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Properties of the spin-liquid phase in the vicinity of the Lifshitz transition
from Néel to spin-spiral state in frustrated magnets
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Three decades ago, Ioffe and Larkin pointed out a generic mechanism for the formation of a gapped spin liquid.
In the case when a classical two-dimensional (2D) frustrated Heisenberg magnet undergoes a Lifshitz transition
between a collinear Néel phase and a spin-spiral phase, quantum effects usually lead to the development of a spin-
liquid phase sandwiched between the Néel and spin-spiral phases. In this work, using field theory techniques, we
study properties of this universal spin-liquid phase. We examine the phase diagram near the Lifshitz point and
calculate the positions of critical points, excitation spectra, and spin-spin correlation functions. We argue that
the spin liquid in the vicinity of 2D Lifshitz point (LP) is similar to the gapped Haldane phase in integer-spin
one-dimensional chains. We also consider a specific example of a frustrated system with the spiral-Néel LP, the
J1-J3 antiferromagnet on the square lattice that manifests the spin-liquid behavior. We present numerical series
expansion calculations for this model and compare results of the calculations with predictions of the developed
field theory.
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I. INTRODUCTION

Quantum spin liquids (SL) are “quantum disordered”
ground states of spin systems, in which zero-point fluctua-
tions are so strong that they prevent conventional magnetic
long-range order. The main avenues towards realizing SL
phases in magnetic systems are frustration and quantum phase
transitions [1]. A particularly interesting example of SL is
realized by tuning a frustrated magnetic system close to a
Lifshitz point (LP) that separates collinear and spiral states.
In the vicinity of the Lifshitz transition, the quantum fluctu-
ations are strongly enhanced, resulting in a plethora of novel
intermediate quantum phases [2].

A general argument in favor of a universal gapped SL
phase near LP in two-dimensional frustrated Heisenberg an-
tiferromagnets (AF) was first proposed by Ioffe and Larkin
[3]. They showed that in the proximity of the LP quantum
fluctuations destroy long-range spin correlations and create a
region in the phase diagram with a finite magnetic correlation
length. Subsequent studies found evidence for SL phases in
various two-dimensional (2D) systems near the LP, including
Heisenberg models on square and honeycomb lattices with
second- and third-nearest-neighbor antiferromagnetic cou-
plings [4–12]. However, the universality of the SL phase near
LP, its ubiquitous properties, and the relation of the general
argument to specific Heisenberg models has not previously
been addressed.

In this paper we revisit the Ioffe-Larkin scenario and
consider a field theory for a quantum Lifshitz transition be-
tween collinear and spiral phases in D = 2 + 1. Disregarding
microscopic details of specific lattice models, we focus on the
generic infrared physics at the LP. We develop a field-theoretic
description of the O(3) Lifshitz point based on the extended
nonlinear sigma model. The nonlinear sigma model provides
a unifying theoretical framework that allows us to analyze

the phase diagram, calculate positions of critical points, ex-
citation spectra, and static spin-spin correlation functions. We
demonstrate universal scalings of observables (gaps, position
of critical points, etc.) in terms of the dimensionless SL gap at
the LP, δ0, and show that the correlation length in the SL phase
scales as ξ ∼ 1/

√
δ0. We also argue that the LP spin liquid has

a similarity to the gapped Haldane phase [13] in integer-spin
one-dimensional (1D) chains. However, for the 2D SL there is
no significant difference between the integer and half-integer
spin cases.

A particular example of a system that has a Néel-spiral LP
and hence manifests the spin-liquid behavior is the frustrated
antiferromagnetic J1-J2-J3 Heisenberg model on the square
lattice with the second- and third-nearest-neighbor couplings
as well as its simplified version, the J1-J3 model. We perform
numerical series expansion calculations for the J1-J3 model
and compare results of the calculations with predictions of the
developed field theory.

The structure of the paper is as follows. In Sec. II we
introduce the effective field theory describing the Néel to spin-
spiral Lifshitz point. Section III addresses the quantum LP,
quantum fluctuations, and the criterion for quantum “melting.”
Next, in Sec. IV we calculate the spin-wave gap and positions
of critical points. Section V addresses the static spin-spin
correlator in the spin-liquid phase. In Sec. VI we describe our
numerical series calculations for the J1-J3 model with spin
S = 1

2 and 1 and compare results of these calculations with
predictions of the field theory. Finally, our conclusions are
presented in Sec. VII.

II. EFFECTIVE FIELD THEORY

We start with the following O(3) symmetric Lagrangian
describing a transition from the Néel to a spiral phase in
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two-dimensional antiferromagnets:

L = χ⊥
2

(∂tnμ)2 − 1

2
nμK (∂i )nμ, (nμ)2 = 1. (1)

Here, χ⊥ is the transverse magnetic susceptibility, nμ is a
unit length vector with N = 3 components corresponding
to the staggered magnetization, ∂i are the spatial gradients.
The general form of the “elastic energy” operator K (∂i ) in
inversion-symmetric systems reads as

K (∂i ) = −ρ(∂i )
2 + b1

2

(
∂4
x + ∂4

y

) + b2∂
2
x ∂2

y + O
(
∂6
i

)
, (2)

where we assume that the n field is sufficiently smooth.
Classical limit of a quantum magnet corresponds to very large
spin, S → ∞. In terms of Lagrangian (1) this means that
the time derivative term is negligible (zero). In this case,
only the elastic energy (2) is relevant, and the spin stiffness
ρ is the tuning parameter that drives the system across the
Lifshitz transition. The spin stiffness is positive in the Néel
phase, negative in the spiral phase, and vanishes at the Lifshitz
point. The b terms containing higher-order spatial derivatives
are necessary for stabilization of spiral order at negative ρ,
and we will assume that b1,2 > 0. While the kinematic form
of the Lagrangian (1) is dictated by global symmetries of
the system, a formal derivation starting from a frustrated
Heisenberg model can be found, e.g., in Ref. [3]. Note that in
Lagrangian (1) we do not take into account topological terms.
We will discuss their possible role later in the text.

