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Supercooling and fragile glassiness in a dipolar kagome Ising magnet
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We study equilibration and ordering in the classical dipolar kagome Ising antiferromagnet, which we show
behaves as a disorder-free fragile spin glass. By identifying an appropriate order parameter, we demonstrate a
transition to the ordered state proposed by Chioar et al. [Phys. Rev. B 93, 214410 (2016)] with a 12-site unit cell
that breaks time-reversal and sublattice symmetries, and further provide evidence that the nature of the transition
is first order. Upon approaching the transition, the spin dynamics slow dramatically. The system readily falls
out of equilibrium, overshooting the transition and entering a supercooled liquid regime. Using extensive Monte
Carlo simulations, we show that the system exhibits super-Arrhenius behavior above the ordering transition.
The best fit to the relaxation time is of the Vogel-Fulcher form with a divergence at a finite “glass transition”
temperature in the supercooled regime. Such behavior, characteristic of fragile glasses, is particularly remarkable
as the model is free of quenched disorder, does not straightforwardly conform to the avoided criticality paradigm,
and is simple and eminently realizable in engineered nanomagnetic arrays.
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I. INTRODUCTION

It is well known that the presence of disorder in a system
can generate a rugged free-energy landscape resulting in slow
or glassy dynamics. The converse—the appearance of glassi-
ness in the absence of disorder—is far less understood. Due to
their complex energy landscapes exhibiting multiple minima,
geometrically frustrated systems with long-range interactions
are natural candidates in this regard [1,2]. In recent years,
interesting glassy slow dynamics in the absence of disorder
has been uncovered in electronic Coulomb liquids on the
triangular lattice at quarter-filling [3]. The dynamics of elec-
trons on the frustrated kagome lattice has also received some
attention of late [4], but strong metastability effects mean
there remain open questions about the nature of the ground
state in that system. Slow dynamics persist even for faster-
decaying interactions (dipolar instead of Coulomb) in systems
without particle-number conservation, i.e., spin systems. This
was demonstrated, for instance, in Ref. [5] where due to strong
freezing and metastability effects the nature of the ground
state could not convincingly be established.

In this paper, we explore in greater detail the latter case,
namely, that of frustrated Ising spins on the kagome lattice
subject to dipolar interactions—the dipolar kagome Ising
antiferromagnet (DKIAFM). We begin by identifying an order
parameter for the state proposed by Chioar et al. [5]. This
allows us to confirm the nature of the ground state in extensive
simulations of small systems and to provide evidence that the
nature of the transition is first order. Approaching the transi-
tion, the spin dynamics slow dramatically, and a supercooled
liquid regime can appear upon further cooling. Despite the
propensity of the system to fall out of equilibrium, we are able
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to reach thermodynamic equilibrium in Monte Carlo simula-
tions for systems of up to around 300 spins. At equilibrium
above the ordering transition we find robust evidence of super-
Arrhenius behavior. The relaxation time τ appears to diverge
according to a Vogel-Fulcher law τ ∼ exp[�/(T − T0)], char-
acteristic of fragile glasses, at a temperature lower than the
thermodynamic transition temperature. The glassy slowing
down may be related to the existence of many low-lying
metastable states exhibiting dendritic arrangements of emer-
gent charges.

Our results highlight the DKIAFM as particularly suitable
for the study of disorder-free glassy dynamics. On one hand,
fragile glass behavior where the timescale diverges at a finite
temperature in the supercooled liquid regime is hard to come
by in nondisordered systems in two dimensions [6]. On the
other hand, theoretical models of glasses without disorder
where the thermodynamic behavior is well understood are
typically limited to the rather artificial multispin Hamiltonians
of kinetically constrained models [9], difficult to realize in
a laboratory, and unlikely to occur in real materials. The
DKIAFM exhibits the above interesting features with a
Hamiltonian that is eminently realistic.

Experimental realizations of the DKIAFM have already
been obtained using artificial nanomagnetic arrays [10] (in-
deed it is these realizations that motivated the authors of
Ref. [5] to first study this model), and one may be able to study
similar systems in real time on a “microscopic” scale [11].
The behavior exhibited by the DKIAFM may also be relevant
to monolayer colloidal crystals [12,13] where recent advances
have enabled the study of slow dynamics of frustrated systems
in real time. Another potential avenue where this model could
be realized in experiments is that of cold polar molecules [14]
and atomic gases with large magnetic dipole moments [15].
Of particular interest there would be the possibility of inves-
tigating how the relaxation timescales and glassy behavior
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FIG. 1. The dipolar kagome Ising antiferromagnet. The spins
Si (red arrows) share a global Ising easy axis perpendicular to the
plane (in the êz direction) and interact via nearest-neighbor exchange
interactions of strength J and long-range dipolar interactions of char-
acteristic strength D. The sublattices a = {1, 2, 3} are numbered.

may be affected by quantum dynamics. Finally, (layered)
kagome spin lattices occur in solid-state materials and can
be combined with the crystal-field physics of rare-earth ions
to achieve the desired easy-axis (Ising) nature and leading
dipolar interactions [16–18].

The remainder of the paper is organized as follows. In
Sec. II we introduce the DKIAFM model. In Sec. III we
discuss the ordering displayed by the model and the nature
of the transition to the ground state. In Sec. IV we discuss
the dynamic properties of the model at low temperatures,
in particular, the spin relaxation. In Sec. V we consider the
dynamics of the model out of equilibrium. Finally in Sec. VI
we conclude and discuss the connection to experiments.

