
PHYSICAL REVIEW B 98, 144415 (2018)

Ferromagnetic resonance in thin films studied via cross-validation of numerical solutions
of the Smit-Beljers equation: Application to (Ga,Mn)As
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The method of numerical analysis of experimental ferromagnetic resonance (FMR) spectra in thin films is
developed and applied to (Ga,Mn)As thin films. Specifically, it starts with the finding of numerical solutions of
Smit-Beljers (SB) equation and continues with their subsequent statistical analysis within the cross-validation
(CV) approach taken from machine learning techniques. As a result of this treatment, we are able to reinterpret
the available FMR experimental results in diluted ferromagnetic semiconductor (Ga,Mn)As thin films with the
resulting determination of magnetocrystalline anisotropy constants. The outcome of CV analysis points out that
it is necessary to take into account terms describing the bulk cubic anisotropy up to the fourth order to reproduce
FMR experimental results for (Ga,Mn)As correctly. This finding contradicts the widespread conviction in the
literature that only the first-order cubic anisotropy term is important in this material. We also provide numerical
values of these higher order cubic anisotropy constants for (Ga,Mn)As thin films resulting from the SB-CV
approach.
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I. INTRODUCTION: THE EXPERIMENTAL DATA

Gallium manganese arsenide, (Ga,Mn)As, is probably one
of the most thoroughly studied diluted ferromagnetic semi-
conductors. The simultaneous presence of magnetism and
conductivity in this material makes it possible to control both
the charge and the spin degrees of freedom of the charge car-
riers. This creates potential spintronic applications. Another
reason for the intense research on (Ga,Mn)As is its remark-
able magnetic properties, between which magnetic anisotropy
plays an important role. It determines, among others, the
orientation of magnetization in the absence of an applied
magnetic field [1]. Although its understanding is important
for prospective applications such as, e.g., memory devices,
its origins are far from being fully explained. Magnetocrys-
ralline anisotropy in (Ga,Mn)As, usually described by the
single-domain model [2,3], is being investigated by various
experimental techniques, such as ferromagnetic resonance
(FMR) and spin-wave resonance (SWR) [4]. Most of these
methods have been used to obtain information on anisotropy
bulk properties of this material. Recently, we have proposed
[5] that one can use the SWR to get information on such
magnetic properties as surface anisotropy and surface pinning
energy of (Ga,Mn)As thin films and their dependence on the
orientation of magnetization in the material.

The FMR spectroscopy has long been a good tool for
examining magnetocrysralline anisotropy, see, e.g., a recent
review on FMR in (Ga,Mn)As thin films [4]. In FMR ex-
periment, since the equilibrium position of the total magnetic
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moment M of the sample does not coincide with the direction
of the magnetic field, H, due to the presence of magnetocrys-
ralline anisotropy, M precesses around its equilibrium posi-
tion with a specific (microwave) frequency ω. By changing the
magnetic field H, one hits a resonance field Hr : the precession
frequency of M is equal to the frequency of the spectrometer.
The value of the resonance field Hr strongly depends on its
orientation with respect to the examined sample, which is
determined by angles θH and φH , see Fig. 1, due to magne-
tocrysralline anisotropy.

This article presents the results of the analysis of bulk
magnetocrystalline anisotropy in (Ga,Mn)As based on exami-
nation of the uniform mode in SWR resonance in (Ga,Mn)As
thin film [6]. The motivation to carry out this analysis was
twofold: First—on the basis of examination of surface mode
in the same SWR experiment [6], we have shown [5] that
magnetocrystalline surface anisotropy in (Ga,Mn)As thin
films contains cubic terms up to third order, which is not
commonly found among ferromagnets. We wonder if this is
also true for bulk magnetocrystalline anisotropy. Second,- it
was originally shown [6] that to reproduce the experimental
dependence of the resonance field on the orientation of the
magnetic field with respect to the sample, only the first-order
term of cubic anisotropy should be taken into account, which,
to some extent, is contradictory to the analysis carried out for
the surface [5]. In the meantime, numerical tools have been
developed that allow a thorough analysis of this problem. That
is why we have considered the old problem again.