The Lagrangian (1) can be applied to a number of mod-
els mentioned in the Introduction. Experimentally relevant
system is an antiferromagnetic compound CaMn2Sb2 which
consists of weakly coupled hexagonal layers [14]. This ma-
terial accidentally lies very close to a Néel-spiral LP and the
neutron scattering data [14] indicate some physics described
by (1). We propose that another experimental possibility is
related to rare-earth manganite materials (Tb,La,Dy)MnO3.
These materials have layered structure with antiferromagnet-
ically coupled layers. Due to the antiferromagnetic interlayer
coupling, the dynamics of the system is described by the
second-order time derivative as in usual antiferromagnets in
agreement with Eq. (1) (see Ref. [15]), that makes the theory
developed in this work applicable to manganites. Within each
layer there are ferromagnetic nearest-neighbor and antifer-
romagnetic second-nearest-neighbor Heisenberg interactions
leading to an in-plane frustration. Therefore, the intralayer
structure can be commensurate (ferromagnetic), LaMnO3, or
incommensurate spin spiral, TbMnO3 and DyMnO3. Due to
this reason, manganites could be tuned to the LP separating
commensurate and incommensuare spin-spiral states by per-
forming chemical substitution Tb,Dy → La or by applying
external pressure. Of course, real compounds are three dimen-
sional and contain many planes, however, thin films of these
materials can manifest the LP physics considered in this paper.
In the very end of Sec. VI, we discuss these materials.

In the AF phase of (1), ρ > 0, the rotational symmetry
is spontaneously broken and the Néel vector has a nonzero
expectation value, e.g., is directed along the z axis 〈n〉 = ez. In
the spin-spiral phase, with ρ < 0, there is an incommensurate
ordering

n(r ) = e1 cos( Qr ) + e2 sin( Qr ), (3)

Lifshitz point

Classical Lifshitz point

FIG. 1. Schematic phase diagram in the vicinity of the Lifshitz
transition between collinear antiferromagnetic and spiral states:
(a) classical Lifshitz transition (S = ∞), (b) quantum phase diagram;
strong quantum fluctuations in the vicinity of the Lifshitz point result
in the intermediate spin-liquid phase. (c) Excitation energy ωq in the
spin-liquid phase below and above LP.

where e1,2 are orthogonal unit vectors and Q is the pitch of
the spiral. For b1 � b2 the spiral wave vector is directed along
x or y: Q = (±Q, 0), (0,±Q), where Q2 = |ρ|/b2. In the
opposite case b1 > b2 the wave vector is directed along the
main diagonals: Q = 1√

2
(±Q,±Q), 1√

2
(±Q,∓Q), where

Q2 = 2|ρ|/(b1 + b2). The relation between the coefficients b1

and b2 depends on the specific choice of the lattice model.
In the “isotropic” case b1 = b2, the system has additional
rotational degeneracy in the momentum space due to the arbi-
trary orientation of wave vector Q. The additional degeneracy
can destabilize spiral states and result in quantum spin-liquid
states that have been predicted for three-dimensional (3D)
antiferromagnets [16]. In this paper we will stay away from
this special critical point. The classical phase diagram, S =
∞, is shown schematically in Fig. 1(a).

We would like to make a comment regarding Lagrangian
(1). Parameters of any field theory depend on the momentum
and energy scales. The dependence is described by renormal-
ization group procedure. We assume that parameters in (1)
and (2) are fixed at the ultraviolet cutoff � ≈ 1, where unity
corresponds to the inverse lattice spacing. Quantum fluctua-
tions at scales larger than � but smaller than the boundary
of magnetic Brillouin zone lead to a renormalization of the
parameters ρ → ρren, b1,2 → bren

1,2 , . . . . Therefore, the values
of the parameters in (1) and (2) can be different from those
naively derived using spin-wave theory. As was pointed out by
Ioffe and Larkin [3], this renormalization is especially relevant
for the spin stiffness. The correction to the spin stiffness arises
due to the the b terms in (2). The easiest way to understand
the correction is to consider the Néel phase and decompose
the n field into two transverse components and a longitudinal
component:

n = (π , nz), nz =
√

1 − π2 ≈ 1 − π2/2. (4)
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Hence, the following contribution from the b term arises:

∂2nz∂
2nz ∼ b (∂2π2)(∂2π2). (5)

After appropriate averaging over quantum fluctuations, this
term contributes to the spin stiffness. Following Polyakov
[17] the field π can be decomposed into components with
momenta smaller than �, π<, and a component with momenta
larger than �, π>, π = π< + π>. Substitution in (5) and
averaging over high-energy fluctuations gives

b (∂2π2)(∂2π2) → b (∂π<)2〈(∂π>)2〉 = δρ�(∂π<)2. (6)

When averaging (∂2π2) × (∂2π2) each multiplier must con-
tain the high- (π>) and the low- (π<) energy components.
The terms originating from the averaging over the high-energy
component in the b term with one multiplier containing only
the high-energy and another only the low-energy components
are total derivatives and therefore are irrelevant. Equation (6)
demonstrates a positive correction to the spin stiffness. There-
fore, quantum fluctuations always extend the Néel phase com-
pared to the prediction of spin-wave theory that is indicated in
Fig. 1(b). The Lifshitz point in the quantum case is shifted to
the left compared to the Lifshitz point in the classical case.
In the quantum case, the Lifshitz point is “buried” in the
spin-liquid phase. Nevertheless, it is unambiguously defined
as we discuss in the following sections.

III. QUANTUM LIFSHITZ POINT: THE PHASE DIAGRAM
AND THE SPIN-LIQUID GAP

Quantum fluctuations destroy the classical Néel to spin-
spiral Lifshitz transition [3]. Let us calculate local staggered
magnetization nz when approaching the LP from the Néel
phase. Representing the staggered magnetization as 〈nz〉 ≈
1 − 1

2 〈π2〉, we obtain [18]

〈π2〉 ≈ (N − 1)
∑

q

∫
idω

(2π )

1

χ⊥ω2 − K (q ) + i0

= (N − 1)
∫

d2q

(2π )2

1/χ⊥
2ωq

, (7)

where ωq = χ
−1/2
⊥

√
ρq2 + b1/2(q4

x + q4
y ) + b2q2

xq
2
y and

N = 3 is the number of components of n field. In the vicinity
of the LP, ρ → 0, the integral (7) is logarithmically divergent,
〈π2〉 ∝ ln ( �√

ρ
), where � is the ultraviolet momentum cutoff.

