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Uniform and nonuniform thermal switching of magnetic particles
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The pulse-noise approach to systems of classical spins weakly interacting with the bath has been applied to
study thermally activated escape of magnetic nanoparticles over the uniform and nonuniform energy barriers
at intermediate and low damping. The validity of approximating a single-domain particle by a single spin is
investigated. Barriers for a nonuniform escape of elongated particles for the uniaxial model with transverse and
longitudinal field have been worked out. Pulse-noise computations have been done for finite magnetic chains. The
linear stability of the uniform barrier state has been investigated. The crossover between uniform and nonuniform
barrier states has been studied with the help of the variational approach.
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I. INTRODUCTION

Miniaturization of magnetic elements in spintronics and
memory applications increases the importance of their ther-
mal stability and puts the question of lifetimes of differ-
ent magnetic states. These lifetimes are usually related to
overcoming energy barriers under the influence of thermal
agitation, which becomes increasingly easy for small sizes
of magnetic particles, eventually leading to superparamag-
netism. On the other hand, elongated magnetic elements, such
as stripes and nanopillars, can overcome energy barriers by a
nonuniform rotation of the magnetization, for instance, via the
motion of a domain wall across them. In this case the energy
barrier depends on the cross section but not on the length of
the magnetic elements.

The magnetic states in different geometries, taking into
account the dipole-dipole interaction (DDI), have been exten-
sively studied within the so-called micromagnetic approach
[1] (for a recent reference, see Ref. [2]), considering magnetic
materials within the continuous approximation. Initially, this
approach was formulated for zero temperature, T = 0, but in
practice one can use material parameters measured at finite
T . Energy barriers needed for the problem of lifetimes can be
computed by the method of the elastic band or string [3,4].
The full computation of the lifetimes requires including ther-
mal noise in the micromagnetic equation of motion (see, e.g.,
Ref. [5]). In some cases, magnetic systems can be modeled as
a single domain (SD) [6]. In a more general case of extended
magnetic systems, the system has to be discretized into cells
upon which thermal noises are acting. In fact, thermal noises
are also acting inside the cells decreasing the magnetization
and the exchange stiffness at finite temperatures, also pos-
sibly controlling the effective damping constant. Thus, the
question of the discretization becomes nontrivial and there
were claims that the results of micromagnetic computations
at finite temperatures depend on the discretization (see the
discussion in Ref. [7]). In addition, the macroscopic mag-
netization M (T ) can dynamically change its magnitude that

cannot be described by the Landau-Lifshitz equation [8] and
requires using its finite-temperature extension, the Landau-
Lifshitz-Bloch (LLB) equation [9,10].

With the increasing of computer power, the atomistic ap-
proach considering magnetic materials as a collection of spins
on the lattice becomes very promising. Within this framework,
one can accurately describe thermal properties such as the heat
capacity, temperature dependence of the anisotropy constants,
and even phase transitions. For most applications, spins can
be considered as classical and obeying the Landau-Lifshitz
equation [8] with the Langevin stochastic fields (the LLL
equation introduced in magnetism by Brown [11]) mimicking
the influence of the thermal bath. The latter lead to thermally
activated escape out of metastable states.

Thermal stability of metastable states of single-domain
magnetic particles was mainly investigated considering them
as single spins [12,13] and using the Fokker-Planck equa-
tion. Early numerical work on single spins with the stochas-
tic Landau-Lifshitz-Langevin (LLL) equation was done in
Refs. [14,15]. However, there are important many-spin aspects
of magnetic nanoparticles, especially related to the surface
anisotropy [16,17] (see also Ref. [18] for a review). Nonuni-
form magnetization via nucleation in magnetic nanoparticles
was studied in Ref. [19] by Monte Carlo. Solving the LLL
equation for a collection of spins requires much more com-
puting power and is much more difficult [10,20–23].

One of the problems is the stochastic nature of these
ordinary differential equations (ODEs) that prevented using
high-order solvers such as the classical Runge-Kutta-4 rou-
tine. Most of the researchers used the second-order Heun
ODE solver [15,23] with a rather short time step. In Ref. [7]
it is argued that the mentioned above dependence of the
results of thermal micromagnetic computations on the cell
discretization was to blame on the limitations of the integra-
tion routines, and an implicit Gauss-Seidel method was used
to show that the results do not depend on the discretization.
However, implicit integration methods, although more stable,
require solving large systems of linear equations at each step
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and cannot be the most efficient. Another problem is the
need of generating stochastic fields for the whole multispin
system at every integration step. Although standard random
number generators are highly efficient codes, they cannot
be much faster than the compiled codes of ODE solvers
and thus they essentially contribute to the total computation
time.

Recently the pulse-noise approach overcoming these two
problems has been proposed [24]. The stochastic fields are
represented by rare pulses rotating spins at different angles
around different axes, and in the intervals between the pulses
high-order ODE solvers with a larger time step can be used.
The pulse-noise model is working well in the cases of low
and intermediate damping and at low temperatures, where
Langevin fields are weak.

In this paper, the pulse-noise approach is applied to uni-
form thermal activation of single-domain magnetic particles,
including a comparison with the single-spin model, and to
nonuniform thermal activation via moving domain walls in
elongated objects such as magnetic chains. For this purpose,
the crossover from uniform to nonuniform thermal escape is
studied analytically and formulas for the escape barrier in
different cases are worked out. This system was considered in
Ref. [25] with the help of Monte Carlo and the LLL equation
at high damping. Here the focus is on the much less studied
low-damping regime. While computations yield Arrhenius
escape rates with correct barriers in most cases, comparison
with available theoretical results for the prefactors is much
more difficult. In particular, the thermal-activation prefactor
for SD particles is by more than order of magnitude higher
than that for the equivalent single spins.

