
PHYSICAL REVIEW B 98, 144421 (2018)

Correlation length in a generalized two-dimensional XY model
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The measurements of the magnetic and nematic correlation lengths in a generalization of the two-dimensional
XY model on the square lattice are presented using classical Monte Carlo simulation. The full phase diagram is
reexamined based on these correlation lengths, demonstrating their power in studying generalized XY models.
The ratio between the correlation length and the lattice size has distinctive behaviors which can be used to
distinguish different types of phase transition. More importantly, the magnetic correlation length give more
insights into the tricritical region where the paramagnetic, nematic, and quasi-long-range phases meet. It shows
signatures for the intermediate region starting from the tricritical point, where the transition line is neither of
the same physics as the Ising transition below nor the Berezinskii-Kosterlitz-Thouless transition far above the
tricritical point.
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I. INTRODUCTION

In short-range interacting systems, two dimensions is the
lower critical dimension where continuous symmetry break-
ing is not able to occur, as stated by the Mermin-Wagner
theorem [1]. However, it is the marginal dimension where
one can observe instead topological changes. Particularly in
the XY model, vortices and antivortices, which are topo-
logical excitations, lead to a phase transition from the dis-
ordered phase of free vortices at high temperatures, where
the distance-dependent spin-spin correlation function decays
exponentially, to a low-temperature phase of quasi-long-range
order of pairs of bound vortices where that function decays al-
gebraically [2,3], namely the Berezinskii-Kosterlitz-Thouless
(BKT) transition.

Several generalizations of the XY model have been
proposed in order to search for novel phenomena that can be
realized in physical experiments or realistic materials [4–8].
Since 1985, starting with the works of Korshunov [4], Lee
and Grinstein [5], the generalized XY models which include
nematic effects have gained much attention because of their
possibility for investigating BKT phase transitions in liquid
crystal [5,9], bosonic mixtures in ultracold atomic/molecular
systems or in He3 thin films [4,10,11]. In these models,
together with the original magnetic interaction with spin
angle periodicity of 2π , there is an extra nematic interaction
characterized by a positive integer q such that its periodicity
is 2π/q. As a result, besides the conventional vortices and
antivortices generated by the magnetic interaction, there are
1/q-integer vortices which are the products of the nematic
interaction and have a noninteger (1/q) winding number.

Depending on the relative strength between these two
interactions, the above generalized XY model experiences
different phases. When the magnetic interaction is dominant,

it becomes the conventional XY model where there is only a
BKT transition from the disordered paramagnetic phase to the
quasi-long-range order. In contrast, if the nematic interaction
is dominant, a nematic phase can be stabilized at low temper-
ature where, similar to the quasi-long-range order, there are
bound pairs of noninteger vortices. When both interactions
contribute, the physics is different for different q’s. At q < 4,
there are three possible phases in the phase diagrams that
meet at a tricritical point: the disordered (paramagnetic) phase
(P), the quasi-long-range ordered phase (F), and the nematic
phase (N) [4,5,12–15]. Away from the multicritical region,
the phase transitions from the disordered to the nematic or
the quasi-long-range phase belong to the BKT universality
class [12,16], while the transition from the nematic to the
quasi-long-range order belongs to the Ising university class
for q = 2, 4 [13,15] or to the Pott universality class for q = 3
[13,14]. For q � 4, Refs. [13,15] show that there are two new
phases which, together with the quasi-long-range order, can
be differentiated by the angle distribution of the spins.

In this work, we focus on the case q = 2 of this general-
ized two-dimensional XY model. Its phase diagram has been
constructed since the early days of the model [4,5,12] and
most of the physics are now rather well understood. The focus
at present is around the tricritical point where all the phase
boundaries meet. The remaining issue is whether it is a true
tricritical point where all the phase transition lines end at this
point. Several recent works have shown that the Ising line
for the transition from the nematic to the quasi-long-range
order can extend beyond the tricritical point [16–18], so that
there is a segment of the phase boundary where the transition
directly from the quasi-long-range phase to the disordered
phase belongs to the Ising universality class. Reference [18]
regarded it as a classical example of the deconfined quan-
tum criticality [19]. In this paper, by employing large-scale
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Monte Carlo simulations, we study in detail the behaviors
of the correlation length. This quantity has been investigated
for various models (see Ref. [20] and references therein).
However, to our knowledge, it has not been studied rigorously
for the generalized XY model of our interest. Therefore, in
this study, we provide a detailed analysis of the nematic and
magnetic correlation lengths, based on which the full phase
diagram of the model is reproduced. More importantly, with
these measurements, we give more insights into the physics
of the tricritical region, in particularly the understanding of
the Ising phase boundary originating from the nematic-quasi-
long-range order transition, how the line ends and how the
system changes from the Ising phase transition to the BKT
transition when the relative strength of the interactions is
varied.