Hence, at some critical value of the spin stiffness ρ = ρcN the
staggered magnetization 〈nz〉 vanishes, indicating a transition
to the spin-liquid phase. In the spin-liquid phase, ρ < ρcN , a
gap � must open to regularize the integral in Eq. (7):

ωq →
√

ω2
q + �2

=
√

�2 + χ−1
⊥

[
ρq2 + b1/2

(
q4

x + q4
y

) + b2q2
xq

2
y

]
. (8)

Opening of the gap indicates an existence of a spin-liquid
phase at which the long-range AF order is lost and the corre-
lator 〈n(r ) · n(0)〉 is exponentially decaying. Importantly, this
is a generic gapped spin liquid originating from long-range
fluctuations and is unrelated to a spin-dimer ordering. The
SL gap is zero, � = 0, at the critical point ρcN and the gap

increases when we proceed deeper into the spin-liquid phase.
The SL phase stretches across a finite window [ρcS, ρcN ] in
the vicinity of the LP, as depicted in Fig. 1(b).

The elementary spin excitations in the AF phase are
two gapless Goldstone modes: transverse spin waves and a
massive longitudinal (“Higgs”) mode [18]. Due to the unit
length constraint (n2 = 1) the Higgs mode has a very large
energy and can be disregarded. In the spiral phase there are
three Goldstone modes: a sliding mode and two out-of-plane
excitations. These three modes correspond to the three Euler
angles defining the orientation of the (e1, e2, e3) triad, where
e3 = [e1 × e2] [15,19].

The excitation modes (8) in the SL phase are threefold
degenerate due to O(3) rotational invariance of the model.
Above the LP (ρ > 0) the minimum of dispersion is located
at q = 0, whereas below the LP (ρ < 0) the dispersion has
four degenerate minima at the “spiral” wave vectors q = Q.
The evolution of the dispersion across the LP is schematically
shown in Fig. 1(c). The change of the shape of the dispersion
indicates the Lifshitz point.

The location of this critical point ρcN can be found by
imposing the condition 〈nz〉 → 0, which naively provides
the following criterion for the transverse spin fluctuations
〈π2〉c ≈ 2. This critical value for 〈π2〉 is largely overestimated
and it is not consistent with the unit length constraint. One
can find a more accurate value of 〈π2〉c by accounting for
the next-order terms in the Taylor series expansion of nz =√

1 − π2 (see Appendix A), or alternatively by using the
1/N expansion for O(N ) nonlinear sigma model. The 1/N

expansion has been extensively applied to describe quan-
tum antiferromagnets. For the most relevant examples, see
Refs. [20–22]. In the 1/N expansion approach we lift the hard
constraint n2 = 1 by introducing a Lagrange multiplier

L → L − λ(n2 − 1). (9)

After integrating out the n field in the new Lagrangian
(9), we obtain an effective Lagrangian depending only on the
auxiliary field λ:

Lλ = Ntr ln[−χ⊥∂tt − K (q ) − λ] + λ. (10)

We can find the saddle point in the Lagrangian Lλ by calcu-
lating the variational derivative in (10) with respect to λ and
regarding λ as a constant λ = χ⊥�2:

N
∑

q

∫
idω

(2π )

1

χ⊥(ω2 − �2) − K (q )
= 1. (11)

The Lagrange multiplier in Eq. (11) has the meaning of the
spin gap. Equation (11) determines the evolution of the gap
�(ρ) with the spin stiffness in the SL phase. Comparing
Eq. (11) with (7) we conclude that at the boundary between
SL and AF phases 〈π2〉c = (N − 1)/N = 2

3 . This criterion is
quite natural for the O(3) symmetric quantum critical point
separating Néel and SL states. Nevertheless, this criterion
underestimates 〈π2〉c. One can see this from the example
of the S = 1

2 2D Heisenberg model on the square lattice. A
textbook expression for the staggered magnetization is well
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known [23]:

〈nz〉 = 2〈Sz〉 = 1 − 2
∫

MBZ

d2q

(2π )2

⎛
⎝ 1√

1 − γ 2
q

− 1

⎞
⎠, (12)

where γq = 1
2 (cos qx + cos qy ), and integration is performed

over the magnetic Brillouin zone. In the limit q < 1, Eq. (12)
is consistent with (7) since in this case χ⊥ = 1/8J and
ωq/J ≈ √

2q, where J is the Heisenberg AF coupling. In-
tegration over q in (12) gives a well-known result 〈nz〉 ≈
2 × 0.305 which corresponds to 〈π2〉 ≈ 0.78 in the equation
〈nz〉 ≈ 1 − 1

2 〈π2〉. The integration in the corresponding long-
wavelength approximation (7) with N = 3, χ⊥ = 1/8J , ωq ≈√

2Jq and the ultraviolet cutoff � = 1 gives a close value
〈π2〉 ≈ 0.89. Both values are above 2

3 and we know that the
long-range AF order in the unfrustrated Heisenberg model
still persists. Based on this analysis, we estimate the critical
value of fluctuation as

〈π2〉c ≈ 1, (13)

which is an important result of this paper. Equation (13) is an
analog of the Lindemann criterion [24] for quantum melting
of long-range magnetic order in 2D quantum magnets. Our
approach implicitly violates rotational invariance, but it allows
us to calculate approximately the positions of critical points
and the value of the spin-liquid gap.

The spin-liquid gap � is determined by Eqs. (7) and (8)
from the condition 〈π2〉 = 〈π2〉c ≈ 1. At ρ > 0 (the Néel
side of LP), � coincides with the physical gap. On the
spiral side of LP, ρ < 0, the physical gap corresponds to
the excitation energy at the “spiral” wave vector Q: �ph =
min ωq =

√
�2 + 1

χ⊥
K ( Q) [see Fig. 1(c)]. This gap is closed

at the spin-spiral-SL critical point. Therefore, the position of
this critical point ρcS is determined from the following two
equations:

2
∑
q<�

∫
idω

(2π )

1

χ⊥(ω2 − �2) − K (q ) + i0
= 1,

�2
ph = �2 + 1

χ⊥
K (Q) = 0. (14)

At ρ < ρcS , the magnon Green’s function acquires a pole at
imaginary frequency ω = ±i

√
|�2 + K (Q)/χ⊥|. This is the

indication of an instability of the SL phase towards condensa-
tion of a static spiral with the wave vector Q.