It has to be noted that mathematically the pulse-noise
approach is close to the jump-noise model proposed in
Refs. [26,27] and using the equation of motion of the type
dM/dt = · · · + T(t ), where T is a random sequence of
finite rotations of M. Whereas the pulse-noise approach is
merely a computation tool for solving the standard Landau-
Lifshitz-Langevin equation, the jump-noise model is a dif-
ferent stochastic model in magnetism. In the pulse-noise
approach, spin rotations have to be small to reproduce the
LLL equation. The jump-noise model with small jumps also
reproduces the LLL equation. However, jumps can be large as
well, leading to a different physics. A detailed comparison of
the two approaches is beyond the scope of this paper.

The structure of the main part of the paper is the
following. Section II introduces the stochastic model of
classical spins, presents known results for thermal activa-
tion of single spins, and reviews the pulse-noise method.
Section III shows the numerical results for single-domain
magnetic particles in comparison with the single-spin model.
In Sec. IV analytical results for elongated particles with
transverse and longitudinal fields are derived. Section V in-
vestigates the dynamics of thermal switching of magnetic
chains in different regimes and shows the numerical results
for the escape rate �(T ) testing the barrier formulas of the
preceding section. In Sec. VI the linear-stability analysis
of single-domain barrier states within the chosen model is
done. In Sec. VII crossover between uniform and nonuniform
thermal activation is studied with the help of the variational
method.

II. THE MODEL AND THE METHODS

Consider a parallelepiped-shape magnetic particle with a
simple cubic lattice described by the classical-spin Hamilto-
nian

H=
∑

i

( − Ds2
zi + Dys

2
yi

) − μ0H
∑

i

si − 1

2

∑
ij

Jij si · sj ,

(1)

where |si | = 1, H is the magnetic field, μ0 is the magnetic
moment of the atom, Jij is the exchange with J being the
nearest-neighbor exchange coupling, D > 0 is the uniaxial-
anisotropy constant, and Dy > 0 is the hard-axis y anisotropy.
One can also include a surface anisotropy and the dipole-
dipole interaction. The latter, for single-domain particles,
gives rise to the biaxial anisotropy, Dy > 0, if the particle has
a shape flat in the y direction.

The dynamics is described by the Landau-Lifshitz-
Langevin (LLL) equation

ṡi = γ [si × (Heff,i + ζ i )] − γ λ[si × [si × Heff,i]], (2)

where Heff,i ≡ −∂H/∂si is the effective field,

μ0Heff,i = μ0H + 2Dsziez − 2Dysyiey +
∑

j

Jij sj , (3)

γ is the gyromagnetic ratio, λ is the dimensionless damping
constant [8], and ζ i are stochastic fields. Landau and Lifshitz
have written the double-vector-product relaxation term on
general grounds. Later it was demonstrated that the vector
product in the noise term dictates the double-vector prod-
uct form of the damping term [28]. The stochastic model
above is equivalent to the Fokker-Planck equation introduced
by Brown for superparamagnetic particles [11] (see also
Ref. [29]). The equilibrium solution of the Fokker-Planck
equation should be a Boltzmann distribution, that requires a
relation between damping and noise,

〈ζα,i (t )ζβ,j (t ′)〉 = 2λT

γμ0
δij δαβδ(t − t ′), (4)

where kB = 1 is set. Microscopic theories suggest λ � 1. In
the case of spin magnetism with one type of magnetic atoms,
one has μ0 = gμBS, where g = 2, μB is Bohr’s magneton,
S is the spin value of the magnetic atom, and γ is given by
γ = gμB/h̄, so that γμ0 = (gμB )2S/h̄.

In computations, J and most other parameters and physical
constants are set to 1, so that one needs a relation between
the time t in computations and the real time treal. For the
original system the exchange frequency is ωex = SJ/h̄. As
this frequency is set to 1, the relation between the times
reads treal = h̄

SJ
t . For metallic Co, J = 93 K and S = 3/2,

so that treal = 5.3 × 10−14t s. The maximal computation time
in the present work t = 106 corresponds to treal = 5.3 × 10−8

s or 53 ns for Co. It is clear that computations cannot be
extended to seconds and extrapolation of the computational
results is needed. Further, the uniaxial anisotropy of Co is 0.22
K per atom; thus in J units one has D = 0.22/96 = 0.0023.
Pt alloys CoPt and FePt have a comparable exchange but a
much stronger anisotropy: D = 4.1/96 = 0.044 for CoPt and
D = 5.7/105 = 0.054 for FePt.

144425-2



UNIFORM AND NONUNIFORM THERMAL SWITCHING OF … PHYSICAL REVIEW B 98, 144425 (2018)

Uniaxial anisotropy creates an energy barrier U between
spin directions parallel and antiparallel to z axis. If the particle
is in the single-domain (SD) state, which is realized for not too
large sizes, then in the absence of the field the barrier is given
by U = USD ≡ ND, where N ≡ NxNyNz is the number of
spins in the particle. Applied field lowers the barrier. The
barrier exists within the Stoner-Wohlfarth astroid [30,31],

h2/3
x + h2/3

z � 1, hx ≡ μ0Hx

2D
, hz ≡ μ0Hz

2D
. (5)

There are formulas for the barrier in the cases of purely
transverse and purely longitudinal field [32],

USD = ND(1 − hx )2, USD = ND(1 − hz)2. (6)

For particle of a larger size, the barrier state becomes nonuni-
form and for elongated particles it corresponds to a domain
wall bisecting the particle. In zero field, the nonuniform
barrier is the energy of a domain wall (DW) given by [8]

UDW = ND
4δ

Lz

= 4δ

a
NxNyD, δ = a

√
J

2D
, (7)

where δ is the domain-wall width, a is the lattice spacing, and
Lz ≡ aNz is the longest particle’s dimension. The particle is
overcoming the barrier in the single-domain state if USD <

UDW that amounts to Lz � δ. The numerical coefficient in this
formula has to be worked out, including the cases with the
field applied.

