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Equilibrium magnetization of a quasispherical cluster of single-domain particles
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Equilibrium magnetization curve of a rigid finite-size spherical cluster of single-domain particles is inves-
tigated both numerically and analytically. The spatial distribution of particles within the cluster is random.
Dipole-dipole interactions between particles are taken into account. The particles are monodisperse. It is shown,
using the stochastic Landau-Lifshitz-Gilbert equation that the magnetization of such clusters is generally lower
than predicted by the classical Langevin model. In a broad range of dipolar coupling parameters and particle
volume fractions, the cluster magnetization in the weak field limit can be successfully described by the modified
mean-field theory, which was originally proposed for the description of concentrated ferrofluids. In moderate
and strong fields, the theory overestimates the cluster magnetization. However, predictions of the theory can be
improved by adjusting the corresponding mean-field parameter. If magnetic anisotropy of particles is additionally
taken into account and if the distribution of the particles’ easy axes is random and uniform, then the cluster
equilibrium response is even weaker. The decrease of the magnetization with increasing anisotropy constant is
more pronounced at large applied fields. The phenomenological generalization of the modified mean-field theory,
that correctly describes this effect for small coupling parameters, is proposed.
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I. INTRODUCTION

Nano- and microsized assemblies of single-domain par-
ticles are of great interest in modern biotechnology and
medicine. Prominent examples are composite magnetic mi-
crospheres (or “magnetic beads”) which consist of fine mag-
netic particles dispersed in or layered onto a spherical (usually
polymer or silica) matrix [1,2]. The diameter of embedded
particles can range from several to several dozen nanometers,
and the characteristic size of microspheres themselves most
commonly ranges from tenths to several microns. One of
the most popular applications of magnetic microspheres is
the magnetic cell separation—a technique that allows one to
magnetically label cells of a specific type and then isolate
them from a heterogeneous cell mixture using a gradient
field [3,4]. Also microspheres can be used as magnetically
controlled carriers for targeted drug delivery [5,6] and as
force and torque transducers in magnetic tweezers designed
to probe mechanical properties of biomolecules [7,8].

Another important class of objects is dense three-
dimensional (3D) nanoclusters of single-domain particles
which are sometimes referred to as “magnetic multicore
nanoparticles” [9–11]. Such clusters are typically covered
with a nonmagnetic protective coating and have a hydro-
dynamic diameter of 50–200 nm. Multicore nanoparticles
can be thought of as intermediate between single-domain
nanoparticles and magnetic microspheres [12]. From the
viewpoint of cell separation, nanoclusters have some advan-
tages over micrometer-sized beads: For example, they are
more stable against sedimentation and have a better binding
capacity due to a higher surface-area-to-volume ratio [4,13].
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Multicore nanoparticles are considered to be perspective
for magnetic hyperthermia treatment [14,15] and magnetic
imaging [16,17]. Aside from their high biomedical potential,
magnetic 3D nanoclusters are also interesting due to their
presence in some types of ferrofluids [18,19]. It is known
that suspended nanoclusters can significantly alter the fluid’s
magnetic, mass-transfer, and rheological properties [20,21].

For simplicity, it is sometimes assumed that microspheres
and nanoclusters contain noninteracting and magnetically
isotropic single-domain particles [7,20–22]. However, in re-
cent years quasispherical rigid clusters of different sizes have
been actively studied via numerical simulations [11,23–28],
and it has been repeatedly demonstrated that interactions be-
tween embedded particles as well as their magnetic anisotropy
can have a noticeable impact on the cluster static [11,23–25]
and dynamic [25–28] magnetic properties. Particularly, in
Refs. [11,25] the equilibrium magnetization curve of a quasi-
spherical cluster of uniaxial particles was considered. Dipole-
dipole interactions between particles were taken into account.
It was demonstrated that for a monodisperse system with a
uniform distribution of easy axes the magnetization is gener-
ally lower than predicted by the classical Langevin model and
that both anisotropy and interactions contribute to the decrease
of the cluster equilibrium response.

Though a number of simulation results are currently avail-
able, it can be useful to have an analytical model that links
properties of particles inside a rigid 3D cluster with the
system magnetization. For single-domain particles dispersed
in a liquid matrix, many such models exist [29]. Among
them the so-called “modified mean-field theory” (MMFT)
remains one of the most widely used due to its simplicity and
accuracy [30–32]. In Refs. [33,34] it was shown that MMFT
also gives correct predictions for the initial susceptibility of
magnetoisotropic particles randomly distributed in a solid
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matrix. Good agreement between simulations and MMFT was
obtained for both the bulk system [33] and the finite spherical
cluster [34]. The question of whether MMFT is applicable
to clusters beyond the weak field limit, to the best of our
knowledge, has not been addressed in the literature.

In this paper, the equilibrium magnetization curve of a
rigid quasispherical cluster of uniaxial particles is studied
via Langevin dynamics simulations. In contrast to recent
works [11,25], special attention is paid to the effect of particle
volume fraction on the cluster properties. The applicability
of MMFT for the description of magnetic 3D clusters is
tested. Possible ways to improve the agreement between the
analytical model and simulations are discussed.

