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We study weakly interacting Bose gases using the functional renormalization group with a hydrodynamic
effective action. We use a scale-dependent parametrization of the boson fields that interpolates between a
Cartesian representation at high momenta and an amplitude-phase one for low momenta. We apply this to Bose
gases in two and three dimensions near the superfluid phase transition where they can be described by statistical
O(2) models. We are able to give consistent physical descriptions of the infrared regime in both two and three
dimensions. In particular, and in contrast to previous studies using the functional renormalization group, we find
a stable superfluid phase at finite temperatures in two dimensions. We compare our results for the superfluid and
boson densities with Monte-Carlo simulations, and we find they are in reasonable agreement.
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I. INTRODUCTION

Weakly interacting Bose gases have long been of theoreti-
cal interest for studying the multitude of phenomena related
to Bose-Einstein condensation and superfluidity [1–3] (see
Ref. [4] for a review). The phase transition between the
normal and the superfluid state is particularly interesting,
not least because this can be studied, both theoretically and
experimentally, in three, two, and even one dimension. The
character of these transitions depends sensitively on the di-
mensionality.

Especially with the modern development of techniques
for cooling gases of alkali atoms, these phenomena can be
explored in great detail experimentally, see Refs. [4–6] for
reviews. One particularly useful aspect of the study of atomic
gases is the fact that the interaction between the atoms can
be tuned using Feshbach resonances, allowing the behavior
of these systems to be explored for a range of interaction
parameters. Of particular interest for this work are studies
of low-dimensional systems [7–9], since these show sig-
nificantly different features from their more straightforward
three-dimensional counterparts.

This is closely linked to the fact that a consistent theoret-
ical description of such systems is more difficult for lower
dimensions. The mean-field approximation gives a qualitative
description of superfluidity in three-dimensional systems but,
for quantitative results and to be able to describe the normal-
to-superfluid phase transition, effects of fluctuations need to
be included, see, e.g., Ref. [10]. In particular, it is important
to include the Goldstone modes of the system, which represent
excitations of the phase of the condensate.

The effects of these fluctuations increase as the dimen-
sionality decreases, and they can even suppress condensation
[11–13]. For example, in one dimension, there is no Bose-
Einstein condensate (BEC) at any temperature. In two di-
mensions, condensation can occur only at zero tempera-
ture, as required by the Coleman-Mermin-Wagner theorem
[14]. Nonetheless, two-dimensional systems can still display

superfluid behavior, even though there is no long-range order.
In those systems the phase transition occurs through the
Berenzinskii-Kosterlitz-Thouless (BKT) mechanism, where
vortices form bound pairs [15,16].

The traditional way to make a detailed theoretical descrip-
tion for such problems is through the use of well-known
many-body techniques. These generally rely on a diagram-
matic representation of many-body perturbation theory, where
a subset of contributions is summed to infinite order. One
difficulty faced by such approaches is that the ungapped
propagators for the Goldstone modes lead to infrared (IR)
divergences in many of these contributions. However there
are strong cancellations between these divergences that fol-
low from Ward identities for the spontaneously broken U (1)
symmetry [17,18]. These cancellations are lost if an expansion
of, say, a self-energy is truncated at finite order. (See, for
example, Refs. [19,20].)

This problem affects, in particular, calculations using the
most straightforward representation for the fields: the linear or
Cartesian representation. In the case of a Bose gas described
by a complex field, this treats the real and imaginary parts of
the field as independent variables with an O(2) symmetry. In
the broken phase, the longitudinal component of the field de-
scribes fluctuations in the magnitude of the condensate, while
the transverse part describes the Goldstone modes. The strong
coupling between the longitudinal and Goldstone modes in
this representation is responsible for the IR-divergent terms
in quantities like the one-loop self energy of the longitudinal
field.

Similar issues arise in other areas of physics, in particular,
when a linear sigma model is used to describe broken chiral
symmetry in hadron physics (see, for example, Ref. [21]).
There they can be avoided by working with a nonlinear sigma
model [22], as in chiral perturbation theory [23]. In those
effective theories, the Goldstone modes are only weakly cou-
pled at low momenta and so large but canceling contributions
do not appear.
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For the nonrelativistic Bose gas we are concerned with
here, the corresponding effective theory is well known to be
the hydrodynamic one introduced by Popov [24]. This em-
ploys a polar or amplitude-phase (AP) representation for the
fields, where the Goldstone field has only derivative interac-
tions. As a result, the IR divergences of the Cartesian version
are absent and, at least at low momenta, these interactions can
be treated in perturbation theory. In this representation, the
Ward identities can be satisfied without delicate cancellations.
On the other hand, loop integrals over the Goldstone modes
are divergent in the ultraviolet (UV), which led Popov to
impose a rather arbitrary cutoff. However, these divergences
can be renormalized by adding higher-derivative interactions
to the theory. In that case, Popov’s Lagrangian should be
regarded as just the lowest-order piece in the expansion of an
effective field theory [25]. The couplings in such a theory do
not have simple connections to the interactions between the
particles. For example in the context of hadron physics, their
values are fixed using either phenomenological input or full
simulations of quantum chromodynamics.

A powerful alternative approach is the functional renor-
malization group (FRG) [26–28]. This is a nonperturbative
technique based on the evaluation of the full effective action.
A scale-dependent regulator is introduced, and one follows
the flow of the couplings in this action with the regulator
scale. The flow starts from a bare classical action where
all fluctuations, whether quantum or thermal, are suppressed
by the regulator. In the limit where the regulator scale k

is taken to zero, the full effective action (the generator of
one-particle irreducible Green’s functions) is recovered. In
practical applications, the expansion of the action is truncated
to a finite number of terms. As a result the action in the
physical limit will depend on the choices made in setting up
the flow equations. These include the form of the regulator,
and ways of optimizing this choice have been developed
[29,30].

There are many versions of the FRG; in this work we
use the one introduced by Wetterich [26,27] for the average
effective action, which is based on the Legendre transform
of the logarithm of the partition function. The exact flow
equation for this effective action has a one-loop structure.
However, in practice, a truncation scheme needs to be used
in order to solve for the RG flow. In this work we employ
a derivative expansion; other choices can be found in the
literature [31–33]. Truncations based on derivative expansions
have been widely used in applications of the FRG and, despite
the approximations introduced, they have been successful in
describing phase transitions and critical exponents in a variety
of systems [27,28].

In particular, with fields in the Cartesian representation,
the FRG has had some success in describing the weakly-
interacting Bose gas and related O(N ) models in three di-
mensions. In the critical regime, it yields results that are in
good agreement with Monte-Carlo simulations. Away from
that region, it has also been used to investigate bulk thermo-
dynamic properties [18,27,31,34–38]. As shown by Dupuis
[18,39], one appealing aspect of this FRG approach is that,
despite the potential IR divergences of loop diagrams as the
physical limit is approached, it does respect the relevant Ward
identity [17], giving a vanishing anomalous self-energy.

This self-energy, and the resulting IR-divergent propa-
gator for the longitudinal mode, arise from a momentum-
independent interaction that vanishes in the physical limit.
This treatment thus fails to capture the interaction between
the amplitude fluctuations of the condensate that is present in
Popov’s effective theory. It also omits the leading interaction
between the Goldstone modes, which is of second order
in momenta. These limitations may be remedied by the inclu-
sion of higher-order terms in the derivative expansion of the
action. However, in current calculations applying this scheme
to three-dimensional Bose gases, the flow needs to be stopped
at a finite scale k, before reaching the physical effective action,
since the IR divergence occurs at a very small but finite k

[18,35,40]. Fortunately, various bulk quantities such as the
condensate density are insensitive to this scale and converge
to their physical values before it is reached [18].

