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Using Wannier function formulation and total energy calculations by first-principles density functional
theory (DFT), we derive the underlying spin model of a recently synthesized compound, Cs2CuAl4O8,
having zeolitelike network structure. The computed magnetic interactions show that the interchain Cu-Cu
interactions are negligibly small compared to intrachain Cu-Cu interactions, thus characterizing Cs2CuAl4O8

as a prototypical one-dimensional (1D) spin- 1
2 system. Interestingly, the DFT-derived 1D spin model features

a combination of alternating ferromagnetic-antiferromagnetic interactions, together with the presence of both
nearest- and next-nearest-neighbor interactions, making it an unprecedented case. The solution of the derived
spin model of the compound using the quantum Monte Carlo technique shows reasonably good agreement with
the experimental susceptibility data, measured in the presence of the magnetic field. The presence of spin gap is
suggested by quantum Monte Carlo simulations in the zero-field condition, which is cross-checked by a more
rigorous exact diagonalization study. Motivated by the intricacy of the derived spin model, we further examine the
ground-state properties of this model in the parameter space of exchange interactions, which shows the possibility
of driving quantum phase transition between gapped and gapless spin excitation. Our study is expected to shed
light on the fascinating world of 1D quantum spin systems.

DOI: 10.1103/PhysRevB.98.144412

I. INTRODUCTION

Low-dimensional quantum spin systems offer rich physics
due to the dominance of the quantum fluctuation effect. One-
dimensional (1D) and two-dimensional S = 1/2 or S = 1
systems like chain compounds [1], odd- and even-leg ladders
[2,3], tubular systems [4], and kagome, honeycomb, and
triangular layers [5–7] have received sustained attention over
the years due to the importance of the quantum effect arising
due to the reduced dimensionality and smallness of the spin
value. The ground state of prototype 1D systems exhibiting
low-dimensional quantum magnetism with uniform antiferro-
magnetic (AFM) Heisenberg interaction [8] can be gapless
(S = 1/2) or gapped (S = 1), depending on the spin value
[9,10]. Starting from the gapless spectrum of the uniform
AFM Heisenberg S = 1/2 chain, the gapped solution with a
singlet ground state and triplet excited state can be obtained
by alternating the nearest-neighbor intrachain exchange inter-
action parameter [11] between J and J

′
. Alternatively, gap

can appear in a uniform S = 1/2 chain with both nearest (J )
and next-nearest (Jnnn) exchange interactions for Jnnn/J >

0.25 [12]. It is of interest to explore the combined effect of
J -J

′
alternation and J -Jnnn competition in a 1D spin-chain

model. For this purpose, one must identify a compound which
shows (i) heavily suppressed interchain interactions to exclude
formation of three-dimensional magnetic order and (ii) the

presence of both alternating nearest-neighbor exchange and
significant next-nearest-neighbor exchange.

The recently synthesized [13] dicesium copper tetra-
aluminate compound, Cs2CuAl4O8, appears to be a proba-
ble candidate in this respect due to its zeolitelike structure
containing well-separated edge-sharing chains of Cu2+ ions
in square oxygen coordination. The magnetic susceptibility
of the synthesized compound was measured [13], and from
the fit of the temperature dependence of the susceptibility, it
was concluded that this compound belongs to the category of
spin-chain compounds, which requires a description beyond
the uniform chain model. The simple fitting treatment adapted
in Ref. [13] makes it hard to predict any further details, which
would involve prediction of exchange paths and the relative
magnitudes of various magnetic interactions.