II. MODEL AND METHODS

A. Model formulation

Let us consider an ensemble of N identical spherical
single-domain particles randomly distributed within a spher-
ical volume of radius R. Positions of particles inside this
volume are fixed; particle overlapping is not allowed. Each
particle has a diameter d and a magnetic moment μ, which
can rotate inside the particle; the corresponding unit vector
is e = μ/μ. The magnitude of the magnetic moment is μ =
Msv, where Ms is the saturation magnetization of the particle
material, and v = (π/6)d3 is the particle volume. Particles
have uniaxial magnetic anisotropy, which is characterized by
the anisotropy constant K and the easy axis unit vector n.
Each particle has its own fixed vector n. The orientation
distribution of easy axes is random and uniform. Particles
interact with each other via dipole-dipole interactions. The
described system is further referred to as the “cluster.” The
cluster is immobilized inside a nonmagnetic medium and
subjected to a uniform magnetic field H (the corresponding
unit vector is h = H/H ). The total magnetic energy of the
cluster is

U = UZ + Uani + Udd, (1)

UZ = −μ0μH

N∑
i=1

ei · h, (2)

Uani = −Kv

N∑
i=1

(ei · ni )
2, (3)

Udd = −μ0μ
2

4πd3

N∑
i = 1

N∑
j = i + 1

×
[

3(ei · r∗
ij )(ej · r∗

ij )

r∗5
ij

− ei · ej

r∗3
ij

]
, (4)

where UZ is the Zeeman energy, Uani is the magnetic
anisotropy energy, Udd is the dipole-dipole interaction energy,
the summation in Eqs. (2–4) is over particles in the cluster,
μ0 is the magnetic constant, and r∗

ij = r ij /d, r ij is the vector
between centers of particles i and j .

At nonzero temperature T , the normalized magnetic mo-
ment of the cluster

m = 1

N

N∑
i=1

ei (5)

is a random vector with fluctuating magnitude and direction.
The equilibrium magnetization of the cluster can be deter-
mined as

M = 1

V

∥∥∥∥∥
〈

N∑
i=1

μi

〉∥∥∥∥∥ = M∞‖〈m〉‖ = M∞〈mh〉, (6)

where V = (4π/3)R3 is the cluster volume, M∞ = μN/V is
the saturation magnetization of the cluster, mh = m · h is the
projection of the cluster moment on the field direction, and an-
gle brackets denote a mean value. Equilibrium magnetization
of the cluster is determined by several dimensionless parame-
ters. First of all, this is the so-called Langevin parameter

ξ = μ0μH

kBT
, (7)

which is the characteristic ratio between Zeeman and thermal
energies; kB is the Boltzmann constant. The dependence of
〈mh〉 on ξ can be considered as the cluster magnetization
curve. Finding this dependency is the main focus of this work.
Other key parameters are the anisotropy parameter

σ = Kv

kBT
, (8)

the dipolar coupling parameter

λ = μ0μ
2

4πd3kBT
, (9)

and the particle volume fraction

ϕ = vN

V
. (10)

Let us make some estimates based on material parame-
ters for magnetic solids given in Ref. [35]. First of all,
it should be noted that dipolar coupling and anisotropy
parameters are not independent variables for particles of
a given material, σ/λ = (24/μ0)K/M2

s (here we neglect
the difference between the particle diameter and the di-
ameter of its magnetic core). For cobalt ferrite (Ms =
425 kA m−1, K = 180–200 kJ m−3), σ/λ � 20; for mag-
netite (Ms = 446 kA m−1, K = 23–41 kJ m−3), σ/λ = 2–4.
Since iron oxide nanoparticles are more common in biomedi-
cal applications [25], here we confine ourselves to the cases
when σ and λ are comparable. At T = 300 K, magnetite
nanoparticles with d = 10 nm have λ � 1.3, and ξ = 1 cor-
responds to H � 14 kA m−1. The same nanoparticles with
d = 13 nm have λ � 2.9, and ξ = 1 corresponds to H �
6.4 kA m−1. In this work, the following ranges of control pa-
rameters are considered: ξ � 10, σ � 10, λ � 3, ϕ � 0.3,
and N = 102–103.

B. Limiting case of noninteracting particles

Equilibrium magnetic properties of noninteracting uniax-
ial particles in a solid matrix were previously discussed in
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Refs. [36–41]. Let us briefly recall some results of these
works. If interactions between particles can be neglected,
i.e., in the limiting cases ϕ � 1 or λ � 1, the equilibrium
magnetization can be derived within the one-particle approxi-
mation. The ratio between magnetic and thermal energies for
an isolated particle is usually written as

u

kBT
= −ξ cos ω + σ sin2 ϑ, (11)

where ω is the angle between the particle moment and the
field, and ϑ is the angle between the moment and the easy
axis. The system magnetization is determined by the average
value of cos ω = e · h, which can be found as

〈cos ω〉 = 1

Z

∂Z

∂ξ
, (12)

where Z is the partition function of the particle. If particles
have negligible magnetic anisotropy (σ � 1), the partition
function is

Z = 1

2

∫ π

0
exp(ξ cos ω) sin ωdω = sinh ξ

ξ
, (13)

which, in combination with Eq. (12), gives the well-known
Langevin magnetization:

〈mh〉 = 〈cos ω〉 = L(ξ ), (14)

where L(ξ ) ≡ coth ξ − 1/ξ is the Langevin function. For
uniaxial particles, the partition function and its first derivative
can be written in the following single-integral forms [41]:

Z = J0(ξ, σ, ψ ) ≡
∫ π/2

0
exp(−σ sin2 ϑ ) cosh(ξ cos ϑ cos ψ )

× I0(ξ sin ϑ sin ψ ) sin ϑdϑ, (15)

∂Z

∂ξ
= J1(ξ, σ, ψ )

≡
∫ π/2

0
exp(−σ sin2 ϑ )[cosh(ξ cos ϑ cos ψ )

× I1(ξ sin ϑ sin ψ ) sin ϑ sin ψ + sinh(ξ cos ϑ cos ψ )