Such IR problems are more acute in two dimensions, where
the FRG has not been as successful. As in three dimensions,
straightforward applications of the FRG in the Cartesian
representation to the O(2) model [18,41,42] and the Bose
gas [18,43,44] show a similar breakdown of the flow at small
scales. Nevertheless, these authors suggest that the approach
may describe universality in the behavior near the breakdown
scale, reproducing, for example, the critical anomalous di-
mension. However, this is based on a line of pseudofixed
points at finite running scales. For a given initial condition,
the flow reaches a reasonable value for the anomalous dimen-
sion only for a single value of k, before becoming unstable.
Below that scale, the flow is always driven to the normal
(nonsuperfluid) phase at any finite temperature, implying a
finite correlation length, in contradiction to the BKT physics.
A stable superfluid phase has been found in this framework,
but only at a cost: either fine tuning of the regulator [45] or
unphysical neglect of the longitudinal mode [46]. Again, it has
been argued that the instability is an artifact of the truncation
and that adding higher-order terms will lead to the correct flow
[27,46], but this has not yet been demonstrated in detail.

An intriguing feature of these results from the Cartesian
representation is that, even though a critical point cannot be
located unambiguously, the FRG seems able to recover as-
pects of vortex physics without explicit reference to vortices.
This deserves further exploration, for instance using different
field representations.

These issues with the Cartesian version of the FRG for
two-dimensional systems have motivated recent papers imple-
menting versions of the FRG in AP representations, to a lattice
system in Ref. [47] and to continuum boson fields in Ref. [48].
The work of Defenu et al. [48] shows that, with fields in the
AP representation, the FRG is able to reproduce a physical
superfluid phase at lowest order of the derivative expansion,
without having to stop the evolution at a finite scale. However,
using the AP representation for all momentum scales runs into
problems in the UV. In contrast to the momentum-independent
bare interactions between the particles, the derivative cou-
plings of the Goldstone modes grow with momentum. As
mentioned above, this makes it nontrivial to match a theory
in the AP form onto the underlying one. Instead, the authors
of Ref. [48] simply subtract the contributions of free fields,
for which the path integral is Gaussian. This corresponds to
an uncontrolled UV renormalization. Apart from the lack of
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consistency in the treatment of fluctuations, this approach
is specifically designed for the region close to the phase
transition only.

In the present work, we develop a hybrid version of the
FRG, using a basis for the boson fields that smoothly switches
between the Cartesian and AP representations, which we refer
to as an “interpolating representation.” This is based on the
ideas of Pawlowski as presented by Lamprecht in Ref. [49]
who proposed a convenient form for this interpolation. It
allows us to start in the Cartesian representation for high regu-
lator scales and then at lower scales, where phase fluctuations
become increasingly dominant, to smoothly switch to the AP
form.

In this first application of the method, we study an O(2)
model in both two and three dimensions. This corresponds
to a classical statistical approach (the classical field approx-
imation) for weakly-interacting Bose gases close to their
phase transitions [50]. We examine the effect on the RG flow
of switching representations and check that we recover the
correct IR behavior in the physical limit. By using the same
approach in both two and three dimensions, we can study the
dependence on the dimensionality of the system. In particular,
we focus on obtaining a superfluid phase in two dimensions
within a simple truncation in order to demonstrate that the
interpolating representation simplifies the description of this
state.

We use the FRG to compute the superfluid and boson den-
sities, comparing our results with Monte-Carlo simulations
of Refs. [51,52]. The interpolator proposed by Lamprecht
and Pawlowski [49] contains two parameters, one of which
controls the scale at which the switch between representations
is made and the other determines how readily the switch is
made. We examine the dependence on both of these. We find
stable results if the switch is made at a momentum scale
where the longitudinal mode starts behaving very differently
from the phase (Goldstone) modes. This corresponds to the
hydrodynamic or “healing” scale [4].

Our paper is organized as follows. In Sec. II we define our
microscopic model, the FRG formalism, and the truncation
scheme used. Then in Sec. III, we give details of the Cartesian
and AP representations we use and outline the distinction
between the condensate and quasicondensate densities in the
superfluid phase. We then give details of the interpolator we
use to switch between these representations and present the
resulting flow equations. Finally, in Sec. IV we present our
results for two and three dimensions, comparing them with
the results from Monte-Carlo simulations.

II. EFFECTIVE ACTION

We consider a system of bosons at finite temperature
weakly interacting through a short-range repulsive poten-
tial. This has a phase transition to a superfluid phase. For
temperatures close to the critical one and considering only
low-momentum modes, we can work in the “classical field
approximation” [50], where the time dependence of the fields
is neglected. This is valid for momenta |q| � λ−1

DB , where
λDB = √

2π/mT is the thermal wavelength. This description
is equivalent to an O(2) model. This is a very useful starting
point to test our approach. Expressed in terms of the complex

(a) (b)

FIG. 1. Diagrammatic representations of the terms in the flow
equations (3) and (4). The filled square denotes ∂kR, the empty
square R, and the filled circle �̇

(1)
.

boson field φ, the bare action takes the form

S[�] = − 1

T

∫
ddx

[
1

2m
∇φ†∇φ − μ0φ

†φ + g

2
(φ†φ)2

]
.

(1)

Here T is the temperature, μ0 the chemical potential, and g

the strength of a repulsive contact interaction. Here and in the
following we express all mentioned quantities in units where
h̄ = kB = 1. We have also introduced � = (φ, φ†) to denote
a vector containing the field and its conjugate.

Starting from the action (1), we use the FRG to obtain a
renormalization group equation for the Legendre-transformed
effective action which depends on classical fields �cl [26,27].
In this approach, the flow is driven by a regulator R(q, k),
which is added to the theory to suppress fluctuations for
momenta |q| < k. The resulting effective action �k[�cl] runs
with the scale k of the regulator. For a large enough UV scale,
k = �, fluctuations are completely suppressed and ��[�cl]
can be taken to be the bare action,

��[�cl] = S[�cl]. (2)

In contrast, for k → 0 all fluctuations are taken into account
and �0[�cl] corresponds to the effective action which de-
scribes the physics of the interacting system. This functional is
the generator of the one-particle irreducible Green’s functions
for the system. The FRG constructs this action by following
the flow with respect to k, starting from the bare action at
the UV scale k = �. Note that, from now on, we drop the
superscript “cl” and will take � to refer to the classical fields.

The evolution of the action �k[�] as a function of k is
governed by the Wetterich equation [26,27],

∂k� = 1
2 tr[∂kR(�(2) − R)−1], (3)

where �(2) is the matrix of second functional derivatives with
respect to the fields �. The driving term of this equation
has a one-loop structure, which can be represented by the
diagram in Fig. 1(a), if we identify G = (�(2) − R)−1 as
the propagator. More generally, the fields can be allowed to
explicitly depend on k. In that case, the flow equation is
modified to [30],

∂k� + �̇ · δ�

δ�
= 1

2
tr[∂kR(�(2) − R)−1]

+ tr
[
�̇

(1)R
(
�

(2)
k − R

)−1]
. (4)

Here ∂k� represents the k derivative for constant fields, �̇ =
∂k� is the k derivative of the fields, and �̇

(1)
is the matrix

of the first functional derivatives of �̇ with respect to the
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fields. The diagrammatic representation of the additional term
is shown in Fig. 1(b).

In general the flow equation, either Eq. (3) or (4), is a func-
tional differential equation that cannot be solved directly. A
simplifying approximation needs to be made, and a common
approach is to use an ansatz based on a gradient expansion of
�, truncated to a small number of scale-dependent terms. This
reduces the functional FRG equations to a set of coupled ordi-
nary differential equations for the scale-dependent couplings,
which can be integrated numerically using standard methods.

In this work, we use the following ansatz for the O(2)
model:

�[�] = − 1

T

∫
ddx

[
Zm

2m
∇φ†∇φ + Ym

8m
∇ρ∇ρ + U (ρ,μ)

]
,

(5)

where Zm and Ym are k-dependent mass-renormalization fac-
tors. The function U (ρ,μ) is the effective potential expressed
in terms of ρ = φ†φ. We expand this potential to quartic order
in the fields around its (k-dependent) minimum ρ0, which
corresponds to the vacuum expectation value of ρ.

