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We study the formation of magnetic clusters in frustrated magnets in their cooperative paramagnetic regime.
For this purpose, we consider the J1-J2-J3 classical Heisenberg model on kagome and pyrochlore lattices with
J2 = J3 = J . In the absence of farther-neighbor couplings, J = 0, the system is in the Coulomb phase with
magnetic correlations well characterized by pinch-point singularities. Farther-neighbor couplings lead to the
formation of magnetic clusters, which can be interpreted as a counterpart of topological-charge clusters in Ising
frustrated magnets [T. Mizoguchi, L. D. C. Jaubert, and M. Udagawa, Phys. Rev. Lett. 119, 077207 (2017)]. The
concomitant static and dynamical magnetic structure factors, respectively S (q ) and S (q, ω), develop half-moon
patterns. As J increases, the continuous nature of the Heisenberg spins enables the half-moons to coalesce
into connected “star” structures spreading across multiple Brillouin zones. These characteristic patterns are a
dispersive complement of the pinch-point singularities, and signal the proximity to a Coulomb phase. Shadows
of the pinch points remain visible at finite energy ω. This opens the way to observe these clusters through
(in)elastic neutron scattering experiments. The origin of these features are clarified by complementary methods:
large-N calculations, semiclassical dynamics of the Landau-Lifshitz equation, and Monte Carlo simulations. As
promising candidates to observe the clustering states, we revisit the origin of “spin molecules” observed in a
family of spinel oxides AB2O4 (A = Zn, Hg, Mg, B = Cr, Fe).

DOI: 10.1103/PhysRevB.98.144446

I. INTRODUCTION

Geometrically frustrated magnets provide a stage to realize
exotic states of matter, ranging from quantum and classical
spin liquids [1–3], unconventional magnetic ordering with
topological response [4–6], and states accompanied by ex-
otic phase transitions [7–9]. Among them, the disordered
Coulomb phase is a canonical example for discrete and
continuous spins on the three-dimensional pyrochlore lattice
when frustration imposes a local divergence-free constraint
[10], whose exotic character has been drawing considerable
interest.

The Coulomb phase is based on degenerate classical
spin configurations in absence of any spontaneous symme-
try breaking. The magnetic correlations due to the local
divergence-free constraint are characterized by nonanalytici-
ties in the static magnetic structure factor S (q ) [11]. These are
called pinch points, and have been observed in the canonical
spin-ice materials Ho2Ti2O7 and Dy2Ti2O7 [12,13].

On top of exotic correlations, the Coulomb phase supports
fractional excitations. These excitations are easy to visual-
ize in spin ice, where Ising spins satisfy the so-called ice
rules with two spins pointing inwards and two spins pointing
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outwards on every tetrahedron in the ground state. A tetra-
hedron in a “three-in-one-out” or “one-in-three-out” config-
uration, breaking this ice rule, carries a gauge charge and
serves as an elementary fractional excitation. In spin ice, these
gauge charges are actually effective magnetic charges [14]. By
identifying the spins with their inherent “magnetic field,” one
can regard the gauge charge as a source or sink of the field,
and assign a magnetic charge −2 (+2) for “one-in-three-out”
(“three-in-one-out”) tetrahedron states. Magnetic charges are
defined from the discrete divergence of the magnetic field, i.e.,
the number of inward spins minus that of outward spins.

The introduction of the concept of magnetic charges turned
out to be quite illuminating, carrying over two properties
from conventional electromagnetism. First, charge should be
conserved. Indeed, the above-mentioned magnetic charge in
spin ice satisfies a local conservation in the sense that they are
always created/annihilated in pairs of positive and negative
charges. And, second, opposite charges are expected to attract
each other. However, this second property is nonuniversal. In
the canonical spin-ice systems Ho2Ti2O7 and Dy2Ti2O7, op-
posite charges indeed interact with attractive force, attributed
to the long-range dipolar interaction. However, the sign of
the force actually depends on the microscopic details of the
system.

Indeed, recently, the role of charge interactions is drawing
interest in spin ice [15,16] and its two-dimensional analog
[17–20]. If the interaction is chosen “unnaturally,” i.e., at-
tractive between same-sign charges, the Coulomb phase is
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destabilized towards the formation of same-sign-charge hex-
amer clustering [15,16,20]. The generic tendency to clustering
can be naturally understood from the competition of the
twofold properties of charges. Same-sign charges attract each
other, but they cannot pair-annihilate due to charge conserva-
tion. As a result, they form stable clusters. Their proliferation
leads to unconventional classical spin liquids. Accompanying
the clustering, the magnetic correlations display a noticeable
evolution, characterized by half-moon patterns in S (q ), which
replace the pinch-point singularities [15,16,20,21].

The rich physics brought by the attraction of charges of the
same sign naturally motivates us to generalize its analysis to
the system with continuous spins. Indeed, the magnetic charge
in the Ising system can be generalized to a conserved mag-
netic vector in continuous spin systems. With the continuous
nature of magnetic vector, one can expect a variety of stable
textures beyond hexamer clustering. From this viewpoint, it is
interesting to look at a class of spinel oxides with 3d magnetic
ions, AB2O4 (A = Zn, Hg, Mg, B = Cr, Fe) [22–30]. These
compounds have weak magnetic anisotropy with small spin-
orbit interaction of 3d ions, and the classical Heisenberg
model with farther-neighbor interactions is expected to give
a good starting point of analysis [30]. Indeed, according to
inelastic neutron scattering experiments, this family lacks
“pinch points” in the dynamical structure factor, which are
characteristic of the Coulomb phase. Instead, diffuse scatter-
ing patterns appear at the corners of the Brillouin zone. The
diffuse scatterings are attributed to the clustering of small
number of spins, coined as “spin molecules.” Depending on
materials, molecules take the form of hexamers [22–26] and
dodecamers [27–29]. In the work by Conlon and Chalker [30],
the lack of pinch points has been attributed to weak, generic,
farther-neighbor exchange, inducing hexagonal cluster scat-
tering as observed in experiments.

To address these issues, in this paper, we consider the
classical Heisenberg models on kagome and pyrochlore lat-
tices with farther-neighbor interactions, on the high-symmetry
line J2 = J3 = J , for arbitrary values of J > 0. We focus
on cooperative paramagnetic region above magnetic order-
ing temperature, where the magnetic fluctuations reflect the
intrinsic nature of the system, in contrast to the ordering
pattern itself, which is susceptible to structural changes or
other extrinsic effects.

Our main results are summarized as follows: (i) We found
three distinct patterns in S (q ): pinch points, half-moons,
and stars. These patterns are counterparts of the topological-
charge clusters obtained in the corresponding Ising models.
(ii) The three patterns reflect the structure of softest magnetic
modes. (iii) The half-moon and star patterns can be interpreted
as shadows of pinch points, and serve as a signal of proximity
to a Coulomb phase. (iv) These characteristic patterns also ap-
pear in the low-energy region of dynamical structure factors,
implying the possibility of experimental detection through
inelastic neutron scattering.

The rest of this paper is organized as follows. In
Sec. II, we first describe the model, namely, the J1-J2-J3 clas-
sical Heisenberg Hamiltonian on the kagome and pyrochlore
lattices. Next, we introduce the theoretical methods; large-
N calculations, Monte Carlo simulations, and semiclassical
Landau-Lifshitz (LL) equation. In Sec. III, the three distinct

(b) (a) 

FIG. 1. Schematic picture of the model in Eq. (1) for (a) a
kagome lattice and (b) a pyrochlore lattice. Red, blue, green, and
purple lines denote, respectively, J1, J2, J3a, and J3b. In this paper,
we consider J1 = 1, J2 = J3a = J , and J3b = 0.

patterns of the static structure factor and their origins are
discussed. Here, the main arguments are based on band-
structure analyses of the large-N approximation, supported
by Monte Carlo simulations on the O(3) Heisenberg model.
Section IV is devoted to the spin dynamics, analyzed by the
LL equation. In Sec. V, we discuss the real-space structure
of the clusters, and show that they can be understood as
a continuation from the topological charge cluster obtained
in the Ising counterpart. Finally, we present discussions and
summary in Sec. VI. Details of the large-N approximation,
Monte Carlo simulations, and the quadrupolar order parame-
ter are described in the Appendices.

II. MODEL AND FORMALISM

A. Model

We consider a Heisenberg model on kagome and py-
rochlore lattices with up to third-neighbor interactions:

H = J1

∑
〈i,j〉NN

Si · Sj + J2

∑
〈i,j〉2nd

Si · Sj

+ J3a

∑
〈i,j〉3rd,a

Si · Sj + J3b

∑
〈i,j〉3rd,b

Si · Sj

= 1

2

∑
n,m

∑
μ,ν

∑
α=x,y,z

Sμ,α
n Hμ,ν

n,mSν,α
m . (1)

J1, J2, and J3a,3b are the exchange coupling constants con-
necting nearest-, second-nearest-, and third-nearest neighbors,
as shown in Fig. 1. Notice that two different types of the
third-neighbor term (J3a and J3b) are distinguished in that
J3a connects the sites along edges, while J3b connects those
across a hexagon. Here, we have introduced unit-cell in-
dices n, m, and sublattice indices μ, ν, and expressed each
site as their combinations: i = (n,μ) and j = (m, ν). The
unit cells contain, respectively, triangles (tetrahedra) of one
orientation for kagome (pyrochlore) lattice, and the sublat-
tice indices take μ = 1, . . . , Nsub, with Nsub = 3 (4). Sμ

n =
(Sμ,x

n , S
μ,y
n , S

μ,z
n ) are (classical) three-component vectors with

unit length |Sμ
n | = 1.

The model with a general parameter set has been
intensively studied on both kagome [31–37] and py-
rochlore [30,38–43] lattices, putting an emphasis on the
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low-temperature ordered states. In this work, we focus on the
parameters (J1, J2, J3a, J3b) = (1, J, J, 0) with J > 0. The
value of J1 = 1 sets the energy and temperature scales of our
problem. This parameter set has recently been shown to lead
to a clustering of topological charges in the corresponding
Ising models for J > 0 (see Sec. V for details [15,16,20]).