The structure of this paper is as follows. Section II presents
the methods used in this study. In Sec. III we discuss the
behaviors of the correlation length ratios ξ

L
for different

phases, then reconstruct the full phase diagram of the model.
In Sec. IV we study the phase transition in the tricritical region
based on the correlation length measurements. Section V
concludes our study.

II. MODEL AND METHODS

The classical Hamiltonian of the two-dimensional
generalized XY model under consideration has two terms:
the usual ferromagnetic term and the extra q-nematic term.
The contribution of each term is controlled by a parameter
� running from 0 to 1. The specific form of the Hamiltonian
reads

H = −
∑
〈ij〉

[� cos(θi − θj ) + (1 − �) cos(qθi − qθj )]. (1)

The angle θi (θj ) is made of the spin direction located at the
site i (j ) with the x axis. The interactions are short-ranged,
occurring between nearest neighbor sites, denoted by 〈ij 〉 in
Eq. (1). The basic energy scale is the ferromagnetic coupling,
which is set to 1. We focus only on the case q = 2 in this
study.

We choose the square lattice of size L in each direction,
thus there are N = L2 sites in total. The periodic bound-
ary condition is applied in both directions. The size L for
simulations is chosen from 16 to 256; measurements in the
thermodynamic limit are obtained by extrapolating the data
from simulations within this range of L.

Monte Carlo method is employed in our study with two
types of updates: local single-spin-flip Metropolis algorithm
and cluster-spin-flip algorithm following the Wolff algorithm
[21]. Local and cluster updates are carried out once in ev-
ery Monte Carlo step. For each case we perform five runs,
each with a different random seed. For each run, there are
4×106 → 6×106 updates for equilibration and 6×106 up-
dates for measurements. We check the equality of the specific
heat computed via the energy fluctuation and that calculated
via the temperature difference of the energy to ensure that the
system is in equilibrium.

For q = 2, we carry out Monte Carlo simulations to mea-
sure the second-moment correlation length [20,22–24], of
which we consider two types: the magnetic one (ξ1) and the

nematic one (ξ2). The general form reads

ξn = 1

2 sin(km/2)

√
〈mn(�0)2〉
〈mn(�km )2〉 − 1, (2)

where �km = (2π/L, 0) and 〈· · · 〉 denotes the thermal average.
The k-dependent magnetization is

mn(�k)2 =
∑

μ=x,y

∣∣∣∣∣ 1

N

N∑
i=1

Sn
iμ exp(i�k · �ri )

∣∣∣∣∣
2

. (3)

The projections of the spin to the x and y axes are Sn
ix =

cos(nθi ) and Sn
iy = sin(nθi ). In the thermodynamic limit, the

correlation lengths diverge when the system goes into the
(quasi-long-range) ordered phase, thus the second-moment
correlation length [Eq. (2)] is related to the true correlation
length (derived from the correlation function) only for T > Tc

[25]. On the other hand, for finite-size systems, ξn scales with
the lattice size L at criticality, thus the ratio ξn

L
at T = Tc

remains finite and is claimed to be universal [20]. They are
the main object of our investigation. We also measure the
specific heat (presented in Appendix A) which is calculated
based on the variance of the total energy to supplement the
results provided by the correlation lengths.

III. PHASE DIAGRAM

We reproduce the phase diagram of the generalized 2D XY
model at q = 2 [Eq. (1)] using the correlation length ratios in
order to demonstrate the power of these quantities for studying
spin models. We find that the correlation length ratios have
two distinctive behaviors when the temperature crosses the
critical value. In detail, when plotting ξ

L
for different L’s, they

either merge with each other below the critical temperature or
cross each other at the critical value. Thanks to these behav-
iors, we not only determine the critical temperature but also
understand the nature of the phase transition. We emphasize
that the correlation length is not the optimized method for
locating phase transitions with high accuracy, there are better
methods for this purpose [16]; instead their main role in this
paper is to reveal the physics of the phase transitions.