II. MODEL

We consider the dipolar kagome Ising antiferromagnet [5]
(illustrated in Fig. 1) in which N classical spins Si are
arranged on the kagome lattice and share a global Ising
easy axis perpendicular to the plane (in the êz direction).
As such, the spins Si = μσi êz can be described by the Ising
pseudospin variables {σi = ±1}, where μ is the magnitude of
the spin magnetic moment (we set μ = 1 where relevant in
the remainder of the paper).

The Hamiltonian comprises an exchange term of strength
J between spins at nearest-neighbor lattice sites 〈ij 〉 and
long-range dipolar interactions of characteristic strength
D = (μ0/4π )μ2/r3

nn between all pairs of spins, where rnn is
the nearest-neighbor distance of the lattice. The Hamiltonian
is given by

H = −J
∑
〈ij〉

σiσj + Dr3
nn

∑
j>i

σiσj

|rij |3 , (1)

where rij ≡ rj − ri is the separation between spins at lattice
sites i and j . The Hamiltonian (1) is equivalent to dipolar spin
ice on the kagome lattice (see, e.g., Ref. [19]) in the limit of
spins rotated so that they are perpendicular to the plane.

We are interested here in the case where both interactions
are antiferromagnetic, namely, J < 0 and D > 0. The case
where D = 0 is known to be fully frustrated and does not
order down to zero temperature [20]. The phase diagram of
the case where J = 0 is less well understood but the system
is again strongly frustrated with any ordering (if present at
all) suppressed down to temperatures T � D [10]. A more

detailed discussion of the frustration in Eq. (1) is given in
Appendix A. Throughout the remainder of this paper we con-
sider the coupling parameters from Ref. [5], namely, D = 1
and J = −0.5 K (we set kB = 1 and measure all energies in
Kelvin).

III. ORDER PARAMETER AND NATURE
OF THE TRANSITION

Long-range ordering has not yet been directly observed
in the DKIAFM. In Ref. [5] it was found that at very low
temperatures the system exhibits freezing of single spin flip
and loop dynamics while seemingly being on the verge of an
ordering transition as evidenced by the onset of a pronounced
peak in the specific heat. A candidate for the ground state of
the present model was proposed and shown to be consistent
with the available thermodynamic data from simulations. The
state, illustrated in Fig. 2, has a 12-site magnetic unit cell
that can be visualized as arising from tesselating trapezoids
of alternating spins to form 7 shapes. For more details on this
construction see Ref. [5]; in the following we refer to this state
as the proposed ground state.

The state is sixfold degenerate—under threefold rotation
(sublattice) symmetry and twofold time-reversal symmetry.
Upon assigning an emergent charge variable to each of the
up- and down-type triangles (� and �) on the kagome lattice,

Q� =
∑
i∈�

σi, (2)

Q� = −
∑
i∈�

σi, (3)

the proposed ground state can be seen to exhibit a charge-
stripe pattern [see Fig. 2(b)]. Here we confirm the proposed
low-temperature ordered state and study in detail the thermo-
dynamic behavior of the system by devising an appropriate
order parameter and performing extensive Monte Carlo sim-
ulations that manage to achieve thermodynamic equilibrium
below the ordering temperature.

Upon inspecting the spin configuration in Fig. 2(a), we note
that one sublattice of the kagome triangles (in this instance,
sublattice 1) is completely polarized with the state having zero
magnetization overall. This observation leads us to postulate
that the proposed ground state, which breaks time-reversal
and sublattice symmetries, can be described by an appropri-
ate order parameter for the transition, namely, the sublattice
magnetization,

ma = 3

N

∑
i∈sublattice a

σi, (4)

where a ∈ {1, 2, 3}. The proposed ground state has one sub-
lattice a ≡ a′ polarized such that ma′ = ±1 and the other
two sublattices with

∑
a 
=a′ ma = ∓1 such that the state has

zero magnetization overall. Notice the spin pattern on the two
nonpolarized sublattices: it has period four with three spins
σ = ∓1 followed by one spin σ = ±1 [along the horizontal
bonds in Fig. 2(a)]; such lines of spins are stacked in a specific
chiral structure.
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FIG. 2. Proposed ground state of the dipolar kagome Ising an-
tiferromagnet. (a) The spins exhibit a pattern which breaks both
time-reversal and sublattice symmetries with one sublattice polar-
ized (here, sublattice 1). The 12-site magnetic unit cell is outlined
(rhomboid box). Black points indicate up spins (σ = 1), and white
points indicate down spins (σ = −1). (b) The charges Q (defined
in the text) exhibit a charge-stripe pattern: red dots indicate positive
charges (Q = 1), and blue dots indicate negative charges (Q = −1).

To verify this, we performed extensive Monte Carlo (MC)
simulations of the DKIAFM Hamiltonian (1) using a 12-site
unit cell commensurate with the proposed ground state. Our
system contains N = 12L2 spins. To ensure that we do not
exclude other possible ordered states, we also considered
system sizes that are commensurate with plausible competing
phases, which include the

√
3 × √

3 state [21]. Unlike Chioar
et al. (see Ref. [5]) and Chioar (see Ref. [22]), we sum the
pairwise dipolar interactions via the method of summation of
copies employed in Refs. [19,23] until convergence of one
part in 106. Since loop dynamics do not appear to help in
alleviating the freezing [5], we use Metropolis single spin-flip
dynamics throughout. We cool the system from equilibrium
at T/D = 1 in increments of 0.5 × 10−3D using 2 × 104

modified MC sweeps for equilibration at each temperature
step. Following Ref. [5], we take a modified Monte Carlo
sweep at a given temperature to correspond to N × r−1 single
spin-flip attempts, where r is the acceptance ratio at that
temperature [24]. We time average at each temperature by
measuring quantities 400 times, each measurement separated
by 50 modified MC sweeps, and we ensemble average the
results over 64 independent simulations. We note that this
simulation protocol requires a substantial investment of com-
putational resources but, by careful analysis of spin auto-
correlation functions, we are able to ensure thermodynamic
equilibrium down to temperatures lower than the transition
temperature, at least for sufficiently small system sizes as
discussed below.