At low temperatures, T � U , the particle is overcoming
the barrier via thermal activation that yields the escape rate of
the Arrhenius form

� = �0e
−U/T . (8)

The process is described by Eq. (2) or the equivalent Fokker-
Planck equation. The latter is suitable for the analytical work,
especially in the SD regime, and it allows one to obtain the
formula above with different expressions for the prefactor �0

in different parameter regions. For a single spin, in the axially
symmetric case �0 ∝ λ. If there is a saddle of the spin’s en-
ergy (created by the transverse field or transverse anisotropy),
then there are three regimes of strong, intermediate, and low
damping. In the strong-damping case, �0 ∝ λ, if the Landau-
Lifshitz equation is used. In the intermediate-damping case �0

is independent of λ which corresponds to the transition-state
theory. However, this regime is realized in a pretty narrow
region of λ. In the low-damping case �0 ∝ λ again. There are
numerous crossovers between these three regimes and the uni-
axial regime [33]. Analytical solution of the multidimensional
Fokker-Planck equation for nonuniform thermal activation is
a challenging task. First, the barrier has to be found as the
saddle point of the particle’s energy in a nonuniform state
(see, e.g., [34,35]). The corresponding analytical results will
be summarized below. Second, calculation of the prefactor
in Eq. (8) requires application of functional methods and is
especially nontrivial [36].

Numerically, the Fokker-Planck equation can be solved
by the matrix-continued-fraction method [13,37] that is very
fast and accurate. However, setting up equations for different
kinds of anisotropy requires serious work. For many-spin
systems this method becomes unusable.

The most straightforward method of numerically solving
the problem of thermal activation (apart of the time-quantified
Monte Carlo [38,39]) is using Eq. (2). The particle is prepared
in a collinear state corresponding to one of the energy minima,
then Eq. (2) is solved until the particle crosses the barrier. This
yields the first-passage time for a given computation. Such
computations can be run in parallel, and the inverse of the
mean first-passage time is identified with the escape rate �.
In fact, there is a more efficient method of data processing
described in the Appendix.

At low temperatures where � is exponentially small, the
computations leading to particle’s escape are very long. Usu-
ally the second-order Heun method with a rather short time
step is used to integrate the stochastic LLL equation. For
this reason, the LLL equation was mainly solved for single-
domain thermal activation considering the magnetic particle
as a single spin.

It was recently shown [24] that in the relevant regions of
intermediate and low damping the continuous noise can be
replaced by a pulse noise with time interval �t that has to
satisfy the two conditions

ΛNΔt � 1, γ λHeff�t � 1, (9)

where ΛN ≡ 2γ λT/μ0 is the so-called Néel attempt fre-
quency, i.e., the high-temperature relaxation rate. The pulse
consists in rotating spins by the angles

ϕi =
√

ΛNΔtGi , (10)

where Gi is a realization of a three-component vector, each
component being a normal distribution with a unit dispersion.
In the interval between the pulses, high-order numerical in-
tegrators (for instance, the classical RK4 or Butcher’s RK5;
see, e.g., the Appendix of Ref. [24]) for the damped equations
without noise can be used. The step δt of the numerical
integration can be chosen much greater than that used with
the Heun method, which gives a considerable speedup. At low
damping λ, one can choose δt � Δt which makes the contri-
bution of the random-number generation into the computation
time negligible. Thus the speed of the method becomes the
same as the speed of noiseless computations. This allows one
to numerically solve the problem of thermal activation of mag-
netic particles within the many-spin model, including the case
of nonuniform thermal activation. The lower the temperature
(that is, the smaller is the noise) and the damping λ, the better
the applicability conditions of Eq. (9) are satisfied. In the
sequel, some of such problems will be considered.

Typically, numerical solutions used Δt = 1 and δt = 0.1
with Butcher’s RK5 ODE solver. Such parameters, with J =
1, ensure a good numerical accuracy [24]. It should be noted
that although at low temperatures the dynamics is governed
by D and H that define the precession frequency of the
particle, the required integration step δt is dictated by the
exchange J . If Jδt � 1 is not satisfied, explicit integrators
used here show instabilities. The latter usually happen for
Jδt > 0.25. The physical reason is that for large J increasing
the spin noncollinearity with the neighbors leads to a very
fast precession that a large-step integrator cannot handle. This
aspect is absent in the one-spin models of magnetic particles
and it makes a problem for a small ratio D/J .
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FIG. 1. Thermal switching dynamics of a single-domain particle
with transverse field at elevated temperature T = 0.6 for different
values of the damping λ. Upper panel: λ = 0.01. Lower panel: λ =
0.001 (energy diffusion regime).

The main computer used in these computations was a
Dell Precision T7610 workstation with two dual Intel Xeon
processors E5-2680, each having 10 cores. The algorithm was
implemented within Wolfram Mathematica with compilation
and parallelization. In computations, the energy was measured
in the J units, that is, J was set to 1, together with μ0, γ , and
the lattice spacing a. The bulk of computations was performed
on particles with free boundary conditions.