Although J2 = J3(= J ) is unlikely to be perfectly satisfied
in real materials, the analysis of this isotropic point gives a
great insight into the nearby systems. As we will show in the
next section, this point allows a rewriting of the Hamiltonian
with conserved spins, and simplifies the formulation of the
large-N analysis (see Sec. II C 1 and Appendix A). These
properties make it easier to grasp the physics of half-moons
and magnetic clustering, which are useful to understand the
nature of realistic systems around this point.

B. Conserved spins

It is instructive to introduce a local magnetic moment for
each triangular and tetrahedral unit n,

Mn ≡ ζn

∑
j∈n

Sj , (2)

where ζn = ±1 is a sign factor distinguishing between upward
(+1) and downward (−1) triangles/tetrahedra [44]. Under the
condition J2 = J3a(= J ) and J3b = 0, the Hamiltonian (1)
can be rewritten as a function of Mn:

H =
(

1

2
− J

) ∑
n

|Mn|2 − J
∑
〈n,m〉

Mn · Mm, (3)

where the summation over n is taken over both upward
and downward triangles/tetrahedra, and the summation over
〈n,m〉 is over neighboring pairs of triangles/tetrahedra. This
expression naturally accounts for the Coulomb phase at J =
0, with Mn = 0 for all n, and for its stability for small J

as will be discussed in detail in the next sections. Equation
(3) is a generalization of the spin to charge mapping of
the corresponding Ising systems [15,16,20,45] and satisfies a
conservation law: ∑

n∈D

Mn =
∑
j∈∂D

Sj , (4)

where D is a connected ensemble of triangles/tetrahedra, and
∂D is its contour. The contour ∂D is made of all spins shared
between two triangles/tetrahedra, n ∈ D and m /∈ D. This
“Gauss’ law” means that the internal structure of a magnetic
cluster is constrained by its boundary spins. Indeed, in the
Ising case, the discrete variant of this Gauss’ constraint strictly
determines the structure of clusters, and leads to hexamer spin
liquids [20].

C. Formalism

We study the static properties of model (1) with
(J1, J2, J3a, J3b) = (1, J, J, 0) and J > 0, by combining
classical Monte Carlo simulations and analytical large-N
method. We also address the dynamics by simulating the
semiclassical LL equation. In this section, we introduce the
latter two methods, and all details for the classical Monte
Carlo simulations will be given in Appendix B.

1. Large-N approximation

To investigate static structure factors, we employ a large-N
approximation [11,30,46,47]. The length of classical Heisen-
berg spins satisfies a hard constraint |Sμ

n | = 1. In the large-
N method, Heisenberg spins Sμ

n are replaced by soft-spin
variables s

μ
n whose length is constrained on average:〈(

sμ
n

)2〉 = 1
3 . (5)

Here, disordered phases are assumed with 〈sμ
n 〉 = 0. The

above constraint (5) is enforced by introducing a Lagrange
multiplier λ which satisfies

1

Nsite

∑
q

Tr[λÎ + βĤ (q )]−1 = 1

3
, (6)

where the sum runs over all wave vectors q in the Brillouin
zone and Nsite is the total number of sites. Ĥ (q ) represents
the Fourier transformation of the exchange matrix:

[Ĥ (q )]μν =
∑
m

H
μν
0,meiq·(Rm+rν−rμ ) , (7)

where Rm is the position of unit cell m with respect to the
reference 0, and rμ is the position of the sublattice μ within a
unit cell. The static structure factor S (q ) in this formalism is
given as

S (q ) =
∑
μ,ν

〈sμ(−q )sν (q )〉 =
∑
μ,ν

[λÎ + βĤ (q )]−1
μν

=
Nsub∑
η=1

∑
μ,ν

[ψ∗
η(q )]μ[ψη(q )]ν
λ + βεη(q )

, (8)

where εη(q ) and ψη(q ) are, respectively, eigenvalues and
eigenvectors of Ĥ (q ) with a band index η. Their calculation
can be carried out by using the premedial lattices of kagome
and pyrochlore, which are respectively the honeycomb and
diamond lattices. The main idea of the analytic calculation
is to regard the nearest-neighbor (NN) exchange interaction
of the original lattice as being mediated by the sites of the
premedial lattice located in-between. We describe this method
in Appendix A.

2. Landau-Lifshitz equation

To investigate the dynamical properties, we numerically
solve the following LL equation [21,48,49]:

∂ Si

∂t
= −Si × Heff,i , (9)

where Heff,i is an effective magnetic field at site i given as

Heff,i = ∂H

∂ Si

= J1

⎛
⎝ ∑

j :〈i,j〉∈NN

Sj

⎞
⎠ + J2

⎛
⎝ ∑

j :〈i,j〉∈2nd

Sj

⎞
⎠

+ J3a

⎛
⎝ ∑

j :〈i,j〉∈3rd,a

Sj

⎞
⎠ + J3b

⎛
⎝ ∑

j :〈i,j〉∈3rd,b

Sj

⎞
⎠.

(10)
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In our simulation, we first prepare the initial states, which
are well thermalized with temperature T , by using single-spin
Metropolis updates. Then, we solve Eq. (9) by using fourth
order Runge-Kutta method. We confirmed the accuracy of this
method by checking that conserved quantities, such as the
total energy, stay invariant during the simulation time. With
this method, we compute S (q, ω) as

S (q, ω) = 1

Nt

Nt∑
l=0

∑
n

∑
μ,ν

〈
Sμ

0 (0)Sν
n(lδt )

〉
init

× ei[ωlδt−q·(Rn+rν−rμ )], (11)

where 〈. . . 〉init represents the sample average of indepen-
dently prepared initial states. Numerical details are given in
Appendix B.

III. FOURIER-SPACE ANALYSIS: PINCH POINTS,
HALF-MOONS, AND “STARS”

We focus our attention on the magnetic correlations in the
disordered cooperative paramagnetic regime. This is why we
shall not go into the details of the low-temperature ordered
phases, with the exception of the high-symmetry point J =
1
2 on pyrochlore in Sec. V C, whose nature is particularly
enlightening. This approach presents the advantage that, in
the cooperative paramagnets, the properties of the kagome and
pyrochlore lattices are qualitatively very similar, allowing for
a parallel analysis of the two lattices.

The evolution of the correlations in the cooperative param-
agnetic regimes are closely linked to the qualitative changes in
the band structure obtained by large-N analysis. The discus-
sion in this section relies heavily on the analysis of the low-
energy band structure, supported by Monte Carlo simulations
at finite temperatures. The outline of the ground-state phase
diagram is given in Fig. 2 while the excellent agreement
between analytics and numerics is illustrated in Fig. 3.

To briefly introduce the overall structure of phase dia-
gram (Fig. 2), the small-J region, which we call region (I),
is characterized by the pinch points in the structure factor
[Figs. 3(a) and 3(d)]. Upon increasing J , the structure factor
shows qualitative changes twice. At intermediate values of J ,
at the beginning of region (II), the structure factor develops
a characteristic pattern, which we call “half-moon” after its
shape [Figs. 3(b) and 3(e)]. Further increasing J , moving
continuously from region (II) to (III), S (q ) shows further
change into the “star” pattern. Below, we will introduce the
nature of each region, separately.

A. Flat bands of the Coulomb phase

The first noticeable outcome of the large-N theory is the
persistence of the flat band(s) for all values of J (Figs. 4 and
5). The flat band persists, as long as J2 = J3(= J ) is satisfied.
These flat bands, one for kagome and two for pyrochlore, are
well known from the NN model [11,40,46]. They represent the
Coulomb spin liquid where every unit cell (triangle and tetra-
hedron) bears zero magnetization {Mn = 0 | ∀ n}, and appear
in the static structure factor as pinch points. The persistence of
the flat bands, and their double degeneracy for pyrochlore, are
readily understandable from Eq. (3) since all configurations

1/6

(b)

1/2

Pyrochlore

(a) Kagome

1/5 1

0

0

FIG. 2. Ground-state phase diagram within the large-N approx-
imation. Region (I) represents the Coulomb phase where the static
structure factor shows pinch points for 0 < J < J1c = 1

5 (kagome)
and 1

6 (pyrochlore). For J > J1c, the flat bands do not correspond
to ground states anymore, and the physics is dominated by the
energy minima of the dispersive band (Figs. 4 and 5), giving rise
to half-moon patterns in the static structure factor (Fig. 3). The high-
symmetry point at J2c = 1 (kagome) and 1

2 (pyrochlore) separates the
large-J region into two parts, with qualitatively different positions of
the energy minima in Fourier space (Figs. 4 and 5). In the structure
factor, the half-moons evolve continuously into “star” patterns within
region (II). The boundaries have been confirmed by Monte Carlo
simulations.

of the Coulomb phase with Mn = 0 remain degenerate in
presence of the farther-neighbor coupling J . Mathematically,
this persistence takes the form of the exchange matrix Ĥ (q )
being a polynomial of the NN exchange matrix [50] [see
Appendix A, in particular Eqs. (A2) and (A8)]. As such, the
two exchange matrices share the same basis of eigenvectors
and the flatness of eigenvalues is transmitted from the latter to
the former.

Hence, one needs to consider the evolution of the dis-
persive bands to understand the qualitative changes in the
magnetic correlations as a function of J .

B. From pinch points to half-moons, near J1c

The flat bands form the ground-state manifold up to J =
J1c = 1

5 for kagome [37] and 1
6 for pyrochlore. This delimits

the region (I) of the phase diagram of Fig. 2. For J > J1c, one
of the dispersive bands has a lower energy than the flat bands
in parts of the Brillouin zone (Figs. 4 and 5), and the energy
minima form a closed line (surface) in a Brillouin zone for a
kagome (pyrochlore) lattice (Figs. 6 and 7). It means that the
static structure factor is now dominated by a dispersive band
rather than the flat band. As a consequence, the pinch points
are smoothed out and their nonanalyticity disappears, leaving
behind half-moon patterns at the center of the Brillouin zone.
The half-moons, and later “star” patterns, are characteristic of
the region J > J1c, and can be regarded as complementary to
the pinch points (see discussion in Sec. III C).

