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We have studied long-range orders of electric quadrupole moments described by an effective pseudospin- 1
2

Hamiltonian representing pyrochlore magnets with non-Kramers ions under [111] magnetic field, in relevance to
Tb2Ti2O7. Order parameters and phase transitions of this frustrated system are investigated using classical Monte
Carlo simulations. In zero field, the model undergoes a first-order phase transition from a paramagnetic state to
an ordered state with an antiparallel arrangement of pseudospins. This pseudospin order is characterized by the
wave vector k = 0 and is selected by an energetic or an order-by-disorder mechanism from degenerate k =
(h, h, h) mean-field orders. Under [111] magnetic field this three-dimensional quadrupole order is transformed
to a quasi-two-dimensional quadrupole order on each kagome lattice separated by field-induced ferromagnetic
triangular lattices. We discuss the implication of the simulation results with respect to experimental data of
Tb2Ti2O7.
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I. INTRODUCTION

Magnetic systems with geometric frustration have been
studied experimentally and theoretically for decades [1]. In
particular, systems on networks of triangles or tetrahedra, such
as triangular [2], kagome [3,4], and pyrochlore [5] lattices,
show interesting behavior due to the frustration. Among them
classical spin ice on the pyrochlore lattice [6] has been in-
vestigated in depth from viewpoints of the finite zero-point
entropy of water ice [7], field-induced two-dimensional (2D)
kagome ice [8–10], emergent magnetic monopoles [11,12],
topological sectors [13], etc. In recent years quantum spin
liquid (QSL) states [14,15], where conventional long-range
orders (LROs) are suppressed by quantum fluctuations, are
being intensively studied [16]. A QSL state is theoretically
predicted for spin-ice-like systems [17–20], where transverse
spin interactions transform the classical spin ice into a QSL.

Among frustrated magnetic pyrochlore oxides [5]
Tb2+xTi2−xO7+y (TTO) has attracted much attention as a
QSL candidate, because no conventional magnetic orders
have been found [21,22], and a quantum version of spin ice
was theoretically proposed [20,23]. Recently we showed
that the putative QSL state of TTO is limited in a range of
the small off-stoichiometry parameter x < xc � −0.0025
[22,24,25], while in the other range xc < x TTO undergoes
a phase transition most likely to an electric multipolar (or
quadrupolar) state (T < Tc) [26] which is described by an
effective pseudospin- 1

2 Hamiltonian for non-Kramers ions
[27]. The estimated parameter set of this Hamiltonian [26] is
close to the theoretical phase boundary between the electric
quadrupolar state and a U(1) QSL state [19,27], which is
hence a theoretical QSL candidate for TTO.

In our previous investigations using a TTO crystal sample
with Tc = 0.53 K [26,28,29], specific heat and magnetization
under [111] and [100] magnetic fields were measured and

finite-temperature phase transitions were semiquantitatively
analyzed using classical Monte Carlo (CMC) simulation
techniques. Despite the quantum nature of the pseudospin- 1

2
Hamiltonian [19,27], the classical treatment provided us good
arguments that TTO can be described by the Hamiltonian
[26]. Although quantum (e.g., [30]) and classical (e.g., [31])
properties of these types of pseudospin- 1

2 Hamiltonians for
non-Kramers and Kramers pyrochlore magnets are of interest,
they have not been fully investigated [32].

In this paper we present detailed studies of CMC simu-
lations to complement our previous study of the quadrupole
orders in TTO [26]. In particular, order parameters and finite-
temperature phase transitions of the quadrupolar states remain
to be elucidated from a theoretical standpoint [26]. We have
shown that under zero and low [111] fields the quadrupole
ordered states have three-dimensional (3D) and 2D characters,
respectively. The nature of these phase transitions in zero and
low fields is shown to be first order and second order with
the 2D Ising universality class, respectively. The implication
of the CMC simulation results is discussed with respect to
experimental data of TTO.

