliubov

quasiparticles is the same as in the BCS case and always
gapped; thus, no phase transitions arise, and the system is
always in a phase with nontrivial topology.
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