The kagome NN Heisenberg antiferromagnet (J = 0) is
well known for its Coulomb phase at intermediate tempera-
tures, followed by a coplanar regime at lower temperatures
selected by thermal order by disorder [31–34]. The Coulomb
phase is marked by a plateau in the heat capacity and pinch
points in the structure factor. When the system enters the
coplanar regime, the heat capacity exhibits a kink, and sharp
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FIG. 3. Structure factor for kagome (top) and pyrochlore (bottom) lattices calculated by (a)–(c) large-N approximation and (d)–(f) Monte
Carlo simulation. White lines denote the Brillouin zones. The model being antiferromagnetic, all the characteristic features of the scattering
appear in the secondary Brillouin zone boundaries. For region (I), the pinch points are clear signatures of the divergence-free condition of the
Coulomb phase. Their absence in regions (II) and (III) indicates that the system is out of the Coulomb phase. The complementary patterns of
the pinch points are the half-moons (II), which adiabatically evolve into “star” shapes. The star patterns appear in region (II) and persist in
(III). See Fig. 2 for the boundaries of the three regions.
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FIG. 4. Kagome: band structures of H (q ) on high-symmetry lines (the first row), and in two-dimensional momentum space (the second
row) for several values of J . In the second row, the highest band is omitted for clarity. The position of energy minima are shown with black
arrows.

peaks of scattering at q√
3 = (4π/3, 0) appear in the structure

factor (Fig. 8). These peaks represent the onset of the
√

3 ×√
3 long-range order as T → 0+ [35], but are not Bragg peaks

since there is no dipolar long-range order at finite temperature.
At J = J1c, the softening of the band touching between the

lowest dispersive and the flat bands enhances thermal fluctu-
ations compared to J = 0. As a consequence, the coplanar
regime is pushed down to lower temperatures by an order of
magnitude (Fig. 8). Noticeably, at intermediate temperatures
(T = 0.022), the pinch points visible at J = 0 have disap-
peared in favor of the onset of the characteristic half-moons
for J = J1c. This is why the heat capacity does not show the
characteristic plateau of the Coulomb phase at J1c.

As for the pyrochlore lattice, the value of J1c = 1
6 obtained

from large N is confirmed by simulations down to T ∼
10−4 (Fig. 9). For J = J+

1c, just above the boundary inside
region (II), the system orders, but it remains disordered at
the boundary J1c. As a consequence, the pinch points of the
Coulomb phase are visible up to J = J1c, replaced by half-
moons as soon as the system enters region (II) [Fig. 9(b)].
Please note that the small thickness of the pinch points for

J = J1c is due to the proximity of the half-moon regime at
finite temperature.

C. Origin of the half-moons

In region (II), the structure factor develops half-moon
patterns [Figs. 3(b) and 3(e)]. What kind of information can
be read from this characteristic magnetic scattering? The
intensity of scattering at particular wave vectors q is deter-
mined by the energy of magnetic modes and the correspond-
ing real-space structure of dominant modes. In our large-N
language, they are described by the shape of the energy-
minima manifold εmin(q ) and the weight of the corresponding
eigenfunctions �η(q ) ≡ ∑

μ,ν[ψ∗
η(q )]μ[ψη(q )]ν . The weight

�η(q ) satisfies the sum rule∑
η

�η(q ) = Nsub, (12)

due to the normalization of spin length.
Basically, the high-intensity points of the half-moons fol-

low the position of the energy minima. However, the energy

FIG. 5. Pyrochlore: band structures of H (q ) on high-symmetry lines (the first row), and in the hhl plane (the second row) for several
values of J . In the second row, the highest band is omitted for clarity. The position of energy minima is shown with black arrows.
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(a) (b)

Γ

M

KΓ

M

K

FIG. 6. The energy minima in the Brillouin zone for (a) J = 0.26
and (b) J = 1.1 in the kagome system.

minima do not account for everything. On one hand, the
energy-minima manifold εmin(q ) is extended in Fourier space.
More precisely, it can be defined locally as a hypersurface;
a closed line for the two-dimensional kagome and a closed
surface for the three-dimensional pyrochlore (see Figs. 6 and
7, and Appendices A 5 and A 6 for more details). On the other
hand, it is clear from Figs. 3(b) and 3(e) that the extension of
the half-moons is finite. They terminate at some point and do
not form closed curves as expected from the energy-minima
manifold. This vanishing intensity was coined as “ghost”
excitations for the kagome Heisenberg antiferromagnet [21].

This discrepancy, symbolized by a missing arc that should
connect the half-moon pair, can be attributed to the spatial
character of the magnetic mode. In Fig. 10, we show the
intensity maps of �η(q ) for a kagome lattice in the second
Brillouin zone, surrounding the wave vector (0, 4π√

3
). The tra-

ditional pinch point resides in the flat band [Fig. 10(c)]. Half-
moons are from the lower-dispersive band [Fig. 10(a)]. From
�η(q ), one finds that the high-intensity regions of flat mode
and lower-dispersive mode complement each other. This com-
plementarity is originated in the sum rule (12). Around the
pinch point, the contribution from the highest-energy band is
small, and the sum rule is satisfied only between the flat mode
and the lower dispersive mode. The missing arc is attributed to
the vanishing weight of lower dispersive band in the bow-tie
region, where the flat-band contribution is dominant. In this
sense, the missing arc of the half-moon can be considered as a
shadow of pinch point, thus answering the 10-year old open
question about the nature of the “ghost” excitations in the
kagome Heisenberg antiferromagnet [21]. This missing arc

(a) (b)

Γ

X

L

Γ

X

L

KK

FIG. 7. The energy minima in the Brillouin zone on a hhl plane
for (a) J = 0.22 and (b) J = 1 in the pyrochlore system.

FIG. 8. Kagome: (Top) Heat capacity Ch showing the low-
temperature bump/kink into the coplanar regime at T ≈ 0.005 for
J = 0 (black dots) and at T ≈ 0.0004 for J1c = 1

5 (colored trian-
gles). (Bottom) Temperature evolution of the static structure factor
S (q) for J = 0 (left) and J1c = 1

5 (right), obtained by the classical
Monte Carlo simulation.

signals the proximate presence of a pinch point, and serves
as evidence that the system is in the vicinity of a Coulomb
phase.

The half-moon formation can be discussed in a more
general context not specific to the kagome system. Given the
pinch point reflects a singularity of the flat-band eigenvectors
as a function of momentum, and the completeness of the
eigenvector basis, there must be a complementary nonanalyt-
icity in (at least) one of the other bands [Figs. 11(a) and 11(b)].
As these are in general not flat, their constant energy cuts at
small radius (Ref. [51]) will typically yield the shape of an
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FIG. 9. Pyrochlore: (a) Heat capacity Ch showing the low-
temperature ordering when J is just above J1c, but not at J1c = 1

6 ,
down to T ∼ 10−4. (b) Static structure factor S (q) in the [hhl] plane
at T = 0.005 showing the pinch points at J1c replaced by very small
half-moons above J1c.

annulus radially, with an angular modulation characteristic of
the longitudinal pinch-point projector [Figs. 11(c) and 11(d)].
These combine to yield (a pair of) half-moons. Depending
on the relative ordering of the bands in energy, these half-
moon pairs may either appear in the ground-state correlations
(Fig. 3) or in the excitation spectrum (see Sec. IV).

The same scenario holds for the pyrochlore lattice: the
maps are shown in Figs. 12(a)–12(c) (centered at [002]) and

FIG. 11. Schematic illustration of the emergence of half-moons
at the center of a Brillouin zone (in arbitrary units). (a) The pinch
point of the flat band. (b) Its complement. (c) An annular cutout
of the pinch-point complement, around the energy minima εmin(q ).
(d) The pinch-point complement multiplied by a Gaussian of radius
delimited by εmin(q ).

Figs. 12(d)–12(f) (centered at [111]). Again, the combination
of the energy-minima surface and the intensity map �η(q )
gives rise to the half-moon patterns.

This explanation remains valid throughout the phase dia-
gram for J > J1c, and in particular as the half-moons contin-
uously deform into star patterns.

D. From half-moons to star patterns for J > J1c

In the previous subsection, we have seen how the shape of
the half-moon is linked to the position of the energy minima
in Fourier space. These energy minima continuously move as
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-0.6 -0.4 -0.2  0  0.2  0.4  0.6
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)b()a( (c)

FIG. 10. Kagome: the weights of eigenvectors �η(q ) in the second Brillouin zone centered at (0, 4π√
3

), for (a) a dispersive band with lower
energy, (b) a dispersive band with higher energy, and (c) a flat band. Note the complementary singularities at the zone center in the left and
right panels.
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FIG. 12. Pyrochlore: the weights of eigenvectors �η(q ) in the second Brillouin zone centered at [002] for (a)–(c) and at [111] for (d)–(f).
(a) and (d) are for a dispersive band with lower energy, (b) and (e) for a dispersive band with higher energy, and (c) and (f) for the summed
contribution of the two flat bands.

a function of J , and the shape of the half-moon evolves with
them, as illustrated in Figs. 13 and 14.

Upon increasing J , the radius of the half-moons increases.
Since the radius is limited by the size of the Brillouin zone,
neighboring half-moons eventually connect to each other by
their extremities, forming star shapes. Please note that while
the star shapes are rather obvious for kagome [see the top
panels of Figs. 3(c) and 3(f) and Fig. 13], they are somewhat
more figurative for pyrochlore in a [hhl] plane [see the bottom
panels of Figs. 3(c) and 3(f) and Fig. 14]. For convenience, we
shall use the name of “star” for both lattices, which shall be
understood as the patterns formed by connected half-moons.