It is instructive to draw an analogy between the SL physics
at 2D Lifshitz point and the one-dimensional Haldane spin
chain. A condition similar to (11) determines the value of
the Haldane gap [22]. Indeed, the integer spin-S Heisenberg
model in the continuous limit can be mapped to the O(3) rel-
ativistic nonlinear sigma model in D = 1 + 1 [13]. The model
parameters are the speed of the magnon, c = √

ρ/χ⊥ = 2JS,
and the transverse magnetic susceptibility, χ⊥ = 1/4J (J is
the Heisenberg coupling constant). Proceeding by analogy
with (7), we find the fluctuations of the spin in the Haldane
model

〈π2〉c = 2
∫ �

0

dq

2π

1

2χ⊥
√

c2q2 + �2
≈ 1

2πcχ⊥
ln

c�

�
. (15)

As we already discussed, the ultraviolet cutoff is � ≈ 1.
The logarithmically divergent 〈π2〉 in the Haldane model is
analogous to the log-divergence in (7) at the LP. Numerical
values of the Haldane gaps for S = 1 and 2 are known from
density matrix renormalization group (DMRG) calculations:
see, e.g., Ref. [25], �S=1/J ≈ 0.41, �S=2/J ≈ 0.08. Tak-
ing these values of the gap (15) we obtain the following
critical values of fluctuations: 〈π2〉c ≈ 0.5 (for S = 1) and
〈π2〉c ≈ 0.6 (for S = 2), which are smaller than (13). We
believe that the difference is due to different dimensionality.
While DMRG is more reliable, it is interesting to note that
the renormalization group analysis [22] for the integer spin
Haldane chain gives 〈π2〉c = 1.

The differences in the values of 〈π2〉c are not crucial
when making comparisons between 1D and 2D systems.
However, it is well known that properties of the spin chains
with half-integer and integer spins are very different. The
gapped SL phase in 1D appears only in the integer spin
chains, while in contrast the excitations of half-integer spin
chains are gapless spinons in agreement with the Lieb-Shultz-
Mattis theorem [26]. We believe that the 2D spin liquid in
the vicinity of LP point is generic and independent of the
value of the lattice spin, the spin of quasiparticle is S = 1.
The Lieb-Shultz-Mattis theorem states that in systems with
half-integer spin per unit lattice cell and full rotational SU(2)
symmetry, the excitations are gapless or otherwise the ground
state of the system is degenerate. The theorem was initially
formulated for D = 1 + 1 systems and later generalized for
higher spatial dimensions [27]. Technically, in D = 1 + 1 the
dramatic difference between integer and half-integer spin is
due to the topological Berry phase term which is not included
in the Lagrangian (1) [13]. Topological effects in D = 2 + 1
correspond to skyrmions or merons [28].

In principle, topological configurations become more im-
portant when approaching the Lifshitz point [29]. However,
such topological solutions are unstable within the model (1).
Using scaling arguments one can see that due to the fourth
spatial derivative term in the Lagrangian (1), the energy of
localized skyrmions at LP behaves as ∼b1,2/R

2, where R is
the skyrmion radius. Therefore, any localized skyrmions ener-
getically prefer to have large size R → ∞ and only contribute
to the boundary terms. Although the topological solutions
might play a role to reconcile with the Lieb-Shultz-Mattis
theorem, these configurations are statistically irrelevant in the
bulk.

IV. SPIN-LIQUID EXCITATION GAP AND POSITIONS
OF NÉEL-SPIN-LIQUID AND SPIN-SPIRAL-SPIN-LIQUID

CRITICAL POINTS

In this section we calculate the excitation gap in the spin-
liquid phase and positions of critical points separating differ-
ent phases. The critical point separating the spin-liquid and
the spin-spiral phases is calculated by two different methods:
(i) approaching the point from the spin-liquid side, and (ii)
approaching the point from the spin-spiral side.

In order to make our calculations more specific and having
in mind comparison with the J1-J3 model, in this section we
set b2 = 0. It is convenient to introduce dimensionless spin
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stiffness and dimensionless gap parameters

ρ̄ = 2ρ

b1
, δ =

√
2χ⊥
b1

�. (16)

At negative ρ the spiral wave vector is directed along the
main diagonals Q = 1√

2
(Q,±Q):

Q2 = |ρ̄|. (17)

In this section we calculate positions of the critical points and
the spin-liquid gap expressed in terms of dimensionless gap
δ0 = δ(ρ = 0) at the LP since it is a natural scaling parameter
in the problem. In the limit δ0 � 1, all physical observables
depend only on ρ̄ and δ0.

A. Spin-liquid phase

First, we perform the analysis in the spin-liquid phase
where δ 
= 0. As we already discussed in Sec. III, the con-
dition of criticality reads as

〈π2〉c ≈ 1 ≈
√

2

(4π2)
√

χ⊥b1

∫
d2q√

ρ̄q2 + q4
x + q4

y + δ2
. (18)

Let us determine the gap exactly at the LP. For δ0 � 1 the
solution of (18) is

δ0 = 1.7�2e
− 2

√
2π

ζ

√
χ⊥b1 . (19)

The constant ζ in the exponent is given by the angular
part of the q integral ζ = 2

π
K ( 1

2 [1 − b2
b1

]), where K (m) =∫ π/2
0 dφ 1√

1−m sin2 φ
is the complete elliptic integral. In the

specific case under consideration, b2 = 0, ζ = 2
π
K (1/2) ≈

1.18. The numerical prefactor A = 1.7 in (19) is found by
performing a least-squares fitting of the integral in Eq. (18).
While Eq. (19) is derived for δ0 � 1, however, direct numeri-
cal integration in (18) shows that (19) practically works up to
δ0 � 0.6–0.7.

In order to determine the position of the Néel critical point
ρcN , we evaluate the integral in (18) at δ � ρ̄ � 1:

1

2π

∫
d2q√

ρ̄q2 + q4
x + q4

y + δ2
≈ ζ

2
ln

(
2.9�2

ρ̄

)
− δ

ρ̄
. (20)

The condition δ = 0 gives the position of the Néel-SL critical
point ρ̄cN :

ρ̄cN ≈ 2.9�2e
− 2

√
2π

ζ

√
χ⊥b1 ≈ 1.65δ0. (21)

According to (20) in the vicinity of the Néel-SL critical point
ρ̄ < ρ̄cN , the gap grows linearly as δ ≈ 0.64(ρ̄cN − ρ̄ ), that
corresponds to a mean-field prediction.