III. THERMAL SWITCHING OF SINGLE-DOMAIN
MAGNETIC PARTICLES

In this section, thermal activation of particles in the single-
domain regime is studied. Figure 1 shows the activation
dynamics and transitions between the energy minima for a
11 × 13 × 15 particle containing 2145 spins with D = 0.03
and transverse field at T = 0.6 that is not small in com-
parison with the bulk Curie temperature TC = 1.444J of
the classical 3D Heisenberg model. In the upper panel, the
results for the particle with Hx = 0.03 and λ = 0.01, prepared
in the collinear state in the energy minimum at θ = arcsin

hx = 30◦ to the z axis, show robust jumps between the energy
minima characteristic of strong-to-intermediate damping. The
magnitude m of the particle’s magnetization

m ≡ 1

N
∑

i

si (11)

demonstrates a considerable thermal disordering that one can
see from the value m ≈ 0.8 in the lower panel. The average
energy of the system E, with respect to that of the fully
ordered state, is close to T . In the lower panel, dynamics of
the particle with λ = 0.001 is clearly underdamped. This is
the energy-diffusion regime, in which, as the particle acquires
an energy above the barrier, it begins crossing it repeatedly. m

is not changing essentially during crossing the barrier in the
above computations; thus one can conclude that the particle
remains in the single-domain state.

Single-domain particles are usually thought of as effective
single spins. Of course, the single-spin model (SSM) is much
easier for computations than the original many-spin model.
The corresponding mapping can be obtained by setting up
the equation of motion for m of Eq. (11) using Eq. (2) for
tightly bound spins. The result has the same form as the latter,
however, with the global Langevin field

� = 1

N
∑

i

ζ i (12)

whose correlators are given by

〈�α (t )�β (t ′)〉 = 2λT

γμ0N
δαβδ(t − t ′). (13)

Thus one can map the SD particle onto the single spin by
introducing the scaled temperature for the SSM

TSSM = T/N . (14)

As the results for the single spin at the temperature TSSM are
expected be the same as the results for the SD particle at T ,
one can plot the single-spin results obtained at the temperature
TSSM vs T = NTSSM to compare with those for the SD particle
at T .

To systematically study the temperature dependence of the
thermal activation rate in the SD regime, a 5 × 6 × 7 particle
containing 210 spins was used. Here, again, D = Hx = 0.03
which corresponds to hx = 1/2. The barrier value given
by Eq. (6) is U = 210 × 0.03 × 0.25 = 1.575. Crossing the
barrier was detected as the change of the sign of the total
magnetization projection mz. The results for three different
values λ = 0.1, 0.01, and 0.001 are shown in the upper panel
of Fig. 2. For T � 0.2 that corresponds to U/T � 8; the
escape rate follows the predicted Arrhenius behavior with the
barrier value given above.

The lower panel of Fig. 2 shows the escape rates �(T )
for the 5 × 6 × 7 particle with free boundary conditions (the
regular case), periodic boundary conditions, and for the equiv-
alent single-spin model. Although the slope of all three curves
is the same which indicates the same barrier, the prefactors are
essentially different: the highest prefactor for the particle with
free boundary conditions and the lowest one for the equivalent
single spin.
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FIG. 2. Thermal escape rate for the 5 × 6 × 7 particle with D =
Hx = 0.03. Upper panel: Different values of the damping constant
λ = 0.1, 0.01, and 0.001. Lower panel: Systems with free and
periodic boundary conditions, compared with the results for an
equivalent single spin and for the equivalent 7 × 8 × 9 particle.

In the figure also are shown the results for the larger 7 ×
8 × 9 particle containing 504 spins. The temperature for this
particle in the plot is scaled in the same way; i.e., the results
are plotted vs the scaled temperature T = (210/504)T7×8×9,
where T7×8×9 is the actual temperature of computations for
this model. One can see that here the deviation from the SSM
is even more pronounced: the prefactor is much larger and
even the barrier is noticeably lower.

The effect of higher thermal escape rates for a many-spin
particle was observed earlier [25] and attributed to thermal
disordering of the particle. Indeed, the temperature depen-
dence of the magnetization m(T ) for classical spin systems
at low temperatures is linear: m(T ) ∼= 1 − cT /J. Here the co-
efficient c depends on the particle’s size and on the boundary
conditions at the surface [40]. For free boundary conditions
there is an additional thermal disordering at the surface, so
that c is higher than for the model with periodic boundary
conditions. For the SSM this effect is absent, c = 0. For the
magnetic particle, the barrier acquires a linear temperature de-
pendence via the effective temperature-dependent anisotropy

constant [41]. For classical models at low temperatures this
dependence has the form

U (T ) ∼= U0 − bT , b ∼ NDc/J. (15)

As the result, the prefactor in Eq. (8) increases by the factor
exp (b) that can be large, as is the case here. The lower appar-
ent barrier for the 7 × 8 × 9 particle must be a consequence
of the higher temperature T7×8×9 for which the magnetization
decreases stronger than linearly. To summarize, the mapping
of the SD magnetic particle on the single-spin model is
incomplete, as the assumption of tightly bound spins misses
the important effect of thermal disordering of the particle.

In quantum mechanics, there is the Bloch law for the mag-
netization at low temperatures, m(T ) = 1 − c′(T/J )3/2 and
thus U (T ) = U0 − b′T 3/2 with b′ ∼ NDc′/J 3/2. In this case
the additional temperature-dependent prefactor exp(b′√T )
should emerge. At the moment, however, it is unclear how to
compute the thermally activated dynamics of quantum spins
from first principles.

One can take into account the dynamics of the particle’s
magnetization at elevated temperatures within the single-spin
approach by using the Landau-Lifshitz-Bloch (LLB) equa-
tion [9] with added longitudinal stochastic terms changing
m [42,43]. Overcoming the barrier, the particle decreases its
magnetization, up to its compete disappearance in the barrier
state at temperatures close to the Curie temperature [44,45].
This should essentially change the particle’s dynamics and
thus the thermal-activation prefactor. Note a similar phenom-
ena in the physics of domain walls: in the temperature interval
below the Curie temperature the structure of the DW changes
so that there is only the z component of the magnetization
that changes its sign going through zero [46] and changing
the domain-wall dynamics completely [47,48].