II. EFFECTIVE PSEUDOSPIN- 1
2 HAMILTONIAN

AND CMC SIMULATION

The minimal pseudospin- 1
2 Hamiltonian for TTO [26,33]

is described by

H = Jnn,eff

∑
〈r,r ′〉

σ z
r σ z

r ′ − Jnn,eff H ·
∑

r

zrσ
z
r

+ Jnn,eff

∑
〈r,r ′〉

[2δ(σ+
r σ−

r ′ + σ−
r σ+

r ′ )

+ 2q(e2iφr,r′ σ+
r σ+

r ′ + H.c.)], (1)
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where the first and second terms are magnetic interactions:
nearest-neighbor (NN) superexchange interaction of magnetic
moment operators σ z

r (the Pauli matrix) acting on the crystal
field (CF) ground state doublet at a site r , and Zeeman
energy under dimensionless external magnetic field H . These
magnetic terms have been used as the model of spin ice with
the effective coupling constant Jnn,eff (>0) [34]. The third
term of Eq. (1) represents NN superexchange interaction of
quadrupole moment operators σ±

r = (σx
r ± iσ

y
r )/2 [27]. This

term induces quantum fluctuations to the classical spin ice
for the nonzero dimensionless parameters δ and q. Other
detailed definitions of Eq. (1), the lattice site, its local axes,
etc. [26,33], are described in the Appendix.

In Eq. (1) we omit the dipolar interaction included in
Eq. (1) of Ref. [26] in order to perform CMC simulations with
larger system sizes. In this simplification, the typical param-
eters of the Hamiltonian for TTO are Jnn,eff = 1.48 K, δ = 0,
and q = 0.57 [35]. In zero field, the classical ground state of
Eq. (1) with these parameters is LRO of xy components of
the pseudospins (quadrupole order), which is denoted by the
planar antiferropseudospin (PAF) phase (Fig. 7 in Ref. [27]).

By treating the pseudospin σ r as a classical unit vector
[36], we carried out CMC simulations of the classical spin
model described by Eq. (1). Since critical behaviors of finite-
temperature phase transitions are expected to be the same for
classical and quantum models [31,37], CMC simulations can
be used to shed light on experimental data. For present CMC
simulations we used parameter sets in a range relevant to
TTO: −0.1 � δ � 0.1 and 0.2 � q � 0.7 [26], which encom-
passes the PAF and classical spin ice states [27]. These sim-
ulations were performed typically with ∼4 × 106 MC steps
per spin and for periodic clusters with N = 12L × L × L′ �
629 856 spins, where L and L′ stand for linear dimensions
perpendicular and parallel to a [111] direction, respectively.
The magnetic field was applied parallel to this [111] direction,
along which there are 3L′ triangular layers and 3L′ kagome
layers within the periodic boundary (Fig. 1). We used the
Metropolis single spin-flip updates [36] and the exchange
Monte Carlo method [38]. The CMC simulation software [39]
is based on an example of a Heisenberg model distributed by
the ALPS project [40,41]. We note that the parameter set (δ, q)
had the substantial experimental uncertainty in Ref. [26],
which is shown by the elongated region enclosed by the dotted
line in Fig. 1(a) of Ref. [26]. This uncertainty was concluded,
because CMC simulations with small δ �= 0 show very similar
results to those with δ = 0 by adjusting the parameter q [26].

III. ORDER PARAMETERS

Long-range orders of magnetic dipole and electric
quadrupole moments expressed by pseudospin LRO
(〈σx

r 〉, 〈σy
r 〉, 〈σ z

r 〉) were discussed using a classical mean-field
analysis in zero field [27]. It was shown that the PAF
ordering has the highest mean-field critical temperature Tc

with degeneracy lines along [111] directions [27], more
specifically, pseudospin LRO of nonzero 〈σx

r 〉 and 〈σy
r 〉

with modulation wave vectors k = (h, h, h) (|h| � 1
2 ). We

summarize details of these classical mean-field LROs in the
Appendix. In addition, it was suggested [27] that orders with
the wave vector k = 0 can be selected from the infinitely

(a) 3D PAF

(b) 2D PAF
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FIG. 1. (a) 3D PAF [Eqs. (4) and (5)] and (b) 2D PAF [Eqs. (10)
and (3)] electric quadrupole orders are schematically illustrated
by deformation of the f -electron change density from that of the
paramagnetic phase [26,33].

degenerate mean-field PAF orders by an energetic [42] or an
order-by-disorder mechanism.

The mean-field PAF order [27] with a wave vector k =
(h, h, h) is expressed by a pseudospin LRO〈

σ tn+di

〉 ∝ v2D
i eik·(tn+di ) (2)

with

v2D
i =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0 (i = 0),
√

3
2 xi + 1

2 yi (i = 1),

−
√

3
2 xi + 1

2 yi (i = 2),

− yi (i = 3),

(3)

where xi and yi stand for local axes at a crystallographic site
di in the unit cell (Table I), and tn is an FCC translation
vector. We note that these mean-field PAF orders have zero
amplitude on triangular lattice layers (i = 0 sites in Fig. 1),
which implies that the PAF order is essentially 2D LRO on
each kagome lattice layer (Appendix).
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A. Order parameter under zero magnetic field