We choose to work at fixed chemical potential, taking the
physical chemical potential μ0 to be a k-independent param-
eter. This means that the boson density n0 depends on k. An
alternative would be to run the evolution at constant density, in
which case μ0 would depend on k as in Ref. [53]. Following
the approach of Floerchinger and Wetterich [35], we expand
U (ρ,μ) around μ0. This allows us to evaluate derivatives with
respect to the chemical potential μ, for instance to determine
the boson density via

n0 = −∂μU |μ=μ0 . (6)

We thus keep terms up to first order in the shift in the chemical
potential μ − μ0 from its physical value, which results in the
parametrization of the potential

U (ρ,μ) = u0 + u1(ρ − ρ0) + u2

2
(ρ − ρ0)2 − n0(μ − μ0)

− n1(μ − μ0)(ρ − ρ0) − n2

2
(μ − μ0)(ρ − ρ0)2,

(7)

where the coefficients ui and ni all run with k.
There is a redundancy in specifying both the parameters u1

and ρ0. We keep both so that the same form of the potential
can deal with a transition between the broken and symmetric
phase. If, during the flow, the system is the symmetric phase,
we must have ρ0 = 0 and we allow u1 to run. On the other
hand, in the phase where the U (1) symmetry is broken, we
follow the evolution of the position of the minimum of the
potential, ρ0, and we set u1 = 0. A nonzero value of ρ0 signals
the occurrence of superfluidity and the value of Zmρ0 at k =
0 enables us to extract the physical superfluid density. The
detailed physical interpretation of ρ0 will be discussed below
in Sec. III A. Since we evolve at fixed chemical potential,
we determine the physical boson density at the end of the
evolution from the value of n0 at k = 0.

We start the flow at a high scale k = � � λ−1
DB (discussed

in detail in Sec. III D), where we impose initial conditions that

match the running action Eq. (5) to the bare action Eq. (1):

ρ0,� = n0,� = μ0

g
�(μ0), u1,� = −μ0�(−μ0),

u2,� = g, Zm,� = 1, Ym,� = 0, n1,� = 1, n2,� = 0,

(8)

where � denotes the unit step function. If the evolution starts
with the system in the symmetric phase, we find that it remains
in that phase throughout the evolution, which is largely trivial.
Therefore we always start with the system in the broken phase,
with ρ0 > 0 at the scale �. In cases where the physical state
of the system is in the normal phase, ρ0 reaches zero at
some finite scale ks , and we then continue the flow using the
symmetric parametrization of the potential.

III. EVOLUTION IN THE BROKEN PHASE

We now introduce the interpolating representation used for
the fields in the broken phase and we present in detail the
resulting flow equations. The corresponding equations for the
symmetric phase can be obtained straightforwardly. They are
given in Appendix A.

A. Field representations

Since the key issue we explore in this work is the effect
of the choice of field representation on the RG evolution in
a phase with a condensate, we concentrate on this part of the
problem. In this case the effective potential has a minimum at
a nonzero value of ρ = φ†φ = ρ0. Choosing the correspond-
ing expectation value of the field φ to be real and positive,
we can decompose the fields as φ = √

ρ0 + σ + iπ . Here
σ describes the fluctuations of the longitudinal (or “Higgs”)
mode and π the fluctuations of the gapless Goldstone mode.
This is the Cartesian representation of the field, which has
been widely used in FRG studies of phase transitions in O(N )
models and Bose gases [35,46,54,55].

An alternative is the AP representation, as in the hydro-
dynamic effective theory [24]. This representation ensures
that low-momentum Goldstone modes interact only weakly
and, as a result, symmetry constraints are satisfied without
requiring delicate cancellations of large or even divergent
contributions. In this work we use the representation

φ = (
√

ρ0 + σ )eiϑ/
√

ρ0 , (9)

where σ now describes the amplitude (radial) fluctuations and
ϑ the Goldstone (phase) fluctuations (note that in this case
the variable ϑ has periodicity 2π

√
ρ0). Other versions can be

found in the literature; for example, Defenu et al. [48] use φ =√
ρ0 + σeiϑ in their recent application of the FRG to two-

dimensional systems.
An important point to note is that the parameter ρ0 plays

a very different role in each of these representations. In
the Cartesian case,

√
ρ0 is equal to the expectation value of

the longitudinal component of the field. If this is nonzero, the
vacuum is not invariant under the symmetry transformations
and thus ρ0 is an order parameter for the system. For a Bose
gas, this is simply the condensate density, denoted by ρc. On
the other hand, in the AP representation,

√
ρ0 is equal to the

expectation value of the radial field, which is invariant under
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the symmetry. Popov originally referred to this quantity ρ0 as
the “bare condensate” [24], but it is now commonly referred
to as the “quasicondensate” density ρq [56].

The radial part of the field, defined in terms of ρ = φ†φ,
is a U (1) invariant. Even if this is held fixed, its phase can
still fluctuate, suppressing the long-range order. As a result,
the value of the quasicondensate is always larger than the
condensate, and significantly so if there are large fluctuations
in the phase of the field. Since it is a U (1) invariant, the
quasicondensate density is not an order parameter for a broken
symmetry. Indeed it is possible for a system to have a finite
ρq even though ρc is zero and the symmetry is unbroken. In
particular, this is what gives rise to the BKT phase transition,
which is driven by vortex structures in the phase field.

To illustrate these features in more detail, consider the
long-distance behavior of the off-diagonal correlation func-
tion,

Gn(x) = 〈φ†(x)φ†(0)〉. (10)

For a system with long-range order (LRO) this tends to the
condensate density as |x| → ∞,

Gn(x) ∼
x→∞ ρc. (11)

This describes the behavior in three dimensions below the
critical temperature Tc, where the order parameter is finite. In
contrast, in two dimensions ρc can be nonzero only at T = 0.
Above the critical temperature the symmetry is unbroken, the
condensate vanishes, and thus Gn(x) decays exponentially.
For such a system described in the Cartesian representation, it
is straightforward to see that Gn(x) approaches a finite value
at long distances, and this leads to the relation ρc = ρ0. There-
fore, in FRG calculations that use this representation, the
physical limit of ρ0 as k → 0 is identified with the condensate
density ρc. These calculations find that, in three dimensions,
ρ0 saturates at a finite value for k → 0, as expected [31,35].

In cases where the system is superfluid but the symmetry is
unbroken, such as in the two-dimensional Bose gas at finite
temperatures below the BKT transition, Gn(x) decays as a
power law rather than as an exponential:

Gn(x) ∼
x→∞ ρq (|x|/ξ )−η, (12)

where η is the anomalous dimension and ξ the correlation
length. Here ρq is the quasicondensate density just discussed,
which can be interpreted as a local condensate with a fluctu-
ating phase. (More formal definitions and modern discussions
of ρq can be found in Refs. [11,20,51,52,57].) Since Gn(x)
vanishes as |x| → ∞, the condensate density is zero and there
is no order parameter, even though ρq is finite. This behavior
is known as “quasi-long-range order” (QLRO). In the FRG, a
power-law behavior of Gn(x) means that ρc is also expected
to decay as a power law for small k, ρc ∼ kη, tending to
zero as k → 0. However, as mentioned in the introduction,
this has not been fully achieved with the truncations used in
calculations so far [27,46].

In the AP representation, the correlation function takes the
form

Gn(x) = 〈(√ρ0 + σ (x))(
√

ρ0 + σ (0))ei(ϑ (x)−ϑ (0))/
√

ρ0〉
= ρ0〈ei(ϑ (x)−ϑ (0))/

√
ρ0〉, (13)

where the long-distance behavior is determined by the average
over phase fluctuations in the exponential. These fluctuations
mean that the actual condensate density is smaller than ρ0,
which should now be identified as the quasicondensate density
ρq .