The first-principles modeling of materials, which takes into
account the chemistry and structural information accurately,
turns out to be a useful tool in this context. This approach
has been immensely successful in the modeling of various
different spin compounds [14]. In this study, considering the
case of Cs2CuAl4O8, through first-principles calculations we
establish that Cs2CuAl4O8 satisfies both conditions (i) and
(ii), thereby representing the situation of a 1D spin chain
with alternating nearest-neighbor as well as appreciable next-
nearest-neighbor exchanges. The underlying spin model turns
out to be rather interesting in several ways. First, we find
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the next-nearest-neighbor exchange is about three times larger
in magnitude than the nearest-neighbor exchanges, which is
counterintuitive. We rationalize this situation in terms of over-
lap of effective orbitals at the magnetic Cu site. Second, the
two nearest-neighbor Cu-Cu exchanges are found to differ in
sign, resulting in a spin chain having both AFM and ferromag-
netic (FM) exchanges. We carry out a quantum Monte Carlo
(QMC) study of the first-principles-derived spin model of
Cs2CuAl4O8 within the stochastic series expansion (SSE) im-
plementation of QMC to compute the temperature-dependent
magnetic susceptibility, which shows reasonable agreement
with the experimental data, measured in the presence of field.
The calculated zero-field magnetic susceptibility without con-
sideration of the impurity effect suggests the ground state is
gapped. This suggestion has been validated through a more
rigorous exact diagonalization study of the spin spectrum by
measuring the gap between the ground state and the first
excited state and by carrying out a finite-size scaling analysis
using a modified Lanczos technique. We further explore the
J -J

′
-Jnnn parameter space and find that by suitable tuning of

competing magnetic exchanges, the gapped solution can be
converted to a gapless one, thereby driving a quantum phase
transition.

II. Cs2CuAl4O8

A. Crystal structure

Cs2CuAl4O8 occurs in monoclinic symmetry with space
group P 21/c with 6 f.u. in the unit cell. The basic magnetic
units in the structure are regular and distorted squares of
Cu1O4 and Cu2O4, respectively formed by two inequivalent
Cu atoms, Cu1 and Cu2, surrounded by four O atoms in square
coordinations, as shown in Fig. 1(a). The Cu1-O bond lengths
are uniform (1.92 Å), while the Cu2-O bond lengths range
from 1.89 to 1.93 Å, with an average value of 1.91 Å. The
regular Cu1O4 and distorted Cu2O4 squares share a common
edge and form the chain structure of magnetic ions, · · · Cu1-
Cu2-Cu2-Cu1 · · · , running along the crystallographic a axis,
as shown in Fig. 1(b). The edge-shared angles, as marked in
Fig. 1(b), are θ3 = 95.7◦ for Cu2-Cu2 and θ1 = 94.0◦ and
θ2 = 95.1◦ for Cu1-Cu2. The · · · Cu1-Cu2-Cu2-Cu1 · · · spin
chains are connected to each other through AlO4 tetrahedral
units. Cs ions occupy the voids and channels in the Cu1-
Cu2-Al-O zeolitelike three-dimensional (3D) network to give
cohesion to the structure, as shown in Fig. 1(c).

B. Electronic structure

In order to gain microscopic understanding of the elec-
tronic behavior of Cs2CuAl4O8 we perform first-principles
density functional theory (DFT) calculations [15] within
the generalized gradient approximation (GGA) [16] for the
exchange-correlation functional following the Perdew-Burke-
Ernzerhof prescription [16]. Calculations are carried out in the
plane-wave basis as implemented within the Vienna Ab initio
Simulation Package (VASP) [17] as well as in the N th-order
muffin-tin orbital (NMTO) [18] and linear muffin-tin orbital
(LMTO) [19] basis sets as implemented in the STUTTGART

code. The consistency between the two sets of calculations
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FIG. 1. Crystal structure of Cs2CuAl4O8. (a) The basic structural
units, Cu1O4 and Cu2O4, containing the magnetic Cu2+ ion. (b)
The 1D chain formed by edge-shared Cu1O4 and Cu2O4 square
units. (c) The 3D structure formed by · · · Cu1-Cu2-Cu2-Cu1 · · ·
chains connected by AlO4 units. The Cs1+ ions occupy the voids and
channels. The green, brown, red, gray, and cyan balls represent Cu1,
Cu2, O, Al, and Cs atoms, respectively.

in two choices of basis sets is cross-checked in terms of band
structure, density of states, magnetic moments, etc.