The onefold degeneracy of the mean-field PAF order with
a wave vector k = (h, h, h) (h > 0) is increased to threefold
in the limit of h → 0. These three pseudospin LRO structures
with k = 0 are expressed by (Appendix)〈

σ tn+di

〉 ∝ v
(j )
i , (4)

where j = 0, 1, 2 with

v
(0)
i =

{
yi (i = 1, 2),

− yi (i = 0, 3),
(5)

v
(1)
i =

{√
3

2 xi − 1
2 yi (i = 1, 3),

−
√

3
2 xi + 1

2 yi (i = 0, 2),
(6)

and

v
(2)
i =

{√
3

2 xi + 1
2 yi (i = 0, 1),

−
√

3
2 xi − 1

2 yi (i = 2, 3).
(7)

Under zero field, these 3D PAF orders can be stabilized en-
ergetically or by an order-by-disorder mechanism [27], which
will be shown by CMC simulations. Their order parameters
may be decomposed into

m(j ) =
∑

n,i σ tn+di
· v

(j )
i∑

n,i 1
, (8)

where the summation runs over all sites tn + di . In
the limit of T → 0, (〈m(0)〉, 〈m(1)〉, 〈m(2)〉) becomes
(±1, 0, 0), (0,±1, 0), or (0, 0,±1). In CMC simulations
we measure the average of

m3DPAF =
√

[m(0)]2 + [m(1)]2 + [m(2)]2, (9)

which represents the amplitude of the 3D PAF ordering.
In Fig. 1(a) we schematically illustrate the electric

quadrupole order expressed by the pseudospin structure
[Eqs. (4) and (5)]. We note that this “3D PAF” state is
expressed by the “T2g” state in Fig. 2(a) of Ref. [32], where a
different notation is used: Jzz = 4Jnn,eff, J±/Jzz = −δ/2, and
J±±/Jzz = q/2; the local xi and yi are rotated by 120 degrees
from our definition.

B. Order parameter under [111] magnetic field

By taking a linear combination of Eq. (2) with various
wave vectors k = (h, h, h) one can construct a 2D PAF pseu-
dospin LRO which is nonzero only on an �th kagome lattice
layer (� = 1, 2, . . . )〈

σ tn+di

〉 ∝ v2D
i δ�,k̂·(tn+di ), (10)

where k̂ is a vector parallel to the [111] direction such that
k̂ · (tn + di ) = 1, 2, . . . on the kagome layers. In Fig. 1(b)
we schematically illustrate the electric quadrupole order ex-
pressed by the pseudospin structure Eq. (10).

Since mean fields on the triangular layers (i = 0 sites)
vanish for the 2D PAF order, magnetic dipole moments on
the triangular layers, 〈σ z

tn+d0
〉z0, can be easily induced by

applying [111] magnetic field. When this magnetized state is
stabilized against the 3D PAF state by low [111] magnetic

fields, one can expect that the system behaves as a 2D PAF
state on each kagome layer, which is decoupled by field-
induced ferromagnetic triangular layers.

Since v2D
i [Eq. (3)] in Eq. (10) is expressed by v2D

i =
1
2 [v(0)

i + v
(1)
i + v

(2)
i ], we can define an order parameter of the

2D PAF order on a kagome layer as

m2DPAF = 2
3 (m(0)′ + m(1)′ + m(2)′) (11)

with

m(j )′ =
∑

n,i σ tn+di
· v

(j )
i∑

n,i 1
, (12)

where the summation runs over sites on a single kagome layer
and an adjacent triangular layer. Under low [111] fields they
become 〈m(0)′〉 = 〈m(1)′〉 = 〈m(2)′〉 � ± 1

2 and 〈m2DPAF〉 �
±1 at low temperatures. We will show that m2DPAF is the order
parameter under low [111] fields by CMC simulations.