We present in Fig. 1 the full phase diagram of the model.
There are three different phases: (1) the disordered phase (P ),
(2) the quasi-long-range ordered phase (F ), and (3) the ne-
matic phase (N ). These phases are characterized by different
behaviors of the magnetic and nematic correlation functions
as presented in Table I. Obviously, according to the Mermin-
Wagner theorem [1], neither of these phases exhibits long-
range order. The three phase boundaries meet at one point,
the tricritical point �c ≈ 0.325. The result is consistent for the
locations of the phases as well as the existence of the tricritical
point with previous Monte Carlo studies which constructed
the phase diagram using other physical measurements such as
the specific heat and the magnetic susceptibility [12] or the
helicity modulus [16]. The interpretation of the correlation
length ratios for the construction of the phase diagram is
presented below.
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FIG. 1. The T -� phase diagram for the 2D generalized XY
model at q = 2 generated based on the correlation length ratios.
The three phases of the diagram are disordered (P ), nematic (N ),
and quasi-long-range ferromagnetic (F ). The red diamond thick line
is the phase boundary which we focus on in this work. The green
square line is obtained based on nematic correlation length ratio. The
intersection of these two lines determines the tricritical point �c. The
P → N green square and the P → F black triangle lines belong
to the BKT universality class; the N → F green circle line belong
to the Ising universality class, while the nature of the P → F red
diamond line is under investigation. Inset is the expanded view of
the phase diagram in the tricritical region. The error bars are smaller
than the symbol sizes.

A. Away from the tricritical point

In the limit of � → 1 (or � → 0), the model becomes
(or equivalent to) the conventional XY model, where there ex-
ists only a BKT phase transition from the disordered phase to
the quasi-long-range order at T ≈ 0.89 [26]. We first discuss
the behaviors of the correlation length ratios in proximity to
these limits, where the finite size effect is less severe, thus the
physics is revealed even at small lattice sizes.

At small � (� < �c), the nematic interaction plays an
important role. There are two phase transitions: (1) the
P → N BKT transition at high temperature which is related
to the binding/unbinding of half-vortices, and (2) the N → F

Ising transition at a lower temperature occurred when the
tension of strings connecting half-vortices vanishes [4,5,18]
(see Fig. 1). We will show that, in this range of �,

ξn

L
exhibits

different behaviors at these two phase transitions, which are

TABLE I. The behaviors of the magnetic [G1(r )] and nematic
[G2(r )] correlation functions corresponding to the disordered phase
P , the nematic phase N , and the quasi-long-range ordered phase F

[4,12,16].

G1(rij ) = 〈cos(θi − θj )〉 G2(rij ) = 〈cos(2θi − 2θj )〉
P ∼exp[−rij /ξ1(T )] ∼exp[−rij /ξ2(T )]
N ∼exp[−rij /ξ1(T )] ∼r−η2(T )

F ∼r−η1(T ) ∼r−η2(T )

FIG. 2. Temperature-dependent correlation length ratios ξn
L

: (a)
at � = 0.2 (below the tricritical point) and (b) at � = 0.8 (above
the tricritical point). Nematic correlation length ratio: solid lines,
magnetic correlation length ratio: solid lines with closed circle
symbol. The inset in panel (a) is the expanded view of the magnetic
correlation length ratio around and below the crossing temperature.
The error bars plotted in the inset of panel (a) are mostly equal or
smaller than the symbol sizes.

attributed to different universality classes. We choose � =
0.2, which is far from the tricritical point, to examine thor-
oughly (although as will be discussed later, at � < �c the
finite size effect is not severe).

Figure 2(a) shows the correlation length ratios at � = 0.2.
As the correlation length diverges at the critical point, the
rapid increases of the correlation length ratio around T ∼ 0.43
(magnetic curves) and from 0.75 to 1 (nematic curves) signal
the phase transitions. The magnetic correlation length ratio
ξ1

L
(thin solid lines with dot symbols) shows a rapid change

at T ∼ 0.43. The curves of different L’s cross at nearly the
same point, analogous to the behavior of the Binder parameter
g in the Ising model. Finite-size-scaling analysis [27] shows
that in the Ising model the Binder parameter at criticality is
universal; the Binder curves at different L’s should cross at
the critical point if the finite-size correction is absent. Near
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criticality, the Binder parameter is a function of ξ

L
[27], thus ξ

L

is universal at criticality [20] and the crossing behavior of the
correlation length ratio also means that there is an Ising phase
transition with Tc specified in terms of the crossing points
(detailed discussion can be seen in Ref. [25]). Therefore,
in this generalized XY model, the crossing behavior of the
magnetic correlation length ratio suggests an Ising phase
transition, consistent with previous studies [12,17,18]. By
extrapolating the crossing point to the thermodynamic limit
(see Appendix B), we obtain Tc1 = 0.436 for this �.