The increase of the half-moon radius in Fourier space,
RK,P , can be calculated analytically thanks to the large-N
method

RK = 4√
3

arccos

√√√√1

8

[(
1 + J

2J

)2

− 1

]
, (13)

along the �M direction for kagome, and

RP = 2 arccos

[
4J + 1 − 28J 2

32J 2

]
, (14)

along the �X direction for pyrochlore. These formulas are in
excellent agreement with results obtained from Monte Carlo

simulations in the regime of collective paramagnetism, and
above any potential transition temperature (Fig. 15).

IV. SEMICLASSICAL DYNAMICS

In experiments, signals of anomalous magnetic correlation
are sometimes observed in finite-frequency regions, through,
e.g., inelastic neutron scattering. For example, it is at finite
energy of the kagome Heisenberg antiferromagnet that half-
moons were first observed [21], before being stabilized as
signature of the ground state, at low energy, via farther-
neighbor interactions [15,16,20]. Accordingly, in order to find
the half-moons and stars in a realistic experimental setting, it
is desirable to estimate the energy scale of the corresponding
magnetic excitations. In the context of the large-N analysis,
these magnetic patterns are associated with energy bands
(Figs. 4 and 5), but this band energy cannot be interpreted
as the frequency of experimental probes in itself. A relation
connecting them was proposed under the assumption of relax-
ational dynamics [30,48]. However, it is not a priori obvious
if this assumption holds in our system. To this end, in this
section, we address the dynamics of the system by solving
the semiclassical LL equation in Eq. (9) and calculating the
dynamical structure factor S (q, ω). Here, we focus on regions
(II) and (III) for both kagome and pyrochlore lattices.

Let us first see the results for a kagome lattice. Cuts
for several frequencies are shown in Fig. 16. As expected,
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FIG. 13. Kagome: evolution from half-moon to star patterns in
the static structure factor S (q) for J1c < J < J2c, obtained by Monte
Carlo simulation. The simulation temperature is T = 0.32.

the characteristic patterns observed for S (q ) are obtained
in the low-energy sectors in both regions. In region (II),
as clearly seen in Fig. 16(a), the half-moon signal appears
in the quasielastic regime: ω = 0, showing that this pattern
dominates the long-time behavior of magnetic correlation in
this region. The pattern sustains with small ω dependence in
the low-frequency region. Upon going to intermediate energy

FIG. 14. Pyrochlore: evolution from half-moon to star patterns in
the static structure factor S (q) for J1c < J < J2c, obtained by Monte
Carlo simulation. The bottom right panel is below the transition
temperature at the high-symmetry point J = J2c with Bragg peaks
at qL = [ 1

2
1
2

1
2 ].

FIG. 15. The evolution of the radius of the half-moons in Fourier
space (normalized by 2π ) for pyrochlore (a) and kagome (b) agrees
quantitatively between numerics (red circles) from classical Monte
Carlo simulations and analytics (black line) derived from large-N
calculations [Eqs. (13) and (14)]. The error bars come from the
discretization of the Fourier space in a system of finite size (L = 30).
For kagome, data were taken at T = 0.32. For pyrochlore, data were
taken for a range of temperatures above the transition temperature
T ∈ [0.08; 0.24].

scale comparable to NN coupling, ω ∼ 1, the signal smears
out. Similarly, in region (III), the star shape appears in the low-
frequency part of the dynamical structure factor [Fig. 16(c)],
and it gradually blurs towards higher energy. The remnant
of the star pattern remains observable up to higher energy,
compared with the vanishing of half-moons in region (II),
probably attributed to the growing energy scale of magnetic
modes as J , as implied by the larger bandwidth obtained in
the large-N analysis (Figs. 4 and 5).

In the Heisenberg antiferromagnet with J = 0, half-moons
have been observed at very low temperature and finite fre-
quency [21], while pinch points dominate the low-energy
physics and are visible in the structure factor (Fig. 8 and
Ref. [34]). Away from J = 0, one could have expected the
reversed picture: half-moons at ω = 0 and pinch points at
finite frequency. However, LL dynamics do not show pinch
points at any frequency. This is because the LL dynamics
is simulated at relatively higher temperatures, where the flat
band couples with the dispersive ones and the pinch points
are washed out. A clear separation of energies might require a
much lower temperature, which is accessible for the Heisen-
berg antiferromagnet, but not at intermediate and large values
of J where simulations, and thus LL dynamics, either order,
or are very hard to thermalize.
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FIG. 16. Kagome: ω cuts of S(q, ω) for (a), (b) J = 0.3, T =
0.05 and (c), (d) J = 1.1, T = 0.275. At low frequency, the half-
moon/star shape are clearly visible.

The same trend is also seen for a pyrochlore lattice, as
shown in Fig. 17. The half-moon and the star patterns are
clearly visible in each region. The results of both lattices
show that the shadow of pinch points can be observed through
the excitations in finite-frequency range, i.e., the proximity to
Coulomb phase can be captured through the inelastic neutron
scattering experiment.

FIG. 17. Pyrochlore: ω cuts of S (q, ω) for (a), (b) J =
0.22, T = 0.05, and (c), (d) J = 1, T = 0.5.

V. REAL-SPACE PICTURE: MAGNETIC CLUSTERING

In this section, we will address the real-space picture,
accompanying the characteristic patterns in the structure fac-
tors. We will show that half-moons and stars reflect the
formation of magnetic clusters. These magnetic clusters can
be associated with the cluster of topological charges obtained
in the Ising systems, through the analogy of conserved spin
introduced in Eq. (2), with the topological charge defined in
the Ising system [15,16,20].

A. Comparison with Ising systems

The half-moons and stars in S (q ) are also seen in the
corresponding Ising model [15,16,20]

H =
∑

〈i,j〉NN

σ z
i σ z

j + J
∑

〈i,j〉2nd

σ z
i σ z

j + J
∑

〈i,j〉3rd,a

σ z
i σ z

j . (15)

For Ising degrees of freedom σ z
i , the Hamiltonian can be

rewritten in terms of local topological charges on each triangle
(for kagome) or tetrahedron (for pyrochlore),

Qn = ζn

∑
i∈n

σ z
i , (16)

with ζn = + (−)1 for an upward (downward) trian-
gle/tetrahedron. The possible values of charges are
Qn = {±3,±1} for a kagome lattice and Qn = {±4,±2, 0}
for a pyrochlore lattice. The Hamiltonian then becomes
[15,16,20,45]

H =
(

1

2
− J

) ∑
n

Q2
n − J

∑
〈n,m〉

QnQm + (const). (17)

The vector field defined in Eq. (2) and the Hamiltonian form
of Eq. (3) were natural extensions of these discrete topological
charges to continuous degrees of freedom. We see in Eq. (17)
that J couples the NN charges. J > 0 means that same-sign
charges attract each other.

The static structure factors of this Ising model show similar
features to those of the Heisenberg model. The half-moons
appear for 0 < J < 1

3 on kagome [20], and for J ∼ 1
4 on

pyrochlore [15,16]. In both lattices, the origin of the half-
moons is to a large extent due to the formation of “hexamers”
[Figs. 18(e) and 18(f)], which correspond to closed loops
made of at least six charges of the same sign. Branches of
same-sign charges are then attached to these central hexamers,
forming disordered spin-liquid phases made of large clusters
of topological charges.

Here, we show that the star patterns discussed in this paper
also appear in the large-J region of the Ising models: J > 1

3
for a kagome lattice [Fig. 18(a)] and J > 1

4 for a pyrochlore
lattice [Fig. 18(b)]. At lower temperatures, the system orders
into phases tiled by small clusters of charges, with a maximal
charge at the center, surrounded by smaller charges of the
same sign [Figs. 18(c) and 18(d)].

From this point of view, the passage from the half-moons
to the stars in the static structure factor corresponds to the

144446-11



MIZOGUCHI, JAUBERT, MOESSNER, AND UDAGAWA PHYSICAL REVIEW B 98, 144446 (2018)

FIG. 18. The star patterns in the structure factor for Ising models
on the (a) kagome and (b) pyrochlore lattices, obtained by Monte
Carlo simulations. The parameters J and T are described in the
figure. White lines denote the Brillouin zones. The corresponding
clusters of topological charges are shown in (c) and (d). The hex-
amers for (e) kagome and (f) pyrochlore lattices are also presented.
Red (blue) dots denote the spin up (down). Orange (yellow) triangles
for a kagome lattice denote Q = +3 (+1); dark blue (light blue)
tetrahedra for a pyrochlore lattice denote Q = +4 (+2).

evolution from a disordered phase made of hexamers to the
ordered phase of smaller clusters centered around a maxi-
mal charge. The similarity of half-moons/stars between Ising
and Heisenberg models suggests that short-range correlations
similar to topological-charge clusters also develop in the
Heisenberg models, even though topological stability, with a
discretized value of the topological charge, cannot be expected
for the continuous spin systems. The motivation of the next
sections will be to make this idea more quantitative.