For the self-consistent electronic structure calculation in
the LMTO basis, the basis set is chosen to be Cu sd, Cs sp,
Al sp, and O sp. Thirty different classes of empty spheres
have been used to space fill the system. The self-consistency
is achieved by using 64 k points in the irreducible Brillouin
zone. The NMTO method, which relies on the self-consistent
potential generated by the LMTO method, is used for deriving
the massively downfolded, low-energy Hamiltonian defined
in the basis of effective Cu dx2−y2 Wannier functions as well as
the only Cu d Hamiltonian by integrating out all the degrees
of freedom, except Cu dx2−y2 in the former and all but Cu
d in the latter case. The on-site element of the real-space
representation of the only Cu d Hamiltonian provides infor-
mation about the crystal field splitting at the Cu sites, while
the off-site elements of the massively downfolded, low-energy
Hamiltonian provide information about effective hopping in-
teractions between the magnetic sites, which are related to
magnetic exchange. The energetically accurate plane-wave
basis set calculations are employed to calculate the total
energy of different configurations of Cu spins to derive the
magnetic exchanges from the total energy consideration. For
the self-consistent field calculations in the plane-wave basis,
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FIG. 2. (a) Non-spin-polarized density of states (DOS) of
Cs2CuAl4O8, projected onto Cu d (black solid line), O p (red dashed
line), As p (green solid line), and Cs s (brown dashed line), plotted
as a function of energy. The zero of the energy is fixed at the GGA
Fermi energy. (b) The same as in (a), but shown for the spin-polarized
calculation. The inset in (a) shows the crystal field splitting at the Cu
site. The average picture of Cu1 and Cu2 is shown, as the difference
between the two turned out to be small, both in DOS and in crystal
field splitting.

an energy cutoff of 450 eV and a 4 × 4 × 2 Monkhorst-Pack
k-point mesh are found to provide a good convergence of the
total energy with a tolerance limit of 10−5 eV. In the total
energy calculations, the missing correlation energy at Cu sites
beyond GGA is considered in terms of GGA calculations
supplemented with Hubbard U correction (GGA+U ) [20],
with a choice of U = 7 eV and JH = 0.9 eV for Cu sites.

The calculated non-spin-polarized density of states within
the GGA scheme of calculation, projected onto Cu d, O p, Al
p, and Cs s, is shown in Fig. 2(a). The inset shows the crystal
field splitting at the Cu sites, as given by the on-site matrix
element of the only Cu d real-space Hamiltonian, obtained
through the NMTO-downfolding technique. The square envi-
ronment of oxygen atoms surrounding Cu splits the d states
of Cu into low-lying closely spaced d3z2−r2 , dxz, dyz, dxy and
a high-lying dx2−y2 state, which is separated from the rest
by a large crystal field splitting of ≈ 2.2 eV. This results
in a half-filled Cu dx2−y2 state of Cu12+ and Cu22+ ions,
strongly admixed with O p states, crossing the Fermi level.
Considering the nominal valences of Cu and oxygen as 2+
and 2−, respectively, the oxidation states of Cs and Al are set
as +1 and +3, respectively. This gives rise to the filled-shell

TABLE I. Calculated magnetic moment at different atomic sites
of Cs2CuAl4O8.

Magnetic moment
Atom (units of μB )

Cu1 0.707
Cu2 0.709
O 0.129
Al 0.005
Cs 0.001

[Ar] configuration for Al and [Xe] configuration for Cs, with
empty Al p and Cs s valence states.

While the non-spin-polarized calculation results in a metal-
lic solution, consideration of spin polarization results in
an insulating solution, with a filled Cu dx2−y2 state in the
majority-spin channel and an empty Cu dx2−y2 state in the
minority-spin channel, as shown in Fig. 2(b). The calculated
magnetic moments at two inequivalent Cu sites, the average
moment at the oxygen site, and those at the Al and Cs sites are
shown in Table I. The magnetic moment at the O site is found
to be unusually large, in contrast to the generally believed
nonmagnetic character of oxygen. This reflects the strong
Cu-O covalency which contributes to the superexchange path
connecting two Cu sites. The magnetic moments at Cs and
Al sites are found to be tiny, indicating their closed-shell con-
figurations and little covalency with Cu. The total magnetic
moment is found to be 1μB /f.u., corresponding to one Cu2+

ion in the formula unit.

C. Magnetic exchanges

In order to identify the dominant effective Cu-Cu interac-
tions present in the compound, the massive downfolding tech-
nique of NMTO is applied. This amounts to the construction
of effective Cu dx2−y2 Wannier functions starting from the full
DFT electronic structure by keeping active only the Cu dx2−y2

degrees of freedom and downfolding the rest of the degrees of
freedom associated with O, Al, Cs, and other Cu d orbitals.
This procedure takes into account the renormalization of Cu
dx2−y2 orbitals due to finite hybridization with other degrees of
freedom, especially with O p. The off-diagonal terms of the
real-space Hamiltonian defined in the basis of the effective Cu
dx2−y2 Wannier function provide estimates of various effective
Cu-Cu hopping interactions.