× I0(ξ sin ϑ sin ψ ) cos ϑ cos ψ] sin ϑdθ, (16)

where ψ is the angle between the field and the easy axis
(cos ψ = n · h), I0 and I1 are the modified Bessel functions
of the first kind of order zero and one, correspondingly. Thus,
for an arbitrary particle with a given easy axis orientation ψ ,
the following expression is valid:

〈cos ω〉 = J1(ξ, σ, ψ )

J0(ξ, σ, ψ )
. (17)

If particles in the system have different orientations of easy
axes, then one has to average Eq. (17) over all presented values
of ψ to obtain the net magnetization. It was demonstrated in
Ref. [37] that the distribution of easy axes (the system “orien-
tation texture”) effects the magnetization curve significantly.
For the special case of a random uniform distribution, the
magnetization is [39,41]

〈mh〉 = Lani(ξ, σ ) ≡
∫ π/2

0

J1(ξ, σ, ψ )

J0(ξ, σ, ψ )
sin ψdψ. (18)

The integral Eq. (18) is denoted here as Lani(ξ, σ ). This
function can be considered as a generalization of the standard
Langevin function for the case of solid dispersions with ran-
dom orientation texture. In the limit of negligible anisotropy,
two functions coincide, i.e., Lani(ξ, 0) = L(ξ ). For finite
nonzero values of ξ and σ , Lani(ξ, σ ) < L(ξ ) [37]. However,
the zero-field slope of the magnetization curve (the initial
magnetic susceptibility χ ) does not depend on σ [36,38]:

χ = M

H

∣∣∣∣
H→0

= μ0μ
2ϕ

vkBT

(Lani(ξ, σ )

ξ

∣∣∣∣
ξ→0

)

= μ0μ
2ϕ

vkBT

(L(ξ )

ξ

∣∣∣∣
ξ→0

)
= 3χL

(L(ξ )

ξ

∣∣∣∣
ξ→0

)
= χL, (19)

where χL = μ0μ
2ϕ/3vkBT = 8λϕ is the so-called Langevin

susceptibility. For infinite anisotropy σ = ∞ and finite values
of ξ , magnetic moments of particles can be considered as
Ising-like spins with only two available states ϑ = 0 and
ϑ = π [40]. The magnetization in this asymptotic limit is
given by [41]

Lani(ξ,∞) =
∫ π/2

0
cos ψ tanh(ξ cos ψ ) sin ψdψ. (20)

C. Dipole-dipole interactions and modified mean-field theory

When one considers a body homogeneously filled with
particles interacting via long-range dipole-dipole interactions,
one of the main things that should be taken into account is
the demagnetizing field. If a magnetizable body is placed in
a uniform magnetic field H , then the field inside the body
H int does not coincide with H in the general case. The
difference between H and H int is known as the demagnetizing
field; it is created by the surface divergence of the body’s
own magnetization M [42]. For an arbitrary shaped body,
demagnetizing fields can have a complex spatial distribution.
But for the special case of an ellipsoid, the demagnetizing
field is uniform. If H lies along one of the principal axes of
a magnetizable ellipsoid, then H int and M also lie along this
direction. Magnitudes of these vectors are connected as

Hint = H − κM, (21)

where 0 � κ � 1 is the demagnetizing factor of the ellipsoid
along the chosen axis. The factor κ depends only on the shape
of the ellipsoid and not on its size. For an infinitely elongated
(needlelike) ellipsoid parallel to the field, κ = 0, and for a
sphere it is κ = 1/3.

Now let us consider a needlelike body with H = Hint

(κ = 0), filled with interacting magnetoisotropic particles
(σ = 0). Even in this case, the equilibrium magnetic response
cannot be described by the Langevin model. A possible way
to expand the model is the well-known Weiss mean-field
theory. According to it, an effective magnetic field acting
locally on an arbitrary particle consists of the applied field
H and an additional term which describes the impact of the
particle surroundings. This term is proportional to the system
magnetization M; the proportionality factor is normally equal
to the Lorentz value 1/3 [43]. The system magnetization is
then given by

M = ML(H + M/3), (22)
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where ML(H ) ≡ M∞L(μ0μH/kBT ). However, Eq. (22) is
known to overestimate the effect of dipole-dipole interac-
tions on concentrated assemblies of single-domain particles.
Particularly, the Weiss theory predicts a spontaneous transi-
tion into an orientationally ordered “ferromagnetic” state at
χL = 3 [44,45], but such a transition has not been observed
experimentally. Some more advanced theories and numerical
simulations indicate the possibility of the transition both for
liquid [46] and solid [47] matrices, but corresponding critical
values of χL are significantly larger than predicted by the
Weiss theory. In Ref. [30] the following heuristic modification
of the mean-field theory was proposed for dispersions of
single-domain particles in a liquid matrix (i.e., for ferrofluids):

M = ML(H + ML(H )/3). (23)

In this expression, the impact of the system on an arbitrary
particle is described not by the system actual magnetization M

but by the magnetization the system would have in the absence
of interactions, i.e., by ML(H ). The statistical-mechanical
approach developed in Ref. [31] subsequently justified the
validity of the heuristic formula Eq. (23). Moreover, the
authors of Ref. [31] suggested its refined version that reads

M = ML

(
H + ML(H )

3
+ ML(H )

144

dML(H )

dH

)
. (24)