The specific heat C and sublattice magnetization ma are
shown in Figs. 3(a) and 3(b), respectively, for system sizes
L = {2, 3, 4, 5} with N = {48, 108, 192, 300} spins. The or-
dering transition is signaled by a peak in the specific heat
(at around Tc/D 
 0.05 for L = 5) and a clear concomitant
increase in ma from zero to one, signaling the complete de-
velopment of order consistent with the proposed ground state.
Direct inspection of the spin configurations confirms that
indeed the system in each case reaches the proposed ground
state. The freezing of spin dynamics at low temperatures is
remarkably strong, and we were unable to fully equilibrate
systems larger than L = 5 (300 spins) in times compatible
with also obtaining enough data for averaging purposes.
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FIG. 3. (a) Specific heat C and (b) sublattice magnetization ma of
the DKIAFM for system sizes L = {2, 3, 4, 5}. The ordering transi-
tion to the proposed ground state is signaled by a peak in the specific
heat C and concomitant increase in the sublattice magnetization ma

which acts as an order parameter.

As shown in Fig. 3(b), the order parameter ma presents
a jump which becomes increasingly sharp for larger system
sizes. This trend towards discontinuous behavior (rather than
power-law behavior) is suggestive of a first-order phase tran-
sition. The average energy per spin 〈e〉, which can be seen
in the inset of Fig. 4, also displays an abrupt decrease at the
transition temperature, the sharpness of which increases for
larger systems [25]. This is consistent with the latent heat
expected to accompany a first-order transition.

The associated energy histogram p(e) is shown in Fig. 4,
at temperatures just above (T/D = 0.060), approximately at
(T/D = 0.052), and just below (T/D = 0.0505) the tran-
sition (for L = 5). Above the transition, there is a single
Gaussian-like peak which indicates a unique phase. The emer-
gence close to the transition temperature of a double-peaked
structure indicates the coexistence of two distinct phases of
different energies (one of which is the ground state) and thus
a first-order transition. At lower temperatures, the higher-
energy peak disappears as the system increasingly occupies
the ground state.

We have examined the scaling of the maximum of the
specific heat peak Cmax with the system size L but do not
find convincing evidence for it scaling with the volume of
the system (∝L2) as expected for a first-order transition (not
shown). Possible deviations could be due to strong finite-
size effects for the modest system sizes that we are able to
equilibrate reliably. Similar behavior has been found in studies
of first-order transitions in long-range interacting Ising spin
systems on the square lattice [26].

IV. SPIN RELAXATION AT LOW TEMPERATURES

Upon approaching the thermodynamic phase transition, the
DKIAFM exhibits noticeable freezing of its spin dynamics,
which we study quantitatively using the spin autocorrelation
function,

C(t ) = 1

N

∑
i

σi (0)σi (t ). (5)

We consider single spin-flip dynamics and measure time in
Monte Carlo sweeps (that is to say, regular MC sweeps
defined as the number of MC spin-flip attempts per spin, in
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FIG. 4. Energy histogram p(e) around the transition tempera-
ture for L = 5 (the largest system size we are able to fully equi-
librate). Just above the transition temperature (T/D = 0.060), a
single Gaussian-like peak indicates the presence of a unique phase.
Around the transition temperature (T/D = 0.052), p(e) displays a
double-peaked structure indicating the coexistence of two distinct
phases (one of which is the ground state) and thus a first-order tran-
sition. At lower temperatures (T/D = 0.0505), the higher-energy
peak becomes comparatively much less pronounced as the system
increasingly occupies the low-energy state. The inset: average energy
per spin 〈e〉 as a function of temperature T for two different system
sizes L = {2, 5}. The transition is signaled by an abrupt decrease in
the energy 〈e〉, the sharpness of which increases with system size.

contrast to the modified MC sweeps used in the previous
section). We focus on the behavior of the autocorrelation func-
tion in thermodynamic equilibrium, equivalent to the tw → ∞
limit of the two-time autocorrelation function C(t, tw ). The
decay of C(t ) is not captured by a simple exponential but is
rather described by a stretched exponential,

C(t ) = exp[−(t/τ )β], (6)

where τ is the relaxation timescale and β � 1 is the
Kohlrausch exponent. Stretched-exponential relaxation is typ-
ical of systems with complex energy landscapes and often
associated with glassy or supercooled liquid behavior [27].
We fit a stretched exponential to C(t ) and extract both the
relaxation time τ and the stretching exponent β for different
temperatures T (see the top panel of Fig. 5) [28].

The relaxation time τ for a L = 3 system obtained
from the fit to C(t ) is plotted as as a function of inverse
temperature T (in units of D) in the bottom panel of Fig. 5
(black solid squares). The approximate finite-size transition
temperature for the L = 3 system Tc/D = 0.057 ± 0.002
is indicated by the vertical dashed line. There is clear
evidence of super-Arrhenius behavior as the temperature is
lowered (above Tc). The stretching exponent β as a function
of temperature is shown in the inset of Fig. 5 top panel,
demonstrating that the decay of C(t ) becomes increasingly
stretched at low temperatures.