At the beginning, let us recall the angular dependencies
of resonance field for the uniform mode in ferromagnetic
(Ga,Mn)As thin film [6]. They are shown in Ref. [6] in Fig. 5
for the out-of-plane geometry and in Fig. 6 for the in-plane
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FIG. 1. The coordinate system in which an orientation of the
applied magnetic field H is described with respect to the sample in
the FMR experiment. The field direction is characterized by angles
ϑH and ϕH measured relative to the sample [001] and [100] axes. The
equilibrium direction of the sample magnetization M is represented
by angles ϑ and ϕ.

geometry, respectively. We show them again in Fig. 2 to
clearly emphasize the difference between the resonance field
resulting from the uniaxial anisotropy (plane Hr -ϑH ) and that
resulting from the cubic anisotropy (plane Hr -ϕH ). We focus
on the interpretation of this experiment because the authors
very carefully identified resonance from uniform SWR modes
and distinguished it from that for surface modes.

II. PHENOMENOLOGICAL FREE ENERGY

The starting point for the interpretation of experimental
data of FMR in (Ga,Mn)As is the phenomenological formula
for the free energy of the investigated sample. We assume that
there exists a single homogeneous magnetic domain within
the sample and that the free energy of a unit volume of the
sample consists of Zeeman term FZ , demagnetization term
FD , and magnetocrystalline anisotropy terms (cubic FC and
uniaxial FU ):

F = FZ + FD + FC + FU . (1)
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FIG. 2. Resonance field [6] Hr of the uniform SWR mode as a
function of the magnetic field orientation for the out-of-plane con-
figuration (plane Hr -ϑH ) and for the in-plane configuration (plane
Hr -ϕH ).

Expressing free energy in terms of fictitious fields one obtains

f (ϑH , ϕH , ϑ, ϕ) = F

M
= HZ + HD + HC + HU, (2)

M stands here for the value of homogeneous magnetiza-
tion. Dependence of fictitious anisotropy fields in Eq. (2) on
the direction in space is expressed by unit vectors along the
applied magnetic field H and along the magnetization of the
sample M. Their spatial orientation is determined by angles
ϑH , ϕH and ϑ , ϕ with respect to the [001] and [100] axes, see
Fig. 1. The unit vectors are given by

H
H

= [
nH

x , nH
y , nH

z

]
= [cos ϕH sin ϑH , sin ϕH sin ϑH , cos ϑH ], (3a)

M
M

= [nx, ny, nz] = [cos ϕ sin ϑ, sin ϕ sin ϑ, cos ϑ]. (3b)

Zeeman field is given by

HZ (ϑH , ϕH , ϑ, ϕ) = −H
(
nxn

H
x + nyn

H
y + nzn

H
z

)
. (4)

Demagnetization field of a thin film may be approximated by
the expression describing demagnetization field of an infinite
plane:

HD (ϑ ) = 2πMn2
z . (5)

The field HC (ϑ, ϕ) should be invariant under the cubic sym-
metry transformations. It follows that it is possible to expand
it into basis functions with the same symmetry. Typically, this
expansion is limited to some low-order terms of systemati-
cally decreasing basis functions. The way of constructing such
basis functions is presented, e.g., in Ref. [7]: they are chosen
from all terms of the expansion of the identity (n2
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n2
z )n = 1 (n = 2, 3...), which are invariant under permutation

of the indices x, y, and z. Expansion up to n = 7 is used in
what follows:
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All terms included in the expansion of cubic field HC (ϑ, ϕ)
are shown in Figs. 3(a)–3(f). Let us emphasize that every
next term is smaller than the previous one—the expansion
Eq. (6) is convergent. Let us note, however, that the set of
six basis functions used in the expansion given by Eq. (6) is
neither orthogonal nor complete. Consequently, the expansion
may not be unique [8]. Nevertheless, it is widely used, at
least in the cases of analyzing systems with lower order mag-
netocrystalline anisotropies. One can also expand the cubic
magnetocrystalline field HC (ϑ, ϕ) into other basis functions,
such as, e.g., spherical harmonics, remembering, however, to
use only those with the appropriate symmetry [9].