B. Interpolating representation

The AP representation is appropriate for describing low-
momentum Goldstone modes [52] as it directly implements
the symmetry constraints on the interactions of those modes.
In particular it is crucial for applications of the FRG to
systems where large fluctuations in those modes mean there
is only QLRO, such as the two-dimensional Bose gas.

In contrast, at high momenta the gap for longitudinal
modes is less important, and longitudinal and transverse
fluctuations are expected to be of similar sizes. In the high
cutoff-scale regime of the FRG, the Cartesian basis is thus the
appropriate one. Indeed it is used to define the bare action that
the FRG flow starts from.

In order to apply the FRG to systems where fluctuations
have a significant effect on the condensate or indeed destroy
the LRO, we need to switch between the Cartesian and AP
representations. A convenient tool for doing this is the scale-
dependent field representation proposed by Lamprecht and
Pawlowski [49]. This provides a k-dependent basis for the
fields that interpolates smoothly between the two representa-
tions. In Sec. III D we will define in detail the regions where
each representation is used.

In the interpolating representation, k-dependent fields σ

and ϑ are defined in terms of the original fields φ by [49]

φ = (σ + bk )eiϑ/bk − (bk − √
ρ0). (14)

This function bk should tend to +∞ as k → ∞ so that the
fields become

φ(x) = (
√

ρ0 + σ (x)) + iϑ (x), (15)

and we recover the Cartesian representation, with σ rep-
resenting the longitudinal fluctuations and ϑ the Goldstone
fluctuations. On the other hand, bk should tend to

√
ρ0 in the

physical limit, giving the AP representation

φ = (σ + √
ρ0)eiϑ/

√
ρ0 . (16)

In this limit, the field σ represents the amplitude fluctuations
and ϑ the phase fluctuations. The specific form of the interpo-
lating function bk that we use is discussed below in Sec. III D.

In terms of the k-dependent fields the density ρ = φ†φ
takes the form

ρ = b2
k

[
A2

k (σ ) + B2
k − 2Ak (σ )Bk cos(ϑ/bk )

]
, (17)

where

Ak (σ ) =
(

1 + σ

bk

)
, Bk =

(
1 −

√
ρ0

bk

)
. (18)

At the minimum of the potential, σ = ϑ = 0, the density is
given by ρ = ρ0 for all values of k.

The fields σ and ϑ depend on the scale k, both explicitly
through bk and implicitly through the running parameter ρ0.
For this reason we need to employ the modified flow equation
(4). On the left-hand side this contains the k derivatives of
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the fields �̇ = (σ̇ , ϑ̇ ). These can be found by differentiating
Eq. (14), using the k independence of the original fields
(φ̇ = φ̇† = 0) to obtain

σ̇ = − ḃk −
(

1

2
√

ρ0
ρ̇0 − ḃk

)
cos(ϑ/bk ), (19)

ϑ̇ = ḃk

bk

ϑ + bk

σ + bk

(
1

2
√

ρ0
ρ̇0 − ḃk

)
sin(ϑ/bk ). (20)

At the minimum of the potential, σ = ϑ = 0, these become

σ̇ |σ=ϑ=0 = − 1

2
√

ρ0
ρ̇0, ϑ̇ |σ=ϑ=0 = 0. (21)

In the final term on the right-hand side of Eq. (4), we need
�̇

(1)
which is given by

�̇
(1) = δ�̇

δ�
=

(
0 − bk

(bk+σ )2 Ck sin(ϑ/bk )
1
bk

Ck sin(ϑ/bk ) ḃk

bk
+ 1

bk+σ
Ck cos(ϑ/bk )

)
,

(22)

where

Ck =
(

ρ̇0

2
√

ρ0
− ḃk

)
. (23)

C. Ansatz and flow equations

By inserting the definition (14) into Eq. (5) we obtain a
parametrization of � for the broken phase in terms of the
interpolating fields. It reads

�[�] = − 1

T

∫
ddx

[
Zϑ

2m
A2

k (σ )(∇ϑ )2 + Zσ (ϑ )

2m
(∇σ )2

+ Ym

2m
b2

k

(
σ

bk

(
σ

bk

+ 2
(
1 − Bk cos(ϑ/bk )

))
(∇σ )2

+A2
k (σ )B2

k sin2(ϑ/bk )(∇ϑ )2 + 2
(
Ak (σ )

−Bk cos(ϑ/bk )
)
Ak (σ )Bk cos(ϑ/bk )∇σ∇ϑ

)

+U (ρ,μ)

]
, (24)

where ρ is given by Eq. (17) and

Zσ (ϑ ) = Zϑ + Ymb2
k (1 − Bk cos(ϑ/bk ))2. (25)

When evaluated at the potential minimum, this takes the
form Zσ = Zϑ + Ymρ0. Depending on which limit of the
interpolating basis is used, we identify Zϑ and Zσ as the mass
renormalizations of the Goldstone/phase and longitudi-
nal/amplitude modes, respectively. In the Cartesian represen-
tation Zϑ is usually denoted as Zπ . The effective potential
U is defined in Eq. (7), where we take u1 = 0 since we are
working in the broken phase.

It is easy to prove that in the limit when bk → ∞ we
recover the Cartesian ansatz that can be found elsewhere
[46]. Similarly, when bk = √

ρ0 we recover the structure of
the hydrodynamic actions used in other works, for example
Ref. [24].

The propagator evaluated at σ = ϑ = 0 is given by

Gσσ (q) = −1

Zσ q2/m − 2n1δμ + 4(u2 − n2δμ)ρ0 + Rσ (q)
,

Gϑϑ (q) = −1

Zϑq2/m − 2n1Bkδμ + Rϑ (q)
, (26)

where δμ = μ − μ0 and Bk is defined in Eq. (18). The off-
diagonal terms vanish, Gϑσ (q) = Gσϑ (q) = 0. For calcula-
tional simplicity we use the optimized regulator [58]

Rϕ (q) = Zϕ

m
(k2 − q2)�(k2 − q2), (27)

where ϕ = σ, ϑ, Zσ = Zϑ + ρ0Ym and �(x) is the unit step
function. The use of different renormalization factors Zϕ in
the regulators for the longitudinal and transverse fields reflects
the fact that these describe fluctuations about a vacuum with
spontaneously broken symmetry. We include these factors in
order to be able to solve analytically the momentum integrals
and thus simplify the numerical computations. We aim to
explore different choices of regulator in future work.

The flow equations for the k-dependent couplings and
factors are extracted from field derivatives of Eq. (4). At the
level of truncation used in this work, Eqs. (5), (7), they are:

2u2
√

ρ0ρ̇0 = �̇(1)
σ

∣∣∣
ρ0,μ0

,

−4ρ0u̇2 + 2u2ρ̇0 = �̇(2)
σσ

∣∣∣
ρ0,μ0

,

ṅ0 − n1ρ̇0 = ∂μ�̇

∣∣∣
ρ0,μ0

,

2
√

ρ0ṅ1 − 2n2
√

ρ0ρ̇0 = ∂μ

(
�̇(1)

σ

)∣∣∣
ρ0,μ0

,

4ρ0ṅ2 + 2ṅ1 − 2n2ρ̇0 = ∂μ

(
�̇(2)

σσ

)∣∣∣
ρ0,μ0

,

− Żϑ

m
= ∂p2

(
�̇

(2)
ϑϑ

)∣∣∣
ρ0,μ0,p=0

,

−ρ0Ẏm

m
− Żϑ

m
= ∂p2

(
�̇(2)

σσ

)∣∣∣
ρ0,μ0,p=0

. (28)

The terms on the left-hand sides come from taking derivatives
for both terms on the left-hand-side of Eq. (4) and evaluating
them at ρ = ρ0 and μ = μ0, using Eqs. (19) and (20). Simi-
larly, the terms on the right-hand sides denote derivatives of
both terms on the right-hand-side of Eq. (4). The σ and ϑ

subscripts denote derivatives with respect to those fields. The
diagrammatic representation of �̇(1) is shown in Fig. 2 and
of �̇(2) is shown in Fig. 3. The analytical expressions for all
the diagrams are given in Appendix B. The upper diagrams in
both figures arises from the first term on the right-hand side of
Eq. (4), while the bottom diagrams originate from the second
term. The vertices between external legs and propagators
correspond to the usual functional derivatives of the action
in Eq. (24). On the other hand, vertices between external legs
and �̇

(1)
(black circles), correspond to functional derivatives

of �̇
(1)

in Eq. (22). Because of the trigonometric functions in
both the ansatz for � and in �̇, all these diagrams contribute.
In this work, we have used WOLFRAM MATHEMATICA [59] to
compute the functional derivatives, manipulate the diagrams,
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FIG. 2. Diagrammatic representation of the terms contributing to
�̇(1) in the broken phase. Filled squares denote ∂k R, empty squares
denote R, and circles denote �̇

(1)
.

and analytically carry out the momentum integrals using the
regulator in Eq. (27).