The spin stiffness ρcN at the transition point from the
Néel phase to the spin-liquid phase is small but still finite.
Therefore, we believe that the transition belongs to the stan-
dard O(3) universality class, the same as that in the bilayer
quantum antiferromagnet (see, e.g., Ref. [30]). The correct
critical index for O(3) transition is ν ≈ 0.7, which implies
δ ∝ (ρ̄cN − ρ̄)ν .

FIG. 2. Dimensionless SL gap, where gap = δ for ρ > 0 and
gap = α for ρ < 0, versus spin stiffness for different values of δ0.

On the side of negative spin stiffness ρ̄cS < ρ̄ < 0, the
dimensionless physical gap reads as

α =
√

2χ⊥
b1

�ph =
√

δ2 − ρ̄2/2. (22)

The condition α = 0 determines the position of the spin-spiral
to SL critical point ρcS . Calculating the integral in (18) at α �
Q2 � 1 we find

1

2π

∫
d2q√

Q4/2 − Q2q2 + q4
x + q4

y + α2

≈ ζ ln

(
5.4�

Q

)
− 2

α

Q2
. (23)

The condition α = 0 gives the position of the critical point
ρ̄cS :

ρ̄cS = −Q2 ≈ −17δ0. (24)

The gap in the vicinity of this critical point is α = 0.27(ρ̄ −
ρ̄cS ). This is a mean-field result and we believe that the
transition at ρcS does not belong to a standard universality
class.

The dimensionless gap found by numerical solution of
Eq. (18) for different values of δ0 in the entire SL region
ρcS < ρ < ρcN is presented in Fig. 2. From this figure we
conclude that asymptotic solutions given by Eqs. (21) and
(24) become valid only at sufficiently small values of δ0 (i.e.,
large values of S): Eq. (21) is valid at δ0 � 0.2 and Eq. (24)
is valid only for very small gaps δ0 � 0.02. The asymmetry
between ρcS and ρcN evident from Fig. 2 is due to stronger
quantum fluctuations in the spiral (ρ < 0) region compared to
the ρ > 0 domain.

B. Spin-spiral phase

An alternative method to determine ρ̄cS is to approach the
spiral-SL critical point from the spiral phase and find the
condition when quantum fluctuations melt the spiral. This
method does not allow us to access the spin-liquid phase, but
it allows to find ρ̄cS .
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The fluctuations of spiral consisting of the out-of-plane
h(r, t ) and in-plane modes φ(r, t ) can be parametrized in the
form

�n = (
√

1 − h2 cos( Q · r + φ),
√

1 − h2 sin( Q · r + φ), h).

(25)

The total quantum fluctuation orthogonal to the spin align-
ment in the spiral state reads as

〈π2〉 = 〈φ2〉 + 〈h2〉,

〈φ2〉 = 1

(4π2)
√

2χ⊥b1

∫
d2q√

2Q2q2 + q4
x + q4

y

,

〈h2〉 = 1

(4π2)
√

2χ⊥b1

∫
d2q√

Q4/2 − Q2q2 + q4
x + q4

y

. (26)

The denominators in the integrals for 〈φ2〉 and 〈h2〉 in (26)
represent the dispersions for the Nambu-Goldstone excita-
tions: the sliding mode and the out-of-plane mode (see details
in Appendix B). Evaluating the integrals with logarithmic
accuracy, we obtain

〈π2〉 ≈ 1

(2π )
√

2
√

χ⊥b1

ζ ln

(
6.5�2

Q2

)
. (27)

Now, applying the same criterion for the critical point 〈π2〉c ≈
1, we find the critical ρ̄cS in the limit of δ0 � 1:

ρ̄cS ≈ −6.5�2e
− 2

√
2π

ζ

√
χ⊥b1 ≈ −4δ0. (28)

The central point of this section is to demonstrate that expo-
nents in Eqs. (24) and (28) are identical. This is a necessary
test of validity of the calculation with logarithmic accuracy.
However, the prefactor calculated in the spin-liquid phase
[Eq. (24)] is different from that calculated in the spin-spiral
state [Eq. (28)]. This emphasizes the fact that our calcu-
lation is only approximate. Practically this disagreement is
not significant. We already pointed out that Eq. (24) is valid
only for extremely small gaps, δ0 � 0.02. At larger values
of δ0 the position of the critical point ρcS is different from
(24). From Fig. 2 one finds ρ̄cS = −10δ0 at δ0 = 0.06; ρ̄cS =
−5δ0 at δ0 = 0.2; ρ̄cS = −2.5δ0 at δ0 = 0.7. These values
are very different from the asymptotic equation (24). When
approaching from the spin-spiral phase, numerical evaluation
of (26) combined with the criticality condition (13) gives the
following critical points: ρ̄cS = −3.7δ0 at δ0 = 0.06; ρ̄cS =
−3.6δ0 at δ0 = 0.2; ρ̄cS = −2.2δ0 at δ0 = 0.7. Again, this is
different from the asymptotic δ0 → 0 [Eq. (28)]. Importantly,
for the practically interesting case of J1-J3 model which we
consider in Sec. VI, where δ0 > 0.15, the both methods give
close positions of the critical point.

As was mentioned in Sec. II in the presence of in-plane ro-
tational symmetry b1 = b2 (e.g., frustrated Heisenberg model
on the hexagonal lattice), quantum fluctuations become es-
pecially strong. In fact, when approaching the critical point
ρcS the integral

∫
q

1√
�2+K (q )

∝ ∫
q

1√
α2+(q2−Q2 )2

is logarithmi-

cally divergent for α → 0 at q = Q. It implies that one has to

FIG. 3. Static spin-spin correlation function C(r ) in the spin-
liquid phase for positive and negative spin stiffness (b2 = 0, δ0 ≈
0.04). Solid lines correspond to the radius vector r directed along
the principal lattice axes (x or y), dashed lines correspond to r along
the diagonal direction.

keep higher-order terms O(q6
i ) in the expansion (2):

K (q ) = ρq2 + b

2
q4 + c

(
q6

x + q6
y

) + d
(
q4

xq
2
y + q2

xq
4
y

)
(29)

which break the symmetry with respect to spatial rotations
in the {xy} plane and remove the degeneracy with respect
to the choice of the direction of Q. After accounting for the
higher-order anisotropic terms ∝O(q6

i ), the integral for 〈π2〉
becomes convergent at |q| = Q and the value ρcS is well
defined.