It is recognized [4,7] that uniaxial anisotropy field
HU (ϑ, ϕ) in (Ga,Mn)As consist of two terms H1[001]n

2
z and

H[110](ny − nx )2 representing uniaxial anisotropy along z axis
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FIG. 3. The basis functions up to sixth-order (a)–(f) used in the
expansion Eq. (6) of the cubic magnetocrystalline field. Although
each next function of a higher order is, for given ϑ, ϕ, smaller than
the preceding one, they are shown here as being comparable in size.

and uniaxial anisotropy along [110] axis, respectively. We
add, however, two additional terms of fourth and sixth order:

HU (ϑ, ϕ) = − 1
2H1[001]n

2
z − 1

2H2[001]n
4
z

− 1
2H3[001]n

6
z − 1

2H[110](ny − nx )2. (7)

Note that two terms with cos2 ϑH are present in expansion
given by Eq. (2): 2πM and − 1

2H1[001]. Usually, they are
grouped together and referred to as effective anisotropy field:
H eff

[001] = 2πM − 1
2H1[001]. Four terms entering the expansion

of uniaxial field HU (ϑ, ϕ) are shown in Fig. 4.
The right side of Eq. (2) depends on 15 variables:

Hr, ϑH , ϕH , ϑ, ϕ,Hc1, ..., Hc6,H
eff
[001],H2[001],H3[001],H[110].

The first three will be considered as independent variables that
are measured in the experiment and are shown in Fig. 2. The
pairs of angles (ϑH , ϕH ) and (ϑ, ϕ) are not independent. The
angles determining the equilibrium orientation of M, ϑ , and
ϕ, should minimize free energy. For the set of fixed parameters
Hr, ϑH , ϕH ,Hc1, ..., Hc6,H

eff
[001],H2[001],H3[001],H[110], one

FIG. 4. Terms representing contributions to uniaxial magne-
tocrystalline anisotropy of (Ga,Mn)As thin film in a spherical co-
ordinate system. Uniaxial anisotropy along z axis first to third order:
n2

z (a), n4
z (b), n6

z (c). Uniaxial anisotropy along [110] axis (ny − nx )2

(d).

TABLE I. Models of cubic magnetocrystalline anisotropy in
(Ga,Mn)As for which cross-validation was carried out. In the second
column, the terms are given included in the expansion of the free
energy Eq. (6) for models C1–C6. Uniaxial anisotropy for C1–C6
models does not change—only fields H eff

[001] and H[110] are present.

Model Cubic anisotropy Uniaxial anisotropy

C1 Hc1 H eff
[001], H[110]

C2 Hc1,Hc2 H eff
[001], H[110]

C3 Hc1 − Hc3 H eff
[001], H[110]

C4 Hc1 − Hc4 H eff
[001], H[110]

C5 Hc1 − Hc5 H eff
[001], H[110]

C6 Hc1 − Hc6 H eff
[001], H[110]

finds them from the equilibrium condition:

∂f

∂ϑ
= 0,

∂f

∂ϕ
= 0. (8)

Thus the right-hand side of Eq. (2) really depends on ten ficti-
tious anisotropy fields Hc1, ..., Hc6,H

eff
[001], ..., H3[001],H[110],

which we collectively denote by the vector

h ≡ (
Hc1, ..., Hc6,H

eff
[001],H2[001],H3[001],H[110]

)
. (9)

The questions should then be asked: How to find anisotropy
fields and how many of them are necessary to reproduce the
experimental dependence Hr (ϑH , ϕH ) well? These questions
are answered in the next section.