The dominant effective Cu-Cu hopping interactions within
the Cu chain turned out to consist of two nearest-neighbor
(NN) hoppings (t and t

′
) and two next-nearest-neighbor

(NNN) hoppings (tnnn and t
′
nnn), as shown in Fig. 3(a). The

values of these hopping integrals, as given by the NMTO-
downfolding calculation, are found to be t = 62.6 meV, t

′ =
78.3 meV, tnnn = 126.5 meV, and t

′
nnn = 119.7 meV. The

interchain Cu-Cu hoppings turn out to be significantly smaller
than intrachain hoppings, establishing the one-dimensionality
of the compound. The NN hoppings t and t

′
are mediated

by Cu1 dx2−y2 -O p-Cu2 dx2−y2 and Cu2 dx2−y2 -O p-Cu2
dx2−y2 superexchange paths, while the NNN hoppings tnnn

and t
′
nnn are mediated by Cu2 dx2−y2 -O p-Cu1 dx2−y2 -O p-

Cu2 dx2−y2 and Cu1 dx2−y2 -O p-Cu2 dx2−y2 -O p-Cu2 dx2−y2
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FIG. 3. (a) The dominant effective Cu-Cu hopping interactions,
as given by NMTO-downfolding calculations. The color convention
of atoms is the same as in Fig. 1. (b) Overlap of effective Cu dx2−y2

Wannier functions placed at nearest-neighbor Cu sites in the chain.
(c) The same as in (b), but plotted for Wannier functions placed at
next-nearest-neighbor Cu sites in the chain. Plotted are the orbital
shapes (constant-amplitude surfaces) with lobes with opposite signs
colored differently.

supersuperexchange paths, respectively. It is interesting to
note that the NNN Cu1-Cu2 and Cu2-Cu2 hoppings mediated
by the supersuperexchange path are significantly stronger (by
a factor of about 1.5–2) than the NN Cu1-Cu2 and Cu2-Cu2
hoppings mediated by the nearest-neighbor superexchange
path, although the corresponding Cu-Cu distances are sig-
nificantly longer for NNN (by a factor of about 2) than
that for NN. To have a microscopic understanding of this
curious situation, we consider the overlap of effective Cu
dx2−y2 Wannier functions placed at nearest-neighbor and next-
nearest-neighbor Cu sites, as shown in Figs. 3(b) and 3(c),
respectively. While the central part of these effective Wannier
functions are shaped according to dx2−y2 symmetry, the tails
sitting at the neighboring oxygen sites are shaped according to
O px or O py symmetries, indicating the formation of strong
pdσ antibonds. For Wannier functions placed at neighboring
Cu sites, the overlap of the tails of the two functions at the
common edge-shared oxygen positions is found to be almost
orthogonal, thereby significantly weakening the effective NN
hopping. On the other hand, for the Wannier functions placed
at NNN Cu sites, the tails at O sites of the two functions point
towards each other (marked by arrows in Fig. 3), indicating
stronger overlap of the two functions. The above analysis thus
rationalizes the counterintuitive numerical estimates of the
hoppings.

The NMTO-downfolding analysis which helps us to iden-
tify the nature of the underlying exchange network establishes
that magnetic properties of Cs2CuAl4O8 should be described
by a 1D J -J

′
-Jnnn-J

′
nnn spin model, where J , J

′
, Jnnn, and

J
′
nnn denote the magnetic exchanges corresponding to hop-

ping interactions t, t
′
, tnnn, and t

′
nnn, respectively. Magnetic

exchanges J can be obtained from the knowledge of hopping
interactions t using the superexchange formula J = 4t2/U ,

1 2 3−8 9 10 11 12 13 14 15 16−24 Δ E

FM + + + + + + + + + + +

AFM1 − + + + + + + + + + +

AFM2 + + + + + − + − + + +

AFM3 − − + − − + + + + + +

AFM4 + + + + + − + + + − +

AFM5 + + + + + − + − + − +

0

−09.350

−16.230

−21.790

−24.841

−48.906

FIG. 4. Different magnetic configurations of the Cu ions in the
supercell, used to determine the magnetic interactions. The num-
bering of the Cu ions, as indicated in the table, are as shown in
the diagram. The last column gives the relative GGA+U energies
(in meV).