To construct the flow equations of Zϑ and Ym, the external
legs in the corresponding diagrams must carry an external
momentum p. The resulting driving terms are then expanded
to the appropriate order around p = 0 to determine the evo-
lution of the mass renormalizations. The evolution of u2 and
n2 is driven by �(2)

σσ , which follows from the identification of
2u2ρ0 as the mass of the longitudinal/amplitude mode. This
is equivalent to differentiating the flow equation for U twice
with respect to ρ and then evaluating at ρ = ρ0. Similarly,
since Ym is tied to Zσ , its evolution is also extracted from �(2)

σσ .

D. Choice of bk

In Popov’s hydrodynamic approach [24], the high-
momentum modes are described using the Cartesian repre-
sentation, and the low-momentum modes in the AP repre-

FIG. 3. Diagrammatic representation of the terms contributing to
�̇(2) in the broken phase. Filled squares denote ∂k R, empty squares
denote R, and circles denote �̇

(1)
.

sentation. These two regimes are separated by a scale k0

which, while not completely arbitrary, is not uniquely defined
[24,39]. To avoid a similar ambiguity in the FRG, we need to
identify the scale at which bk switches the flow between the
two representations. We should also check that there is only a
weak dependence of observables on the precise value of this
scale. The Cartesian representation should be used in the high-
momentum regime where both longitudinal and Goldstone
fluctuations are important, that is, when both propagators Gσσ

and Gϑϑ in Eq. (26) are comparable. This ensures that we
recover the bare action in the UV. On the other hand, the AP
representation should be used in the low-momentum regime
where the phase fluctuations of the Goldstone mode dominate
over the amplitude fluctuations, that is when Gϑϑ 
 Gσσ .
These two regimes can be distinguished in the FRG flow by
the dimensionless quantity [40]

wk = Zσk2/2m

2u2ρ0
. (29)

For cutoffs at high momenta, interactions between the fluc-
tuations are suppressed and the path integral over them is
approximately Gaussian. We therefore refer to this as the
“Gaussian” regime. It corresponds to w 
 1, and the low-
momentum (or Goldstone) regime to w � 1. The evolution
starts from UV scales k deep in the Gaussian regime, and it
ends in the Goldstone regime unless ρ0 reaches zero during
the evolution and the system goes to the symmetric phase.

By examining the behavior of the longitudinal/amplitude
propagator, we can see that Gσσ is dominated by the kinetic
term in the Gaussian regime, whereas it is dominated by 2u2ρ0

in the Goldstone regime which suppresses the corresponding
fluctuations. In contrast, the propagator Gϑϑ is not gapped.
In a dynamical system this would lead to a phononlike en-
ergy spectrum (linear in momentum), rather than particlelike
(quadratic in momentum). This change in the spectrum at
low momenta is closely related to the onset of superfluidity
[10,13]. As we will show later, the use of the AP representa-
tion at low momenta enables us to obtain a gapped propagator
for the amplitude modes in two dimensions. Moreover, we
can identify a characteristic scale kh that separates the two
regimes, given by the value of k where w = 1:

k2
h = 4mu2(kh)ρ0(kh)/Zσ (kh). (30)

We shall refer to kh as the healing scale, in analogy to the
similarly-defined physical healing length which sets a relevant
scale for superfluid phenomena [4,13].

In order to use the AP representation in the Goldstone
regime and the Cartesian representation in the Gaussian
regime we use an interpolator of the form proposed by Lam-
precht and Pawlowski [49],

bk = √
ρ0[1 + (α wk )ν], (31)

where the parameter α allows us to check the dependence of
our results on the switching scale, and the parameter ν con-
trols how fast the transition between the two representations is
made. As just discussed, the transition should be made around
the healing scale kh, so α should be of the order of one. In the
following section we show results for α = 1. We have checked
that observables like the superfluid density are insensitive to
variations of α by a factor of two (see Appendix C for more
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details). There is no similar argument to choose ν. In Sec. IV
we show results for different values of ν in order to determine
the best choice.

E. Superfluid density

From the discussion in Sec. III A, it is clear that by us-
ing this interpolating representation with running fields, the
parameter ρ0 will change from being the scale-dependent
condensate density ρc in the Gaussian regime to the quasi-
condensate density ρq in the Goldstone regime. However, the
observable quantity of interest is a third density: the superfluid
density ρs .

Here we make the obvious remark that condensation and
superfluidity are related but not identical concepts, which is
most evident in systems with QLRO. Condensation refers to
the macroscopic occupation of the same quantum state and
is reflected in the breaking of a global symmetry, whereas
superfluidity refers to the property of particles to flow without
friction. Thus, in general, these densities are different, ρs �= ρc

(for more discussion see Ref. [60]). Similarly, although the
concept of quasicondensate is more closely related to super-
fluidity, in general its density is also different.

The superfluid density can be defined from the stiffness
with respect to phase changes, that is, from the coefficient of
the kinetic term in the action governing the phase fluctuations
at low momenta [24]

�kin[ϕ] =
∫

ddx
ρs

2m
(∇ϕ)2, (32)

where ϕ is the phase field normalized to have periodicity 2π .
We find that, independent of the representation used, the scale-
dependent superfluid density is given by [55]

ρs = Zϑρ0. (33)

This becomes the physical superfluid density in the limit
k → 0. In the AP representation, which corresponds to the
limit bk = √

ρ0 of our interpolator, the superfluid density is
related to the quasicondensate by ρs = Zϑρq .

IV. RESULTS

In this section we present results for the O(2) model in
two and three dimensions. These are obtained using T = 10,

m = 1, and the initial condition u2,� = g = 10−3. The value
of the chemical potential is varied in order to study the
behavior of the system around the phase transition.

The normal-to-superfluid phase transition point depends on
the strength of the interaction. Additionally, in the classical
field approximation the UV scale � is arbitrary, and different
choices of � move the transition point. However, the universal
features of the weakly-interacting Bose gas around the phase
transition can be studied by using the dimensionless functions
[57]

fs = ρs/(mdT 2gd−2)
1

4−d , (34)

which corresponds to the dimensionless superfluid density,
and

λ = (n0 − nc )/(mdT 2g2)
1

4−d , (35)

FIG. 4. Flow of ρ0 (solid lines), u2 (dotted lines), and Zϑ (dashed
lines) as a function of log(k/�) in three dimensions for μ0 = 1.5 ×
10−3. The values of both ρ0 and u2 have been scaled by their initial
values at k = �. The light blue lines are the flow obtained using the
Cartesian representation and the dark blue lines are obtained using
the interpolating basis with ν = 3. The vertical line corresponds to
the scale kh in Eq. (30).

which corresponds to the dimensionless density profile that
indicates how the boson density deviates from its value
at the phase transition. These are functions only of the
dimensionless control parameter

X = μ0 − μc

(mdT 2g2)
1

4−d

, (36)

where nc and μc are the critical boson density and critical
chemical potential, respectively. Depending on the value of
μ0, the system will be in the superfluid phase (X > 0), where
the flow remains in the broken phase, or in the normal phase
(X < 0), where the flows reaches the symmetric phase at
some finite scale. The value of μc that result in the phase
transition defines X = 0. We use � = 1 as the initial UV
scale, and we choose values of μ0 which ensures that we
start in the Gaussian regime. We will compare results for
fs (X) and λ(X) from our approach with those of Monte-Carlo
simulations from Refs. [51,52].