Thanks to the two-dimensional nature of the system, we
were able to push the numerical simulations to explore a
reasonably large range of relaxation timescales. We attempted
to fit the temperature dependence using several known forms,
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FIG. 5. Top: examples of spin autocorrelation functions (sym-
bols) and relative stretched exponential fits (solid lines), used to
extract τ and β. The behavior of the latter as a function of temper-
ature is shown in the inset. The system size is L = 3. Bottom: spin
autocorrelation time τ as a function of inverse temperature (black
squares) on a semilogarithmic scale. The noticeable departure from
linear scaling at low temperatures is characteristic of super-Arrhenius
behavior (black solid squares). The vertical line indicates the finite-
size transition temperature Tc/D 
 0.057. The same data are also
plotted against D/(T − T0) to show that τ diverges according to
a Vogel-Fulcher form with T0/D = 0.0206 and �/D = 0.292 (the
dashed blue line is the corresponding fit to the data).

and found that only two of them produce good agreement
[29]—the Vogel-Fulcher form

τ ∼ exp

(
�

T − T0

)
, (7)

and a parabolic law [30],

τ ∼ exp

(
A

T
+ B

T 2

)
(8)

(note that both have the same number of fitting parameters).
Our data show that the former yields a quantitatively better
fit, and we focus on it presently. However, the difference is
marginal, and for completeness we report a detailed com-
parison between the two forms in Appendix B. Both forms
for the relaxation time τ are characteristic of fragile glass
behavior [27,31], which goes hand in hand with the propensity
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of the system to exhibit supercooled liquid behavior across the
thermodynamic transition.

In the bottom panel of Fig. 5 we plot the timescale
τ on a logarithmic scale as a function of D/(T − T0)
for different values of T0. Our best-fitting parameters are
T0/D = 0.0206 ± 0.0002 and �/D = 0.292 ± 0.001. Note
the long relaxation times (τ ∼ 105 MC sweeps) at the lowest
temperatures.

V. BEHAVIOR OUT OF EQUILIBRIUM

We also ran simulations with larger systems of size
L ∈ {9, 12, 15}, the features of which we discuss briefly here
in regard to out-of-equilibrium behavior. For these system
sizes, the cooling protocol described in Sec. III is not sufficient
to thermalize the system. However, the slower the cooling
protocol, the more pronounced the peak in the specific heat
signaling the incipient transition becomes. To illustrate the
development of order out of equilibrium, we simulate sys-
tems of sizes L = {4, 12, 15} with a protocol that results in
substantial (but not complete) ground-state order in the L = 4
system; we then increase the system size. The specific heat C

and order parameter ma that we identified in this paper (see
Sec. III) are illustrated in Figs. 6(a) and 6(b) respectively.
The developing order in the system is most visible in the
behavior of the order parameter ma . Even though the value of
the order parameter remains rather smaller than the saturated
value at all temperatures, it becomes distinctly nonzero—well
above statistical fluctuations—at a well-defined temperature
that we identify as a reasonable proxy for the thermodynamic
transition temperature Tc of the system [see Fig. 6(b)]. The
specific heat C behaves in a largely L-independent manner
and lacks the pronounced L-dependent peak present when the
system is able to reach equilibrium [see Fig. 3(a)]. This is a
signature of the supercooled liquid behavior.

Understanding the onset of the ordered phase below Tc

when the system is out of equilibrium is hindered by the
elaborate spin pattern of the 12-site magnetic unit cell. We
can gain some visual intuition by taking advantage of the fact
that one of the sublattices is fully polarized in the ordered
state. In Fig. 7, we plot separately the individual sublattices
a = {1, 2, 3} of a low-temperature spin configuration in a
L= 9 system. Each sublattice forms a triangular lattice. A sys-
tem which is fully ordered in the ground state [see Fig. 2(a)]
would have one sublattice fully polarized (say, all black) and
the two other sublattices partially polarized in the opposite
direction (say, mostly white)—with a pattern where one row
is fully polarized and the next row has alternating signs. This
behavior can indeed be recognized in some regions of the
system in Fig. 7 (for example, the white top-right region for
a = 1 and corresponding regions for the other sublattices).
By examining individual sublattices in this way, it is clear
that the system exhibits some domains consistent with the
ground-state order, although identifying boundaries between
domains is difficult.

In the right panel of Fig. 7, we plot the corresponding
configuration of the charges Q. In the charge picture, it is not
immediately easy to identify ordered domains, but on more
detailed inspection one can recognize patches of parallel
charge stripes, reminiscent of the charge order of the ground
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FIG. 6. Behavior of (a) the specific heat C and (b) the sublattice
magnetization ma for system sizes L = {4, 12, 15} as a function
of temperature T in the case where the number of sweeps per
temperature step is insufficient to equilibrate the system.

state [see Fig. 2(b)]. The different domains with charge
stripes oriented along different lattice directions compete
with one another, leading to a dendritic arrangement of
charge stripes. The charge configuration corresponds thus
to a kind of “stripe liquid,” reminiscent of that observed in
a study by Mahmoudian and co-workers [3] of frustrated
Coulomb liquids on the triangular lattice at half-filling (cf.,
for example, Fig. 2(c) in Ref. [3]). In that work, the authors
also observe glassy slow dynamics due to a large manifold
of low-lying metastable states; however the divergence of
the relaxation timescales at low temperatures in that system
is of the more common Arrhenius behavior, characteristic
of strong rather than fragile glasses. In our system, patches
with packed parallel stripes of charges require coordinated
“topological” (system-spanning) rearrangements of the spin
orientations in order to move between low-energy states. It is
tantalizing to speculate that an appropriate effective modeling
of such spin rearrangements may be key to understanding the
glassy slow dynamics (see Appendix C).