where U is the on-site Hubbard interaction. However, this
approach, being perturbative in nature, is approximate and
provides information about only the antiferromagnetic con-
tributions. The presence of superexchange paths, involving
Cu-O-Cu bond angles close to 90◦, in the discussed compound
makes the consideration of the ferromagnetic contribution to
magnetic exchange necessary. Therefore in order to obtain a
quantitative measure of magnetic interactions corresponding
to NMTO-downfolding-identified dominant Cu-Cu hoppings,
we perform total energy calculations of different configura-
tions of Cu2+ spins in a supercell of 2 × 2 × 1 dimensions
and extract the magnetic exchanges by mapping the calcu-
lated DFT energies to that of a Heisenberg model (refer to
Fig. 4 for the considered configurations and the energetic). We
consider various independent combinations of four different
energy differences listed in Fig. 4 in order to avoid any
dependency on the chosen spin configurations. Following this,
we obtain J = −2.22 ± 0.20 meV, J

′ = 2.30 ± 0.52 meV,
Jnnn = 7.01 ± 0.39 meV, and J

′
nnn = 6.85 ± 0.13 meV. The

positive (negative) signs of interactions indicate antiferromag-
netic (ferromagnetic) exchange interactions. It is important
to note here the two alternating exchange interactions, J

and J
′
, involve two different nearest-neighbor edge-sharing

interactions, one between Cu1O4 and Cu2O4 and another
between Cu2O4 and Cu2O4. While the average Cu-O bond
lengths involved in the two cases are the same (1.915 Å),
it is the difference in the involved Cu-O-Cu bond angles in
the two cases that is responsible for the alternation. In the
case of the Cu1O4-Cu2O4 interaction (J ) the involved bond
angles are 94◦ and 95◦, while in the case of the Cu2O4-Cu2O4

interaction (J
′
) the involved bond angles are both 96◦. We note

that the involved bond angles in both cases are close to the bor-
derline value of 90◦ for transition from an antiferromagnetic to
ferromagnetic nature of interaction. However, the bond angles
for Cu1O4-Cu2O4 interaction are closer to 90◦ than that for
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the Cu2O4-Cu2O4 interaction. This makes J ferromagnetic
and J

′
antiferromagnetic, although the magnitudes of both

J and J
′

are about a factor of 3–3.5 smaller than the next-
nearest-neighbor interactions, Jnnn and J

′
nnn.

D. Magnetic susceptibility

DFT calculations indicate that both alternation and far-
neighbor interactions are operative in Cs2CuAl4O8. These
calculations further reveal that the leading exchange interac-
tions are the next-nearest-neighbor interactions, rather than
nearest-neighbor interactions, although the NNN interactions
are longer ranged than NN interactions. Additionally, NN in-
teractions are positive as well as negative. This is expected to
provide a strongly interacting system with several competing
interactions, which can be modeled in terms of a S = 1/2
J -J

′
-Jnnn-J

′
nnn spin-chain Hamiltonian, as given by

H = J

N/3∑
i

[S3i−1S3i−2 + S3iS3i−1] + J
′

N/3∑
i

S3iS3i+1

+ Jnnn

N/3∑
i

S3iS3i−2+J
′
nnn

N/3∑
i

[S3i+1S3i−1 + S3iS3i+2],

(1)

where i represents the position of the Cu site in the chain.
Considering a pure alternating chain model together with

a Curie impurity term, the fit to experimentally measured
temperature dependence of susceptibility provided a Landé
g factor value of 2.32 and a value of the strongest exchange
interaction parameter J of 63.7 K [14]. This simple fitting
procedure, however, is unable to provide any microscopic
details, nor does it provide a unique description. In fact, the
insensitivity of susceptibility to the details of the spin model
is well known. An excellent example in this case is that of
(VO)2P2O7, which was originally thought to be a candidate
for a two-leg ladder based on the susceptibility fit [21]; a
later extensive neutron study established it to be an alternating
chain [22]. Thus in order to have a realistic description of the
situation in Cs2CuAl4O8, we consider the spin Hamiltonian,
as given in Eq. (1), and the numerical solution of the problem
is obtained employing the SSE technique of the QMC simula-
tion, carried out on a chain of size L = 96. We set J