IV. RESULTS OF CMC SIMULATIONS

A. Zero magnetic field

Under zero magnetic field, it was shown that the classical
ground state of the model for small δ changes from the
classical spin ice state [q < qc = (1 − δ)/2] to the PAF state
(q > qc) [27]. We performed CMC simulations using several
parameter sets of the effective Hamiltonian to clarify whether
the energetic or the order-by-disorder selection mechanism
stabilizes the 3D PAF order. The simulations were performed
with a lattice size of L = 12 and L′ = 4 (12×12×4). In Fig. 2
we plot the 3D PAF order parameter 〈m3DPAF〉 and the specific
heat C = (〈E2〉 − 〈E〉2)/(NT 2), where E is the internal en-
ergy, as a function of temperature for δ = 0,±0.1 and various
q values under zero field. One can see from Fig. 2(a) that
〈m3DPAF〉 discontinuously increases below a critical tempera-
ture Tc for q � qc. This implies that the phase transition is first
order and that the k = 0 order (3D PAF) occurs as expected.
At the transition temperatures the specific heat [Fig. 2(b)]
shows very sharp peaks. The CMC simulations with nonzero
δ = 0.1 [Figs. 2(c) and 2(d)] and δ = −0.1 [Figs. 2(e) and
2(f)] show parallel results with those of δ = 0. This confirms
previous CMC simulations [26] and is consistent with a mean-
field result (Appendix) that small δ only changes Tc [the
largest eigenvalue Eq. (A8)] as Tc(q, δ) = Tc(q, δ = 0)[1 +
δ/(2q )], without affecting eigenvectors Eqs. (A9) and (A10).

Further CMC simulations with (δ, q ) = (0, 0.7) were per-
formed to study size dependence of the 3D PAF order parame-
ter. These results are shown in Fig. 3, which obviously demon-
strates that the phase transition is first order. In Fig. 4 three
curves of Tc are plotted as a function of q for δ = −0.1, 0.0,
and 0.1. It discontinuously decreases to Tc = 0 at the criti-
cal value qc = −0.45, 0.5, and 0.55 for δ = −0.1, 0.0, and
0.1, respectively. This agrees with the first-order nature of
the quantum phase transition, which was investigated by a
quantum treatment [19]. In the range q < qc the specific
heat shows only a broad peak at about T/Jnn,eff ∼ 0.2, which
can be interpreted as the behavior of the classical spin ice
model [27]. We note that this peak temperature is significantly
lower (about 1/4) than that of the quantum MC simulation
of the same model with parameters q = 0 and δ �= 0 [43].
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FIG. 2. Temperature dependence of 3D PAF order parameter
〈m3DPAF〉 and specific heat C under zero field calculated by CMC
simulations for various q values. Shown in (a), (b) are results
with δ = 0; (c), (d) and (e), (f) are results with δ = 0.1 and −0.1,
respectively.

This implies that the temperature scale of the present CMC
simulations is considerably reduced. Thereby one has to take
account of this fact when comparing the CMC simulations
with experimental data.

B. Under [111] magnetic field

To study finite-temperature phase transitions under [111]
magnetic fields, we performed CMC simulations with a
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FIG. 3. Size dependence of 3D PAF order parameter 〈m3DPAF〉 as
a function of temperature.
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FIG. 4. T -q phase diagram determined by CMC simulations
shown in Fig. 2. Red and blue thick lines are Tc and broad peak
of specific heat, respectively, obtained by simulations with δ = 0.
Dashed and dotted thin lines are those with δ = ±0.1.

parameter set (δ, q ) = (0, 0.7) under various fields H .
Figure 5 shows an approximate H -T phase diagram obtained
from peaks of the specific heat and jumps of the order param-
eter 〈m3DPAF〉, which are calculated by simulations with lattice
sizes 12×12×4 and/or 6×6×2. From the high-temperature
paramagnetic phase the system undergoes a phase transition
to one of the two quadrupole-ordered phases denoted by 3D
PAF and 2D PAF, which will be discussed later.

These 3D and 2D PAF phases are separated by a phase
transition line, a crossover line, or multiple phase transitions
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FIG. 5. H -T phase diagram under [111] magnetic field. There
are the paramagnetic state and two LRO states of electric quadrupole
moments denoted by 3D PAF and 2D PAF. Inset shows H depen-
dence of specific heat C and 2D PAF order parameter 〈|m2DPAF|〉 at
T/Jnn,eff = 0.38, which are calculated by simulations with lattice size
12×12×4.
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(the dashed curve in Fig. 5). These three possibilities could not
be clarified by the present simulation techniques, because the
single-spin-flip simulations suffer from a freezing problem at
low temperatures. We note that the boundary line between 3D
PAF and 2D PAF states depicted by the dashed curve in Fig. 5
corresponds to the low-field kink of the M-H curve shown
in Fig. 5(b) of Ref. [26]. Simulated M (H, T ) data suggest
that there may be intermediate magnetization plateau states
between zero field and the low-field kink.