III. WHICH ANISOTROPY FIELDS
ARE IMPORTANT FOR (Ga, Mn)As?

The resonance condition (in the case of uniform magneti-
zation) is given by [10,11](

ω

γ

)2

= 1

sin2ϑ

(
fϑϑfφφ − f 2

ϑφ

)
, (10)

where fϑφ = ∂f

∂ϑ

∂f

∂ϕ
, γ = gμB

h̄
with g being the spectroscopic

splitting factor, μB the Bohr magneton, and h̄ the Planck con-
stant. The 9.46 GHz spectrometer was used in the considered
experiment [6], thus Eq. (10) reads

45.6834 = g2

sin2ϑ

(
fϑϑfφφ − f 2

ϑφ

)
, [kOe2]. (11)

TABLE II. Models of uniaxial magnetocrystalline anisotropy in
(Ga,Mn)As for which cross-validation was carried out. In the second
column, the terms are given included in the expansion of the free
energy Eq. (4) for models U1–U3. Cubic anisotropy for U1–U3
models does not change—only fields Hc1 − Hc4 are present.

Model Uniaxial anisotropy Cubic anisotropy

U1 H eff
[001], H[110] Hc1 − Hc4

U2 H eff
[001], H2[001], H[110] Hc1 − Hc4

U3 H eff
[001], H2[001], H3[001]H[110] Hc1 − Hc4
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TABLE III. Anisotropy fields [Oe] in bulk (Ga,Mn)As related to cubic and uniaxial symmetry and values of g factor calculated for models
C1–C6, according to the procedure described in the text. In the last two columns, error functions 〈EN−1

RMS 〉 and 〈E1
RMS〉 are shown.

Model Hc1 Hc2 Hc3 Hc4 Hc5 Hc6 H eff
[001] H[110] g 〈EN−1

RMS 〉 〈E1
RMS〉

C1 91.81 4765 65.53 1.978 0.95 0.69
C2 92.21 −87.94 4774 70.72 1.979 0.88 0.68
C3 77.06 −4.241 57.00 4776 61.70 1.982 0.75 0.61
C4 78.07 −534.1 43.93 1405 4811 66.29 1.985 0.59 0.50
C5 79.57 −583.4 41.68 1790 2080 4814 64.50 1.984 0.58 0.48
C6 78.78 −419.0 41.82 436.1 2841 2700 4809 63.81 1.984 0.57 0.51
Liu et al. [6] 197a 4588 77 1.98

aNote that definition of cubic anisotropy in Ref. [6] is slightly different. It takes into account tetragonal distortion in (GaMn)As thin films. The
value of cubic anisotropy field calculated from this definition should be approximately equal to 2Hc1.

At resonance, Eq. (11) should be met for any given direc-
tion of Hr (ϑH , ϕH ), i.e., in the case under consideration, for
all points shown in Fig. 2. Let us treat g and components of the
vector h as not known parameters and denote the right-hand
side of the Eq. (11) calculated at ith experimental point by Ri ,

Ri (g, h) = g2

sin2ϑ

(
f i

ϑϑf i
φφ − (

f i
ϑφ

)2)
. (12)

Note that free energy derivatives (e.g., f i
ϑϑ ) are calculated at

ith the experimental point for given values Hr, ϑH , ϕH .
One should find such values of unknown coefficients g, h

that the Eq. (11) is met as accurately as possible for each
experimental point. So the following error function, being the
positive square root of the sum of squares of residuals,

EN
RMS(g, h) =

√
1

N

∑
i

(
Ri (g, h) − 45.6834

)2
, (13)

should be minimized in 11-dimensional parameter space
(g, h). The sum in Eq. (13) runs over all N experimen-
tal points shown in Fig. 2. This least-squares approach to
finding the unknown parameters represents a specific case
of maximum likelihood approach [12,13]. Actual values of
the spectroscopic splitting factor g and magnetocrysralline
anisotropy fields are those for which Eq. (13) has a minimum
close to zero.