B. Conserved-spin correlator

To characterize the real-space structure in the Heisenberg
models, we focus on the conserved spin Mn as a vector-field
analog of the topological charge Qn in the Ising models. The
momentum-space correlator of Mn is defined as

SM (q ) ≡ Nsub

Nsite

∑
n,m

〈Mn · Mm〉e−iq·(Rm−Rn ), (18)

where Rn,m is the coordinate at the center of the trian-
gle/tetrahedron where Mn,m is defined. Within the large-N

FIG. 19. The conserved-spin correlator for a kagome lattice [(a)–
(c)] and for a pyrochlore lattice [(d)–(f)]. Corresponding values of J

and T are given in the figure.

approximation, SM (q ) is represented as

SM (q ) = Nsub

Nsite

∑
k,k′=�

,
�

ζkζk′

Nsub∑
η=1

〈
M

η

k (−q )Mη

k′ (q )
〉

=
Nsub∑
η=1

∑
μ,ν

[ψ∗
η(q )]μ[ψη(q )]ν
[λ + βεη(q )]

· Fμ,ν (q ). (19)

Here, k = �
,
�

denotes the direction of triangle/tetrahedron,
rc ≡ 1

Nsub

∑
μ rμ is the coordinate at the center of the upper

triangle/tetrahedron,

M
η

k (q ) =
∑

μ

eiq·[ζk (rμ−rc )][ψη(q )]μ (20)

is the conserved spin of η band, and

Fμ,ν (q ) =
∑

k,k′=�
,
�

ζkζk′eiq·[ζk′ (rν−rc )−ζk (rμ−rc )] (21)

is the additional form factor. Figure 19 shows SM (q ) obtained
by the large-N approximation. In the region (I), SM (q ) be-
comes very small with decreasing temperature, due to the
divergence-free nature of the Coulomb phase. In the large-N
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FIG. 20. The conserved-spin correlator in real space for a
kagome lattice. Black lines denote bonds of the premedial honey-
comb lattice. Colors of dots correspond to the sign (see the main
text), and the central white circle denotes the origin. The radius is
proportional to the absolute value, and rescaled as r = C|SM (R)|
with C = 3 for (a) and C = 1 for (b).

sense, the flat band does not contribute to the conserved-spin
correlator since M

μ

k (q ) = 0 for the flat bands. For regions (II)
and (III), since SM (q ) is written by a linear combination of
sublattice-resolved structure factors, it shows the character-
istic patterns reminiscent of the static structure factor S (q ).
While the shadow pinch points are absent due to the additional
form factor Fk,k′

μ,ν (q ), the high-intensity points of SM (q ) trace
the trajectory of εmin(q ) in Fourier space.

The real-space correlator

SM (R) ≡ 〈M0 · M R〉 (22)

is defined on dual honeycomb (diamond) lattice for the
kagome (pyrochlore) case, and given by the inverse Fourier
transformation of SM (q ). We show SM (R) for both cases
in Figs. 20 (kagome) and 21 (pyrochlore). The site 0 is
shown with a white circle. The red (blue) dot means that the
correlation 〈M0 · M R〉 takes a positive (negative) value, and
its radius denotes the rescaled absolute value (see the captions
of the figures). Since we are interested in the cooperative,
but nonetheless disordered, paramagnetic phase where 〈M〉 =
0, the averaged real-space correlator of Eq. (22) offers an
alternative to the spin-configuration snapshot available in the
ordered phase of the Ising model. With continuous spins, the
real-space representation of this clustering is further compli-

FIG. 21. The conserved-spin correlator in real space for a py-
rochlore lattice. Black lines denote bonds of one buckled honeycomb
layer, cut through the premedial diamond lattice, as seen from the
[111] direction. Colors of dots correspond to the sign (see the main
text), and the central white circle denotes the origin. The radius is
proportional to the absolute value, and rescaled as r = C|SM (R)|
with C = 3 for (a) and C = 1

3 for (b).

cated by the continuous evolution of the half-moon radius in
the phase diagram, which implies an incommensurate wave-
vector ordering for generic values of J . This issue can, how-
ever, be resolved at high-symmetry points of the Hamiltonian,
such as exemplified in Sec. V C.

As shown in Fig. 20(a), in the region (II), positive cor-
relations develop in NN sites, as can be expected from the
Mn representation of Hamiltonian [Eq. (3)]. Moreover, a
noticeable correlation develops beyond NN sites, especially
in surrounding hexagons, implying the clustering of spins
reminiscent of the hexamer cluster in the Ising case, made of
same-sign charges surrounding a hexagon. In the Heisenberg
case, instead of the charge, the conserved spin shows substan-
tial positive correlation around a hexagon.

The qualitative difference of patterns between region (II)
with half-moons and region (III) with stars indicates that
different types of clusters evolve in these two regions. For
region (III) the positive NN correlation is surrounded by the
negative correlations, which is reminiscent of the crystaliza-
tion of double- and triple-charge clusters in the Ising models
[15,20].

Despite the qualitative similarity of cluster structures be-
tween Heisenberg and Ising cases, there is one significant dif-
ference. In the Ising case, the cluster shapes are rigidly fixed
in regions (II) and (III), respectively, due to the discrete spin
nature of Ising spins, and do not change with J . Meanwhile,
in the Heisenberg case, the continuous spins allow continuous
modification of clusters, and their amplitudes and cluster sizes
also change continuously with J . For example, in region (II),
the cluster can be considerably long ranged near the boundary
with region (I), as implied by the small half-moon radius in
Fourier space (Fig. 15).

C. Gauge-charge ordering at the high-symmetry
point J = J2c on pyrochlore

We next confirm the change of clustering patterns between
regions (II) and (III) via Monte Carlo simulations, using
the pyrochlore model at the boundary J = J2c as a working
example.

What happens at J2c ? Within the large-N approxima-
tion, this is where the energy-minima manifold changes its
topology, as illustrated in Figs. 6 and 7. The manifold moves
from enclosing the � point in region (II) (J1c < J < J2c) to
the zone corners in region (III) (J2c < J ). The model at J2c

is thus a high-symmetry point of our Hamiltonian. As we
will see in this section, it confers to the J2c boundary an
advantage of simplicity particularly useful to characterize the
low-temperature ordered state.

Since the energy minima cover an extended region in
Fourier space, the ordering mechanism is necessarily via
thermal order by disorder. For most of the phase diagram
when J > J1c, the continuous evolution of the energy-minima
manifold implies incommensurate order at low temperatures.
But, at the high-symmetry model J2c, order by disorder
selects the L point on the boundary of the Brillouin zone,
(h, k, l)=( 1

2 , 1
2 , 1

2 ), as suggested by the large-N analysis of
Fig. 5 and confirmed by Bragg peaks in the Monte Carlo
of Fig. 14 (bottom right panel). The corresponding order
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FIG. 22. First-order phase transition at the high-symmetry point
J = J2c on pyrochlore, as demonstrated by the discontinuity of (a)
the dipolar order parameters ML at wave vector qL and (b) the
quadrupolar order parameter MQ. The black dashed lines indicate
the value of saturation for each order parameter.

parameter

ML =
∣∣∣∣∣ 1

N

N∑
i=1

Sie
ıri ·qL

∣∣∣∣∣ (23)

displays a clear first-order jump at the transition (Fig. 22).
Since there are eight L points for each Brillouin zone with
each L point shared between two adjacent Brillouin zones,
the saturated value of ML is 2

8 = 1
4 . Measurements of ML

are especially difficult to thermalize below the transition. ML

seems to converge towards its saturated value of 1
4 , possibly

via a second transition at very low temperature. However, fur-
ther work is necessary to confirm this point. It is also possible
that the order parameter ML does not saturate. Measurements
of the quadrupolar order parameter MQ, on the other hand,
thermalize quite easily to its saturated value of 2/

√
3 at zero

temperature (see Appendix C for the definition).
In the rest of this section, we will focus on the nature

of the ground state. The saturation of the quadrupolar order
parameter MQ [Fig. 22(b)] indicates that all spins are collinear
in the ground state. This collinearity allows to temporarily
forget the continuous nature of the classical Heisenberg spins
and to consider them as Ising degrees of freedom, pointing
either up or down. In analogy with Sec. V A, each tetrahedron
bears an effective charge Qn = {0,±2,±4}. At J2c = 1

2 , the
“chemical potential” (i.e., the first term) of Eq. (17) disappears
and the ground-state energy EGS only comes from the NN
coupling between charges

EGS = −1

2

∑
〈n,m〉

QnQm. (24)

This coupling is attractive between same-sign charges. Be-
cause of the staggering of ζn between up and down tetrahedra
in Eq. (16), this attraction does not give rise to ferromag-
netism. The minimization of the energy is done by tiling the
lattice with the small clusters of Fig. 18(d): a central charge
+4 or −4 surrounded by four charges +2 or −2, respectively.
This state is illustrated in Fig. 23 over four cubic unit cells
(32 tetrahedra). In order to avoid contact between charges
of opposite sign, each cluster is separated from the other
ones by a vacuum (zero-charge tetrahedra). Furthermore, each
cluster fits within the eight tetrahedra of a cubic unit cell:
one maximal charge Qn = ±4, four charges Qn = ±2, and
three vacuum tetrahedra Qn = 0. In order to respect the global
neutrality of the system, there must be as many positive as
negative clusters. Since the centers of the cubic unit cells
form, by definition, a bipartite cubic lattice, the global neu-
trality is enforced by a staggering arrangement of the clusters,
alternatingly positive and negative. The magnetic unit cell of
the ground state is made of 32 spins (16 tetrahedra).

This structure is responsible for the peaks at (h, k, l) =
( 1

2 , 1
2 , 1

2 ) in the structure factor of Fig. 14 (bottom right
panel). In the actual simulations, however, the difficulty of
thermalization remains at low temperatures because the order
parameter ML does not saturate completely. We believe this
is due to the subextensive entropy of the ground state, as
illustrated in Fig. 23. We explain the origin of the degeneracy
of the ( 1

2 , 1
2 , 1

2 ) state in Appendix D.

VI. SUMMARY AND DISCUSSION

We have investigated the magnetic correlations of Heisen-
berg models with antiferromagnetic farther-neighbor interac-
tions on kagome and pyrochlore lattices in their cooperative
paramagnetic regions. For both lattices, we found three dis-
tinct patterns of the static structure factor S (q ), namely, pinch
points, half-moons, and stars. We clarified the origin of these
patterns by combining the band structure analysis based on a
large-N approximation, and Monte Carlo simulations.