Figure 6 shows the temperature dependence of the specific
heat C, the 3D PAF order parameter 〈m3DPAF〉, and the 2D
PAF order parameter 〈|m2DPAF|〉 under three typical magnetic
fields: H = 0.1, 0.4, and 3. At the low field H = 0.1 it
is evident that the system shows the same first-order phase
transition as zero field, and that LRO is the 3D PAF order.
On the other hand, at the high field H = 3, the size de-
pendence of C(T ) and 〈|m2DPAF|〉(T ) [Figs. 6(a) and 6(c)]
show typical behaviors of a second-order phase transition.
These indicate that 〈|m2DPAF|〉 is the order parameter of the
second-order phase transition, in agreement with the initial ex-
pectation. At the intermediate field H = 0.4 the temperature
dependence of the specific heat [Fig. 6(a)] implies that two
successive phase transitions occur. At the higher Tc1/Jnn,eff �
0.35, C(T ) and 〈|m2DPAF|〉(T ) [Figs. 6(a) and 6(c)] show that
the phase transition is the same kind as that for H = 3. On
the other hand, characteristics of the lower Tc2/Jnn,eff � 0.28
are less clear owing to the freezing problem. The simulated
C(T ), 〈m3DPAF〉(T ), and 〈|m2DPAF|〉(T ) (Fig. 6) suggest that
Tc2 is a continuous phase transition between 2D PAF and
3D PAF states, which could not be further investigated using
the present techniques. In addition to the constant H plots
(Fig. 6), the magnetic field dependence of C and 〈|m2DPAF|〉
with constant T = 0.38Jnn,eff is shown in the inset of Fig. 5.
At this temperature reentrant phase transitions occur at lower
and upper critical fields, Hc1 � 0.7 and Hc2 � 5.2.

Since the 2D PAF order breaks a Z2 symmetry of m2DPAF,
one can naturally expect that its second-order phase transition
at Tc belongs to the universality class of the 2D Ising model.
To confirm this universality we performed standard finite-
size scaling analyses [36] on CMC simulation data taken
under a typical [111] field H = 1.5. These simulations were
carried out on clusters with lattice sizes L × L × (L/3) with
L = 18, 24, 36, and 54. Figure 7 shows the Binder cumulant
U4 = 〈m4

2DPAF〉/〈m2
2DPAF〉2 as a function of temperature. These

curves with different lattice sizes cross at a single point, which
enables us to determine the critical temperature Tc/Jnn,eff =
0.4088(2).

The theory of the finite-size scaling indicates that the
Binder cumulant, the order parameter 〈|m2DPAF|〉, and the sus-
ceptibility χ2DPAF = N2D(〈m2

2DPAF〉 − 〈|m2DPAF|〉2)/T show
the scaling forms

U4 = f (L1/ν (T − Tc)/Tc),

〈|m2DPAF|〉 = L−β/νg(L1/ν (T − Tc)/Tc), (13)

χ2DPAF = L2−ηh(L1/ν (T − Tc)/Tc),

where f, g, and h are universal functions [36]. In Fig. 8 we
show these finite-size scaling plots using the exact critical
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FIG. 6. Temperature and size dependence of (a) specific heat
C, (b) 3D PAF order parameter 〈m3DPAF〉, and (c) 2D PAF order
parameter 〈|m2DPAF|〉 calculated by CMC simulations under three
typical [111] fields H = 0.1, 0.4, and 3.

exponents ν = 1, β = 1/8, and η = 1/4 for the 2D Ising
model. These figures show excellent data collapse, which
proves the finite-size scaling relations of the 2D Ising model.
Therefore we conclude that the second-order phase transition
of the 2D PAF state belongs to the 2D Ising universality class.

To complement the argument of the 2D Ising universality
class we calculated squares of the Fourier transform of m2DPAF

[Eq. (11)], which is defined on each �th kagome lattice layer,
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FIG. 7. Temperature dependence of the Binder cumulant
〈m4

2DPAF〉/〈m2
2DPAF〉2 close to Tc for lattice sizes L = 18, 24, 36, and

54 under [111] field H = 1.5.

with wave vectors k = (h, h, h) (0 � h � 1),

|m2DPAF(k)|2 =
∣∣∣∣∣
∑

�

[m2DPAF]� eik·r
∣∣∣∣∣
2

, (14)

where r is a lattice position on the �th kagome lattice layer.
If m2DPAF has really 2D character, simulated averages of
|m2DPAF(k)|2 do not depend on h. In terms of a scattering
experiment (assuming that the quadrupole moment would be
visible), 〈|m2DPAF(k)|2〉 is constant between two � points
k = (0, 0, 0) and (1,1,1). In Fig. 9 we show CMC averages
〈|m2DPAF(k)|2〉 close to Tc, which were computed with a lat-
tice size 12×12×4. These curves show independence of h and
thereby the two-dimensionality of the order parameter. We
note that the freezing problem of the present CMC techniques
prohibited us from performing simulations with larger system
sizes and from obtaining the averages at low temperatures
(T � Tc). This difficulty is seen as the large error estimation
of the low-temperature data (T � Tc) shown in Fig. 9. Despite
this large error, we also note that one may see slight wave
vector dependence for the curve at T = 0.40Jnn,eff < Tc. This
may suggest that the 2D PAF order is weakly modulated along
the [111] direction at low temperatures.