Equations (23) and (24) are now known as the first- and
second-order modified mean-field theories, correspondingly
(MMFT1 and MMFT2). At small and moderate values of λ

and ϕ, they are both in good agreement with experimental
and numerical results on ferrofluid magnetization, though
MMFT2 has a wider range of applicability [32]. However,
MMFTs assume a homogeneous distribution of particles in
the system and hence fail to describe an enhanced mag-
netic response at strong coupling λ � 3, which is due to the
formation of chainlike aggregates [48]. The applicability of
MMFTs for solid magnetic dispersions, where the formation
of aggregates is forbidden, was numerically investigated in
Refs. [33,34]. Only the initial magnetic susceptibility of the
solid system was considered. According to Ref. [33], MMFT1
describes χ well for λ � 3 and ϕ � 0.25, while MMFT2
slightly overestimates the susceptibility. The applicability of
MMFT for solid systems at nonzero fields is to be tested.
Using previously defined dimensionless parameters, Eqs. (23)
and (24) can be rewritten in the form

〈mh〉 = L(ξ + Cmf (ξ )L(ξ )), (25)

where Cmf is the mean-field parameter, which can depend on
the applied field in the general case. For MMFT1:

Cmf = χL, (26)

for MMFT2:

Cmf (ξ ) = χL

(
1 + χL

16

dL(ξ )

dξ

)
. (27)

For a body with κ �= 0, H in magnetization expressions must
be replaced by Hint. For a sphere, the magnetization curve can

be then obtained in the following parametric form:

〈mh〉 = L(ξint + Cmf (ξint )L(ξint )), (28)

ξ = ξint + χL〈mh〉, (29)

where ξint = μ0μHint/kBT is the parameter (0 � ξint <

∞); Eq. (29) corresponds to Eq. (21) with κ = 1/3.
To describe the cluster of interacting uniaxial particles, we

propose here the following phenomenological generalization
of Eq. (28), where both Langevin functions are replaced by
Lani:

〈mh〉 = Lani(ξint + Cmf (ξint )Lani(ξint, σ ), σ ), (30)

The replacement of the first Langevin function ensures the
correct behavior in the limit of noninteracting particles (ξint =
ξ, Cmf = 0). As for the second replacement, we here specu-
late that the impact of a randomly textured solid dispersion
on an arbitrary particle can be described by the mean-field
term proportional to Lani, just like the impact of a system
of magnetoisotropic particles is described by L in MMFT. A
suitable choice of the function Cmf = Cmf (ξ ) in Eq. (30) is
discussed in Sec. III C.

D. Langevin dynamics simulation

To check the accuracy of the described models, the
Langevin dynamics simulation is used. The Langevin equa-
tion that describes the magnetodynamics of a single-
domain particle is the stochastic Landau-Lifshitz-Gilbert
equation [25,49]. For the ith particle of the simulated cluster
it reads

dμi

dt
= −γ

[
μi × H tot

i

] − γα

μ

[
μi × [

μi × H tot
i

]]
, (31)

where γ = γ0/(1 + α2), γ0 is the gyromagnetic ratio (in me-
ters per ampere per second), α is the dimensionless damping
constant, H tot

i = Hdet
i + Hf l

i , Hdet
i = −(∂U/∂μi )/μ0 is the

total deterministic field acting on the particle, and Hf l

i is
the fluctuating thermal field. Hf l

i (t ) is a Gaussian stochastic
process with the following statistical properties:〈

H
f l

i,k (t )
〉 = 0,

〈
H

f l

i,k (t1)Hf l

j,l (t2)
〉 = 2Dδij δklδ(t1 − t2), (32)

where k and l are Cartesian indices, D = αkBT /μ0μγ (1 +
α2). Equation (31) can be rewritten in the dimensionless form:

dei

dt∗
= − 1

2α

[
ei × ξ tot

i

] − 1

2

[
ei × [

ei × ξ tot
i

]]
, (33)

where the t∗ = t/τD is the dimensionless time, τD =
μ0μ/2αγ kBT is the characteristic time scale of the rotary
diffusion of the magnetic moment, ξ tot

i = μ0μH tot
i /kBT =

ξ det
i + ξ

f l

i ,

ξ det
i = ξ h + 2σ (ei · ni )ni + λ

N∑
j �=i

[
3r∗

ij (ej · r∗
ij )

r∗5
ij

− ej

r∗3
ij

]
,

(34)

〈
ξ

f l

i,k (t∗)
〉 = 0,

〈
ξ

f l

i,k (t∗1 )ξf l

j,l (t
∗
2 )

〉 = 4α2

1 + α2
δij δklδ(t∗1 − t∗2 ).

(35)
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FIG. 1. Examples of rigid clusters used in simulations, λ = σ =
ξ = 0, N = 200. (a) ϕ = 0.1, R ≈ 6.3d , (b) ϕ = 0.3, R ≈ 4.4d .

The input parameters of the simulation are N, ϕ, λ, ξ ,
and σ . The cluster at given N and ϕ is generated as follows.
The ith particle is randomly placed inside a cube with a side
length of 2R (1 � i � N, R = (d/2) 3

√
N/ϕ). If after this the

particle is outside of the sphere of radius R or if it overlaps
with previously placed particles (i.e., with particles j < i), the
position is rejected and the new position is generated. This is
repeated until a suitable position is found. Then ni and the
initial state of ei are chosen at random. Then the state of
the particle i + 1 is generated according to the same rules.
Examples of clusters with N = 200 and different volume
fractions are shown in Fig. 1.

After the cluster is generated, the Heun scheme [49] is used
for the numerical integration of Eq. (33), the damping constant
is α = 0.2, and the integration time step is �t∗ = 0.002,
unless otherwise specified. Dipole-dipole interaction fields
between particles in the cluster are calculated without trun-
cation; no periodic boundary conditions (PBCs) are applied.
The main result of the simulation is the average normalized
magnetization of the cluster 〈mh〉. In the case σ = 0, the
sampling of mh values typically starts after the time t∗ =
100, but for σ > 0 a much longer equilibration period might
be required. This issue is discussed in Sec. III C. For each
particular set of input parameters, the magnetization value is
additionally averaged over several independent realizations of
the cluster. However, the results for different realizations are
proved to be close, so their number is not large. Most of the
magnetization curves presented below are averaged over ten
realizations of the cluster.