Among the above characteristic patterns of the structure
factor, the pinch point serves as a direct evidence of a
Coulomb phase. Vicinity to a Coulomb phase is signaled by
the presence of half-moon patterns. This can be interpreted as
complementary to pinch points: they live in the dark regions
of the pinch points and, unlike those, generally incorporate a
dispersion, so that their radius (distance from the pinch point)
changes with energy. As their radius increases, they eventually
connect with half-moons from neighboring Brillouin zones to
generate the star patterns (Figs. 6 and 7). Depending on the
relative ordering of the bands in energy, these features may
even appear in the ground-state correlations.

From a real-space perspective, half-moon and star patterns
reflect the formation of magnetic clusters. These clusters
involve short-range correlation of the conserved spin, which
is analogous to the topological charge defined for the corre-
sponding Ising system. Through this analogy, the half-moon
and star cluster can be associated with hexamers and triple-
charge clusters obtained in the Ising system, respectively.

The analogy to Ising systems can be extended to the or-
dering at the high-symmetry point J = J2c for the pyrochlore
system, where the structure of the low-temperature ordered
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FIG. 23. Ground state at the boundary J = J2c on the pyrochlore lattice displayed over 32 tetrahedra. All spins are collinear, pointing either
up (blue sphere) or down (red sphere). The colors of the tetrahedra represent their effective topological charges as defined in Eq. (16): +4 (dark
blue), +2 (light blue), 0 (white), −2 (orange), −4 (red). Each cubic unit cell is composed of a small cluster of five charges (including one
maximal charge) and three zero charges (acting as a vacuum separating charges of opposite sign). This intervening vacuum allows for a global
shift of the clusters, illustrated between the left and right panels. The spin configurations are split into two parts by a horizontal semitransparent
plane. Between the two panels, all spins above the semitransparent plane have been shifted along the [110] direction to the next tetrahedron
(at a distance of two nearest neighbors). Because the contact between charges is not modified, the energy is the same. Doing the same shift a
second time gives back the initial state. From the point of view of discrete degrees of freedom, this gives a subextensive entropy to the ground
state.

phase can be well understood through the concept of topolog-
ical charge. In contrast, the difference from the Ising system is
found in the rigidity of the cluster structure: While the clusters
are rigidly fixed due to the discreteness of the spins in the Ising
system, in the Heisenberg system, the cluster shape is flexibly
changed upon varying J , due to the continuous nature of spin
degrees of freedom.

We further addressed the dynamical properties of the
model by solving the semiclassical LL equations. As a result,
we found that the characteristic half-moon and star patterns
appear in the frequency-resolved structure factors, in partic-
ular in the low-frequency regime, which means the magnetic
clusters dominate the long-time behavior of the dynamics. The
patterns in S (q, ω) presented here can be directly accessed
through experimental probes, such as inelastic neutron scat-
tering.

In fact, in pyrochlore compounds, several types of mag-
netic clusterings have been reported. In ZnCr2O4 [22] and
MgCr2O4 [24–26], six-spin composites dominate the low-
energy excitations. While the proposed spatial structure is dif-
ferent from the hexamers obtained in our analysis, our model
clearly gives a route to similar clustering around hexagons.
It is tempting to point out the possibility that our hexamers
may be continuously connected to the low-energy excitations
observed for these materials. In this respect, a molybdate
pyrochlore material Lu2Mo2O5N2 will also provide an in-
teresting perspective [53,54]. As for the shadow of pinch
points in dispersive bands, it has also been observed in a
kagome model for Fe jarosites with Dzyaloshinskii-Moriya
and second-neighbor interactions [55]. Potential connections
to half-moon and star patterns in this material have not been
investigated yet, and would be an interesting direction to fol-
low. On the other hand, the half-moon signal corresponding to

the hexamer-type clusters was recently theoretically proposed
for a double-layered kagome material [56].

It is also worthwhile to look at another pyrochlore com-
pound, ZnFe2O4. The cluster excitation observed for this
compound takes a “dodecamer” form, consisting of 12 spins
[29]. The spatial structure of this excitation is the same
as the triple-charge cluster obtained in the region (III) in
our model. Interestingly, for this compound, a large farther-
neighbor coupling, J3a > J1, is expected [27–29]. A different
dodecamer structure reminiscent of the kagome hexamer was
also proposed for HgCr2O4 [23].

In conclusion, we found characteristic patterns in magnetic
structure factors, complementary to pinch points, which signal
the proximity to a Coulomb phase. These patterns signal the
formation of magnetic clusters, analogous to the low-energy
excitations observed for pyrochlore compounds.

Note added. Recently, we learned of a parallel study by
Yan et al., which reports complementary results for a different
model [57].
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APPENDIX A: ANALYTICAL FORMULA FOR S(q )
IN LARGE-N ANALYSIS

In this appendix, we describe the derivation of S (q ) in
large-N approximation, in detail. The J1-J2-J3 model has two
special properties at J2 = J3 ≡ J , which enables us simple
analytical approach. One is the polynomial expression of
Hamiltonian in terms of incident matrices, and the other is the
line-graph correspondence. With the help of graph-theoretical
argument, we can construct a simple and systematic way to
obtain the analytical expression of S (q ) in Eq. (8).

1. Polynomial expression

We consider kagome and pyrochlore lattices on the same
footing, and start with introducing an N × N incident matrix
δ̂(1) ≡ ĥ, where we write N = Nsite for brevity. Each row j ,
and column indices j ′ correspond to the sites of the lattice,
and the matrix element takes

[δ̂(1)]jj ′ = [ĥ]jj ′ =
{

1 if j and j ′are connected,

0 otherwise. (A1)

The Hamiltonian matrix can be expressed as Ĥ = ĥ at J = 0,
supposing J1 = 1 and J2 = J3 = J .

Generalizing δ̂(1), we introduce a matrix δ̂(n), so that the
element [δ̂(n)]jj ′ takes 1, if and only if the two sites j and j ′
are n Manhattan distance away, and otherwise, 0. Note that for
the kagome and pyrochlore lattices, the Manhattan distance is
the minimal number of NN bonds necessary to connect two
sites.

Since the squared incident matrix (δ̂(1) )2 connects any
two sites, where one can be reached from the other in two
hoppings, one can obtain

(δ̂(1) )2 = zÎN×N + xδ̂(1) + δ̂(2), (A2)

with z = 2(Nsub − 1) is a number of coordination, and x =
Nsub − 2 is a number of paths through which, starting from a
site, one reaches a NN site of that site by two other NN moves.
Hereafter, Î�×� represents the � × � identity matrix.

Obviously, δ̂(2) corresponds to the part of Hamiltonian
matrix describing the second- and third-neighbor interactions,
so we can express

Ĥ = δ̂(1) + J δ̂(2) = δ̂(1) + J (δ̂(1) )2 − xJ δ̂(1) − zJ ÎN×N

= (1 − xJ )ĥ + J ĥ2 − zJ ÎN×N . (A3)

Now the Hamiltonian matrix is expressed as a polynomial of
incident matrix ĥ, the eigenvalue problem of Ĥ is reduced to
that of ĥ.

2. Dual lattice

To solve the eigenvalue problem of ĥ, it is convenient
to introduce dual lattice. For clarity, we focus on a kagome
lattice, first. We start with constructing an intermediate lat-
tice, by placing new sites on the centers of triangles, and
connecting the new sites and neighboring old sites, while
erasing the original bonds of kagome lattice. Second, from

(b)

(a)

FIG. 24. Dual lattices for (a) kagome and (b) pyrochlore lattices.
Black dots/spheres denote original lattices, and brown ones denote
dual lattices.

this intermediate lattice, we erase the original sites of the
kagome lattice, and obtain a honeycomb lattice as a dual
lattice [Fig. 24(a)]. As a dual lattice of pyrochlore lattice, we
obtain a diamond lattice in a similar way [Fig. 24(b)].

The dual lattice shares the same unit cell as the original
lattice. Below, we adopt the following lattice conventions. For
a kagome lattice, as lattice vectors, we choose a(K)

1 = (1, 0)

and a(K)
2 = ( 1

2 ,
√

3
2 ), and as the coordinates of three sublat-

tices 1, 2, and 3, r (K)
1 = (0, 0), r (K)

2 = ( 1
4 ,

√
3

4 ), r (K)
3 = ( 1

2 , 0).
Accordingly, the coordinates of two sublattices A and B of
the dual honeycomb lattice are r (H)

A = ( 5
4 , 5

√
3

12 ) and r (H)
B =

( 1
4 ,

√
3

12 ). For a pyrochlore lattice, the lattice vectors are aP
1 =

(0, 1
2 , 1

2 ), aP
2 = ( 1

2 , 0, 1
2 ), aP

3 = ( 1
2 , 1

2 , 0), and the positions
of four sublattices are rP

1 = (0, 0, 0), rP
2 = (0, 1

4 , 1
4 ), rP

3 =
( 1

4 , 0, 1
4 ), rP

4 = ( 1
4 , 1

4 , 0). For the dual diamond lattice, the
coordinates of two sublattices (A and B) are rD

A = ( 1
8 , 1

8 , 1
8 ),

and rD
B = ( 7

8 , 7
8 , 7

8 ).

3. Line-graph correspondence

Here, let us apply the idea of dual lattice to solve the eigen-
value problem of ĥ. Here, we focus on a kagome lattice, again.
First, we look at the intermediate lattice we have introduced in
the previous subsection. On this graph, we introduce N × NH

rectangular matrix ĥK←H, whose N rows correspond to sites
on a kagome lattice, and NH columns correspond to the sites
of a honeycomb lattice. We define ĥK←H as an incident matrix
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for the intermediate lattice, i.e., we set

[ĥK←H]j l =
{

1 if j and l are connected,

0 otherwise. (A4)

And, we define NH × N rectangular matrix, ĥH←K as ĥH←K =
(ĥK←H)t .