In fact, these phenomena can be observed in the present
computations on the many-spin model for strong anisotropy
and high temperature. Figure 3 shows thermal switching
dynamics of a 4 × 5 × 6 particle of 120 spins with biaxial
anisotropy D = Dx = 1 at a high temperature, T = 1.5. In
the upper panel, λ = 0.001, first the particle thermalizes
starting from the collinear initial state that takes some time
because of the low damping, then it begins to jump between
the energy minima. One can see that mz correlates with m

and that m turns to zero when mz changes its sign. In the
lower panel, the computation was continued setting λ = 0.
The results clearly show that the particle can cross the barrier
even without a coupling to the bath. The reason is that the
magnetic particle has internal degrees of freedom, spin waves,
that can serve as the particle’s own bath. The contribution
from internal spin waves enters the precessional equation of
motion for the particle’s magnetization, Eq. (21) of Ref. [49],
and it could play the role of thermal noise helping to surmount
the barrier. It is interesting that switching off the damping
increased the rate of over-barrier transitions. Although the
dynamics is conservative, the results look incoherent which
is a consequence of a strong thermal spin disordering in the
cluster. Since the directions of neighboring spins strongly de-
viate at such high temperature, it is difficult to decide whether
the magnetization switching is uniform or not, especially in
small clusters.
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FIG. 3. Thermal switching via changing the magnitude of the
magnetization m of a 4 × 5 × 6 particle with biaxial anisotropy
D = Dx = 1 at high temperature, T = 1.5. Upper panel: λ = 0.001.
Lower panel: λ = 0.

The λ dependence of the escape rate in the upper panel
of Fig. 4 shows mainly the low-damping regime with a
beginning of a crossover to the intermediate-damping regime
at largest λ. Escape rate vanishing at λ → 0 is expected
for a single spin. However, for a particle this is nontrivial
since the particle has its own internal bath [49]. The likely
reason is that the contribution of the internal spin waves is
quadratic in the anisotropy that does not break the trans-
lational invariance [49], such as the volume anisotropy in
Eq. (1), so that the effect of the internal bath is weak for small
anisotropies and low temperatures. For strong anisotropy and
high temperature, escape via the internal bath at λ = 0 is
possible, as can be seen in the lower panel of Fig. 4. The
inverted curvature of the λ dependence of the switching rate
indicates a different type of dynamics, likely the longitudinal
relaxation.

It should be noted that these computations start from the
collinear spin state and it requires a warming time to reach the
preset temperature T . In the limit λ → 0, the warming time
goes to infinity; this is why � vanishes at the smallest λ in

FIG. 4. Thermal escape rate vs λ. Upper panel: 5 × 6 × 7 parti-
cle with D = Hx = 0.03 at T = 0.333, compared with the result for
the equivalent single spin. For the latter, the escape rate is by more
than an order of magnitude lower. Lower panel: 4 × 5 × 6 particle
with D = Dx = 1 at T = 1.3. Thermal switching via longitudinal
relaxation, even in the absence of the coupling to the external bath.

the lower panel of Fig. 4. To study thermal switching at λ = 0,
pre-warming is needed, as in the lower panel of Fig. 3.

IV. NONUNIFORM ENERGY BARRIERS FOR
LONG PARTICLES

As said above, there are many different limits for the
thermal activation prefactor �0, especially for the nonuniform
thermal activation. Thus here the analytical attention will be
given to the barrier U , while prefactors can be determined
numerically.

To find the nonuniform barrier, one needs the continuous
approximation for the particle’s energy, Eq. (1),

H = 1

a3

∫
dV

{
1

2
a2J

(
∂sα

∂r

)2

− Ds2
z + Dys

2
y − μ0H · s

}

(16)
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with summation over the repeated α. Minimizing this energy
leads to the equation

s × (μ0H + 2Dszez − 2Dysyey + a2J�s) = 0 (17)

with the boundary condition

s × ∂s
∂rα

nα = 0 (18)

at the surfaces, where n is the normal to the surface.
We will consider a particle elongated along the z axis and

search for the solution in the form s = (sx (z), 0, sz(z)), also
assuming H = (Hx, 0,Hz). Then only the y component of
Eq. (17) is nonzero. In terms of the parameters introduced in
Eqs. (5) and (7), one has

sz(hx + δ2s ′′
x ) − sx (hz + sz + δ2s ′′

z ) = 0, (19)

while the boundary condition becomes s ′
x = s ′

z = 0. The en-
ergy, Eq. (16), in this case becomes

E = ND

Lz

∫ Lz

0
dz

{
δ2[(s ′

x )2 + (s ′
z)2] + 1 − s2

z − 2h · s
}
.

(20)

In the transverse field, hx > 0, the solution for the domain-
wall profile in the infinite system has the form

sz = ±
√

1 − h2
x

sinh z−z0
δh

hx + cosh z−z0
δh

, sx =
1 + hx cosh z−z0

δh

hx + cosh z−z0
δh

,

(21)

where δh ≡ δ/
√

1 − h2
x [50]. The barrier state corresponds to

the DW in the center of the particle, z0 = Lz/2. For Lz  δ,
the boundary conditions at the ends are practically satisfied,
and one can use this solution to calculate the barrier energy
using Eq. (20) with hz = 0. The result has the form

UDW (hx ) = 4ND
δ

Lz

(√
1 − h2

x − 2hx arctan

√
1 − hx

1 + hx

)
.