We note that the Ising transition in this model is from the
nematic phase to the quasi-long-range ordered phase, which
is different from that of the Ising model where it is from
the paramagnetic phase to the long-range ferromagnetic order.
Therefore, the splaying out of ξ1/L in Fig. 2(a) occurs only in
proximity to the critical temperature. At lower temperature,
ξ1/L curves merge together, characterizing the quasi-long-
range order where the system is critical for T < Tc, thus ξ1/L

quickly converges to a finite value independent of L. The
starting temperature for this merging behavior of two ξ1/L

curves increases to the critical temperature as L increases.
For example, for the case of Fig. 2(a) we have estimated that
the merging point increases from ∼0.20 (for L = 16 and 32),
∼0.28 (for L = 32 and 64), ∼0.30 (for L = 64 and 128)
to ∼0.36 (for L = 128 and 256). However, as long as L is
finite, the crossing behavior for the Ising transition still occurs
around Tc.

The magnetic correlation length is associated with the
correlation between directions of two spins; it is useful to
detect if the system is in the quasi-long-range order where the
spins tend to align in the same direction for distances smaller
than the magnetic correlation length. At higher temperature,
it remains finite and does not show any peculiar feature up
to L = 256 [see Fig. 2(a)], although we know that there is
P → N transition at high temperature [12,16]. The reason is
that in the nematic case, the spins are only aligned in orienta-
tion, not necessary in direction. Hence the nematic correlation
length ratio, which only takes care of correlation between
orientations of two spins, should be used instead to detect
the phase transition at high temperature. Its curves (solid lines
without symbols) in Fig. 2(a) shows the signature of a phase
transition: ξ2 starts diverging around 0.8, while ξ2

L
curves of

different L’s merge with each other, starting in the range of
0.7 < T < 0.9, thus the critical temperature Tc2 should be
in this range. By extrapolating to the thermodynamic limit
(Appendix B), we obtain Tc2 ≈ 0.727. The merging instead
of crossing behavior of ξ2

L
at high temperature suggests that

this phase transition be not an Ising transition. We know
from previous works that the P → N phase transition is
associated with the binding/unbinding of the half-vortices
[4,5,16], similar to the transition in the original XY model, it
belongs to the BKT universality class. Therefore, we assign
the merging behavior of the correlation length ratio to the
BKT phase transition (similar finding is found in Ref. [25]).

We note that the nematic correlation length ratio does
not show any pronounced feature around Tc1. In this range
of temperature, the spins are maintained in nearly the same
orientation, while they tend to be in the same senses as
the temperature decreases. This is a consequence of the
reduction of the lengths of strings connecting half-vortices

and then the binding of half-vortices into integer vortices at
the phase transition, reflected only in the magnetic correlation
length. The nematic correlation length is only related to the
orientation of spins; it does not show any feature around Tc1.
Therefore we summarize that (1) depending on the physics
of the phases under consideration, we choose an appropriate
correlation length to examine and (2) its merging or crossing
behavior can determine if the phase transition is of BKT or
Ising type, respectively.

With this knowledge in hand, we investigate the region of
� close to unity. In this region, the ferromagnetic interaction
is dominant; the system is similar to the conventional two-
dimensional XY model. For the same reason, we choose the
case of � = 0.8 to analyze thoroughly as it is close enough
to � = 1, the nematic effect is reduced. Figure 2(b) shows
the correlation length ratios ξn

L
of nematic and magnetic types

(n = 1, 2), respectively, at � = 0.8 for different lattice sizes.
The two correlation length ratios exhibit the same behavior;
they increase as the temperature decreases and merge with
each other when T is low enough. The rapid increase of both
ξn

L
at T around 0.85 → 1 implies that the critical temperature

is in this range. Based on the merging behavior, we conclude
that there is a BKT phase transition, and by extrapolation
to L → ∞ we obtain Tc = 0.885. Indeed, this is a phase
transition from the disordered phase where the spins are set
randomly to the quasi-long-range order where the spins are
aligned both in the sense and orientation. Therefore both
nematic and ferromagnetic correlation lengths are sensitive
to this phase transition, explaining the merging behavior of
both quantities. One can use the two correlation lengths
interchangeably to detect the phase transition.

B. Tricritical region

We focus on the region of the phase diagram where both
the nematic and magnetic terms contribute significantly to the
physics of the system. This region is specified by � away
from 0 and 1, and mostly in the range around the tricritical
point �c ≈ 0.325. The difficulty arising in this region is that
due to the competition between the nematic and magnetic
interactions, the correlation length ratios at finite sizes may
contain features from the phases below and above �c. Our
goal is thus to determine the phase transitions occurred in
this region from this mix of features. For that purpose, we
investigate the cases � = 0.3 and 0.35, which are slightly
below and above the tricritical point �c.