A. Three dimensions

Figure 4 shows an example of a typical evolution of
ρ0, u2, and Zϑ in the superfluid phase as a function of k.
We compare the evolution using the interpolating basis with
the ones obtained using the Cartesian representation as in
previous FRG studies. We can see that initially, for k 
 kh

where kh is the scale defined in Eq. (30), both flows coincide
since the interpolating basis is in its Cartesian limit. Then as
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(a) (b)

FIG. 5. Dimensionless superfluid density fs (a) and density profile λ (b) as a function of X in three dimensions. The red dash-dotted
lines are obtained using the interpolating basis with ν = 1, the gray dashed lines with ν = 1.5, and the dark blue solid lines with ν = 2. The
cyan dotted lines are obtained using the Cartesian representation. The black circles correspond to the MC simulations of Ref. [52]. The insets
illustrate details of the behavior near X = 0.

k approaches kh the flows start to differ. The flow of ρ0 is not
significantly affected, showing only a small difference in the
Goldstone regime. In contrast, the flow of u2 is quite different
in the two representations. In the Cartesian case it is driven to
zero linearly with k, as has been seen in other FRG treatments
[18], while with the interpolating basis it converges to a finite
value. Zϑ remains around one at the beginning of the flow
(its bare value in the UV) and starts to deviate around kh.
With the Cartesian representation Zϑ increases as we lower
k, converging to a physical value greater than one. This arises
from the fact that the superfluid density ρs = Zϑρ0 is larger
than the condensate density ρc [11,12], which equals ρ0 in the
Cartesian representation. On the other hand, with the inter-
polating basis Zϑ initially increases in the Gaussian regime,
then starts to decrease around kh, and finally converges to a
value smaller than one. This behavior is as expected for the
interpolation since the superfluid density is smaller than the
quasicondensate density ρq , which equals ρ0 in the AP limit.
Thus, with the interpolation we can see that during the flow ρ0

changes from being the scale-dependent condensate density
ρc to the quasicondensate density ρq , as expected.

Figure 5 shows our results for the dimensionless functions
fs (X) and λ(X) for different choices of the parameter ν in
Eq. (31), as well as the results obtained with the Cartesian
representation. We can see that by increasing the value of ν,
that is by making the transition between the two representa-
tions more abrupt, the curves for both fs and λ get closer
to the results in the Cartesian representation giving a better
agreement with the MC simulations. Our interpretation is
that for small values of ν there are small admixtures of the
AP representation in the Gaussian regime that result in an
incorrect flow in the UV. In addition, for cases where the
flow reaches the symmetric phase, this always occurs in the
Gaussian regime and so a large enough ν ensures that we
use the Cartesian representation during the entire flow. Our
calculations suggest that for ν � 2 the curves converge.

B. Two dimensions

Figure 6 shows a typical evolution in the superfluid phase
in two dimensions. Again, in the Gaussian regime all the
flows coincide, but they diverge for smaller k. Unlike what is

FIG. 6. Flow of ρ0 (solid lines), u2 (dotted lines), and Zϑ (dashed
lines) as a function of log(k/�) in two dimensions for μ0 = 2 ×
10−2. The values of ρ0,k and u2,k have been scaled by their initial
values at k = �. The light blue lines are the flow obtained using the
Cartesian representation and the dark blue lines are obtained using
the interpolating basis with ν = 3. The vertical line corresponds to
the scale kh defined in Eq. (30).
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(a) (b)

FIG. 7. Dimensionless superfluid density fs (a) and density profile λ (b) as a function of X in two dimensions. The point where X = 0 in
the FRG calculations was chosen when fs = 2/π . The fuchsia dash-dotted lines are obtained using ν = 1.5, the red dotted lines using ν = 2,
the gray dashed lines using ν = 2.5, and the solid dark blue lines using ν = 3. The black circles correspond to the MC simulations of Ref. [51].

seen in three dimensions, the evolution of ρ0 is very different
for the two representations. The flow of ρ0 in the Cartesian
representation, where it should be interpreted as the conden-
sate density ρc, decays approximately as a power law below
kh. However, ρ0 flows to zero at a small but finite value of
k [log(k/�) ≈ −50 in this case, outside the range of the fig-
ure], implying that the symmetry is restored. With the interpo-
lating basis on the other hand, ρ0 quickly converges to a finite
value, showing that the system has a finite quasicondensate
density ρq .

As in three dimensions, u2 behaves quite differently in the
two representations. In the Cartesian representation it flows
to zero, vanishing quadratrically with k in this case. In the
interpolating basis, it converges quickly to a finite value. Since
both ρ0 and u2 are finite in the physical limit, the amplitude
fluctuations remain gapped in the interpolating basis. As in
three dimensions, the evolution of Zϑ in the interpolating
representation is consistent with ρ0 changing from ρc to
ρq , initially growing larger than one before converging to
a value below one. Since both ρ0 and Zϑ are finite in the
physical limit, this representation leads to a finite physical
superfluid density. In contrast, Zϑ remains larger than one in
the Cartesian representation.

Figure 7 shows results for fs (X) and λ(X) for different
choices of ν. The phase transition in our approach is different
from the true BKT transition. To make it easier to compare
with the results of simulations, we have shifted our definition
of X so that X = 0 corresponds to fs = 2/π (the known value
of the superfluid density at the BKT transition). Without this
adjustment the normal phase is not reached in our calculations
until X ≈ −0.18. We show results only for ν � 1.5; for
smaller values of ν the flow is always driven to the symmetric
phase. Our interpretation is that for small values of ν there are
admixtures of the Cartesian representation in the Goldstone
regime that make the flow unstable.

For ν � 1.5, both fs and λ are rather insensitive to the
choice of ν in the region X � −1. On the other hand, we
see a more noticeable dependence of λ(X) on the value of

ν in the normal phase (X � −0.2). In all cases, the results
depend only weakly on ν for ν � 2.5. Around the superfluid-
to-normal phase transition (−0.2 � X � −0.1) we see the
most noticeable differences in fs (X) as well as a discontinuity
in λ(X).

We expect that for normal systems the flow should reach
the symmetric phase in the Gaussian regime (k 
 kh), and
so the entire flow is solved using the Cartesian represen-
tation. This is always the case in three dimensions and
in two dimensions for X � −0.2. However, close to the phase
transition in two dimensions (X ≈ −0.18) the flow reaches
the symmetric phase for k < kh (the Goldstone regime), and
thus we are using a mixed representation in a region where it
is not applicable. This causes an instability around the phase
transition, as well as the discontinuity in λ(X). This behavior
is probably an artifact caused by the neglect of vortex effects.
In particular, we note that a similar discontinuity in λ was
reported by Lim et al. [61] when using the AP representation
of Ref. [11].