′
nnn/Jnnn to

1, following the DFT estimate of 0.98. We note that the DFT-
derived spin Hamiltonian consisting of nearest- and next-
nearest-neighbor AFM interactions, as given in Eq. (1), is
frustrated. As is well known, while QMC provides one of the
powerful numerical approaches, its application to frustrated
quantum spin models becomes severely restricted by the sign
problem. A standard SSE-QMC simulation of this Hamilto-
nian would make the obtained results unreliable, unless one
uses sophisticated tricks like defining a composite-spin system
out of the original single-site basis, which may make the spin
problem milder [23]. We have thus used an approximated
Hamiltonian, which is expected to show a reduced frustration
effect, providing more trustworthy results. This is described
in Appendix A.

The theoretically calculated spin susceptibility can be
related to experimentally measured molar susceptibil-
ity as χ = 0.375S(S + 1)g2 χth/Jmax, where χth = Jmax/

0 50 100 150 200
T (K)

0

0.003

0.006

0.009

0.012

χ 
(e

m
u

 / 
m

o
l)

0 0.05 0.1
kBT/Jnnn

0

0.003

0.006

0.009

χ th

FIG. 5. Temperature dependence of magnetic susceptibility for
the Cs2CuAl4O8 compound. The symbols correspond to experimen-
tal data [14], and the solid line corresponds to QMC-calculated sus-
ceptibility in the first-principles-derived J -J

′
-Jnnn-J

′
nnn spin model

in the presence of a magnetic field of 5 T. The inset shows the plot
of χth without the impurity contribution calculated at zero magnetic
field.

kBT 〈S2
z − 〈Sz〉2〉, with Jmax being the strongest coupling

present. The comparison between the theoretically calculated
susceptibility, after adding the impurity contribution of the
form C/T , and the experimentally measured susceptibility
at a magnetic field of 5 T is shown in Fig. 5. A fair
match between the two was obtained for a Landé g factor
value of g = 2.25, and the most dominant interaction of the
J -J

′
-Jnnn-J

′
nnn model was Jnnn = 78 K and J/Jnnn = 0.33.

Both Jnnn and Jnn/Jnnn are found to be rather close to the
DFT-estimated values of Jnnn = 81 K and J/Jnnn = 0.32.
Repeating the calculation at zero magnetic field and following
the low-temperature behavior of susceptibility appear to sup-
port the presence of a spin gap with a value of 0.04Jnnn, which
amounts to about 3 K (see the inset in Fig. 5). While the use of
the Hamiltonian presented in Appendix A provides reasonable
results at high to moderate temperatures, for confirmation of
the spin gap, which is the rather low temperature behavior,
we rely more on the exact diagonalization and the Lanczos
analysis for finite-size scaling presented in the next section.

III. EXACT DIAGONALIZATION RESULTS ON SPIN GAP

It is worth checking for the possible presence of spin
gap in the discussed compound, with a more rigorous exact
diagonalization study, due to the difficulties of the QMC
simulation in the frustrated system mentioned above. Fur-
thermore, the underlying spin model provides an interesting
scenario, which is worthy of investigation from a model
perspective that combines the alternating chain model with a
competing nearest-neighbor–next-nearest-neighbor model. In
particular, it will be worthwhile to investigate the influence
of the variation of magnetic exchanges on the value of spin
gap. For this purpose, we carry out an exact diagonalization
calculation of a spin chain of length L = 12 within the setup of
the periodic boundary condition. As in QMC calculations, we
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FIG. 6. Lowest-energy gap in the J -J
′

plane for the J -J
′
-Jnnn

chain model for (a) Jnnn = 78 K and (b) Jnnn = 26 K.

assume J
′
nnn = Jnnn. Fixing the value of dominant exchange

Jnnn at 78 K, a value specific to Cs2CuAl4O8, we vary
the value of J and J

′
over a wide range. Specifically, the

NN magnetic exchange J is varied from FM to AFM. The
calculated spin gap as a function of J and J