Interestingly, the case � = 0.3 is qualitatively similar to
the case � = 0.2 discussed previously, despite its proximity
to the tricritical point. The correlation length ratios (not
shown) behave in the same manner as those at � = 0.2.
For example, there are crossing points at Tc1 for N → F

transition in the magnetic correlation length ratio, suggesting
an Ising phase transition; for P → N phase transition, ξ2

L

curves of different L’s start merging at Tc2 toward lower
temperature, marking a BKT transition. As will be shown in
the next section, the crossing behavior tends to be stable in
the thermodynamic limit. Thus we have not found any effect
of the BKT transition from above the tricritical point in the
N → F phase transition. As a result, for � < �c, the critical
temperatures are obtained straightforwardly.
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FIG. 3. Temperature-dependent correlation length ratios ξn
L

at
� = 0.35 (slightly above the tricritical point �c ≈ 0.325): (a) the
magnetic correlation length ratio, (b) the nematic correlation length
ratio. Inset in panel (a) is the expanded view of the magnetic
correlation length ratio around the crossing point. The error bars are
equal or smaller than the symbol sizes.

In contrast, at � = 0.35 which is slightly above �c, there
is influence of the nematic phase on ξn

L
. Figure 3 shows the

plots of both ξn

L
as functions of temperature for � = 0.35. On

the one hand, the magnetic correlation length ratio in Fig. 3(a)
still exhibits the crossing behavior with a large change at the
critical temperature, similar to that of � < �c. However, it
is not clear if the curves merge together when L increases.
Assuming the crossing behavior, we specify Tc1 ≈ 0.709. On
the other hand, the nematic correlation length ratio retains the
merging feature [Fig. 3(b)]. It is reasonable as it characterizes
the change from the paramagnetic to the two quasi-long-range
orders (the N and F phases), where the spins in an arbitrary
domain tend to be at least in similar orientation. Based on
the merging behavior of the nematic correlation length ratio,
we obtain Tc2 ≈ 0.692. Thus Tc1 and Tc2 are not numerically
the same, the difference 0.017 is mostly due to our ways to
extrapolate Tc, especially for Tc2.

To specify �c, we compare the transition temperature
Tc1 and Tc2 obtained from magnetic and nematic correlation
length ratio, respectively, for a range of � in proximity to
the tricritical point. For � < �c, that Tc2 > Tc1 corresponds
to two phase transitions P → N and N → F . For � >

�c, theoretically Tc1 = Tc2, but our measurements exhibit
that systematically Tc1 is slightly larger than Tc2 by less

than 0.02 near �c, thus it is the uncertainty of the method.
Nevertheless, �c satisfies Tc1 = Tc2. By interpolation, �c ≈
0.325 is obtained (see the inset of Fig. 1).

Therefore, by measuring both the magnetic and nematic
correlation lengths, we reconstruct the full phase diagram of
the generalized two-dimensional XY model at q = 2 as in
Fig. 1. The result is consistent with previous Monte Carlo
studies for the same model [12,16]. The only mysterious
point is the physics slightly above the tricritical point, where
there may exist both crossing and merging behaviors in the
correlation length ratios for the same phase transition. This is
the main reason for our study and we devote the next section
for the understanding of this issue.

IV. ISING TRANSITION LINE

The consensus is that the phase transition from the nematic
to the quasi-long-range order below the tricritical point (see
Fig. 1) belongs to the Ising universality class [12,16–18]. The
remaining open questions focus on the tricritical region: (1)
whether this Ising line goes beyond the tricritical point, (2)
the nature of the Ising segment beyond the tricritical point
if there is, and (3) the transition from the Ising to the BKT
universality class along this line. Some of these issues have
been studied in Refs. [17,18], which focus on the modified
Villain model of Eq. (1) and claim that the Ising transition line
goes beyond the tricritical point. The Monte Carlo study of
Ref. [16] directly simulates Eq. (1) but only briefly mentions
the possibility of the Ising transition above the tricritical point
based on the specific heat measurements. In Appendix A, we
reexamine the specific heat carefully and find that while the
result is consistent with Ref. [16], there is other information
unable to observe in the specific heat measurements and
in other previous studies. By using the correlation length
ratios, we hope to give more insights to some of the above
questions.

First, we note that there is ambiguity if observing directly
the correlation length ratios. As discussed in Sec. III, in the
region of � � �c (such as � = 0.35), the magnetic correla-
tion length expresses the crossing behavior. Due to the limit
of the computational resource, one may not be able to answer
whether the crossing behavior changes to merging behavior at
larger lattice sizes or it is maintained in the thermodynamic
limit. In contrast, the nematic correlation length ratio clearly
shows the merging behavior, a signature of the BKT-type
transition, but this ξ2

L
relates more to the pairing of half-

vortices. Therefore, it is not conclusive yet if the Ising line
goes beyond the tricritical point from this view.