The key step to solve the eigenvalue problem is the obser-
vation that the matrix ĥ can be written as a product of ĥH←K

and ĥK←H:

ĥ = ĥK←HĥH←K − 2ÎN×N . (A5)

The form (A5) immediately tells us significant information on
the energy spectrum of ĥ. For N × M matrix Â and M × L

matrix B̂, it is known that
(i) rankÂ � min{N , M},
(ii) rankÂB̂ � min{rankÂ, rankB̂}.
Applying these properties to ĥK←H and ĥH←K, we obtain

rank(ĥK←HĥH←K ) � NH = (2/3)N. (A6)

This inequality results in the existence of at least N − NH =
1
3N zero modes, i.e., ĥ has 1

3N eigenstates with degener-
ate eigenenergy −2. Moreover, the matrix ĥK←HĥH←K and
the inverse product ĥH←KĥK←H share the common nonzero
eigenvalues. Accordingly, given that the incident matrix of
honeycomb lattice is given by

ĥH = ĥH←KĥK←H − NsubÎNH×NH , (A7)

the eigenspectrum of ĥ consists of NH eigenvalues of ĥH +
(Nsub − 2)1̂, and N − NH-fold degenerate modes with eigen-
value −2.

4. Momentum-space expression

The translational invariance of the Hamiltonian matrix al-
lows us to block-diagonalize it with respect to the momentum
q. For each q, we obtain Nsub × Nsub Hamiltonian matrix
Ĥ (q ) defined in Eq. (7). Due to the polynomial expression
in Eq. (A2), we obtain

ĥ2(q ) = [ĥ1(q )]2 − xĥ1(q ) − zÎNsub×Nsub , (A8)

with

[ĥi (q )]μν =
∑
m

[δ(i)](0,μ),(m,ν)e
−iq·(Rm+rν−rμ ). (A9)

Therefore, Ĥ (q ) is also expressed as a polynomial of the
Fourier transformation of ĥ1:

Ĥ (q ) = (1 − xJ )ĥ1(q ) + J [ĥ1(q )]2 − zJ ÎNsub×Nsub . (A10)

From Eq. (A10), we see the eigenvalue problem for Ĥ (q )
is reduced to that for ĥ1(q ). To solve it, one can utilize the
momentum-space version of Eq. (A5), namely,

ĥ1(q ) = ĥK←H(q )ĥH←K(q ) − 2ÎNsub×Nsub . (A11)

Here, ĥK←H(q ) is NH
sub × Nsub matrix:

[ĥK←H(q )]μ,ν =
NH

u.c.∑
m

[ĥK←H](0,μ)(m,ν)e
−iq·(Rm+rH

ν −rμ ) (A12)

and

ĥH←K(q ) = [ĥK←H(q )]†. (A13)

Using Eq. (A11) as well as the momentum-space analog of
Eq. (A7), one can show that the eigenvalues of ĥ1(q ) consist
of eigenvalues of ĥH(q ) (up to a constant) and (Nsub − NH

sub)
flat mode with the eigenvalue −2; ĥH(q ) is given by

[ĥH(q )]μ,ν =
NH

u.c.∑
m

[ĥH](0,μ),(m,ν)e
−iq·(Rm+rH

ν −rH
μ ). (A14)

Note that the similar relations hold in the case of a pyrochlore
lattice.

5. Kagome lattice

Utilizing the above idea, we now show the explicit forms
of the eigenvalues and eigenvectors of our model. Let us
first consider a kagome lattice. As discussed in the previous
section, the exchange matrix on a kagome lattice is expressed
as

Ĥ K(q ) = ĥK
1 (q ) + J ĥK

2 (q ), (A15)

with

[
ĥK

1 (q )
]
μν

=
{

2 cos q · (rK
μ − rK

ν

)
(μ �= ν),

0 (μ = ν),
(A16a)

[
ĥK

2 (q )
]
μν

=
{

2 cos q · ( ∑
ρ �=μ,ν rK

μ + rK
ν − 2rK

ρ

)
(μ �= ν),

2 cos q · [2 ∑
ρ �=μ(rK

ρ − rK
μ )

]
(μ = ν).

(A16b)

To obtain the eigenvalues of ĥH
1 (q ), we first write the

exchange matrix on a dual honeycomb lattice:

ĥH
1 (q ) =

(
0 G(q )

G∗(q ) 0

)
, (A17)

with

G(q ) = e
i

qy√
3 + 2e

−i
qy

2
√

3 cos
qx

2
, (A18)

The eigenvalues of ĥH
1 (q ) are given by ε

(H)
± (q ) = ±|G(q )| and

the corresponding eigenvectors are

ψH(±)(q ) = 1√
2

(±eiθG(q )/2

e−iθG(q )/2

)
, (A19)

with θG(q ) = argG(q ).
Then, we immediately obtain the eigenvalues and eigen-

vectors of (A15) in the following manner. First, the eigenval-
ues of hK

1 (q ) are identical with those of hH
1 (q ) up to a constant

and, thus, using Eq. (A8) and the fact that z = 4, x = 1 for a
kagome lattice, the two eigenvalues of (A15) are obtained as

εK
±(q ) = J |G(q )|2 ± (1 + J )|G(q )| + 1 − 4J. (A20)

Next, to obtain the corresponding eigenvectors, we consider
a rectangular matrix ĥK→H(q ) as we have discussed int Sec.
A 3. Its explicit form is given as

ĥK→H(q ) =
⎛
⎝eiϕ1 e−iϕ1

eiϕ2 e−iϕ2

eiϕ3 e−iϕ3

⎞
⎠, (A21)

144446-17



MIZOGUCHI, JAUBERT, MOESSNER, AND UDAGAWA PHYSICAL REVIEW B 98, 144446 (2018)

with ϕ1 = qx

4 + qy

4
√

3
, ϕ2 = − qy

2
√

3
, and ϕ3 = − qx

4 + qy

4
√

3
. Then,

the eigenvectors are obtained as

ψK
±(q ) = hK→H(q )ψH

±(q )

||hK→H(q )ψH
±(q )|| . (A22)

Note that the remaining flat mode is orthogonal to two disper-
sive modes, and its eigenvalue is −2(1 − J ).

Energy minima. We now obtain the eigenvalues of (A15),
so let us discuss the properties of obtained band structure. The
energy minima of the lower dispersive band can be found by
solving

∂εK
−(q )

∂qx

= ∂εK
−(q )

∂qy

= 0. (A23)

By using the expression (A20), one obtains

∂εK
−(q )

∂qi

= [2J |G(q )| − (1 + J )]
∂|G(q )|

∂qi

. (A24)

Therefore, (A23) is satisfied when
(i) |G(q )| = 1+J

2J
,

(ii) ∂|G(q )|
∂qx

= ∂|G(q )|
∂qy

= 0.
Condition (ii) is satisfied at �, K , and M points, but they do
not become energy minima. So, let us examine (i). Notice that
the solution of (i) in q space forms lines, rather than a set of
discrete points. The solution evolves as follows. First, when
0 � J � 1

5 , (i) does not have solutions: in this region the flat
band has the lowest energy and the static structure factors is
determined by a flat band, which gives rise to pinch points
in S (q ). Second, when 1

5 � J � 1, the solution is given by a
closed path enclosing � point [see Fig. 6(a)]. Finally, when
J � 1, the solution is given by a closed path enclosing K

points [see Fig. 6(b)]. As we have seen in the main text, the
shape of energy minima is reflected to the characteristic shape
of the static structure factor, namely, half-moons and stars.

Derivation of phase boundaries. The change of topology
of energy minima surface can be detected by looking at �M

line. On �M line, we can parametrize the momentum as q =
(Q, Q√

3
) with 0 � Q � π . Then, |G(q )| is given by

|G(q )| =
√

8 cos2
Q

2
+ 1, (A25)

and the solution of (i) is then given by

Q = 2 cos−1

√√√√1

8

[(
1 + J

2J

)2

− 1

]
. (A26)

Figure 25 shows uK ≡
√

1
8 [( 1+J

2J
)
2 − 1] as a function of J .

In order that Q is between 0 and π , uK has to be between 0
and 1, which is represented by the shade. One can see that the
lower bound is J = 1

5 , and the upper bound is J = 1, which
correspond to J1c and J2c, respectively.

Nearly isotropic nature of half-moon. The energy disper-
sion of the lower-dispersive band around � point is isotropic.

 0.1  1  10
-2
-1
 0
 1
 2

FIG. 25. J dependence of uK. The solution of Eq. (A25) for 0 �
Q � π exists for the shaded area. Note that uK becomes a complex
number for J � 1.

Indeed, εK
−(q ) can be expanded around � point as

εK
−(q ) ∼ −2(1 − J ) +

(
1

4
− 5J

4

)
q2

+
(

− 1

192
+ 17J

192

)
q4 + O(q5

i ), (A27)

with q =
√

q2
x + q2

y . Equation (A27) shows that the energy
dispersion is isotropic up to the order of q4, and this leads to
nearly circular shape of the energy-minima surface in region
(II) [see Fig. 6(a)].

6. Pyrochlore lattice

The same method can be applied to a pyrochlore lattice,
so here we outline the calculations. We consider the exchange
matrix on a original pyrochlore lattice:

Ĥ P(q ) = ĥP
1 (q ) + J ĥP

2 (q ), (A28)

where

[
ĥP

1 (q )
]
μν

=
{

2 cos q · (
rP

μ − rP
ν

)
(μ �= ν),

0 (μ = ν)
(A29)

and

[
ĥP

2 (q )
]
μν

=
{

2 cos q · ( ∑
ρ �=μ,ν rP

μ + rP
ν − 2rP

ρ

)
(μ �= ν),

2 cos q · [
2

∑
ρ �=μ

(
rP

μ − rP
ρ

)]
(μ = ν).

(A30)

The polynomial form of the Hamiltonian (A28) with respect
to ĥP

1 (q ) is obtained as

ĥP
2 (q ) = [

ĥP
1 (q )

]2 − 2ĥP
1 (q ) − 6Î4×4, (A31)

since z = 6 and x = 2 for a pyrochlore lattice.
Next, the exchange matrix for the dual diamond lattice is

given as

ĥD
1 (q ) =

(
0 g(q )

g∗(q ) 0

)
, (A32)

with

g(q ) = e−i
qx+qy+qz

4 + ei
qx+qy−qz

4 + ei
qx−qy+qz

4 + ei
−qx+qy+qz

4 .