(22)

The limiting cases of this formula are

UDW (hx )

UDW (0)
∼=

{
1 − π

2 hx, hx � 1,
23/2

3 (1 − hx )3/2, 1 − hx � 1.
(23)

In the longitudinal field, hz > 0, one can use the saddle-
point solution found for the infinite system [34], in our case
centered at one of the particle’s ends, say, near z = 0,

tan
θ

2
=

√
hz

1 − hz

cosh

(√
1 − hz

δ
z

)
. (24)

Centering the solution at the particle’s end reduces the barrier
by a factor of two in comparison to centering in the middle of
the particle. The spin components are given by

sz = 1 − tan2 (θ/2)

1 + tan2 (θ/2)
, sx = 2 tan (θ/2)

1 + tan2 (θ/2)
, (25)

where the sign in front of sz is chosen so that sz = −1 (θ = π )
at infinity (the metastable state for hz > 0). This solution
satisfies Eq. (19) with hx = 0 and the boundary conditions.

FIG. 5. Field dependence of the energy barrier for magnetic
particles in the uniform (SD) and nonuniform regimes.

One has sz(0) = 1 − 2hz. For hz � 1 this yields sz(0) ∼= 1,
whereas the point at which sz = 0 (θ = π/2) is far from the
end of the particle. This is a domain wall in the particle’s bulk.
For 1 − hz � 1 one has sz(0) ∼= −1 which is a very small
deviation from the metastable state.

The energy barrier is equal to the difference of the barrier
energy and the energy of the metastable state ∝ 2hz. Equation
(20) with hx = 0 yields

U (hz) = 4ND
δ

Lz

[√
1 − hz − hz

2
ln

1 + √
1 − hz

1 − √
1 − hz

]
. (26)

The limits of this formula are

U (hz)

UDW (0)
=

{
1 − hz

2

(
1 + ln 4

hz

)
, hz � 1,

2
3 (1 − hz)3/2, 1 − hz � 1.

(27)

Fields dependencies of the barrier worked out above, as well
as Eq. (6) for the SD particle, are shown in Fig. 5.

V. THERMAL SWITCHING OF SPIN CHAINS

The simplest realization of elongated particles is spin
chains. A chain of L = 100 particles with D = 0.01 has the
DW width δ � 7 � L and is expected to overcome the barri-
ers at low temperatures via a moving domain wall. The results
for thermal switching dynamics for this chain in the transverse
field Hx = 0.01 at T = 0.015 and 0.025 for the intermediate
and low damping λ, shown in Fig. 6, are similar to those
for the single-domain particle in Fig. 1. The magnetization
magnitude m decreases when the chain is crossing the barrier
(mz = 0) but this decrease is much less than 50%, so that the
barrier state of the chain is closer to a single-domain state
than to a state with a moving domain wall that would result
in m = 0 when the DW is in the chain’s center. Spin con-
figurations corresponding to crossing the barrier show spins
nearly perpendicular to the z axis with noticeable disordering
due to thermal spin waves. Observation of thermal activation
via a moving domain wall in this case requires lowering the
temperature.
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FIG. 6. Thermal switching dynamics of a magnetic chain of 100
spins with transverse field for different values of the damping λ.
Upper panel: λ = 0.01. Lower panel: λ = 0.001 (energy diffusion
regime). Unlike the SD particle in Fig. 1, here domain walls are
traversing the chain in different directions, changing the sign of mz.

Field-biased chains show more affinity to crossing the bar-
rier via moving domain walls. Thermal switching dynamics of
a 100-spin chain with D = 0.01 and Hz = −0.015 in Fig. 7
shows a significant reduction of m on barrier crossing. After
emerging at one of the chain’s ends, the DW is pushed to
the other end by the bias field Hz. In the axially symmetric
case, domain walls can move only via the damping with the
mobility v/Hz ∝ λ, so that for λ = 0.01 their speed v is low,
as can be seen on the right side of Fig. 7. During this slow
motion, the spins in the DW are precessing around the z axis.

Adding the hard-axis y anisotropy Dy breaks the axial
invariance and allows the domain wall to travel with the
mobility v/Hz ∝ 1/λ, if the applied field is not too strong.
In this regime, its speed is limited by the Walker velocity
vW ∝ Dy . In Fig. 7 one can see a fast switching in the chain
with Dy = 0.01. Decreasing λ to 0.001 does not change the
slope of mz for the biaxial spin chain; thus one can conclude
that the motion of domain walls here is ballistic. This ballistic
motion can become unstable as shown in Fig. 8 which leads
to precession of spins around the z axis (vertical axis in this

FIG. 7. Thermal switching of a field-biased magnetic chain of
100 spins occurs via moving domain walls as the magnetization m

strongly decreases in the process. Adding the hard-axis y anisotropy
Dy speeds up the motion of the domain wall.

figure) and slowing down the DW motion. This typically
causes formation of solitons (360◦ domain walls) captured
inside the chain, seen in the lower panel of Fig. 8, which
take some time to exit through the ends. The dynamics of a
chain of a finite length Lz becomes more complicated because
of the boundary conditions at the ends which influence the
domain walls and cause reflection of spin waves. The initial
moment of reversal seen in the second, third, and fourth rows
looks like a high-amplitude spin wave turning spins on the
left perpendicular to the easy axis rather than like a nascent
domain wall.