In addition to clusters, this paper also briefly discusses
the equilibrium magnetization of a bulk solid dispersion of
magnetic nanoparticles (see Sec. III A). The input simulation
parameters in this case are the same as for the cluster. The
simulation cell is a cube with a side length of L = d 3

√
πN/6ϕ.

PBCs are applied in all three directions. The dipolar fields in
the system are calculated using the standard Ewald summation
with “metallic” boundary conditions. This technique ensures
a proper handling of long-range effects of dipole-dipole inter-
actions. In its “metallic” version the internal field in the simu-
lation box coincides exactly with the applied field. A detailed
description of the technique is available in Refs. [33,50].

III. RESULTS AND DISCUSSION

A. Magnetically isotropic particles in a bulk solid matrix

Before moving on to the main object of our interest, i.e., the
finite-size magnetic cluster, it may be useful to consider the

equilibrium magnetization of a bulk solid matrix filled with
magnetic nanoparticles and to test the applicability of MMFTs
for such a system. In numerical simulations we model bulk in
a standard way by applying PBCs to a cubic simulation cell.
First of all, the usage of PBCs minimizes possible size effects
that may arise in the simulation of the cluster. Besides, we
use the “metallic” version of the Ewald summation technique
to calculate dipole-dipole interactions. This method assumes
that the large system formed by the simulation cell and its
PBC images is surrounded by a medium with infinite magnetic
permeability [33]. In this case, ξ = ξint and the system mag-
netic behavior is the same as that of an elongated cylindrical
sample. So, the demagnetizing fields, which are inevitable for
the quasispherical cluster in a nonmagnetic medium, are now
absent. In this section, we only consider the case σ = 0.

Static magnetization curves of bulk systems with different
values of ϕ and λ are given in Fig. 2. To emphasize the
effect of interparticle interactions on the equilibrium magnetic
properties, we also give in Figs. 2(c) and 2(d) the differences
between the system actual magnetization and the Langevin
function. Symbols denote values obtained after averaging over
ten independent realizations of the simulated system; error
bars here and below denote corresponding 95% confidence
intervals. It is seen that MMFT1 [Eqs. (25) and (26)] and
MMFT2 [Eqs. (25) and (27)] give good agreement with the
simulation data in the weak field range (ξ < 1). In Fig. 3
the system initial susceptibility χ is plotted vs the Langevin
susceptibility χL. According to MMFT1, the susceptibility
is [31]

χ = χL(1 + χL/3), (36)

and according to MMFT2, it is

χ = χL

(
1 + χL/3 + χ2

L/144
)
. (37)

The susceptibility of the simulated system is estimated simply
as χ = 3χL〈mh(ξ = 0.05)〉/0.05. For λ � 3 and ϕ � 0.25,
MMFT1 describes calculated susceptibilities well, which
agrees with the results of Ref. [33]. At λ = 3 and ϕ > 0.25
(which corresponds to χL > 6 for λ = 3), the susceptibility
is seemingly better described by MMFT2. In Ref. [33] the
behavior of solid systems at ϕ > 0.25 was not investigated.
More conspicuous deviations between MMFT1 and the sim-
ulation results are observed in Fig. 2 at moderate and strong
fields. The theory clearly overestimates the simulation results
at ξ � 1 for all inspected values of interaction parameters. The
deviation is larger for higher λ. As seen in Figs. 2(c) and 2(d),
the magnetization of a bulk solid system at moderate and
large ξ is closer to the Langevin curve than MMFT1 predicts.
Despite this fact, the deviation between the simulation results
and the Langevin model is still significant. The maximum dif-
ference between 〈mh〉 and L(ξ ) is observed at ξ ∼ 1. For λ =
3 and ϕ = 0.3, it reaches ≈0.28. In other words, the difference
between the nonreduced magnetization M and ML is ≈28%
of the system saturation magnetization M∞. As ξ increases,
the calculated magnetization approaches the Langevin curve
much faster than it should according to MMFT1. For one
of the investigated parameter sets (λ = 3, ϕ = 0.1), the cal-
culated values of 〈mh〉 are even smaller than L(ξ ) at ξ � 7
[though the maximum value of the difference ML − M is less
than one percent of M∞ as seen in the inset of Fig. 2(d)]. As
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FIG. 2. Equilibrium magnetization curves of bulk solid systems with H = Hint and σ = 0. λ = 1 (a) and 3 (b). Symbols are the simulation
results for N = 1000; different combinations of symbols and colors correspond to different particle volume fractions ϕ (see legend). Solid
curves are MMFT1 results for the same values of ϕ [Eqs. (25) and (26)], dot-dashed lines are MMFT2 results [Eqs. (25) and (27)], dashed
curves are from the analytical model given by Eqs. (25) and (39), dotted lines are from the Langevin model [Eq. (14)]. Insets in (a) and
(b) zoom on the weak field region. Figures (c) and (d) show differences between the magnetization values shown in (a), (b), and the Langevin
function; (c) corresponds to (a) (i.e., to λ = 1) and (d) corresponds to (b) (i.e., to λ = 3). The inset in (d) shows values of 〈mh〉 − L(ξ ) in the
strong field region.