V. SPIN-SPIN CORRELATION FUNCTION

Spin-spin correlations are a standard tool to analyze quan-
tum critical properties of a magnetic system. In the SL phase
the correlator provides essential information about the prop-
erties of the ground state. The equal-time two-point spin-spin
correlation function reads as

C(r ) = 〈nα (r )nα (0)〉 = 1 + 2[R(r ) − R(0)] + · · · , (30)

where 〈πα (r )πβ (0)〉 = δαβR(r ) and indices α, β refer only
to the x and y spin components. The two-point correlator is
normalized such that C(0) = 〈n2

α〉 = 1. In the SL phase the
correlation function should vanish at large distances C(r →
∞) → 0 and R(r → ∞) → 0. These conditions are consis-
tent with the “melting criterion” in Eq. (13) if we truncate
the asymptotic expansion in Eq. (30), keeping only the terms
explicitly presented there.

The 〈π (r )π (0)〉 correlation function in the SL phase reads
as [18]

R(r ) =
∫

i dω d2q

(2π )3

eiqr

χ⊥(ω2 − �2) − K (q ) + i0
. (31)

Calculating (31) and substituting the result in Eq. (30), we
obtain the two-point spin-spin correlation function C(r ); the
numerical results are plotted in Fig. 3. Similar to the previous
section, these plots correspond to the case b2 = 0. Therefore,
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the correlator is somewhat anisotropic. There are two points
to note, one is physical and another is technical. (i) The
correlation length scales as one over the square root of the
gap ξ ∝ 1/

√
δ0, instead of the standard relation ξ ∝ 1/δ0.

(ii) When integrating in Eq. (31) we use the soft ultraviolet
cutoff by multiplying the integrand by e−q2/(2�2 ). The soft
cutoff allows us to avoid nonphysical oscillations in R(r ) due
to the Gibbs phenomenon. The Gibbs phenomenon results in
spurious oscillations, which always exist for a sharp cutoff and
are well known in Fourier analysis.

The asymptotic behavior of the correlation function
R(r → ∞) in the spin-liquid phase at ρ = 0 can be ana-
lytically obtained in the simplified isotropic approximation
(b1 = b2):

R(r ) ∼ e
−r

√
δ0
2

r
cos

(
r

√
δ0

2
− π

4

)
. (32)

Using Eq. (32) we deduce the spin-spin correlation length ξ =√
2
δ0

. In the case of negative spin stiffness (ρcS < ρ < 0) the

correlation function R(r ) becomes oscillating (see Fig. 3). In
the vicinity of the critical point ρcN the correlations decay as

R(r ) = 1

2π
√

2χ⊥b1
I0

(
r

√
ρ̄cN

2

)
K0

(
r

√
ρ̄cN

2

)
∼

r→∞
1

r
.

(33)

Formula (33) is consistent with the well-known ∝1/r decay
of correlations of transverse spin components in the Néel
phase (see, e.g., Ref. [31]). We stress that the “isotropic
approximation” b1 = b2 provides a qualitative and quantita-
tive description of the correlation function C(r ) only away
from the critical point ρcS . In the vicinity of the point ρcS

the isotropic model (1) becomes unstable [see comments to
Eq. (29)]. Deeply in Néel and spin-spiral phases the behavior
of the correlator C(r ) at large distances, r → ∞, is quite
simple. In Néel phase the correlator becomes a constant
C(r ) → 〈nz〉2 ≈ 1, while in the spin-spiral phase there are
nonvanishing oscillations C(r ) → cos Qr [18].

Now, we would like to make a comparison between O(3)
and O(2) quantum Lifshitz transitions. The O(2) version
of Lagrangian (1) describes the XY frustrated Heisenberg
antiferromagnet in the continuous limit. The physics in the
O(2) model is quite different from the O(3) model and
the Ioffe-Larkin argument is inapplicable in this case. The
O(2) Lagrangian can be mapped to the scalar Lifshitz model
described by a polar angle θ : nx + iny = eiθ . This model
has an exact solution for the correlation function C(r ) at
the LP: C(r ) decays algebraically [32] at the LP in contrast
to the nonvanishing correlations at r → ∞ in long-range-
ordered Néel or spin-spiral phase. Therefore, we conclude
that there exists a finite region in the vicinity of the LP with
algebraically decaying correlations. The region with algebraic
spin correlations in some extent is analogous to the SL phase
in the O(3) model addressed in this paper.

VI. J1- J3 MODEL ON THE SQUARE LATTICE

In this section we compare the field theory predictions with
results of numerical calculations for the antiferromagnetic

J1-J3 Heisenberg model on the square lattice. Frustrated J1-J2

and J1-J2-J3 models have been discussed in numerous studies
(see, e.g., Refs. [4,6,33]): some references are also presented
in the Introduction. In the classical limit, both models exhibit
the spin-spiral state at a sufficiently large frustration. Quantum
versions of the models show a magnetically disordered state
at a sufficiently large frustration. Classically, the J1-J2 model
at J2/J1 = 1

2 has three degenerate ground states: the Néel,
the spin-spiral, and the spin stripe. The tricritical point is
somewhat special; the proximity of the columnar spin stripe
phase enhances spin-dimer correlations and makes the physics
of the J1-J2 model different from that considered in this work.
On the other hand, if we set J2 = 0 and consider only the
J3 frustration then classically there is a Lifshitz point with a
transition to the spin spiral at J3 = J1/4, and the spin-stripe
state has much higher energy than the spin-spiral and the Néel
states. Therefore, the J1-J3 model is a good testing ground for
the generic theory of a Lifshitz transition developed in this
work. The Hamiltonian of the J1-J3 model reads as

H = J1

∑
〈ij〉

Si Sj + J3

∑
〈〈〈ij〉〉〉

Si Sj , (34)

where 〈ij 〉 and 〈〈〈ij 〉〉〉 denote first- and third-nearest-
neighbor interactions. The classical spin-spiral to Néel LP is
located at J3/J1 = 1

4 . As we already pointed out in Sec. II,
quantum fluctuations must shift the LP towards larger values
J3/J1 > 1

4 .
In the long-wavelength approximation we can map the

Heisenberg model to the Lagrangian (1). The magnetic sus-
ceptibility is well known:

χ⊥ = 1

8J1
. (35)

The elasticity parameters of the Lagrangian can be found in
two ways. (i) The first way is a straightforward expansion of
the classical elastic energy at small wave number q, that gives

ρ = S2(J1 − 4J3), b1 = S2 (16J3 − J1)