′
, measured as

the gap between the ground state and lowest excited state, is
shown in Fig. 6(a). We find the solution to be gapped in all
cases and the gap value to be rather insensitive to the variation
of J and J

′
as long as Jnnn � |J |. Interestingly, fixing J/J

′

to the DFT estimate of −0.97 gives a gap value of about 4 K,
somewhat close to the value of 3 K obtained from the QMC
calculation. A pertinent issue in the above conclusion is the
effect of the finite-size lattice. Needless to say, a finite-size
scaling analysis is required to deduce the spin-gap value at
the limit of infinite length. Since the exact diagonalization
calculation turned out to be prohibitively expensive for system
sizes larger than 12, we have carried out further calculations
using a modified Lanczos technique, the results of which are
presented in Appendix B. The finite-size scaling done on the
basis of additional calculations on a larger-sized lattice led
us to conclude that for the realistic values of J , J

′
, and Jnnn

valid for the discussed compound, the spin-gap value is indeed
close to 3–4 K. A dramatic change happens when reducing
the Jnnn value and making it comparable to J . Figure 6(b)
shows the same plot as Fig. 6(a), but for the choice of Jnnn =
26 K. We find this reduces the gap value drastically, with the
maximum of the gap value in the J -J

′
plane being reduced

by a factor of 3 or so. For competing values of |J | and J
′
,

with the ferromagnetic nature of J , it might even be possible
to drive the solution gapless, as seen from the plot presented
in Fig. 6(b).

IV. SUMMARY AND OUTLOOK

To summarize, we have investigated the underlying spin
model of Cs2CuAl4O8, which is a recently synthesized com-
pound with a phase containing both copper and a large
alkali metal that exhibits a zeolitelike framework [13]. The
measured magnetic susceptibility [13] shows the presence
of a broad humplike feature signaling the low dimension-
ality of the underlying spin model [24]. However, in the
absence of any detailed microscopic investigation, the pre-

cise nature of the magnetic model was hard to predict.
Our first-principles calculation reveals an intriguing situa-
tion, which turned out to be a combination of an alternating
spin-chain model and the competing nearest-neighbor–next-
nearest-neighbor model, the latter in a specific limiting case
being the celebrated Majumdar-Ghosh model [12]. Interest-
ingly, the sign of the alternation parameter turns out to be
negative, giving rise to the presence of both ferromagnetic
and antiferromagnetic nearest-neighbor exchanges, making
the model more intricate. The solution of this first-principles
spin model derived using the quantum Monte Carlo tech-
nique provides a reasonable description of the experimentally
measured magnetic susceptibility. The curious nature of the
derived spin model prompts us to investigate the model further
in parameter space. In particular, we explore the ground-
state behavior of the model using an exact diagonalization
technique in the parameter space of the alternation and the
ratio of NNN to NN magnetic exchange. Our study shows a
quantum phase transition from a gapful to gapless situation
may possibly be triggered by tuning the value of the Jnnn

interaction along with competing J and J
′
. Experimentally,

this may be achieved through biaxial straining by putting the
thin film of the compound on a piezoelectric substrate, which
along with bond lengths is also expected to tune the bond
angles. We hope that our study will stimulate further activity
on this exciting class of spin-chain systems with an interplay
of alternation and far-neighbor interactions.
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APPENDIX A: SPIN HAMILTONIAN FOR THE QMC
CALCULATION

Setting Jnnn = J
′
nnn and rewriting the spin-spin interaction

term, as a combination of z-z and spin-raising/-lowering inter-
actions, the spin Hamiltonian, as given in Eq. (1), becomes

H = J

N/3∑
i

[{
Sz

3i−1S
z
3i−2 + 1

2
(S+

3i−1S
−
3i−2 + H.c.)

}

+
{
Sz

3iS
z
3i−1 + 1

2
(S+

3iS
−
3i−1 + H.c.)

}]

+ J
′

N/3∑
i

{
Sz

3iS
z
3i+1 + 1

2
(S+

3iS
−
3i+1 + H.c.)

}

+ Jnnn

N∑
i

{
Sz

i S
z
i+2 + 1

2
(S+

i S−
i+2 + H.c.)