for MMFT2, it overestimates simulation data at large fields
even stronger than MMFT1. Such overestimation was not
observed in ferrofluid simulations—in the strong coupling
case (λ > 2) and at ξ � 1 the ferrofluid magnetization is
either slightly lower than predictions of MMFTs (at high con-
centrations) or greatly exceeds it (at low concentrations) [33].
A possible explanation is as follows. According to MMFTs,
the effective field Heff acting on an arbitrary particle i is
always larger than the applied field H , and the difference
Heff − H becomes larger with increasing H . Within this
theory, dipole-dipole interactions between the ith particle
and its surroundings, on average, always help the particle to
align with the applied field. Based on our simulation results,
this is true for solid dispersions of magnetic particles in the
weak field limit. But at large fields the situation can become
complicated due to the anisotropic nature of dipole-dipole
interactions. Let us choose a Cartesian coordinate system so
that its center coincides with the center of the ith particle
and the Z axis coincides with the applied field direction
h. If ξ is large enough, magnetic moments of all particles

in the system are predominantly directed along the Z axis.
If the particle j with ej ||h is placed somewhere on the Z

axis, then the dipolar field created by this particle at the
location of the ith particle is co-directed with h. However,
if the j th particle is placed in the XY plane, then its dipolar
field at the ith particle location is directed opposite to h. In
ferrofluids, the anisotropy of dipole-dipole interactions results
in the field-induced anisotropy of the pair distribution function
[51]. In a liquid matrix, the probability to find the j th particle
on the Z axis in close contact with the particle i becomes
higher with increasing ξ . Two co-directed particles with r ij ||h
tend to attract each other and form an energetically favorable
“head-to-tail” configuration. This effect is noticeable even at
relatively low dipolar coupling λ � 1. At large λ, it transforms
in the well-known formation of chainlike aggregates. On
the contrary, the probability to find the j th particle in the
plane XY in close contact with the particle i decreases with
increasing ξ . Two co-directed particles with r ij ⊥ h tend to
repel each other. So, as the field increases, magnetic particles
in a liquid matrix tend to redistribute themselves so that the
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FIG. 3. Initial magnetic susceptibility χ of magnetoisotropic par-
ticles embedded in a bulk solid matrix vs the Langevin susceptibility
χL. Symbols are the simulation results for N = 1000; different sym-
bols correspond to different values of the dipolar coupling constant
λ (see legend). Dotted line corresponds to the Langevin model
(χ = χL), solid line is from MMFT1 [Eq. (36)], dashed line is from
MMFT2 [Eq. (37)].

local surroundings of the ith particle is more likely to contain
particles that favor the orientation of ei along h. But in our
case, the isotropic spatial distribution of particles is frozen.
So, at large applied fields the ith particle is surrounded both
by particles that help it to align with the field and by particles
that interfere with such behavior. It seems probable that, as
the average result of such competition, the effective field Heff

acting on the ith particle in a solid matrix with increasing H

becomes smaller than the corresponding effective field in a
liquid matrix. As the inset in Fig. 2(d) suggests, in some cases
Heff can even become slightly smaller than H . In Eq. (25)
the effect of the particle surroundings is controlled by the
mean-field parameter Cmf . In order to correctly describe the
observed behavior of a solid dispersion, this parameter should
become significantly lower than the standard MMFT1 value
χL at large fields. Figure 4 shows the values of Cmf extracted
from the simulation data using the expression

Cmf (ξ ) = L−1(〈mh〉) − ξ

L(ξ )
, (38)

where L−1(x) is the inverse Langevin function (its values
were obtained numerically). The mean-field parameter in the
figure is divided by χL. It is seen that at ξ � 1 Cmf /χL � 1,
but it becomes lower at large fields, just as expected. At ξ � 2,
values of Cmf /χL decrease relatively fast; at a given λ they
are almost the same for different volume fractions. For ξ > 2,
the quantity Cmf /χL seemingly begins to reach a plateau. The
values of Cmf /χL at large fields for different combinations of
λ and ϕ do not coincide. Particularly, they are very different
for λ = 1 and ϕ = 0.3 and for λ = 3 and ϕ = 0.1, despite the
fact that the Langevin susceptibility is the same in both cases
(χL = 2.4). For λ = 3 and ϕ = 0.1, the mean-field parameter
at large ξ becomes negative, which is why 〈mh〉 at these
parameters becomes smaller than L(ξ ). At large ξ , values of
Cmf /χL increase with increasing ϕ if λ is fixed. The increase

FIG. 4. Applied field dependencies of the mean-field parameter
for bulk solid systems of magnetoisotropic particles. λ = 1 (a), 2 (b),
and 3 (c). Symbols are simulation results for N = 1000; different
symbols correspond to different volume fractions (see legend). Solid
lines are from the approximation Eq. (39).

in λ at a fixed volume fraction has the opposite effect—in
this case Cmf /χL decreases. To be able to check whether or
not the mean-field parameters obtained for bulk systems are
applicable for the description of clusters at large fields, we
approximated the dependencies presented in Fig. 4 with the
expression

Cmf (ξ ) = χL

1 + a2ξ
2 + a4ξ

4

1 + b2ξ 2 + b4ξ 4
. (39)

Equation (39) contains only even powers of ξ , so that Eq. (25)
remains an odd function of the magnetic field. Coefficients
a2, a4, b2, and b4 were separately determined for each in-
vestigated combination of λ and ϕ using nonlinear least
squares fitting. The calculated values are given in Table I. The
approximations are valid at least up to ξ = 30.

B. Cluster of magnetically isotropic particles

One of our main concerns regarding simulations of the
cluster were possible finite-size effects. In Ref. [52] it was

TABLE I. Fitting parameters of Eq. (39) for different dipolar
coupling constants and particle volume fractions.