12
, b2 = 0. (36)

(ii) An alternative way is to calculate the magnon dispersion
in the Néel phase using the standard spin-wave theory. The
dispersion reads as [4]

ωq = 4SJ1

√(
1 − J3

J1
(1 − γ2q )

)2

− γ 2
q , (37)

γq = 1

2
(cos qx + cos qy ),

γ2q = 1

2
(cos 2qx + cos 2qy ). (38)

Expanding ωq at small q and comparing the results with
Eq. (8) (at � = 0) we find

ρ = S2(J1 − 4J3),

b1 = 4J1S
2

[
− 5

48
+ 2

3

(
J3

J1

)
+

(
J3

J1

)2
]
,

b2 = 4J1S
2

[
−1

8
+ 2

(
J3

J1

)2
]
. (39)
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FIG. 4. J1-J3 model ground-state energy in the Néel and in the
spin-spiral states for (a) S = 1

2 and (b) S = 1 calculated by numerical
series expansion method.

Expressions for b1 and b2 in Eqs. (36) and (39) do not
coincide. At the LP, J3 = J1/4, both equations give b2 =
0, however, values of b1 are different, Eq. (36) gives b1 =
0.25S2J1, while Eq. (39) gives b1 = 0.5S2J1. Of course, the
spin-wave theory value is more reliable.

We have performed extensive series calculations both in
the Néel phase and the spin-spiral phase. Unfortunately, the
series expansion method does not allow to assess properties of
the spin-liquid phase directly. However, it allows to estimate
the range of parameters where the spin liquid exists which can
be compared with predictions of the field theory. In the Néel
phase, the series starts from the simple Ising antiferromagnetic
state. In the spiral phase, the calculation is more tricky. We
first impose a classical diagonal spiral with some wave vector
Q and find the total energy of this state E(Q). This includes
the classical energy and the quantum corrections calculated
by means of series expansions. We perform this calculation
for many values of Q and then find numerically the minimum
of E(Q). Such procedure gives us the ground-state energy
Egs and the physical wave vector Q. The ground-state energy
Egs is plotted in Fig. 4 versus J3. The plot of the wave
vector squared Q2 versus J3 is presented in Fig. 5. From the
field-theory description we expect that near the LP the wave

FIG. 5. Spiral wave vector (squared) Q2 versus J3. Dots show
results of numerical series expansion. Red dots correspond S = 1

2
(S = 1). Dashed lines show fits of data by cubic polynomials Q2 =
a1(J3-J LP

3 ) + a2(J3-J LP
3 )2 + a3(J3-J LP

3 )3.

FIG. 6. Magnon dispersion ωq for J1-J3 model on the square
lattice in the Néel phase at J3/J1 = 0.2. Red circles correspond to the
series expansion results, black line is the linear spin-wave dispersion
in Eq. (37).

vector behaves as

Q2 = 2|ρ|
b1

= 8S2

b1

(
J3 − J LP

3

)
. (40)

Therefore, from Fig. 5 we determine positions of Lifshiz
points and, using Eq. (40) we find the values of the elastic
constant b1 at the LP:

S = 1/2 : J LP
3 ≈ 0.45J1, b1/S

2 ≈ 0.60J1,

S = 1 : J LP
3 ≈ 0.3J1, b1/S

2 ≈ 0.74J1. (41)

As expected (see the very end of Sec. II), quantum fluctuations
extend the Néel phase in relation to the classical LP J LP

3 =
0.25J1. Values of the elastic constant b1 are larger than that
given by Eqs. (36) and (39). This is not very surprising having
in mind that the LP location is different from its classical
value.

We have also calculated the magnon dispersion in the Néel
phase. The series expansion becomes erratic at J3 > 0.2J1 and
the error bars in the calculations of ωq grow very quickly.
The dispersion at J3 = 0.2J1 is shown in Fig. 6. We see that
the shape of the dispersion is somewhat different from the
prediction of the spin-wave theory (37). On the the other hand,
the total bandwidth is consistent with the spin-wave theory.
The situation is different in the case of a simple Heisenberg
model (J3 = 0), when the shape of magnon dispersion is
consistent with the spin-wave theory but the total bandwidth
is about 20% larger compared to the spin-wave theory value.

We also compute the static onsite magnetization in the
Néel and spiral phases. The magnetization vanishes at J cN

3
and J cS

3 critical points. We already pointed out that the
Néel-SL transition at J cN

3 belongs to the O(3) universality
class. Therefore, we expect scaling 〈Sz〉 ∝ |J3 − J cN

3 |β when
approaching the critical point from the Néel phase, here β =
(D − 2 + η)ν/2 ≈ ν/2 ≈ 0.35 [18]. Due to this reason in
Fig. 7 we show series expansion results for the static onsite
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FIG. 7. Average onsite magnetization cubed. Blue squares (red
circles) show series expansion results for S = 1

2 (S = 1), solid lines
are guides for the eye.

magnetization cubed. From here we locate the critical points:

S = 1/2 : J cN
3 ≈ 0.35J1, J cS

3 ≈ 0.55J1,

S = 1 : J cN
3 ≈ J cS

3 ≈ 0.35J1. (42)

Our result for the SL range �J3 in the case S = 1
2 is

different from the recent work [6], that suggests the SL phase
at 0.4 � J3/J1 � 0.8. However, our predictions are reason-
ably close to the exact diagonalization results [33], suggesting
the gapped SL phase for 0.45 � J3/J1 � 0.65. Note also
that the critical index for the the J cS

3 critical point is smaller
than the O(3) value, M ∝ (J3 − J cS

3 )β , β ∼ 0.2.
Now, we can compare the results of series calculations with

predictions of the field theory. Equations (35) and (41) give
values of χ⊥ and b1. Hence, according to Eqs. (19) and (16),
values of the gap at the LP are

S = 1/2 : δ0 ≈ 0.66, �0 ≈ 0.53J1,

S = 1 : δ0 ≈ 0.17, �0 ≈ 0.29J1. (43)

Formally, the field-theoretical prediction (16) is derived
within logarithmic accuracy and valid at δ0 � 1, while these
values, especially that at S = 1

2 , are not small. Nevertheless,
we believe that Eq. (43) gives a reasonable estimate of the
gaps. Knowing the dimensionless gaps and using Fig. 2 we
can deduce the window δρ̄ occupied by the spin-liquid phase.
Combining this with Eq. (40), we find the spin-liquid window
�J3 = |J cS

3 − J cN
3 | that follows from the field theory

�J3/J1 ≈ 0.3 (S = 1/2),

�J3/J1 ≈ 0.1 (S = 1) . (44)

These values, while being slightly larger, are in a reasonable
agreement with the SL phase windows following from series
expansion data in Fig. 7.