V. DISCUSSION

In previous investigations [26,28] we showed that the
simple pseudospin- 1

2 Hamiltonian described by Eq. (1) qual-
itatively and semiquantitatively accounts for most of the ex-
perimental observations of the TTO sample with Tc > 0 by
selecting the appropriate model parameters. The agreement
between experiments and theories was surprisingly better than
our initial expectation. This means that the model Hamiltonian
essentially explains the experimentally observed properties of
TTO, although there remain problems of oversimplifications
caused by the classical approximations for the quantum model
and by neglecting effects of higher-energy CF states [32] and
Jahn-Teller effects due to the phonon mechanism [44].

We would like to make a few comments on the the present
CMC simulation results in relation to experimental obser-
vations. A first comment is on the natural question, how
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H = 1.5

(a)

FIG. 8. Finite-size scaling of (a) the Binder cumulant
〈m4

2DPAF〉/〈m2
2DPAF〉2, (b) 2D PAF order parameter 〈|m2DPAF|〉,

and (c) 2D PAF susceptibility χ2DPAF.

does the off-stoichiometry parameter of Tb2+xTi2−xO7+y, x

(and/or y), function as the tuning parameter between QSL
and quadrupolar states? Our experiments using both poly-
and single-crystalline samples showed that xc � −0.0025 is
the quantum critical point [24,25]. They also showed that by
approaching xc from the quadrupolar side x > xc, the large
specific-heat peak observed in C(T ) data (e.g., Fig. 4(a) in
Ref. [26]) abruptly becomes smaller peaks as shown in Fig. 2
of Ref. [24] and Fig. 4(a) of Ref. [25]. By assuming that
the change of x is equivalent to that of q, the experimen-
tal behavior of C(T ) is approximately reproduced by the
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FIG. 9. Wave vector dependence of 〈|m2DPAF(k)|〉2 along [111]
direction above and below Tc computed by CMC simulations with
lattice size 12×12×4. Size of symbol represents estimated error of
data.

simulated C(T ) shown in Fig. 2(b). Therefore an answer to
the question may be that x tunes the ratio of the magni-
tude of the quadrupole interaction to that of the magnetic
interaction.

A second comment is on susceptibilities under zero
field. We calculated the magnetic susceptibility χ‖[111] =
N (〈m2

‖[111]〉 − 〈|m‖[111]|〉2)/T using the same parameter sets
as those of Fig. 2(a). These results are shown in Fig. 10(a).
The curve with q = 0.55 bears resemblance to the experi-
mental data of the TTO sample with Tc = 0.53 K (Fig. 2(a)
of Ref. [26]). If we take account of the reduction of the
temperature scale for the CMC simulation the resemblance
becomes more striking. This also can justify the interpre-
tation of TTO using the model Hamiltonian and the CMC
simulation. We also calculated the electric quadrupole sus-
ceptibility corresponding to the 3D PAF order χm3DPAF =
N (〈m2

3DPAF〉 − 〈|m3DPAF|〉2)/T . The temperature dependence
of this quadrupole susceptibility is shown in Fig. 10(b). The
large increase of χm3DPAF close to Tc can be measured by
ultrasonic experiments of TTO, for example, extending mea-
surements of Ref. [45] down to 0.3 K.

A third comment is on the first-order nature of the zero-
field phase transition of the CMC simulations. This does not
agree with experimental C(T ), which shows a second-order
behavior [26]. In addition, the second-order phase transition
under [111] field seems to be somewhat smeared out for the
experimental data (Figs. 4(a) and 4(b) of Ref. [26]) compared
to the CMC simulations. These disagreements remain to be
explained, e.g., by adding a higher-order term in the Hamilto-
nian [46], by a disorder effect [47], or possibly by a quantum
effect.