λ ϕ a2 a4 b2 b4

1 0.1 0.165553 0.000119 0.286021 0.000083
0.2 0.294838 0.000583 0.444823 0.000662
0.3 0.289164 0.001879 0.417613 0.002166

2 0.1 0.312283 0.015637 0.629365 0.071964
0.2 0.340067 0.000143 0.854058 0.000202
0.3 0.429252 0.004477 0.901514 0.007247

3 0.1 0.217007 −0.004704 0.864708 0.031570
0.2 1.632664 0.128207 3.249253 0.708223
0.3 0.555831 0.004696 1.689059 0.010885
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FIG. 5. Normalized equilibrium magnetization of the cluster vs
the number of particles it contains. λ = 3, ϕ = 0.3, and σ = 0.
ξ = 0.1 (a), 1 (b), 10 (c). Symbols are simulation results. Horizontal
lines correspond to predictions of the analytical model given by
Eqs. (28) and (39).

shown that properties of finite spherical containers with fer-
rofluid depend heavily on the system size in the case of strong
dipolar coupling. Equilibrium magnetization of systems with
N ∼ 102–103 proved to be much smaller than corresponding
thermodynamic limit values. Magnetization values of rigid
clusters with σ = 0 are shown in Fig. 5 as a function of the
particle number N at different values of ξ . These data are
calculated for λ = 3 and ϕ = 0.3, i.e., for the largest values
of interaction parameters considered in this work. Luckily,
the results do not indicate strong size dependencies for rigid
quasispherical clusters. This gives hope that approximations
Eq. (39) derived for a bulk system will work for small clusters
as well.

Static magnetization curves for clusters with σ = 0 and
λ = 3 are given in Fig. 6. Due to the presence of de-
magnetizing fields, the effect of interactions is the opposite
of what was observed in the previous section. Magnetiza-
tion of the cluster is now always smaller than what the
Langevin model predicts and the cluster equilibrium response
is weaker the higher the volume fraction ϕ. Just like in
the bulk case, MMFT1 [which is now given by Eqs. (26)
and (28)] provides an accurate description of the magneti-
zation curve initial slope, but overestimates the simulation
results at strong fields (ξ � 2). MMFT2 [Eqs. (27) and (28)]
again gives larger magnetization values than MMFT1, but
it should be noted that the difference between two theo-
ries is much less pronounced than in the bulk case. The
combination of Eq. (28) and approximation Eq. (39) with
fitting parameters taken from Table I accurately describes the
cluster magnetization at all investigated values of ϕ and ξ .
The foregoing is also true for smaller coupling parameters,
but the difference between the cluster magnetization and the
Langevin function in this case is much less distinguishable.
For example, at λ = 1 and ϕ = 0.3, the maximum value of
L(ξ ) − 〈mh〉 is ≈0.09. For λ = 3 and ϕ = 0.3, the difference
L(ξ ) − 〈mh〉 can become larger than 0.3 (which is seen in the
inset of Fig. 6).

FIG. 6. Equilibrium magnetization curves of clusters with σ = 0
and λ = 3. Symbols are simulation results for N = 1000; different
combinations of symbols and colors correspond to different vol-
ume fractions (see legend). Solid cures are prediction of MMFT1
[Eqs. (26) and (28)] for the same volume fractions; dot-dashed curves
are predictions of MMFT2 [Eqs. (27) and (28)]. Dashed lines are
from the analytical model given by Eqs. (28) and (39). Dotted line
is the Langevin function [Eq. (14)]. The inset shows corresponding
differences between the Langevin function and magnetization values.

C. Cluster of uniaxial particles

One can expect that the time necessary for the cluster to
reach the equilibrium magnetization value from the initial ran-
dom state will increase with increasing anisotropy parameter
σ . The reason is that magnetic moments of particles will have
to overcome the anisotropy energy barrier. In zero magnetic
field and in the absence of interactions, the characteristic time
scale that determines how long it will take for the magnetic
moment to overcome the barrier (i.e., to spontaneously change
its orientation from n to energetically equivalent −n) is called
the Néel relaxation time (τN ). This time increases exponen-
tially with increasing σ . With a good accuracy τN is given by
the approximation [53]

τN = τD

eσ − 1

2σ

[
1

1 + 1/σ

√
σ

π
+ 2−σ−1

]−1

. (40)

In the limit of negligible anisotropy (σ � 1), the Néel time
τN reduces to the relaxation time τD . Equation (40) gives
τN � 14τD for σ = 5, τN � 6.8 × 102τD for σ = 10, τN �
5.3 × 104τD for σ = 15, and τN � 5.0 × 106τD for σ = 20.
Figure 7 demonstrates a very similar nonlinear slow down.
This figure shows the dynamics of the cluster magnetization
for different values of σ at a fixed field ξ = 1. In the beginning
mh is close to zero, but then it starts to increase and gradually
reaches a nonzero equilibrium value. It is seen that as σ varies
from 0 to 20, the characteristic equilibration period increases
by several orders of magnitude. For larger fields (ξ > 1),
the period decreases, but the direct simulation of clusters
with σ > 10 still remains challenging from a computational
viewpoint. Due to the restrictions of available computational
resources, only clusters with N = 400 and σ � 10 are consid-
ered below. The integration time step is slightly increased to
�t∗ = 0.003. Further increase of the time step can potentially
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FIG. 7. Instantaneous values of the cluster normalized magne-
tization vs simulation time. Simulation results for N = 400, λ =
1, ϕ = 0.1, and ξ = 1. From top to bottom: σ = 0, 10, 15, and 20.

lead to erroneous simulation results [25]. We use equilibration
period t∗ = 500 for 2.5 � σ � 7.5 and t∗ = 4000 for σ = 10.