In conclusion of this section, we would like to comment
on the anisotropic J1-J3 model on square lattice [11]. In this
model, J3 frustrates J1 only in one direction, say J3 connects
only the third-nearest neighbors in the y direction. This results

in an anisotropic LP: the spin stiffness ρy vanishes at some
value of J3 while ρx remains finite and positive. The wave
vector of the spin spiral is always directed along the y axis.
In this case, quantum fluctuations at the LP are described
as 〈π2〉 ∝ ∫

d2q√
q4

x+q4
y +ρxq2

x

. The integral is infrared convergent

unlike that in the isotropic LP. Therefore, generically one
cannot expect a spin liquid in this case. The fluctuations are
still enhanced and there must be a suppression of the onsite
magnetization at the LP. This is exactly what series expansions
for the anisotropic J1-J3 model with S = 1

2 indicate [11].
The suppression of the local onsite magnetization has been
observed in antiferromagnetic compound CaMn2Sb2 which
consists of weakly coupled hexagonal layers [14]. This ma-
terial accidentally lies very close to a Néel-spiral LP. Unfor-
tunately, a formation of a true spin liquid in this compound is
prevented due to a large value of spin. The large spin results
in two effects [14]: (i) it suppresses quantum fluctuations at
LP and (ii) it creates an easy-axis spin anisotropy that breaks
O(3) rotational invariance and opens a small magnetic gap.
SL phase can be potentially observed in future experiments in
similar compounds when substituting Mn with a large spin by
a magnetic element with a smaller spin.

It is likely that a similar scenario is valid for thin films of
frustrated manganites (Tb,La,Dy)MnO3 tuned close to LP. In
fact, the in-plane Heisenberg interactions in manganites are
somewhat anisotropic by analogy with the anisotropic J1-J3

model discussed above. This anisotropy results in different
values of the spin stiffness ρx,y along x, y axes. The suppres-
sion of the onsite magnetization at the LP can be observed in
thin films of manganates in elastic neutron scattering experi-
ments.

VII. DISCUSSION AND CONCLUSIONS

In this work, using field-theory techniques, we have studied
properties of the universal spin-liquid phase in a vicinity
of an isotropic Lifshitz point in a system of localized frus-
trated spins. Our general analysis includes the phase diagram,
positions of critical points, excitation spectra, and spin-spin
correlation functions. In the semiclassical regime of large
spin S the spin-liquid phase forms an exponentially narrow
region in the vicinity of the Lifshitz point. The derivation of
these results is accompanied with a thorough discussion of the
criterion for quantum melting of long-range magnetic order
in two dimensions, an analog of Lindemann criterion. We
argue the 2D Lifshitz point spin liquid is similar to the gapped
Haldane phase in integer-spin 1D chains. The quasiparticle
excitations in the SL phase are threefold degenerate due to
unbroken O(3) rotational symmetry and hence have spin 1.
In order to check our general field-theory results, and in
particular to check the quantum melting criterion, we have
performed numerical series expansion calculations for the
J1-J3 model on the square lattice. We demonstrate that results
of these two different approaches are in a good agreement.
Last but not least, the field-theoretical approach developed in
this work can be applied to systems which consist of both
localized and itinerant electrons, in particular the t-J model
and cuprate superconductors [34].
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APPENDIX A: THE VALUE OF 〈π 2〉c DERIVED
FROM ASYMPTOTIC TAYLOR EXPANSION

After expanding nz = √
1 − π2 in a Taylor series and

using Wick’s theorem,

〈nz〉 = 1 −
∞∑

k=1

〈π2〉k (2k − 2)!

22k−1(k − 1)!

= 1 − 1

2
〈π2〉 − 1

4
〈π2〉2 − 3

8
〈π2〉3 + · · · . (A1)

The series (A1) is asymptotic and the coefficients at large k

diverge. Since the series is asymptotic, we truncate it when the
coefficients in front of 〈π2〉k terms become larger than unity.
Accounting for the leading terms in the expansion up to 〈π2〉3

inclusive gives the critical value 〈π2〉c ≈ 0.93 for 〈nz〉 = 0.

APPENDIX B: EXCITATIONS IN STATIC
SPIN-SPIRAL PHASE

By considering fluctuations in the spin-spiral state we
find the condition when quantum fluctuations melt the spiral.
Here, we derive the dispersions of in-plane and out-of-plane
fluctuations in the spin-spiral state. To be specific, let us
assume that the spiral lies in {xy} plane:

n = (cos Qr, sin Qr, 0). (B1)

There are two different spin waves, the in-plane ϕ(r, t ),

n = (cos( Qr + φ), sin( Qr + φ), 0) , (B2)

and the out-of-plane h(r, t ),

n = (
√

1 − h2 cos Qr,
√

1 − h2 sin Qr, h). (B3)

Substituting parametrization (B2) and (B3) in the Euler-
Lagrange equations of motion corresponding to the La-
grangian (1) and linearizing the equations with respect to
φ and h we obtain the dispersion of the in-plane and out-
of-plane modes. The derivation is straightforward (see, e.g.,
Ref. [15]). The dispersion of the in-plane mode is

ω2
q = 1

χ⊥

[
K ( Q) − 1

2

[
K ( Q + q ) + K ( Q − q )

]]

= b1

2χ⊥

[
2Q2q2 + q4

x + q4
y

]
, (B4)

and the dispersion of the out-of-plane mode is

�2
q = 1

χ⊥

[
K (q ) − K ( Q)

]
= b1

2χ⊥

[
Q4/2 − Q2q2 + q4

x + q4
y

]
. (B5)

The total quantum fluctuation orthogonal to the spin align-
ment in the spiral phase reads as

〈π2〉 = 〈φ2〉 + 〈h2〉,
〈φ2〉 =

∫
d2q

(2π )2

1

2ωq
,

〈h2〉 =
∫

d2q

(2π )2

1

2�q
. (B6)

From the condition 〈π2〉 = 〈π2〉c ≈ 1 we find the position of
the spiral-SL critical point ρcS (see Sec. IV in the main text).
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