We find that it is much easier to speculate the physics at
large L by studying the difference of the magnetic correlation
length ratio at different L values only with data for a small set
of finite L’s. We define the difference as

δξ (L) = ξ1(2L)

2L
− ξ1(L)

L
. (4)

Figure 4 shows the difference for � = 0.3 and 0.35, the
narrow range where the critical value �c ≈ 0.325 is in
between. The trends for � are pronounced. Let δmax

ξ (L) be the
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FIG. 4. Temperature dependence of the difference of the mag-
netic correlation length ratio δξ (L) [Eq. (4)]. Panel (a): � =
0.3 < �c. Panel (b): � = 0.35 > �c. (�c ≈ 0.325.) Insets are the
expanded views of the differences in the region below Tc where they
reach maximal values. Typical error bars are shown in the insets.

maximum of the difference δξ (L) for T < Tc. For � = 0.3 <

�c (which is known to exhibit the Ising phase transition),
below the crossing point, δmax

ξ (L) are constant with respect
to the lattice size [inset of Fig. 4(a)]. It suggests that δmax

ξ (L)
be unchanged for L → ∞, i.e., the crossing behavior is main-
tained in the thermodynamic limit, confirming that the phase
transition is of Ising type. In contrast for � = 0.35 > �c,
the maxima below the crossing temperature of the difference
decreases systematically. This signal is easily observed even
at small lattice sizes, e.g., in Fig. 4(b), with L running from
16 to 128, one already observes the decreasing tendency of the
maxima. As a result, the phase transition at � = 0.35 is not of
the same type as the N → F Ising transition. Depending on
δξ (L) in the thermodynamic limit, there are two possibilities
for this P → F phase transition: (1) the maximum of δξ → 0
as L → ∞, the ξ1

L
curves change to merging behavior, it is

more likely to be a BKT-type transition or (2) the maximum
reaches a finite value, the crossing behavior is maintained,
then it is another Ising-type transition, but may not have the
same physics as that of the N → F transition.

FIG. 5. Maximum of the difference in ξ1
L

as a function of 1
L

for a
wide range of �. The dashed horizontal line separates two regions:
� < �c above the line and � > �c below the line.

Figure 5 is another view of the difference in correlation
length ratio. It is the plot of δξ (L) versus 1/L, showing the
tendency of the maxima of δmax

ξ as L increases. At � � �c,
the curves are horizontal lines that tend to reach the L → ∞
limit at finite values, confirming that the phase transition from
N → F belongs to the Ising universality. For �c < � < 0.4,
the curves bend down, at � close to �c, it requires larger-scale
simulations to understand the physics, however, for � � 0.36,
the tendency toward zero can be observed. At � � 0.4, the
curves become rather linear and clearly go to zero, thus the
merging behavior can occur at large enough L for � � 0.4,
confirming the BKT phase transition. Therefore, the range
of interest is �c < � < 0.4, and while we cannot access
larger-scale simulation, at least for � � 0.36, we can say
that the phase transition is not truly an Ising-type transition,
as the crossing behavior of the correlation length ratio is
not maintained in the thermodynamic limit. It is not truly of
BKT type either as δmax

ξ (L) goes to zero rather slowly, thus
behaving differently from that at � � 0.4.

Furthermore, we examine ξ1

L
at the critical temperature.

The correlation length ratio at criticality is claimed to be
universal [20,22], hence it can be a criterion for classify-
ing the phase transitions in this study. Figure 6 shows the
measurements for a wide range of �, except for the point
� = 0 where there is no phase transition from N to F .
These are obtained directly from our finite-size simulations
for different lattice sizes. We do not use the extrapolated
values at L → ∞ as the lattice sizes in use are small, thus
the extrapolations are not in high quality, especially in the
region around the tricritical point. As � → 0,

ξ1

L
approaches

the critical value for the Ising model (∼0.905) [20]. At � = 1,
which is the original XY model, it is ∼0.78, consistent with
Refs. [28,29] and close to the exact value ≈0.75 [28,29].
Thus at the two limits � → 0 and � = 1, the value of the
correlation length ratio shows clear signatures that the phase
transition is of Ising and BKT type, respectively. However
for � away from zero and one, as being weakly universal,
the critical value of ξ1

L
strongly depends on �. Below �c, it
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FIG. 6. The value of ξ1
L

at the critical temperature Tc plotted vs
� for three cases denoted by L values. For � � 0.4, ξ1

L
for each L

is determined by the crossing point of the correlation length ratios
obtained from the simulations at sizes L/2 and L. For � > 0.4, ξ1

L

for each L is the value of the correlation length ratio from the
simulation at size L at T = Tc (the critical temperature at L → ∞).
The vertical dashed line marks � = 0.4.