Computations of the temperature dependence of the ther-
mal activation rates were performed on the 50-spin chain with
D = 0.01 and the damping values λ = 0.1, 0.01, and 0.001. In
the axially symmetric case shown in the upper panel of Fig. 9
the Arrhenius regime with the nonuniform barrier given by
Eq. (7) sets in at low temperatures. The prefactor �0 is clearly
proportional to λ, as it is for single-domain particles in this
case. Data for the 100-spin chain show a slower escape with
an apparent barrier slightly higher at low temperatures. This
can indicate an increasing contribution of the nucleation via
a couple of opposite domain walls inside the chain for which
the barrier is twice as large

The data in the case of a strong transverse field in the
lower panel of Fig. 9 align with the Arrhenius dependence
with the barrier given by Eq. (22), the energy of a domain
wall with transverse field. However, this happens at rather low
temperatures, especially in the low-damping case. This should
not be a surprise as the dynamics of domain walls crossing the
barrier is rather complicated, as we have seen above.

Videos of thermal switching of spin chains in different
regimes considered above can be found in the Supplemental
Material [51].

VI. LINEAR INSTABILITY OF THE UNIFORM
BARRIER STATE

Let us investigate the stability of the single-domain barrier
state with spins directed along eb, the barrier direction in the
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FIG. 8. Two realizations of thermal switching of a field-biased
biaxial magnetic chain of 50 spins with fast and unstable domain-
wall motion. Upper panel: Time dependence of the magnetization.
Lower panel: Spin configurations at different moments of switching
for the second realization. (Easy axis vertical.)

xz plane. Taking into account nonuniform deviations from the
barrier direction, the spins can be represented as

s = eb

√
1 − ψ2 + eb′ψ ∼= eb

(
1 − 1

2
ψ2

)
+ eb′ψ, (28)

where eb′ is in the xz plane perpendicular to eb. Substituting
this into Eq. (20), one obtains the nonuniform energy up to
ψ2:

δE = ND

Lz

∫ Lz

0
dz{δ2ψ ′2 − 2Aψ − Bψ2}, (29)

where

A ≡ (ez · eb )(ez · eb′ ) + h · eb′ ,

B ≡ (ez · eb′ )2 − (ez · eb )2 − h · eb > 0. (30)

Here the linear term must vanish if the barrier direction is
chosen properly: A = 0. This defines θb in (ez · eb ) = cos θb

and (ez · eb′ ) = sin θb. For an arbitrarily directed h, there is
no analytical solution for θb, although it can be obtained
numerically. Analytically solvable cases are

hz = 0, θb = π/2, B = 1 − hx (31)

FIG. 9. Thermal escape rate for the 50-spin chain with D = 0.01
and λ = 0.1, 0.01, and 0.001. Upper panel: Zero field. Results for the
100-spin chain with λ = 0.1 added for a comparison. Lower panel:
Hx = 0.05. For λ = 0.001, the asymptotic behavior is realized only
at very low temperatures.

and

hx = 0, cos θb = −hz, B = 1 − h2
z . (32)

One has to consider small nonuniform deviations from the
barrier state, satisfying the boundary conditions s ′

α = 0 and
orthogonal to a constant, and check whether they can reduce
the energy. In fact, one can use the Fourier series for ψ (z).
The most dangerous perturbation is ψ (z) = p cos (πz/Lz).
Substituting it into Eq. (29), one obtains

δE = 1

2
NDp2

(
π2δ2

L2
z

− B

)
. (33)

This is positive and thus the SD state is stable for Lz < πδ/B

which yields

Lz < πδ

{
/
√

1 − hx, hz = 0,

/
√

1 − h2
z, hx = 0.

(34)

For the periodic boundary conditions (e.g., for magnetic
rings), the dangerous perturbation is ψ = p cos (2πz/Lz)
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which increases the exchange energy by a factor of four and
makes the nonuniform solution more expensive. In this case
the SD state is stable for Lz < 2πδ/B.

For a particle of a cubic shape, there are similar instabilities
with nonuniformities along the x, y, and z spatial axes.
Nonuniformities along two or three axes at the same time cost
too much exchange energy and are not viable. However, for
larger particles, another mechanism, the nucleation near the
surface, becomes important [19].

VII. VARIATIONAL SOLUTION IN THE
TRANSITION REGION

To qualitatively study the transition between the uniform
and nonuniform thermal activation, one can use the variational
approach. In the simplest case of a zero field, the variational
ansatz has the form

sz = tanh [p(z − z0)], sx = 1/ cosh [p(z − z0)], (35)

where p is a variable parameter. These functions do not
satisfy the boundary conditions. However, since the boundary
conditions follow from the energy minimization, within the
variational approach they can be discarded. The energy in our
model, Eq. (20), for h = 0 becomes

E = ND
1

Lz

∫ Lz

0
dz

δ2p2 + 1

cosh2 [p(z − z0)]
. (36)

Integration yields

E = ND
1 + δ2p2

pLz

{tanh[p(Lz − z0)] + tanh[pz0]}, (37)

which has a flat maximum at z0 = Lz/2, the DW in the center
of the particle. This corresponds to the barrier height

U (p) = 2ND
1 + δ2p2

pLz

tanh
pLz

2
. (38)

This expression has to be minimized with respect to p.
For p → 0 this result recovers the barrier for the single-
domain particle, USD = ND. For Lz  δ the solution satis-
fies pLz  1, so that tanh (pLz/2) ∼= 1. Then minimization
yields p = 1/δ and U given by Eq. (7).

To study the transition between the two regimes, one can
expand U (p) as

U (q )

ND
∼= 1 +

(
1− L2

z

12δ2

)
(pδ)2 + L2

z

12δ2

(
−1+ L2

z

10δ2

)
(pδ)4.

(39)

Thus, the instability of the single-domain state within the
variational approach sets in at Lz = Lz,c = √

12δ � 3.46δ

which differs from the exact criterion above by 10%. For
Lz > Lz,c, the coefficient in front of the fourth-order term
is positive; thus this is a second-order transition within the
variational approach.