We have included ten magnetocrysralline anisotropy fields
into the formula for free energy. Now we will check which
ones are really essential to describe the experimental results
well using a simple cross-validation scheme [12]. For this
purpose, anisotropy models are defined in Tables I and II.
For example, in the model C3 (third row of Table I) the
cubic anisotropy is expanded up to third order, the uniax-
ial anisotropy along z axis up to first order, the uniaxial

anisotropy along [110] axis up to first order and similarly for
other models.

The cross-validation, within leave-one-out technique, runs
as follows: We divide the N (=55) element set of experimen-
tal data into two subsets: the training one and the test one.
The first one contains N − 1 elements, the second one—one
element. One can do it in N possible ways. Subsequently,
the N subsets obtained in this way are used to train, i.e., to
determine the values of the unknown parameters (g, h) by
minimizing the error function EN−1

RMS (g, h), defined in Eq. (13)
for each model under consideration. Simultaneously, the error
function E1

RMS(g, h) is calculated for one left test point for
each model. Note that its value informs us how well we
are doing in predicting the values of anisotropy fields for
a particular model. After N minimizations, one examines
how averages 〈EN−1

RMS 〉 and 〈E1
RMS〉 depend on the model, i.e.,

on the order of expansion in Eqs. (6) or (7). We use the
following criterion to assess the quality of the model: the
model describes magnetocrystalline anisotropy well if taking
into account higher order terms in the expansions given by
Eqs. (6) and (7) does not improve its predictive ability given
by the average 〈E1

RMS〉.
The procedure described above allowed us to find the av-

erage values of anisotropy fields, g factor, and error functions
〈EN−1

RMS 〉 and 〈E1
RMS〉 for each model after N minimizations for

the sample in the experiment under consideration. They are
collected in Tables III and IV. The predictive ability, measured
by the error function 〈E1

RMS〉, for all models defined in Tables I
and II is shown in Fig. 5. 〈E1

RMS〉 decreases for C1–C4 models
and remains roughly constant for the C4–C6 models. It means
that higher order terms used in free energy expansion given
by Eq. (2) for C5 and C6 models do not improve their
ability to predict cubic magnetocrystalline anisotropy on the
basis of experimental data from Fig. 2. Similarly, we see that

TABLE IV. Anisotropy fields [Oe] in bulk (Ga,Mn)As related to cubic and uniaxial symmetry and values of g factor calculated for models
U1–U3, according to the procedure described in the text. In the last two columns, error functions 〈EN−1

RMS 〉 and 〈E1
RMS〉 are shown.

Model H eff
[001] H2[001] H3[001] H[110] Hc1 Hc2 Hc3 Hc4 g 〈EN−1

RMS 〉 〈E1
RMS〉

U1 4811 66.28 78.07 −534.1 43.93 1405 1.985 0.59 0.50
U2 4779 21.83 66.08 80.12 −449.3 40.76 1222 1.987 0.59 0.51
U3 4778 21.99 6310 66.13 80.15 −449.3 40.59 1221 1.987 0.59 0.50
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FIG. 5. The values of error functions 〈EN−1
RMS 〉 and 〈E1

RMS〉 defined
in Eq. (12) for all models defined in Tables I and II. The values error
functions were calculated for the corresponding field values taken
from Tables III and IV.

taking into account higher order terms in uniaxial anisotropy
expansion for models U2 and U3 does not improve their
predictive ability. It follows that the correct description of
magnetocrystalline anisotropy in (GaMn)As requires that the
free energy expansion should include terms describing cubic
anisotropy up to fourth order and that is enough to take into
account uniaxial anisotropies up to first order.