decreases linearly with increasing �, while above � = 0.4, it
decreases nonlinearly, characterizing two regions of Ising and
BKT-type phase transition, respectively. We note that the large
error bars at � < �c is because the temperature mesh for
large-L simulation is not fine enough, thus the crossing point
is determined with large uncertainty. In the � range of our
interest, the critical ξ1

L
changes abruptly from the minimum

at � ∼ �c and reaches the maximum at � ∼ 0.4. The trend
of ξ1

L
as L increases depends on �: For � < �c, it converges

rapidly, for � > 0.4, it decreases and converges more slowly,
while �c < � < 0.4, it increases rather fast. It supports the
sudden change of ξ1

L
around the tricritical region. Hence, de-

spite results at finite-size simulations, Fig. 6 is still physically
meaningful; it suggests that there exists a narrow region of �

that separates the two different types of phase transition (Ising
and BKT types), where certain quantities behave differently
or change rapidly. The range �c < � < 0.4 is such a region,
characterized by the nonlinear bending of the δξ (L) and the
rapid increase of ξ1

L
at criticality.

Therefore, the region of �c < � < 0.4 is a special one.
It may be related to the region for the “deconfinement
phase transition” proposed by Serna et al. [18]. However the
“deconfinement” physics is not clear from the perspective
of the correlation length. Instead the correlation length ra-
tio can only separate this region from those of the Ising
and BKT transitions. The upper limit � ≈ 0.4 is detected
by both the correlation length ratio and the specific heat
(see Appendix A), distinguishing it from the usual BKT
transition at larger �, while the lower limit at �c can only be
observed using the correlation length ratio. However both ξ1

L

at criticality and δξ (L) show that this phase transition segment
is not a continuation of the Ising line of the N -F transition,
which is unable to observe using other quantities such as the
specific heat. We believe that the nature of the phase transition

in this segment is different from that of other segments. It
can be considered as the intermediate region connecting the
Ising transition line and the BKT transition line. Therefore, in
the phase diagram, we distinguish it (the diamond red line in
Fig. 1) from other phase transition lines.

V. CONCLUSIONS

In this paper, we have studied in detail the behaviors of
the magnetic and nematic correlation length ratios ξn

L
in the

two-dimensional generalized XY model at q = 2. We demon-
strated the power of ξn

L
in determining the phase transitions

as temperature decreases for a wide range of the nematic
interaction strength with respect to the magnetic interaction.
We showed how to classify the type of a phase transition based
on the behavior of ξn

L
, without directly calculating the criti-

cal exponents. More importantly, we investigated the region
around the tricritical point �c ≈ 0.325 and found pronounced
features of ξn

L
that give insights into the physics of this region.

We have several results. First, the correlation length ratios
exhibit different behaviors depending on whether the phase
transition is of Ising or BKT type for this generalized XY
model. For Ising phase transitions, based on the finite-size
scaling argument [27], magnetic curves ξ1

L
for different lattice

sizes cross at the critical temperature. For BKT phase transi-
tions, both ξn

L
curves merge together at lower temperature, the

merging point approaches the critical point as the lattice size
increases. The correlation length ratios appear to be sensitive
to phase transitions even with small lattice sizes (L � 256
as in this study), thus it is useful when simulations for large
lattice sizes cannot be accessed.

Second, the observations of the magnetic correlation length
ratios at critical temperature and its difference between lattice
sizes L and 2L show that the phase transition in the range from
�c ≈ 0.325 to 0.4 exhibits different physics from those below
�c or above 0.4. The Ising line does not connect directly to
the BKT line in the phase diagram. Instead the region from
�c to 0.4 plays the role of an intermediate region where the
behaviors of the related quantities (e.g., the correlation length)
change from more Ising-like near �c to more BKT-like near
� ≈ 0.4. The phase transition in this region is however neither
of Ising type nor BKT type.

Our study contains limitations. First, due to the limit of
our computational resource, we can only carry out simulations
with the lattice size as large as L = 256. With larger L, such
as L = 512 and 1024, and with better Monte Carlo statistics,
which are feasible at present (given enough computational
resource), one could observe more clearly the behavior of ξ1

L

in proximity to the tricritical point and extrapolate more accu-
rately critical values in the thermodynamic limit. Simulations
at larger scale may be helpful to confirm the behavior at �

very close to �c where the “critical slowing down” is severe.
Second, the correlation length is not the method of choice to
locate the phase boundary with accuracy; other measurements
such as the helicity modulus [16] perform better. The role of
the correlation length ratio is to understand the physics of the
phase transitions in this model; the construction of the full
phase diagram with accuracy is not the aim of this work.