VI. DISCUSSION AND CONCLUSIONS

To summarize, we have investigated the nature of the phase
transition and spin dynamics in the DKIAFM. By means of
extensive Monte Carlo simulations and the identification of a
suitable order parameter, we were able to confirm the ground
state proposed in Ref. [5]. We also provided evidence that the
nature of the transition is first order.

Interestingly, we notice that a Coulombic system of
charges hopping on a kagome lattice [4] appears to exhibit
a remarkably similar ordering tendency to the present sys-
tem, which is also prevented by slow dynamics. We wonder
whether the hitherto puzzling ordered state underlying Fig. 1
in Ref. [4] may be the same ordered state demonstrated in
our paper. Indeed, it may be possible to establish an intuitive
connection between the orders exhibited by the two models
via the charge mapping discussed in Appendix C.

Upon approaching the phase transition, the DKIAFM ex-
hibits a remarkable propensity to fall out of equilibrium and
enter a supercooled liquid phase, avoiding any sign of the full
transition altogether [5]. We studied the equilibrium behavior
of the spin autocorrelation function above the transition and
observed that it is well described by a stretched exponential
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a = 1 a = 2 a = 3 charges

FIG. 7. Individual sublattices a = {1, 2, 3} of a low-temperature spin configuration in a L = 9 system are plotted separately in the first
three panels from the left. Each sublattice constitutes a triangular lattice. Regions of full polarization in one sublattice can clearly be seen (for
example, the white top-right region for a = 1) with the corresponding regions in the other sublattices polarized mostly in the opposite direction
(mostly black). Note the typical pattern of the partially polarized sublattices with rows of spins that alternate between fully polarized and
alternating signs. The values for the overall sublattice magnetizations of this configuration are m1 = −0.074, m2 = −0.185, and m3 = 0.259.
The corresponding charge configuration is shown in the right panel, exhibiting a characteristic dendritic stripe pattern.

form, typical of glass-forming systems. From the stretched ex-
ponential relaxation we obtained the temperature dependence
of the equilibrium relaxation timescale and found it to obey a
Vogel-Fulcher law, typical of fragile glasses.

This is a remarkable result in a system without dis-
order with an eminently simple two-body Hamiltonian in
the absence of dynamical constraints (single spin-flip up-
dates). The behavior cannot be related—to the best of our
understanding—to the avoided criticality paradigm: the short-
range interaction terms in the Hamiltonian are frustrated and
do not lead per se to a continuous phase transition; more-
over, dipolar interactions are not sufficiently long ranged to
suppress an ordering transition irrespective of their strength.
Interestingly, recent experimental work has hinted that a state
similar to a supercooled liquid might exist at low temperatures
in the frustrated pyrochlore material Dy2Ti2O7 [32].

Our paper propels the DKIAFM in the study of glassy
dynamics in systems without disorder. Further work is needed
to understand the origin of the dynamical slowing down—
here we merely speculate that it may be related to topologi-
cal spin rearrangements between low-lying energy states via
an effective dumbbell and charge description (discussed in
Appendix C). What makes this system even more interesting
is the potential for experimental verification in several realistic
setups from colloidal crystals to artificial nanomagnetic arrays
to (layered) bulk kagome materials.
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APPENDIX A: QUANTIFYING FRUSTRATION

In the following we study the level of frustration present
in the DKIAFM by considering Pauling estimates of the
ground-state degeneracy as the range of the interactions is
progressively increased. This illustrates how ordering in the
model is expected to arise only from (some) third-neighbor or
longer-ranged terms. We also compute the Fourier transform
of the full interaction matrix, showing a lowest band that is
substantially flatter than the full spectrum bandwidth: another
hallmark of a highly frustrated system.

1. Pauling estimates for truncated interactions

We consider here the Hamiltonian (1) truncated at third-
neighbor distance and written for convenience as

H = J1

∑
〈ij〉

σiσj + J2

∑
〈〈ij〉〉

σiσj + J3

∑
〈〈〈ij〉〉〉

σiσj . (A1)

In accordance with the choice of parameters in Sec. II, we
set J1 = 1.5, J2 
 0.692, and J3 = 0.625. The second- and
third-neighbor distances on the kagome lattice are illustrated
for convenience in Fig. 8. Note that there are two types of
third-neighbor distances, whose length is exactly twice the
kagome lattice constant: one type is across the hexagonal
cells, and the other is along two aligned consecutive bonds
(not shown). The J3 term in Eq. (A1) encompasses both types.

A simple Pauling argument allows for estimating the
ground-state degeneracy of the J1-J2-J3 model in various
regimes. For J2 = J3 = 0, the model reduces to the nearest-
neighbor kagome spin ice model of Wills et al. [33] for which
a Pauling estimate gives an entropy of ln[2(3/4)2/3] 
 0.5014
per spin (this is very close to the known exact value of
0.5018 [34]).