VI. CONCLUSIONS

We have studied phase transitions of pyrochlore magnets
with non-Kramers ions under [111] magnetic field represented
by the effective pseudospin- 1

2 Hamiltonian [27] from a view-
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FIG. 10. Temperature dependence of (a) magnetic susceptibility
parallel to [111] direction χ‖[111] and (b) susceptibility of m3DPAF

under zero field calculated by CMC simulations.

point of relevance to electric quadrupolar states of Tb2Ti2O7

[26]. Order parameters and finite-temperature phase transi-
tions of this frustrated model system are investigated using
classical Monte Carlo simulations. In zero field, the model
undergoes a first-order phase transition from the paramagnetic
state to a 3D quadrupolar state with an antiparallel arrange-
ment of pseudospins. This 3D order is selected energetically
or by an order-by-disorder mechanism from degenerate k =
(h, h, h) mean-field orders. Under [111] magnetic field this
3D state is transformed to a 2D quadrupolar state on each
kagome lattice, which is separated by field-induced ferromag-
netic triangular lattices. This 2D system undergoes a second-
order phase transition belonging to the 2D Ising universality
class.
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APPENDIX: DEFINITIONS OF HAMILTONIAN
AND CLASSICAL MEAN-FIELD THEORY

Detailed definitions of the Hamiltonian and pseudospin
orders within a classical mean-field theory are summarized in
this section. The CF ground state doublet of TTO [33] can be
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TABLE I. Coordinates of four crystallographic sites d i and their
local axes xi , yi , and zi [33]. These coordinates are defined using
(global) cubic XYZ axes shown in Fig. 1(a). The four sites d i are
illustrated by vertices with light blue numbers (i = 0, 1, 2, 3) of a
tetrahedron in Fig. 1(a).

i d i xi yi zi

0 1
4 (0, 0, 0) 1√

6
(1, 1, −2) 1√

2
(−1, 1, 0) 1√

3
(1, 1, 1)

1 1
4 (0, 1, 1) 1√

6
(1, −1, 2) 1√

2
(−1, −1, 0) 1√

3
(1, −1, −1)

2 1
4 (1, 0, 1) 1√

6
(−1, 1, 2) 1√

2
(1, 1, 0) 1√

3
(−1, 1, −1)

3 1
4 (1, 1, 0) 1√

6
(−1, −1, −2) 1√

2
(1, −1, 0) 1√

3
(−1,−1, 1)

written as

|±1〉D = A|±4〉 ∓ B|±1〉 + C|∓2〉 ± D|∓5〉, (A1)

where |m〉 stands for the |J = 6,m〉 state within a JLS mul-
tiplet [48]. Using CF parameters of Ref. [49] the coefficients
of Eq. (A1) are A = 0.9581, B = 0.1284, C = 0.1210, D =
0.2256. Magnetic-dipole and electric-quadrupole moment op-
erators [50] within |±1〉D are proportional to the Pauli ma-
trices σα (α = x, y, z) and the unit matrix [33]: magnetic
moment operators

Jx = Jy = 0, Jz = (4A2 + B2 − 2C2 − 5D2)σ z, (A2)

and quadrupole moment operators

1

2

[
3J 2

z − J (J + 1)
] = 3A2 − 39

2
B2 − 15C2 + 33

2
D2,

√
3

2

[
J 2

x − J 2
y

] =
(

−21
√

3

2
B2 + 9

√
10AC

)
σx,

√
3

2
[JxJy + JyJx] =

(
−21

√
3

2
B2 + 9

√
10AC

)
σy,

√
3

2
[JzJx + JxJz] =

(
−3

√
30BC − 9

√
33

2
AD

)
σx,

√
3

2
[JyJz + JzJy] =

(
3
√

30BC + 9

√
33

2
AD

)
σy. (A3)

The operators σα
r of Eq. (1) act on |±1〉D at each pyrochlore

lattice site r = tn + di , where tn is an FCC translation vector

and di (i = 0, 1, 2, 3) are four crystallographic sites in the
unit cell. Coordinates of these sites di and their local axes
xi , yi , and zi are listed in Table I. The phases φr,r ′ of
Eq. (1) are φtn+di ,tn′+di′ = 0, −2π/3, and 2π/3 for site pairs
of (i, i ′) = (0, 3), (1, 2), (i, i ′) = (0, 1), (2, 3), and (i, i ′) =
(0, 2), (1, 3), respectively, where the notation of Ref. [27] is
used.