Finally, we indicate several problems arising from the
applications of ξn

L
. First, the dependence of � on the critical
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value of ξ1

L
or the dependence on L of its difference have

been investigated for small lattice sizes. Simulations at larger
scales would be necessary to confirm the behavior of the
correlation length in the tricritical region. More importantly,
the phase transition in this region has only been found to be
neither of Ising type nor BKT type; its nature, whether it is the
“deconfinement transition” as in Ref. [18] and how one relates
to this “deconfinement,” is however not fully understood.
These are open questions for future study.
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APPENDIX A: SPECIFIC HEAT

From the viewpoint of Monte Carlo simulation, Hübscher
and Wessel [16] studied the maxima of the specific heat (Cmax)
and found that the specific-heat-maximum line approaches the
BKT transition line slightly above the tricritical point. As the
shapes of the specific heat peaks may be used to determine
the type of the phase transition [12], they suggested that the
Ising line might be dominant in the region of the critical
point.

Here we reconsider the maximal value of the specific heat
and plot in Fig. 7 the magnitude Cmax obtained from our cal-
culations. We note that while at � < �c, there are two peaks
for C at different temperatures, corresponding to the N -F and
P -N phase transition, we only focus on the peak for N -F tran-
sition at low temperature. We do not examine the temperature
at which C is maximized, as it has been already considered
[16], instead we investigate the dependence of the Cmax value
on � and L. In Fig. 7(a), Cmax is plotted as a function of
� which reaches the maximum at � ≈ 0.4 for all L values
that we have calculated. The value � = 0.4 separates two
regions: (1) the region � � 0.4, where the specific heat peaks
are sharp and increases as L increases, is associated with the
Ising transition, (2) the region � > 0.4, where the peaks are
smaller and broader (usually located at temperature above Tc),
is in connection with the BKT transition. If plotting Cmax

against L, the concavity of the curves changes at � ≈ 0.4
as illustrated in Figs. 7(b) and 7(c). Figure 7(c) for � > 0.4
(except for the case � = 0.42 which requires simulations at
larger L) shows the convergence of Cmax to finite values as L

is large enough, signifying the BKT transition. For � � 0.4
in Fig. 7(b), Cmax keeps increasing as L increases, implying
divergence at T → Tc, suggesting the Ising transition.

Therefore Fig. 7 exhibits the characteristics of the Ising
transition up to � ∼ 0.4, consistent with Ref. [16]. On one
hand, the fact that Cmax reaches maximal at � ≈ 0.4 supports
the ξ1

L
results in the main text for the change to BKT phase

transition at this �. On the other hand, the specific heat
does not show any pronounced feature at the tricritical point
�c ≈ 0.325, instead it predicts the Ising-like transition for

FIG. 7. (a) The plot of the specific heat maximum Cmax
V as a

function of �, exhibiting a peak at � = 0.4. (b),(c) Cmax
V as a

function of 1/L for � � 0.4 [below the peak position, panel (b)]
and for � > 0.4 [above the peak position, panel (c)]. The error bars
are smaller than the symbol sizes.

the whole range � < 0.4, while the correlation length shows
critical behaviors at �c. It means that there is other physics
not revealed by the specific heat. We believe that at this �,
the total energy of the system is varied smoothly, thus there is
no peculiarity from the observation of the specific heat. The
pronounced feature of the correlation length at �c means that
there are topological changes which are irrelevant to the total
energy.

APPENDIX B: THERMODYNAMIC LIMIT

To extrapolate the critical temperatures Tc for the phase
transitions in the thermodynamic limit, which are then used
for the phase diagram (Fig. 1), we apply two different ways
for the Ising and BKT transition, respectively. For the Ising
transition, similar to the Binder parameter analysis [27], as
long as the magnetic correlation length ratio curves cross with
each other, we specify the crossing temperature Tc(L) for each
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pair of size L and 2L, the limit at L → ∞ is obtained by
linearly fitting Tc(L) vs 1/L. We employ this procedure to
determine Tc for � < 0.4.

For the BKT phase transition, we apply the method from
Ref. [30]. For the set of ξn

L
at different L’s which merge with

each other for T < Tc, the merging point is slightly below
Tc, thus determining the merging point in the thermodynamic
limit is not trivial. Instead we choose a value R smaller but not
too far from the critical value of ξn

L
such that ξn(T )

L
= R has a

solution Tc(L) which is larger than Tc. To extrapolate Tc in the

limit L → ∞, we conduct the nonlinear fitting [30]

Tc(L) = Tc + c2Tc

(ln bL)2
. (B1)

To choose the optimized value of R, we examine the depen-
dence of Tc on R. Typically Tc is weakly dependent on R

and there is Rc where Tc reaches maximum. Thus we choose
several values of R around Rc to improve the extrapolation.
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