In two dimensions, vortices are important for describing
the superfluid phase close to the phase transition. In addition,
the change of the vortex fugacity produces a jump in the
superfluid density at fs = 2/π [15,16]. Although there is a
noticeable difference between our results for fs and the MC
simulations in the superfluid phase (X > 0), the inclusion of
vortex effects should produce a decrease of the value of fs

around the BKT transition.
Vortices are also important for describing the normal phase

where the Bose gas forms a vortex plasma. The omission of
their effects could explains the deviations in the normal phase
and the problems found around the phase transition (X ≈
−0.18). In view of this, our results are in reasonable agree-
ment with the simulations. The results for fs in the region
X > 0 show larger deviations, but they are in line with those
recently reported by Defenu et al. [48] who used the FRG in
the AP representation. On the other hand, the results for λ,
although not as robust as the ones reported in Ref. [44], are in
better agreement with the simulations, particularly for X > 0.
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The smooth decrease of fs , as opposed to a sudden jump, is
believed to be a consequence of neglecting vortex effects. Un-
like the hydrodynamic description at mean-field level, which
predicts a quasicondensate at any finite temperature, we find
this only for a limited range of temperatures. The transition
occurs at a lower density than that expected for the BKT one,
which is similar to the estimate by Fisher and Hohenberg [62].

V. CONCLUSIONS

In this work, we use the FRG to study weakly interacting
Bose gases in two and three dimensions. Previous applications
of the method have yielded encouraging results for critical
behavior and bulk thermodynamic properties in three dimen-
sions, when using the standard, Cartesian representation of the
fields. However, particularly in two dimensions, they encoun-
tered problems with the IR behavior, with flows that restore
the symmetry at finite scales for any nonzero temperature
and hence do not lead to a physical superfluid phase. The
alternative AP representation alleviates these IR problems but
cannot easily be matched in the UV onto the bare interaction
between the particles.

Building on the suggestion of Lamprecht and Pawlowski,
we use a scale-dependent representation of the boson fields
that interpolates smoothly between the Cartesian and AP
representations. With this, we can solve the FRG flow using
the Cartesian representation in the high-momentum regime,
where both longitudinal and Goldstone modes are impor-
tant, and using the AP representation in the low-momentum
regime, where the Goldstone (phase) fluctuations dominate.
This also allows superfluid systems to be described in terms
of a quasicondensate density, which can be nonzero in the
absence of long-range order.

In the present study, we work within the classical-field
approximation that is neglecting the UV quantum fluctuations
by not considering the time derivative in the action. In this
approximation, the Bose gases are described by O(2) models.
This allows us to explore their properties around the phase
transition and to test the interpolation between representations
by comparing our results for the superfluid and boson densi-
ties with Monte-Carlo simulations.

We adopt here the version of the FRG based on the average
effective action, the flow of which is governed by the Wet-
terich equation. Because we employ scale-dependent fields,
we use a modified version of this equation with additional
terms arising from the derivatives of the fields. We truncate
the effective action to a quartic potential and terms with two
spatial derivatives. The derivative terms include two structures
which can distinguish amplitude and phase fluctuations in
the phase with broken symmetry. In this first exploration of
the approach, we use the “optimized” regulator suggested by
Litim, as this eases numerical computation.

In both two and three dimensions, we are able to obtain
consistent descriptions of superfluid phases in Bose gases. We
find reasonable agreement with Monte-Carlo simulations by
using interpolators that switch between the Cartesian and AP
representations around the healing scale kh defined in Eq. (30)
and that make this transition sharply enough. Below this
scale, the ungapped phase fluctuations become increasingly
important, making the AP representation the natural one to

use. On the other hand, for scales above kh, Goldstone and
longitudinal fluctuations are of similar importance and the
system should be described with the Cartesian representation
in order to match the flow onto the bare action.

Choosing a switching scale too far above kh or making
the transition too slowly generates admixtures of the AP
representation in the UV regime. The derivative interactions
between the Goldstone modes become strong here, leading to
results that deviate from those of the simulations. On the other
hand, a switching scale too far below kh leaves admixtures of
the Cartesian representation in the IR regime and, in two di-
mensions, these drive the flow to the nonsuperfluid symmetric
phase.

In three dimensions, our results for zero-momentum prop-
erties such as the superfluid density are very similar to those
from the Cartesian version. The values of the parameter
ρ0, the minimum of the potential, are similar, although its
interpretation is quite different in the two representations.
In the Cartesian case, it is the condensate density, while in
the AP case, it is the quasicondensate. The wave function
renormalization factors are different, if only by a few per-
cent, reflecting the fact that the superfluid density, Eq. (33),
should lie between the condensate and quasicondensate. In
contrast, the interaction strength u2 is very different. This
vanishes in the physical limit for the Cartesian case, as re-
quired by the Ward identity for the longitudinal self-energy,
but it remains finite for the AP case, where it describes the
interaction between amplitude modes. Those modes are fluc-
tuations of an invariant field and so are not constrained by the
symmetry.

In two dimensions, the condensate density at finite tem-
perature vanishes in the physical limit, as required by the
Coleman-Mermin-Wagner theorem. By switching to the AP
representation, the interpolating fields allow us to work with
a quasicondensate density instead. This is finite in two di-
mensions and gives gapped amplitude modes. As a result
we obtain a stable superfluid phase at finite temperature,
in contrast to previous FRG studies that used the Cartesian
representation. We find at least qualitative agreement between
our results and Monte-Carlo simulations. However, there are
also important differences. Most notably, although we do see
a phase transition between superfluid and normal phases, we
do not reproduce the features of BKT transition. Moreover,
we find numerical instabilities around this transition and there
are noticeable deviations in the values of the boson density
in the normal phase. These are not unexpected because our
current treatment does not include the vortex effects.

This inability to reproduce BKT physics is a weakness
of our current approach. Nonetheless, the use of the AP
representation makes it much easier to describe the IR regime,
with a simple truncation of the derivative expansion giving
reasonable results in the physical limit. In addition, it should
be possible to extend the approach to implement vortex effects
by taking into account the periodicity of the phase fields in
this representation. This in contrast to the Cartesian version
of the FRG which, even though it reproduces some aspects
of the BKT transition, does not include vortex physics in a
controlled way.

Having demonstrated the usefulness of this approach
for the simpler case of Bose gases in the classical-field
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approximation, the next step will be to apply it to fully
dynamical systems, that is, keeping terms with time deriva-
tives in the action. This will allow us to study these gases
from zero temperature through the superfluid phase transition
and even to apply the FRG to one-dimensional systems. We
expect that, by correctly treating the low-momentum phase
fluctuations, the interpolation should have a greater impact
at lower temperatures, solving the IR issues that have been
encountered with the FRG in the Cartesian representation. We
also plan to extend the approach to study a more complete
set of thermodynamic variables, such as the pressure and the
entropy, and to examine more general choices of regulator.
Finally, in order to make contact with the physics of the
BKT transition, we intend to explore ways to include vortices
within an FRG treatment.
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APPENDIX A: SYMMETRIC PHASE

Although the symmetric phase is not the focus of this
work, we do find a transition to the symmetric phase for some
calculations close to the critical point. In the symmetric phase
we work with the original conjugate representation of the
fields (φ and φ†), then we use ansatz (5) imposing ρ0 = 0 in
the effective potential. The propagator evaluated at φ = φ† = 0
is given by

Gφφ† (q) = Gφ†φ (q)

= −1

Zmq2/2m + u1 − n1δμ + R(q)
, (A1)

and the off-diagonal terms Gφφ (q) = Gφ†φ† (q) = 0. The reg-
ulator takes the form

R(q) = Zm

2m
(k2 − q2)θ (k2 − q2). (A2)

Since the fields φ and φ† are k independent, the flow
equations for the running couplings are obtained from taking

(a) (b)

FIG. 8. Diagrammatic representation of �̇(2) (a) and �̇(4) (b) in
the symmetric phase. The lines denote the propagator and the filled
squares denote ∂k R.

functional derivatives of Eq. (3). They are

u̇1 = − �̇
(2)
φφ†

∣∣∣
ρ0,μ0

,

2u̇2 = − �̇
(4)
φφφ†φ†

∣∣∣
ρ0,μ0

,

ṅ0 = ∂μ�̇

∣∣∣
ρ0,μ0

,

ṅ1 = ∂μ

(
�̇

(2)
φφ†

)∣∣∣
ρ0,μ0

,

2ṅ2 = ∂μ

(
�̇

(4)
φφφ†φ†

)∣∣∣
ρ0,μ0

,

Żm

m
= − 2∂p2

(
�̇

(2)
φφ†

)∣∣∣
ρ0,μ0,p=0

,

Ẏm

m
= − 4∂p2

(
�̇

(4)
φφφ†φ†

)∣∣∣
ρ0,μ0,p=0

, (A3)

where everything is evaluated at φ = φ† = 0 and μ = μ0.
The diagrammatic representation of the flow equations is
shown in Fig. 8, where most diagrams vanished because
φ = φ† = 0. The explicit expressions for these diagrams is
given in Appendix B. In order to isolate the evolution of
the mass renormalizations, for Żm the external legs carry
momentum p, while for Ẏm they carry momentum p/2.