The J2 interactions form three independent kagome super-
lattices on which they try to enforce the ice rules (the triangles
of these superlattices live inside the hexagons of the original
lattice). Each kagome superlattice has N ′

tri = Ntri/3 triangles,
where Ntri = 2Ns/3 is the number of triangles in the original
kagome lattice (Ns being the total number of spins). Therefore
the number of possible states can be estimated starting from
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FIG. 8. Illustration of second- (J2) and third- (J3) neighbor inter-
action distances on the kagome lattice, indicated by the dashed lines.

the nearest-neighbor J1 result as

� 
 2Ns

(
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8

)Ntri

︸ ︷︷ ︸
kagome ice rule result

(
6

8

)N ′
tri
(

6

8

)N ′
tri
(

6

8

)N ′
tri

︸ ︷︷ ︸
constraint from three kagome superlattices

= 2Ns

(
6

8

)2Ntri

= 2Ns

(
6

8

)4Ns/3


 (1.363)Ns . (A2)

This leads to an entropy SJ1-J2 = ln � 
 0.309Ns .
Similarly, the J3 interactions form three triangular super-

lattices on which they try to enforce the ice rules (these are
simply the three sublattices of the original kagome lattice).
Each triangular superlattice has N ′′

s = Ns/3 spins and thus
N ′′

tri = 2N ′′
s = 2Ns/3 = Ntri triangles. Therefore the number

of possible states can be estimated starting with the J1-J2

result as

� 
 2Ns

(
6

8

)2Ntri

︸ ︷︷ ︸
J1-J2 interactions

[(
6

8

)N ′′
tri

]3

︸ ︷︷ ︸
constraint from three triangular superlattices

= 2Ns

(
6

8

)10Ns/3


 (0.767)Ns . (A3)

This leads to an entropy SJ1-J2-J3 = ln � 
 −0.266Ns , which
is negative and suggests that the system orders. (Alternatively,
one could use the known residual entropy per spin of a trian-
gular Ising antiferromagnet STIAFM = 0.32306 to estimate a
Pauling-like reduction factor for each of the three triangular
superlattices of (0.691)N

′′
s . Substituting this term inside the

square bracket in the second line of Eq. (A3), one obtains
� 
 (0.94)Ns and SJ1-J2-J3 
 −0.06Ns , which is still negative
but only very marginally so.)

It is interesting to note that, if only a subset of
the third-neighbor (J3) interactions are kept (those across
the hexagons as illustrated in Fig. 1 but not those along the
bonds of the lattice) and if we set J1 = J2 = J3, then the
effective model is one where the energy can be written in
terms of a sum over all hexagons of the squared magne-
tization of each hexagon. The ground states of this model

have zero total magnetization on each hexagon, and a Paul-
ing estimate suggests a residual ground-state degeneracy of
Shex = (Ns/3) ln(5/2) 
 0.305Ns (20 out of the 64 possible
spin arrangements on a hexagon have null magnetization, and
there are Ns/3 hexagons in a kagome lattice of Ns spins).
This is an interesting model which might warrant further
investigation in the future.

2. Simulations

We investigate the above predictions with Monte Carlo
simulations of the J1-J2-J3 Hamiltonian (A1).

Figure 9 shows the results for (a) the specific heat per spin
C and entropy S for the J1 only case, (b) the J1-J2 case, and
(c) the J1-J2-J3 case for a system of size L = 3. As mentioned
above, only the J1 case is equivalent to the nearest-neighbor
kagome ice model of Wills et al. [33] and correspondingly
displays a broad Schottky peak in the specific heat C at around
T ∼ 2 (in units where J1 = 1.5) signaling the onset of the
kagome ice rules and a drop in the entropy S down to a value
in good agreement with the Pauling estimate of 0.501 per spin
(dashed line).

The J1-J2 case displays an additional bump in the specific
heat at a slightly lower temperature around T ∼ 0.5 and a
drop in the entropy to a value close to the Pauling estimate of
0.309 per spin (dashed line) We therefore ascribe the lower-
temperature feature in the specific heat to the onset of the ice
rules on the three kagome superlattices.

In the J1-J2-J3 case, after the onset of the kagome ice
rules, the second feature in the specific heat is pushed to
lower temperatures, and the system falls out of equilibrium,
signaled by the difference between the ensemble-averaged re-
sults and the purely time-averaged results. The divergence of
the specific heat at low temperatures in the ensemble-averaged
case indicates that the system does not find a unique energy
minimum despite us using extremely slow annealing protocols
at low temperatures as in the study of the full dipolar case
above (for concreteness, we cool from T = 1 in decrements of
5 × 10−4 using 2 × 104 modified MC sweeps for equilibration
at each temperature step).

Despite our inability to equilibrate the system, we do find
a small signature of a trend towards the proposed ground state
in the main text. The order parameter ma from Eq. (4) remains
zero up to fluctuations for the J1-J2 case at all temperatures,
whereas for the J1-J2-J3 case it increases from zero to a
value of about 0.13 for temperatures lower than approximately
T = 0.03, signaling some development of order consistent
with the proposed ground state [see Fig. 9(c)]. However,
other types of order are consistent with this signature, and
further work is needed to say anything conclusive on the
matter. It seems that the J1-J2-J3 model is perhaps even more
frustrated than the full dipolar model and that further-neighbor
interactions play a key role in relieving some frustration and
selecting the ground state.