Possible pseudospin LROs of Eq. (1) under zero magnetic
field were discussed in Ref. [27]. We summarize a few results
of the classical mean-field theory [27] to facilitate gaining
insight of order parameters for the PAF phase (Fig. 7 in
Ref. [27]; q > qc). The effective Hamiltonian of Eq. (1)
under zero magnetic field can be expressed using the Fourier
transform as

H ∝ −Jnn,eff

∑
k,i,i ′,α,β

σ α
k,iJi,α;i ′,β (k)σβ

k,i ′ , (A4)

where the summation runs over wave vectors k in the
first Brillouin zone, i, i ′ = 0, 1, 2, 3 and α, β = x, y, z, and
σα

tn+di
= ∑

k σα
k,ie

ik·(tn+di ). The matrix Ji,α;i ′,β (k) stands for
the Fourier transform of the superexchange coupling constants
Jn,i,α;n′,i ′,β between σα

tn+di
and σ

β

tn′+di′
:

Ji,α;i ′,β (k) =
∑

n

Jn,i,α;n′,i ′,βeik·[(tn+di )−(tn′+di′ )]. (A5)

The critical temperature Tc and pseudospin LRO are obtained
by the largest eigenvalue (∝Tc) and corresponding eigenvec-
tors of Ji,α;i ′,β (k).

The largest eigenvalue of Ji,α;i ′,β (k) is degenerate on four
symmetry-equivalent lines k = (h,±h, h) and (h, h,±h),
where |h| � 1

2 [27]. On a degeneracy line k = (h, h, h),
the 12×12 matrix Ji,α;i ′,β (k) consists of magnetic 4×4 and
quadrupolar 8×8 blocks: the magnetic submatrix

Ji,z;i ′,z(k = (h, h, h))

= −Jnn,eff

⎛
⎜⎜⎜⎝

0 cos(πh) cos(πh) cos(πh)

cos(πh) 0 1 1

cos(πh) 1 0 1

cos(πh) 1 1 0

⎞
⎟⎟⎟⎠,

(A6)

which acts on a vector (σ z
k,0, σ

z
k,1, σ

z
k,2, σ

z
k,2)T, and the

quadrupolar submatrix

Ji,α;i ′,β (k = (h, h, h)) = −Jnn,eff

⎛
⎜⎝

0 cos(πh)M1 cos(πh)M2 cos(πh)M3

cos(πh)M1 0 M3 M2

cos(πh)M2 M3 0 M1

cos(πh)M3 M2 M1 0

⎞
⎟⎠, (A7)

which acts on a vector (σx
k,0, σ

y

k,0, σ
x
k,1, σ

y

k,1, σ
x
k,2, σ

y

k,2, σ
x
k,3, σ

y

k,3)T. In Eq. (A7) Mi (i = 1, 2, 3) stand for 2×2 matrices M1 =
(δ − 1

2 q −
√

3
2 q

−
√

3
2 q δ + 1

2 q
), M2 = (δ − 1

2 q
√

3
2 q√

3
2 q δ + 1

2 q
), and M3 = (δ + q 0

0 δ − q). One can show that the largest eigenvalue of Ji,α;i ′,β (k) is that of
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Eq. (A7), which is exactly

Jnn,eff(2q + δ) (A8)

for small δ (PAF phase).
One can also show that the degeneracy of the largest eigen-

value is one- and threefold for |h| > 0 and h = 0, respectively,
and that the corresponding eigenvectors, which depend on
neither q nor δ, are given by

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

σx
k,0

σ
y

k,0

σx
k,1

σ
y

k,1

σx
k,2

σ
y

k,2

σx
k,3

σ
y

k,3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0

0
√

3
2
1
2

−
√

3
2

1
2

0

−1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(A9)

[Eq. (3)] for |h| > 0 and by

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

σx
0,0

σ
y

0,0

σx
0,1

σ
y

0,1

σx
0,2

σ
y

0,2

σx
0,3

σ
y

0,3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0

−1

0

1

0

1

0

−1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−
√

3
2

1
2√
3

2

− 1
2

−
√

3
2

1
2√
3

2

− 1
2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

√
3

2
1
2√
3

2
1
2

−
√

3
2

− 1
2

−
√

3
2

− 1
2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(A10)

[Eqs. (5), (6), (7)] for h = 0. Therefore, it is very likely that
pseudospin LROs of Eq. (1) just below Tc under zero magnetic
field are either the mean-field PAF order [Eq. (A9)] or the
3D PAF order [Eq. (A10)]. Although it is not obvious which
PAF order is selected, one can expect that at sufficiently low
temperatures an energetic or an order-by-disorder mechanism
stabilizes the 3D PAF order. We note that for the PAF order
[Eq. (A9)] the mean field at the triangular lattice site (di=0)
vanishes, which implies that the PAF order is essentially 2D
LRO on each kagome lattice layer.
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