FIG. 9. Physical superfluid density ρs , superfluid fraction �s ,
and phase renormalization Zϑ as a function of α in three dimensions
for μ0 = 1.5×10−2. We use ν = 3, T = 10, g0 = 10−3, and � = 1.

144502-12



APPLICATION OF THE FUNCTIONAL RENORMALIZATION … PHYSICAL REVIEW B 98, 144502 (2018)

APPENDIX B: EXPLICIT EXPRESSIONS OF THE DIAGRAMS

In the following we present the explicit form which take the different diagrams in both the broken and symmetric phase
in terms of the matrices involved. As it was mentioned in the main text, the particular expressions for the matrices have been
generated with WOLFRAM MATHEMATICA. Additionally, with our choice of regulator (27) the momentum integrals are solved
analytically before numerically solve the flow equations. Here we note that the functional derivatives are evaluated in momentum
space using the convention φ(q) = T

∫
dd q

(2π )d eiq·xφ(x).

1. Broken phase

The explicit expression for �̇(1)
a (diagrams in Fig. 2) is

�̇(1)
a =

∫
q

(
−1

2
∂kR(q)G(q)�(3)

a (0, q,−q)G(q) + R(q)G(q)�̇
(2)
a (0, q,−q) − R(q)G(q)�(3)

a (0, q,−q)G(q)�̇
(1)

(0, q,−q)

)
,

(B1)

and for �̇
(2)
ab (diagrams in Fig. 3) is

�̇
(2)
ab =

∫
q

(
−1

2
∂kR(q)G(q)�(4)

ab (p,−p, q,−q) + 1

2
∂kR(q)G(q)�(3)

a (p, q,−p − q)G(p + q)�(3)
b (−p, p + q,−q)G(q)

+ R(q)G(q)�̇
(3)
ab (p,−p, q,−q) − R(q)G(q)�(3)

a (p, q,−p − q)G(p + q)�̇
(2)
b (−p, p + q,−q)

− R(q)G(q)�(3)
b (−p, q, p − q)G(q − p)�̇

(2)
a (p,−p + q,−q) − R(q)G(q)�(4)

ab (p,−p, q,−q)G(q)�̇
(1)

(q,−q)

+ R(q)G(q)�(3)
a (p, q,−p − q)G(p + q)�(3)

b (−p, p + q,−q)G(q)�̇
(1)

(q,−q)

+ R(q)G(q)�(3)
b (−p, q, p − q)�(3)

a (p,−p + q,−q)G(q)�̇
(1)

(q,−q)

)
, (B2)

where ∫
q

=
∫

ddq
(2π )d

, (B3)

and the subscripts a and b denote a field σ or ϑ . The momentum p corresponds to the momentum added in the external legs in
order to isolate the flow of the mass renormalizations, and it is always taken to zero after taking the derivatives. The matrices
�(n+2) correspond to the vertices between n external legs and a propagator, and are extracted from taking n functional derivatives
of the 2×2 matrix

�(2) = δ2�

δ�2 , (B4)

where � is ansatz (24). Similarly, the matrices �̇
(n+1)

correspond to the vertices between n external legs and �̇
(1)

(black circles in
the diagrams), and are extracted from taking n functional derivatives of Eq. (22). Note that although Eqs. (B1) and (B2) include
the explicit dependency on momentum in all the matrices, the �̇

(n+1)
matrices are momentum-independent.

2. Symmetric phase

Following the notation used previously, the explicit expression for �̇(2) in the symmetric phase [diagram in Fig. 8(a)] is

�̇
(2)
ab =

∫
q
∂kR(q)G(q)�(4)

bb

(
p
2
,−p

2
, q,−q

)
G(q)�(4)

aa

(
p
2
,−p

2
, q,−q

)
, (B5)

and for �̇(4) [diagram in Fig. 8(b)] is

�̇
(4)
ab =

∫
q

(
∂kR(q)G(q)�(4)

ab

(
p
2
,−p

2
, q,−q

)
G(q)�(4)

ab

(
−p

2
,

p
2
, q,−q

)
G(q)

+ ∂kR(q)G(q)�(4)
ab

(
p
2
,−p

2
, q,−p − q

)
G(p + q)�(4)

ab

(
−p

2
,−p

2
, p + q,−q

)
G(q)

× ∂kR(q)G(q)�(4)
bb

(
p
2
,−p

2
, q,−q

)
G(q)�(4)

aa

(
p
2
,−p

2
, q,−q

)
G(q). (B6)

144502-13



FELIPE ISAULE, MICHAEL C. BIRSE, AND NIELS R. WALET PHYSICAL REVIEW B 98, 144502 (2018)

APPENDIX C: DEPENDENCE ON SWITCHING SCALE

Here we examine the dependence of our results on the
parameter α in Eq. (31), which allows us to vary the scale at
which our interpolator switches between representations. In
Fig. 9 we show results for the observable superfluid density
ρs , the superfluid fraction �s = ρs/n0, and the (not directly
observable) phase renormalization factor Zϑ , as functions of
α in three dimensions. We use the same initial conditions for
all the calculations. Large values of α correspond to switching
to the AP representation at scales well below kh; we find that
our results for both ρs and �s converge to the Cartesian ones
for values of α � 0.4. On the other hand, the behavior of
Zϑ is more sensitive to the choice of α. Indeed, although
the values of both Zϑ and ρ0 show appreciable dependences
on α, in the limit k = 0 they lead to the same results for ρs

for α � 0.4. For α > 2, the value of Zϑ is greater than one.
This would imply that the superfluid density ρs is greater
than the quasicondensate density ρq , which is not physically
correct. Thus, a safe choice for the value of α lies between 0.4
and 2.0.

In Fig. 10 the same quantities are displayed in two di-
mensions. Note that the range of α shown is smaller than in
three dimensions: For α > 5, the dynamical part of the flow
takes place entirely in the Cartesian representation driving ρ0

to zero at a finite scale. Similarly, the flow is driven to the
symmetric phase for α < 0.2 for the choice of μ0 used, μ0 =
1.5×10−2. We find that for α � 1 the flow remains in the
broken phase only for unrealistically large values of μ0. The
superfluid density is slightly more sensitive to α than in three
dimensions. However, the results shown are near the BKT
phase transition, where we know our results are not accurate;
the differences become smaller deep in the superfluid phase
where vortex effects are less important. Nonetheless, for α

between 0.4 and 2.0, the variation in ρs does not exceed 4%
with respect to its value at α = 1. In addition, the superfluid
fraction, which is more relevant for the universal behavior,
shows a similar variation over the range plotted. Lastly, as in
three dimensions, we find that Zϑ (k = 0) is greater that one

FIG. 10. Physical superfluid density ρs , superfluid fraction �s ,
and phase renormalization Zϑ as a function of α in two dimensions
for μ0 = 2×10−2. We use ν = 3, T = 10, g0 = 10−3, and � = 1.

for α > 2. Thus we again conclude that a safe choice of α lies
between 0.4 and 2.0. For a more detailed discussion about the
choice of α, see the Supplemental Material [63].
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