3. Interaction matrix

Each lattice site i ≡ (l, a) has an index l which labels the
sites of the Bravais lattice formed by the centers of the up-type
kagome triangles and an index a ∈ {1, 2, 3} which labels the
sublattice (see Fig. 1). Namely, the spins Si ≡ Sa

l ≡ μσa
l êz

144439-7
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FIG. 9. Specific heat C and entropy S of the effective J1-J2-J3 model (plotted on the same axis). (a) J1 only. This model is equivalent
to the nearest-neighbor kagome spin ice model. It exhibits a ground-state entropy in good agreement with the Pauling estimate of 0.501 per
spin (dashed line). (b) J1-J2. This model exhibits a second peak in the specific heat at lower temperatures, associated with the onset of the ice
rules on the kagome superlattices dictated by the J2 interactions. The ground-state entropy is in good agreement with the Pauling estimate of
0.309 per spin (dashed line). (c) J1-J2-J3. After the second feature in the specific heat, the model falls out of equilibrium as indicated by the
difference between the ensemble-averaged results (points) and time-averaged results (dashed line) for the specific heat and the spin entropy.
Also plotted is the sublattice order parameter ma , which displays an increase from zero, hinting at ordering consistent with the dipolar ground
state. The system size is L = 3, and the coupling constants where not vanishing are J1 = 1.5, J2 
 0.692, and J3 = 0.625.

have positions ri ≡ ra
l ≡ Rl + ea , where {Rl} point to the

centers of the up triangles, and {ea} are the vectors from the
centers of the triangles to each of the three spins,

e1 ≡ (0, 1/
√

3), (A4)

e2 ≡ (−1,−1/
√

3)/2, (A5)

e3 ≡ (1,−1/
√

3)/2, (A6)

in units of the kagome lattice constant.
The Hamiltonian (1) can then be written as

H =
∑
lm

∑
ab

J ab(Rlm)σa
l σ b

m, (A7)

where Rlm ≡ Rm − Rl . In Fourier space,

H =
∑

q

∑
ab

J ab(q)σa
q σb

−q, (A8)

where σa
l = ∑

q σa
q exp(iq · ra

l ) and

J ab(Rlm) =
∑

q

J ab(q) exp(iq · rab
lm) (A9)

is the 3 × 3 interaction matrix, where rab
lm ≡ rb

m − ra
l .

The eigenvalue spectrum λn(q) of J ab(q) is shown in
Fig. 10. It has three branches due to the three sites in the unit
cell. The flatness of the bottom branch λmin(q) (illustrated in
detail in the inset of Fig. 10) is characteristic of frustration in
the model. Note that its bandwidth is only about 2% of that
of the full spectrum. The minimum at the � point suggests
that, at the mean-field level, the leading ordering instabil-
ity from the high-temperature phase is expected to be at
q∗ = (0, 0). (Our results are the extension to the Ising case of
the results found for Heisenberg spins by Maksymenko and
co-workers [35]).

APPENDIX B: VOGEL-FULCHER VS PARABOLIC FIT

In order to compare the temperature dependence of the
relaxation timescale in the DKIAFM to the Vogel-Fulcher and
parabolic laws, we fit lnτ (T ) to

lnτ0 + �

T − T0
, (B1)

and to

lnτ0 + A

T
+ B

T 2
, (B2)

with three fitting parameters each. The best fits give
τ0 
 1.83, �/D 
 0.292, T0/D 
 0.0206, and τ0 
 1.94,

A/D 
 0.252, B/D2 
 0.0112, respectively, and are shown
in Fig. 11.

We use the full range of numerical values of τ (T ) for
the fit, and we find a marginally better result using the
Vogel-Fulcher form. This can be quantified by computing
the squared difference between the best fit and the numerical
data, summed over all temperature data points; the resulting
variance is 3.5 times larger for the parabolic law than for
the Vogel-Fulcher form. The difference is however visibly
marginal as demonstrated by the comparison in Fig. 11.

APPENDIX C: EFFECTIVE CHARGE PICTURE,
EMERGENT CHARGE STRIPES, AND FREEZING

To better understand the nature of the low-energy states
in the DKIAFM, it is interesting to draw a parallel with a
related model: kagome ice [33]. In the latter, the Ising spins
lie within the plane of the lattice and point directly into or
out of a triangle. A useful way for understanding kagome ice
derives from the so-called dumbbell picture where each spin
is represented as a pair of magnetic charges ±q separated
by a distance a such that μ = qa [19,36]. Specifically, it
is customary to choose a so that the three charges in each
triangle of the kagome lattice meet precisely at its center. To
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FIG. 10. Eigenvalues λn(q) of the Fourier transform of the inter-
action matrix J ab(q) on a path in the Brillouin zone �→Y→X→�.
There are three branches due to the three sites in the unit cell. The
flatness of the bottom branch is characteristic of frustration. Inset:
zoom on the bottom branch λmin(q), which presents a minimum at
the � point.

leading order, the Hamiltonian of kagome ice can then be
written in terms of the total charges Qα inside each triangle
(labeled by α),

Heff =
∑

α

1

2
v0Q

2
α + μ0

8π

∑
β<α

QαQβ

rαβ

. (C1)

The first term is a chemical potential of strength v0 for
the charges, and the second term is a long-range Coulomb
interaction between them. Note that the lattice formed by the
centers of the triangles is a honeycomb lattice dual to the
original kagome lattice. Much of the physics of kagome ice
can be understood more intuitively in terms of such a system
of interacting charges than in terms of the original spins.