One can also see the result of minimization in Fig. 6
in the form of a collapse: for the real minimum of error
function at g∗, h∗ its values Ri (g∗, h∗) for all experimental
points fall onto a line 45.6834. By comparing the scattering
of points for C1 model, Fig. 6(a), and C4 model, Fig. 6(b),
we note the important thing: the addition of the higher orders
of cubic anisotropy fields improves fitting not only for in-
plane experimental points but also for out-of-plane experi-
mental points. This is due to the occurrence of partial mixed
derivatives of the free energy in the determinant from Hessian
(representing a local curvature of free energy in ϑH , ϕH space)
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FIG. 6. The values of function Ri (g, h) defined in Eq. (12) for
model C1(a) and for model C4 (b) for all experimental points
from Fig. 2. Squares—in-plane geometry: ϑH = 90◦, ϕH changes;
circles—out-of-plane geometry: ϑH changes, ϕH = −45◦. The val-
ues of Ri (g, h) were calculated for the corresponding field values
taken from Table III.
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FIG. 7. Equilibrium magnetization angle ϑ versus the external
field angles ϑH , ϕH determined from the condition Eq. (8) for the
(Ga,Mn)As thin film studied in Ref. [6].

in Smit-Beljers Eq. (10) which we solve numerically1 for all
experimental points simultaneously treating them on equal
footing. Therefore, to get as accurate as possible anisotropy
field values it is important to measure resonance fields in
different geometries.

Fulfilling condition Eq. (8) while solving Eq. (13) leads to
finding dependences ϑ (ϑH , ϕH ) and ϕ(ϑH , ϕH ) for all models
from Tables III and IV. They are shown for C4 model in
Figs. 7 and 8. Function ϑ (ϑH , ϕH ) for a given ϕH —it always
is a concave function. For angle φH = 45◦ and 135◦, we see a
ripple, which is the result of the presence of cubic symmetry.
Note also that function ϕ(ϑH , ϕH ) for a given ϑH is for all ϑH

a linear function ϕ ∝ ϕH (does not depend on ϑH ).
Let us summarize this section by stating that for the correct

description of magnetocrystalline anisotropy in (Ga,Mn)As,
the free-energy expansion should include terms describing
cubic anisotropy up to fourth order and that is enough to take
into account uniaxial anisotropies up to first order.

IV. BACK TO THE EXPERIMENT: WHAT IS THE EFFECT
OF INCORPORATING ANISOTROPY FIELDS

OF HIGHER ORDERS?

Let us now examine the dependence of the resonance
field Hr on ϑH and ϕH . The problem can be stated in the
following way: Given the values of Hr on the boundary of
the box presented in Fig. 2, determine the resonance field

1We use Python packages SCIPY.OPTIMIZE and NUMDIFFTOOLS.
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FIG. 8. Equilibrium magnetization angle ϕ versus the external
field angles ϑH , ϕH determined from the condition Eq. (8) for the
(Ga,Mn)As thin film studied in Ref. [6].
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FIG. 9. Comparison of the Hr -values calculated numerically
from Eq. (10) with experimental data (full squares) for out-of-
plane geometry for C1–C4 models. The resonance field for in-plane
geometry measurement is visible as a small rectangle on the vertical
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inside the box. One finds a solution in two stages. First, one
determines the anisotropy fields, for which Eq. (11) is satisfied
on the boundary of the box. This stage has been described
in Sec. III. Second, to get the resonance field for each ϑH

and each ϕH , one should solve Eq. (11) numerically for the
anisotropy fields determined in the first stage (collected in
Table III) with condition Eq. (8) met for each tentative point
obtained during the numerical solving procedure. In Figs. 9
and 10, one can see dependencies Hr (ϑH ,−45◦), i.e, for out-
of-plane geometry and Hr (90◦, ϕH ) for in-plane geometry,
respectively. Uniaxial anisotropy is the most visible for out-of-
plane geometry (Fig. 9) and although the use of higher order
cubic terms does improve the agreement of the calculated
Hr -values with the experimental data, this improvement is
not particularly visible in the scale of Fig. 9 because the
cubic anisotropy is much smaller than the uniaxial one. The
improvement, however, can be seen for in-plane geometry:
the use of higher order terms in of cubic anisotropy expansion
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FIG. 10. Comparison of the Hr -values calculated numerically
from Eq. (10) with experimental data (full squares) for in-plane
geometry for C1–C4 models. Taking into account higher order terms
of cubic anisotropy, one improves the agreement of calculated Hr -
values with experimental data.