Magnetization curves of a cluster of noninteracting uniax-
ial particles (λ = 0) were first calculated as a test. The results
are given in Fig. 8. Calculations are in full agreement with
Eq. (18). The linear response at weak fields is always the same
as for the Langevin model, but for ξ > 1 the growth of 〈mh〉
is slower the higher the anisotropy parameter σ .

Magnetization curves for clusters with σ � 10, ϕ = 0.3
and different values of λ are given in Fig. 9. The most
noticeable effect of increasing anisotropy, just as in the case
of noninteracting particles, is the saturation slowdown at large
fields. Our phenomenological modification of MMFT given
by Eq. (30) correctly reproduces this feature. As a mean-field
parameter in Eq. (30), we use approximation Eq. (39) with fit-
ting parameters previously obtained for bulk magnetoisotropic
systems (see Table I). For λ = 1 [Figs. 9(a) and 9(c)], the
combination of Eqs. (30) and (39) shows great quantitative

FIG. 8. Equilibrium magnetization curves of clusters of nonin-
teracting (λ = 0) uniaxial particles. Symbols are simulation results
for N = 400; different combinations of symbols and colors corre-
spond to different anisotropy parameters σ (see legend). Lines are
predictions of Eq. (18) for the same values of σ .

agreement with simulation data. The largest deviations are
observed at intermediate fields 2 � ξ � 6, where the ana-
lytical model overestimates the magnetization of simulated
clusters. For σ = 10, the largest deviation is ≈0.03. Devia-
tions become more pronounced at λ = 3 [Figs. 9(b) and 9(d)].
At σ = 10, the largest deviation is now ≈0.07. Besides, at
λ = 3 and ξ � 10, calculated magnetizations become larger
than predictions of the analytical model. Figures 9(c) and
9(d) additionally demonstrate the predictions of “anisotropic
generalizations” of MMFT1 and MMFT2. For MMFT1, this
is simply a combination of Eqs. (26) and (30). For MMFT2,
the mean-field parameter Eq. (27) was modified using the
same intuitive approach, which was used to obtain Eq. (30)—
the function L(ξ ) was replaced with Lani(ξ, σ ):

Cmf (ξ, σ ) = χL

(
1 + χL

16

∂Lani(ξ, σ )

∂ξ

)
. (41)

It is seen that “generalized” MMFTs overestimate calculated
magnetizations at all field values starting from ξ � 2. Just like
in Sec. III B, the predictions of MMFT2 only slightly exceed
the predictions of MMFT1.

IV. CONCLUSIONS

In this work, equilibrium magnetization curves of a ran-
dom quasispherical cluster of single-domain nanoparticles are
studied numerically and analytically. Langevin dynamics sim-
ulations show that, due to dipole-dipole interactions between
particles, magnetization of the cluster is generally lower than
predicted by the classical Langevin model. This is in full
agreement with recent findings of Refs. [11,25]. It is shown
that, in the case of negligible magnetic anisotropy and weak
applied fields, magnetization curves can be successfully de-
scribed by the so-called modified mean-field theory, initially
proposed for the description of concentrated ferrofluids. How-
ever, as the field increases, the theory starts to overestimate
the cluster magnetization. The discrepancy can be minimized
by adjusting the mean-field parameter of MMFT, so that it
decreases with increasing applied field. The explicit form
of the dependency between the mean-field parameter Cmf and
the Langevin parameter ξ (which determines the impact of
the applied field on the system) turns out to be different for
different values of the dipolar coupling parameter λ and the
particle volume fraction ϕ. For some specific combinations
of λ and ϕ, dependencies Cmf = Cmf (ξ ) are obtained in the
form of approximation formulas. Clearly, finding a univer-
sal dependency Cmf = Cmf (ξ, λ, ϕ) would be useful from a
practical point of view, but this requires a rigorous statistical
mechanical treatment of the problem, which is beyond the
scope of this work.

It is also shown that if particles have non-negligible
anisotropy (characterized by the anisotropy parameter σ ) and
the distribution of their easy axes is random and uniform, then,
at given values of ξ, λ, and ϕ, the magnetization of the cluster
decreases with increasing σ . The decrease is much stronger
at large fields. For weak dipolar coupling (λ � 1), this effect
can be accurately taken into account simply by replacing
all Langevin functions L(ξ ) in the magnetization expression
given by MMFT [Eq. (28)] with its generalization Lani(ξ, σ )
[Eq. (18)]. Function Lani(ξ, σ ) is the exact solution for
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FIG. 9. Equilibrium magnetization curves of clusters with ϕ = 0.3. λ = 1 (a) and 3 (b). Symbols are the simulation results for N = 400,
different combinations of symbols and colors correspond to different anisotropy parameters σ (see legend). Solid curves are predictions of the
analytical model given by Eqs. (30) and (39) for the same values of σ . Dotted lines are from the Langevin model Eq. (14). Insets in (a) and
(b) zoom on the weak field region. Figures (c) and (d) show differences between the Langevin function and the magnetization values shown
in (a) and (b); (c) corresponds to (a) (i.e., to λ = 1) and (d) corresponds to (b) (i.e., to λ = 3). Dashed lines in (c) and (d) correspond to the
analytical model given by Eqs. (26) and (30); dot-dashed lines correspond to the analytical model given by Eqs. (30) and (41).

magnetization of noninteracting uniaxial particles with ran-
dom orientation texture. At larger coupling parameters (λ >

1), such a simple approach demonstrates noticeable quantita-
tive deviations from the simulation results.

In this work, only monodisperse systems are considered.
But it is known that magnetization of rigid clusters can also
be influenced by the polydispersity of particles [11]. The com-
bined effect of magnetic anisotropy, interparticle interactions,

and polydispersity on static magnetization curves of finite-size
quasispherical clusters will be considered in future papers.
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