Inspired by the dumbbell construction of the charges in
kagome ice, one can view the DKIAFM as the limit where the
spins are progressively tilted until they become perpendicular
to the kagome plane (as illustrated pictorially in Fig. 12).
In the process, one ought to take the limit a → ∞ (and,
correspondingly, q → 0) to preserve the charges at the end
of the dumbbells overlapping at the same location. (Note that
the magnetic charges Qα associated with each triangle in the
dumbbell picture are, in fact, proportional to the charges Q�
and Q� introduced in Sec. III.) Of course, the greater the
tilt, the less accurate the dumbbell picture becomes, and at
some point the description in terms of resummed charges
ought to break down. However, we are tempted to ignore
this issue and see what the naive limiting scenario suggests
about the behavior of the system. Resumming the charges as
above leads to a description in terms of two triangular layers
(one formed by the centers of the up-kagome triangles; the
other by the centers of the down-kagome triangles, shown as
dashed lines in Fig. 12) that, to first approximation, are decou-
pled from one another. The coupling within each triangular
layer is due to the (antiferromagnetic) Coulomb interaction
between charges given by the second term in the effective
Hamiltonian (C1). Such a Coulomb-interacting system on the
triangular lattice is predicted [37,38] to be partially frustrated

2 4 6 8 10 12 14 16
D/T

101

102

103

FIG. 11. Best fits to the dependence of the relaxation time τ

(squares) vs inverse temperature T using Vogel-Fulcher (red solid
line) and parabolic (blue dashed line) forms. The Vogel-Fulcher form
provides a better fit to the data.

and have ground states where charges alternate in one lattice
direction but are random in the other direction. An example is
illustrated in Fig. 13 (top panel). These states can be viewed as
charge-stripe patterns on the triangular lattice with alternating
lines of like charges that correspond to the path of a random
walk that can either turn left or right as it moves vertically
from one row to the next. There is a whole family of ∼2L such
states, each corresponding to a particular choice of path for the
stripes.

The two triangular layers appear decoupled in terms of
the Coulomb interaction between the resummed charges Qα ,
which, in the limit of dumbbells perpendicular to the plane,
are infinitely separated from one another. However, the dipolar
interaction between the original spins can be seen to favor like
charges to sit close to one another across layers. Indeed, a
charge in one layer adjacent to a charge of the same sign in
the other layer corresponds to a mainly antiferromagnetic (and
thus energetically favored) spin arrangement as illustrated in
Fig. 12(b). If we pair the top and bottom triangular charge
layers, each in one of their stripe configurations, so as to
maximize the proximity between like charges across layers,
we obtain overall charge arrangements, such as the one illus-
trated in Fig. 13 (bottom panel). One triangular layer becomes
a slave to the other, but an ∼2L degeneracy survives, and it
again takes the form of charge stripes randomly turning left
and right as they stretch across the lattice. The total number of
states in this family is thus subextensive, i.e., its entropy scales
with the linear size of the system. Remarkably, one of these
states is indeed the 7-shape ground state of the DKIAFM,
illustrated in Fig. 2(b).

Although we have clearly taken the dumbbell picture and
corresponding charge representation well beyond its limit of
validity and the energetic arguments above cannot be trusted
per se, one can compute the actual energies of various charge-
stripe configurations, such as that in Fig. 13 (bottom panel) in
terms of original spins via the Hamiltonian (1). We find that

144439-9



JAMES HAMP, RODERICH MOESSNER, AND CLAUDIO CASTELNOVO PHYSICAL REVIEW B 98, 144439 (2018)

FIG. 12. Each spin of magnitude μ is decomposed into a dumb-
bell, i.e., a pair of charges of strength ±q separated by a distance
a such that μ = qa. Starting in-plane charges with the distance a

chosen so that the charges at the end of the dumbbells overlap at
the centers of the triangles, we progressively tilt the spins out of the
plane of the lattice. In the process, we increase a and correspondingly
reduce q so that the charges remain overlapping and μ = qa is
kept constant. The sum of three overlapping charges is proportional
to the corresponding triangular charge Qα introduced in the main
text (and shown as Q in the figure). The limiting case of spins
perpendicular to the kagome plane corresponds to the DKIAFM,
which can then be seen as two infinitely separated triangular layers
of charges (indicated by the dashed lines).

many of them lie very close in energy to the ground state (with
an energy difference of as little as 1.3%), whilst differing
from it in configuration space by a topological rearrangement
of at least O(L) spins. Indeed, in order to change a charge-
stripe state into another without introducing costly defects
(dislocations, namely, stripe end points and branching), one
needs to modify the spin configuration so as to move the
charge stripes consistently across the whole system, which
amounts to a system-spanning topological update.

We speculate that the existence of this subextensive mani-
fold of energetically low-lying but configurationally topolog-
ically distinct states may be one of the key reasons under-

FIG. 13. Coulomb-interacting positive (magenta) and negative
(cyan) charges on the triangular lattice are expected to order in
patterns, such as that in the top panel, with charges alternating along
one lattice direction and random along the other. Note that one can
view the charge pattern in terms of stripes along the lattice bonds
(running largely from top to bottom in the configuration chosen
here). The interactions between the two layers, dictated by the dipolar
coupling between the underlying spins, favors like charges close to
one another across layers and leads to an overall charge arrangement,
such as the one in the bottom panel, also exhibiting charge stripes.
There is a whole class of these energetically low-lying states, which
includes the dipolar ground state.

pinning the strong freezing observed in the DKIAFM at low
temperatures. We stress that this is a mere speculation, and, in
particular, we make no claim to have identified all low-lying
energy states, which may well be extensive in number, as more
typically expected in glassy systems.
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