Using a similar method, one can study the transition from
uniform to nonuniform barrier in the presence of transverse
and longitudinal fields. Figure 10 shows the barrier vs Lz,
relative to the domain-wall width δ. In the uniform region,
the barrier grows linearly with the particle’s volume, then it
crosses over to a plateau. Transverse and longitudinal fields

FIG. 10. Uniform-nonuniform crossover of the energy barrier
on the magnetic particle’s length Lz, relative to the domain-wall
width δ.

favor the uniform state; thus in the field, transition between
the regimes happens at larger Lz.

VIII. DISCUSSION

It was shown that in the realistic case of weak damping, the
pulse-noise approach to the solution of the Landau-Lifshitz-
Langevin equation for spin systems coupled to a heat bath
is efficient and can be used to compute thermally activated
escape rates of magnetic nanoparticles in uniform and nonuni-
form switching regimes. It was found that single-domain
magnetic particles show much higher switching rates than the
equivalent single-spin models because of the internal thermal
disordering manifesting itself in the temperature dependence
of the effective anisotropy constant. The temperature depen-
dence of the energy barrier was not a secret and it was under-
stood that the apparent barriers extracted from the Arrhenius
switching rates are the barriers at T = 0. The temperature
corrections to the barriers strongly change the prefactors, so
that a comparison with theoretical expressions is problematic.

Since thermal disordering of magnetic particles proves
to be very important in their thermal switching, it is worth
trying to take into account quantum-mechanical effects in
the temperature dependence of the magnetization (e.g., the
Bloch law). While obtaining a quantum-mechanical expres-
sion for the particle’s magnetization from the quantum spin-
wave theory seems to be possible, it is unclear how to make
first-principle computations with quantum mechanics and
Langevin fields.

It was demonstrated that for strong anisotropy at high
temperature the magnetization switching is predominantly
longitudinal with the magnetization reducing to zero at the
barrier crossing. This is neither a uniform rotation nor a
nonuniform rotation since at high temperatures the neighbor-
ing spins strongly deviate from collinearity in a random way.

At lower temperatures, the crossover from uniform (single-
domain) rotation to nonuniform rotation by surmounting the
barrier has been studied analytically, including the linear

144425-10



UNIFORM AND NONUNIFORM THERMAL SWITCHING OF … PHYSICAL REVIEW B 98, 144425 (2018)

instability boundary of the uniform barrier state. In the region
of nonuniform rotation analytical expressions for the barriers
in the presence of transverse and longitudinal field have been
worked out. Computations using the pulse-noise method are
in a good accordance with the values of the barriers, although
in some cases the Arrhenius dependence with the given barrier
sets in at pretty low temperatures (such as the curve λ = 0.001
in the lower panel of Fig. 9).
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APPENDIX: EXTRACTING ESCAPE RATES
FROM ESCAPE DATA

The usual way to numerically compute escape rates is to
run the numerical evolution routine until the particle crosses
the barrier or using another stopping criterion like mz = 0 and
record the (first) passage time ti for each ith run. The inverse
of the mean first-passage time (MFPT), averaged over many
runs, is identified with the escape rate, � = 1/〈ti〉.

The mathematics behind this relies on the assumption
that the probability for a particle to stay in the initial state
decreases exponentially with time: P (t ) = e−�t . This is the
unnormalized distribution of passage times, so that the mean
passage time is given by MFPT = �

∫ ∞
0 dt tP (t ) = 1/�,

where � in front of the integral normalizes the distribu-
tion. This confirms the validity of the standard method of
extracting �.

A drawback of this method to extract � is that absolutely
all particles must escape. If the preset computation time was
too short and not all particles escaped, the efforts have been
wasted and the computation has to be repeated. Increasing
the preset computation time leads to very long computations
at the lowest temperatures as the distribution of passage
times becomes broad and there are extremely long-lived
particles.

A more advanced method is to consider the sorted list of
passage times ti and identify i with the number of particles
already escaped by the time ti . Then the probability to escape
by the time ti becomes i/N , where N is the total number
of runs used in the computation, i.e., the total number of
particles. Thus the staying probability at ti can be expressed
as

P (ti ) = 1 − i

N
. (A1)

FIG. 11. Extracting escape rates from escape data. This method
does not require all particles to escape.

Assuming that P (t ) is exponential, one can fit the list
{ti , P (ti )} with the exponential function to extract �. Since
fitting is a nonlinear procedure, it can fail; thus it is better
to be avoided. Instead of the fitting, one can extract � by
resolving the exponential as � = − ln P (t )/t . This results in
the formula used in this work, as well as in Ref. [24]:

� = −
〈

1

ti
ln

(
1 − i

N

)〉
. (A2)

This formula gives practically the same values of � as the
exponential fits shown in Fig. 11. Here the averaging includes
only those particles that escaped, whereas N is the total num-
ber of particles. This formula is robust and does not require
all particles to escape. To the contrary, limiting the preset
computation time allows one to speed up the computations at
the lowest temperatures extracting the information from the
subset of the shortest-lived particles. The latter amounts to
determining the exponential by its initial part, as can be seen
in Fig. 11.

In these computations, the preset computation time was
tmax = 106. With the standard method of data processing, this
would allow one to compute escape rates significantly higher
than 1/tmax, say, down to � = 10−5. With the current method,
escape rates down to � = 10−7 have been computed.

Another advantage of this method is the possibility of
plotting the staying probability, as is done in Fig. 11 to check
whether it is exponential. In particular, at high temperatures
this curve is more resembling a Gaussian; thus the extracted
� are only approximate.
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