-45   0 45 90 135180

φH [deg]

 10  30  50  70  90θH [deg]

 1

 3

 5

 7

 9

R
es

on
an

ce
 fi

el
d 

H
r [

kO
e]

FIG. 11. Spatial angular dependence of resonance field
Hr (ϑH , ϕH ) resulting from our theory. Experimental data (squares)
in the plane (Hr, ϑH ) correspond to out-of-plane geometry while
those in the (Hr, ϕH ) plane to in-plane geometry. The surface in the
figure is the numerical solution of Eq. (11) with condition Eq. (8).

given by Eq. (6) becomes necessary to describe dependence
Hr (90◦, ϕH ) more precisely.

The spatial dependence of the resonance field on angles
ϑH and ϕH is shown in Fig. 11. For small angles ϑH ,
we see the resonance field whose source is mainly uniaxial
[001] anisotropy (with twofold symmetry), whereas for an-
gles ϑH ≈ 90◦ the resonance field with fourfold symmetry
becomes more noticeable. It is the result of cubic anisotropy,
although Hr (90◦, 45◦) < Hr (90◦, 135◦) due to small uniaxial
[110] anisotropy, see also Fig. 10.

The spatial dependence of the cubic anisotropy field is
shown in Fig. 12. We see that really the magnetic field deter-
mines hard/easy directions, not hard/easy axes: The largest cu-
bic anisotropy field is for ϑH = 23.7◦ and ϕH = 45◦ whereas
the position of hard axis direction is given by ϑH = 54.7◦ and
ϕH = 45◦.

The values of fictitious anisotropy fields are important in
that they allow us to reproduce the spatial dependence of
the energy of the sample in a magnetic field due to magne-
tocrystalline anisotropy and to find easy and hard axes. To
find this spatial dependence, one needs to know the saturation
magnetization. Then the magnetic anisotropy constants can
be easily expressed by corresponding anisotropy fields, see,
e.g., very clearly written Ref. [14]. We have found the sat-
uration magnetization2 of the considered sample: it amounts
Ms = 30.5 emu/cm3, which is a typical value for (Ga,Mn)As
containing a few percents of Mn atoms.

2Details of this calculation will be published in a separate paper.

-45   0 45 90 135 180

φH [deg]

 10
 30

 50
 70

 90θH [deg]

 0

 10

 20

 30

C
ub

ic
 a

ni
so

tro
py

 fi
el

d 
[O

e]

FIG. 12. Cubic anisotropy field for C4 model versus ϑH and ϕH .
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TABLE V. Cubic anisotropy fields (Hc) in Gaussian units [Oe] and SI units [kA/m] and cubic anisotropy constants (Kc) in [erg/cm3] and
[J/m3] for bulk (Ga,Mn)As calculated for models C1 and C4.

Model C1 Hc1 Hc2 Hc3 Hc4 Kc1 Kc2 Kc3 Kc4

Gaussian 91.81 ± 0.55 2800 ± 17
SI 7.306 ± 0.044 280.0 ± 1.7
Model C4

Gaussian 78.07 ± 0.40 −534 ± 28 43.9 ± 1.2 1410 ± 70 2381 ± 13 −16280 ± 860 1330 ± 37 42900 ± 220
SI 6.213 ± 0.032 −42.5 ± 2.3 3.493 ± 0.096 112.2 ± 5.6 238.1 ± 1.3 −1628 ± 86 133.0 ± 3.7 4290 ± 22

Returning to the Eq. (6) and multiplying it by Ms , one
obtains the spatial distribution of energy FC (ϑ, ϕ) stored in
bulk (Ga,Mn)As and related to its cubic magnetocrystalline
anisotropy for the C4 model