}
.
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Our spin-chain model with both nearest-neighbor and next-
nearest-neighbor AFM interactions is bound to give rise to
frustration. While the contribution from the z-z term can be
easily accounted for through a shift in energy, the problematic
terms are the raising/lowering parts, causing negative prob-
ability weights in the SSE-QMC algorithm. In order to cir-
cumvent this, we have thus used the following approximated
version of the spin Hamiltonian in our QMC simulation:

H = J

N/3∑
i

[{
Sz

3i−1S
z
3i−2 + 1

2
(S+

3i−1S
−
3i−2 + H.c.)

}

+
{
Sz

3iS
z
3i−1 + 1

2
(S+

3iS
−
3i−1 + H.c.)

}]
+ J

′
N/3∑

i

Sz
3iS

z
3i+1

+ Jnnn

N∑
i

{
Sz

i S
z
i+2 + 1

2
(S+

i S−
i+2 + H.c.)

}
,

including only the Ising contribution for the J
′

interaction,
with the J

′
interaction being much weaker than the dominant

Jnnn interaction.

APPENDIX B: FINITE-SIZE SCALING

In order to ascertain the spin-gap values of the alternating-
chain compound, one needs to carry out finite-size scaling
analysis. For this purpose, we carried out additional calcula-
tions using a modified Lanczos technique [25]. Within this
Lanczos method, we utilized a Gram-Schmidt orthonormal-
ization technique which allowed us to calculate the lowest-
energy gaps of the system. We cross-checked the validity of
the Lanczos results and the exact diagonalization results for
small system sizes.

Our finite-size scaling calculations carried out within the
setup of periodic boundary conditions should exhibit odd-
even oscillation which, however, should not affect the results
at the asymptotic limit. In order to avoid such oscillation
and to minimize the computational effort, we have restricted
ourselves to the choice of only even-sized chains. Due to
the computational expenses involved, we have also restricted
ourselves to the choice of a few representative cases and a few
representative sizes. We report here the results for the cases
with J = −J

′ = 26 K, Jnnn = 0 K; J = J
′ = 26 K, Jnnn =

0 K; J = −J
′ = 26 K, Jnnn = 78 K; and J = J

′ = 26 K,
Jnnn = 78 K. We chose the system size L to be an integral
multiple of the periodicity of the spin lattice. It is important
to note that the periodicity can differ depending on whether
Jnnn is zero or nonzero and whether J and J

′
are the same or

different, as elaborated below.
(i) For Jnnn = 0, J = −J

′
, the problem reduces to a spin

chain with only nearest-neighbor interactions with the peri-
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)

FIG. 7. Spin-gap values plotted as a function of inverse system
size (1/L). The data points shown as triangles were obtained from
Lanczos calculations, while the data points shown as circles for small
system sizes were obtained from exact diagonalization. The solid
line is the fit through the data points to estimate the spin-gap value
extrapolated to infinite system size.

odicity of the spin system being three lattice spacings. Thus
preserving this symmetry of the Hamiltonian, one should use
L values that are a multiple of 3. As we have considered only
even lattice sizes, we considered L values of 6, 12, 18.

(ii) For Jnnn = 0, J = J
′
, the periodicity of the spin system

is two lattice spacings. So any multiple of 2 can be used for L.
In order for this case to be comparable with other considered
cases, L values of 8, 12, 16, and 18 were chosen.

(iii) For a nonzero value of Jnnn (78 K in our case), J = J
′
,

the periodicity is 4. The system sizes chosen are thus 8, 12,
and 16.

(iv) For a nonzero value of Jnnn and J = −J
′
, the period-

icity of the spin-lattice becomes 12. The system sizes chosen
are thus 12 and 24.

The results are summarized in Fig. 7, where the calculated
spin-gap values using the Lanczos technique as a function
of inverse system size (1/L) have been plotted. The exact
diagonalization results for small system sizes are also shown,
which are found to show excellent agreement with values
obtained from the Lanczos technique. The spin-gap values
extrapolated to infinite size give rise to vanishingly small
values (� 0.1 K) for Jnnn = 0 K cases, while they show
finite values (� 1 K) for Jnnn = 78 K cases. Specifically, we
find that for J = −J

′ = 26 K, Jnnn = 78 K, the extrapolated
spin gap is 3.25 K, thereby providing more confidence in the
presence of spin gap in the discussed compound.
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