(A33)
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Its eigenvalues are ε
(P)
± (q ) = ±|g(q )|, and the corresponding

eigenvectors are

ψD
±(q ) = 1√

2

(±eiθg (q )/2

e−iθg (q )/2

)
, (A34)

with θg (q ) = arg g(q ).
Then, using the argument in Secs. A 3 and A 4, we obtain

the eigenvalues of the Hamiltonian (A28) as

εP
±(q ) = J |g(q )|2 ± (1 + 2J )|g(q )| + 2 − 6J. (A35)

The corresponding eigenvectors are given as

ψP
±(q ) = hP←D(q )ψD

±(q )

||hP←D(q )ψD
±(q )|| , (A36)

where ĥP←D(q ) is a rectangular matrix

ĥP←D(q ) =

⎛
⎜⎜⎝

eiφ1 e−iφ1

eiφ2 e−iφ2

eiφ3 e−iφ3

eiφ4 e−iφ4

⎞
⎟⎟⎠, (A37)

and φ1 = qx+qy+qz

8 , φ2 = qx−qy−qz

8 , φ3 = −qx+qy−qz

8 , and φ4 =
−qx−qy+qz

8 . The rest of eigenvectors, i.e. two flat modes, are
orthogonal to ψP,±(q ) and their eigenenergy is −2(1 − J ).

Energy minima. The minima of εP
−(q ) is obtained by

solving

∂εP
−(q )

∂qi

= [2J |g(q )| − (1 + 2J )]
∂|g(q )|

∂qi

= 0. (A38)

(A38) is satisfied when
(i) |g(q )| = 1+2J

2J
,

(ii) ∂|g(q )|
∂qx

= ∂|g(q )|
∂qy

= ∂|g(q )|
∂qz

= 0.
Again, (ii) is satisfied at several high-symmetry points, which
turn out not to be energy minima, so let us focus on (i). When
0 � J � 1

6 , (i) does not have solutions, the lowest-energy
band in this region is the flat band. Then, for 1

6 � J � 1
2 ,

the solution is a surface enclosing � point [Fig. 7(a)]. Finally,
for J � 1

2 , a solution is a surface enclosing the zone corners
[Fig. 7(b)].

Derivation of the phase boundaries. Similar to the case of
a kagome lattice, the phase boundaries for a pyrochlore lattice
are determined by the presence/absence of the energy minima
on �L line. On �L line, the momentum is parametrized as
q = (Q,Q,Q) with 0 � Q � π . Then, the condition for the
energy minima is given by

|g(q )| =
√

6 cos Q + 10, (A39)

and its solution of (i) is

Q = 2 cos−1

(−12J 2 + 4J − 1

48J 2

)
. (A40)

We plot uP ≡ −12J 2+4J−1
48J 2 in Fig. 26. We again examine the

condition that Q is between 0 and π (a shaded area of Fig. 26),
and find that the lower (upper) bound is J = 1

6 ( 1
2 ).

-2
-1
 0
 1
 2

 0.1  1  10

FIG. 26. J dependence of uP ≡ −12J 2+4J−1
48J 2 . The solution of

Eq. (A39) for 0 � Q � π exists for the shaded area.

APPENDIX B: MONTE CARLO SIMULATIONS

Monte Carlo simulations are performed on systems of
classical O(3) spins on the kagome and pyrochlore lattices,
whose system sizes are, respectively, 12L2 and 16L3 sites. To
decorrelate the system, we use jointly the heat bath method,
over-relaxation, and parallel tempering. Thermalization is
made in two steps: first a slow annealing from high temper-
ature to the temperature of measurement T during te Monte
Carlo steps (MCs) followed by te MCs at temperature T . After
thermalization, measurements are done every 10 MCs during
tm = 10te MCs. All temperatures are given in units of J1 = 1.
The details of each simulation are as follows:

(i) Fig. 3: L = 30 for both lattices and tm = 105, 106 MCs
for the pyrochlore and kagome lattice, respectively.

(ii) Fig. 8, top: tm = 106 MCs, and the error bars are
coming from an average over n runs with different initial
configurations, where n = 50 for L < 15 and n = 20 for
L > 15.

(iii) Fig. 8, bottom: L = 20 and tm = 106 MCs.
(iv) Fig. 9: L = 8 (a) and L = 16 (b) and tm = 106 MCs.

The error bars in (a) are coming from an average over 6 runs
with different initial configurations; when not visible, they are
smaller than the dots.

(v) Fig. 13: L = 30 and tm = 105 MCs.
(vi) Fig. 14: L = 20 and tm = 105 MCs.
(vii) Fig. 15: L = 30 and tm = 105 MCs.
(viii) Fig. 22: L ∈ {6, 8, 10} and tm ∈ {107, 2.107, 107}

MCs, respectively.
For LL dynamics on the kagome (Fig. 16) and pyrochlore

(Fig. 17) lattices, we prepared, respectively, 864 and 432 spin
configurations, for system sizes of 3 × 302 and 4 × 123 spins.
In the parameter region of interest, single-spin-flip Monte
Carlo updates were adequate. These spin configurations were
then used as seeds for the fourth-order Runge-Kutta method,
using δt = 0.01 as the time interval, and Nt = 100 000 as the
number of steps of the time evolution. The accuracy of the nu-
merical simulation was confirmed by calculating the energy;
indeed, the energy conservation is satisfied during the Landau-
Lifshitz dynamics within the accuracy of 10−5 (Fig. 27).

APPENDIX C: RANK-TWO TENSOR ORDER PARAMETER

The rank-two tensor order parameter is time-reversal in-
variant and measures the onsite quadrupolar order. For a
pyrochlore lattice of N sites, the rank-two tensor is defined
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FIG. 27. Time evolutions of the energy (per spin) for the fourth-order Runge-Kutta method in the Landau-Lifshitz dynamics for kagome
(a), (b) and pyrochlore (c), (d) systems. The conservation of energy is satisfied, within the accuracy of 10−5.

following Ref. [52]:
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i , (C1)

where

Q3z2−r2

i = 1√
3

[
2
(
Sz

i

)2 − (
Sx

i

)2 − (
S

y

i

)2]
, (C2)

Qx2−y2

i = (
Sx

i

)2 − (
S

y

i

)2
, (C3)

Qxy

i = 2Sx
i S

y

i , (C4)

Qyz

i = 2S
y

i Sz
i , (C5)

Qzx
i = 2Sz

i Sx
i . (C6)

The order parameter used in Fig. 22(b) comes from the norm
of all quadrupole moments

MQ =
√∑

α

(Qα )2 , (C7)

and is saturated when all spins are collinear, taking the value
2/

√
3.

APPENDIX D: ORIGIN OF SUBEXTENSIVE ENTROPY IN
THE ORDERED STATE AT J = J2c FOR PYROCHLORE

In this appendix, we explain the origin of the subextensive
entropy of ( 1

2 , 1
2 , 1

2 ) state at J = J2c, illustrated in Fig. 23. For

this state, which consists of the double-charge clusters, the
energy of the ground state comes from the contact between
charges [Eq. (24)]. These contacts only take place within each
cluster. Let us recall there is one double-charge cluster per
cubic unit cell, with one double charge, four single charges,
and three vacuum tetrahedra. It means that any change which
does not affect the integrity and connectivity of the clusters
is isoenergetic. Thanks to the vacuum surrounding every
cluster, such changes are possible by shifting an entire plane
of clusters. An example is given in Fig. 23. The plane of
clusters in the upper part of the figure is shifted in the [110]
direction between the left and right panels, while the bottom
part remains fixed: the thickness of a plane is exactly one
cubic unit cell. More precisely, all spins along the [110]
lines are shifted by a distance of two nearest neighbors; the
spins along the [11̄0] lines are left unchanged. Thanks to the
intervening layers of vacuum tetrahedra (the one just below
the transparent plane, and the one at the top of the figure), this
shift does not affect any NN pair of charges. The resulting
state is thus also a ground state. A second shift in the [110]
direction gives back the initial state. The same is also true if
one shifts the spins in the upper plane along the [11̄0] lines,
leaving the [110] lines unchanged. The addition of both shifts
makes a fourth possibility. This gives 4L ground states for a
system of L planes in the [001] direction.

The same reasoning applies for planes orthogonal to the
[010] and [100] directions. However, it is not possible to do
successively a shift in a (100) plane followed by a shift in
a (001) plane. This is because the conservation of the energy
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depends on the intervening vacuum layers. Visually, a plane of
clusters can glide at no energy cost as long as there is a layer
of vacuum to isolate it from the two planes above and below.
But, the shift of a (100) plane intersects the layers of vacuum
orthogonal to the [001] direction; the shift of a (001) plane is
now forbidden in the ground state. As a result, the entropy of
the ground state is subextensive, of the order of L ln 4.

The configurations of Fig. 23, as well as the shift of entire
planes, have been observed in snapshots of Monte Carlo
simulations at low temperatures, up to fluctuations away from
collinearity. The presence of the shifting planes favors a given
cubic axis but not a given direction. This spontaneously breaks

rotational symmetry as measured by the quadrupolar order
parameter MQ. But, in this picture, the correlations along the
preferred cubic axis should be “paramagnetic” and the order
parameter ML should vanish like 1/L in the thermodynamic
limit. This is not what is observed in simulations. The reason
is because the system is not made of Ising spins, but of
continuous Heisenberg spins. The ground state is selected via
order by disorder because of soft modes around the L points
of the Brillouin zone, which favor the long-range ordered
states where none of the planes are shifted. However, the
subextensive entropy is probably responsible for the difficulty
of the simulations to thermalize at very low temperatures.
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