FC (ϑ, ϕ) = MsHc1
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, (14)

and similarly for the C1 model. Kc1–Kc4 stand in Eq. (14)
for cubic anisotropy constants. Taking the numerical values
of anisotropy fields Hc1–Hc4 from Table III, one obtains
the numerical values of anisitropy constants for C1 and C4
models—they are collected in Table V. Let us note that
the values of first-order cubic anisotropy for (Ga,Mn)As are
several dozens to several hundred times smaller than the cor-
responding values for such ferromagnets as Ni or Fe. Perhaps
this is why anisotropies of higher orders become visible in
resonance experiments only for weak ferromagnets.

To assess the accuracy of the present method, we used the
bootstrap method to evaluate errors for C1 and C4 models. To
do this, we assumed that the error probability distribution of
experimental results was normal and, consequently, the errors
of a solution of Smit-Beljers equation also had a normal dis-
tribution. Then we could determine the approximated errors
of obtained anisotropy constants. They are listed in Table V.

Finally, let us show how taking into account the higher or-
ders of anisotropy fields changes the cubic anisotropy energy
surface. It might seem that correction will be of little impor-
tance. However, this is not the case: the Smit-Beljers Eq. (10)
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FIG. 13. Spatial dependence of the cubic magnetocrystalline en-
ergy in spherical coordinate system for C1 (a) and C4 (b) models.

describing the curvature of the energy surface is nonlinear
with respect to the second derivatives. This leads to significant
corrections in energy values. Figure 13 shows the spatial
dependence of energy from cubic anisotropy on the same scale
for models C1 and C4. Axes [100], [010], and [001] are easy
axes with respect to cubic anisotropy, and axis [111] is a
hard one. For example, for hard axis we have FC1([111]) =
933 ± 6, FC4([111]) = 769 ± 4 [erg/cm3]. The C1 model
thus overestimates the anisotropy energy along the hard axis
by about 20%. Figure 14 shows the spatial dependence of
energy difference between C1 and C4 models.

V. SUMMARY AND OUTLOOK

The paper presents how to determine bulk magnetocrys-
ralline anisotropy in (Ga,Mn)As thin film by numerical solu-
tion of the Smit-Beljers equation for all data collected in one
FMR experiment, i.e., for different spatial orientations of the
magnetic field with respect to the sample, on equal footing.
To avoid essential drawbacks of fitting procedures (lack of
information which fitted constants are relevant and the possi-
bility of overfitting) by finding anisotropy constants, we cross-
validated the numerical solutions of Smit-Beljers equation
for six models (C1–C6). The results of this cross-validation,
i.e., the values of the function 〈E1

RMS〉 displaying predictive
ability for models C1–C6 point that it is necessary to expand
bulk cubic anisotropy up to the fourth order to reproduce
spatial dependence of the resonance field correctly—that is,
increasing the order of expansion of anisotropy does not
change the predictive ability of the model under consideration.
Such cubic anisotropy (up to fourth order) is visible in the
resonant experiment. It means that the models of first-order
cubic anisotropy applied so far to (Ga,Mn)As overestimated
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FIG. 14. Spatial dependence of the difference of cubic magne-
tocrystalline energy between C1 and C4 models in spherical coordi-
nate system.
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the value of this anisotropy. Let us stress that this description
of the bulk anisotropy is consistent with the presented earlier
description [5] of the surface anisotropy (both descriptions
require higher order expansion of cubic anisotropy). We also
have shown that FMR data allow one to find the spectroscopic
splitting factor with high accuracy. We intend to confirm
the usefulness of this new approach by applying it to other
available resonance experiments in the near future.

ACKNOWLEDGMENTS

The authors would like to thank Marcin Tomczak for stim-
ulating discussions. This study is part of a project financed
by Narodowe Centrum Nauki (National Science Centre of
Poland), Grant No. DEC-2013/08/M/ST3/00967. Numerical
calculations were performed at Poznań Supercomputing and
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