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Tailored resonance in micrometer-sized monoaxial chiral helimagnets
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We discuss how the collective magnetic resonance response of the monoaxial chiral helimagnetic crystal
CrNb3S6 can be tailored by changing the area of its magnetization plane. Micrometer-sized samples of this
crystal yield a number of resonance modes occurring at frequencies ranging from 15 to 20 GHz, even in the
absence of a magnetic field. Changes in the resonance bandwidth, of the order of several GHz, are attributed to
the effect of the spatially nonuniform demagnetization fields on standing spin wave modes. This material hosts
a chiral spin soliton lattice phase, whose field robustness, degree of controllability, and the relatively unexplored
polarization-dependent microwave absorption make way for novel microwave applications.
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I. INTRODUCTION

The ability to encode chirality in the propagation of elec-
tromagnetic waves in magnetic media is one of the main rea-
sons for the ever-increasing interest in chiral noncollinear spin
systems and their potential application in spin electronics,
data processing, and storage [1–8].

The formation of noncollinear spin systems with chiral-
ity, such as chiral helimagnetic structures, is enabled by
the competition between the symmetric and antisymmetric
exchange interaction terms [9–12]. The stability of these
spin systems can be mediated by anisotropy fields of various
origins (crystal, shape, interface pinning) as well as external
magnetic fields. The balance between all these contributions
gives the ability to finely tune the critical transitions in the
magnetization, the resistance, and the microwave absorption
properties [13–18].

Among all known chiral helimagnets [3,19], prototype
systems capable of stabilizing the chiral helimagnetic phase
over a wide range of magnetic field values are of much
interest. Here, the particular case of CrNb3S6 is discussed.
Due to a large magnetocrystalline anisotropy, the magnetic
moment is bound to an easy plane (ab plane) perpendicular
to the chiral (c) axis. The ground state of this chiral helimag-
net consists of arrayed 2π magnetic kinks (MKs) winding
along the c axis with a period of 48 nm, forming the chiral
helimagnetic phase [12–14,19]. In the presence of a magnetic
field, H , applied perpendicular to the c axis, the helical phase
transforms into a chiral spin soliton lattice (CSL), comprising
MKs spaced by regions with field polarized spins. While a
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relatively small value of H will cause little effect on the
periodicity of the CSL, an increasingly large H , approaching
a critical value HC , will promote a more rapid change in
the number of MKs. Regardless of the sample geometry and
magnetic field strength, the MKs are capable of maintaining
their spin structure, changing only their periodicity. Above
HC , the number of MKs is reduced to zero and the forced
ferromagnetic (FFM) phase is reached. The relatively simple
crystal symmetry, the field robustness, and the long range
spatial coherence of the CSL make the crystal CrNb3S6 an
interesting subject for understanding the physics behind chiral
helimagnetic structures.

In specimens with dimensions within the microme-
ter length scale, hysteresis becomes prominent and qua-
tized changes in the CSL density manifest by a stepwise
variation of the magnetic moment and magnetoresistance
states [14,15,20,21]. Finite geometries as such pose interest-
ing new challenges due to the effects of frustrated local spins
and nonuniform demagnetization fields emerging as a con-
sequence of magnetic pole distribution near interfaces of the
specimen. A powerful and direct way to probe these effects is
via the collective resonance response of both the CSL and the
FFM phases. In this front, previous theoretical work showed
that the resonant dynamics of the CSL in weakly bounded
systems had to be relatively independent of the magnitude
of H (at low values of H ), and decreased asymptotically in
frequency as H approached HC [22,23], in a behavior similar
to the sine-Gordon model for the CSL density [3]. This overall
behavior was confirmed experimentally in Ref. [16]. However,
it was also observed that the collective resonant response of
the CSL was very sensitive to the polarization of the excitation
microwave fields. When (I) the in-plane microwave field hIP

was set parallel to the c axis, the field dependence of the
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obtained resonance mode was generally independent of H

at low fields and followed by the asymptotic decrease near
HC . On the other hand, when (II) hIP was set perpendicular
to the c axis, the resonance increased linearly in frequency
over the whole CSL phase, showing the asymptotic decrease
only in the vicinity of HC . Moreover, uncharacteristic modes
were observed in the vicinity of the critical field transitions
of the CSL. To clarify the origin of this behavior, further
experimental examination of the size dependence and the
effect of the microwave field polarization is necessary.

In the present paper, the effect of varying the size of the
ab plane is investigated via magnetic resonance experiments.
To that end, three specimens with different lengths along the
in-plane field direction (perpendicular to the c axis) were
examined. In brief, we find that the resonance frequency can
vary by several gigahertz with choice of specimen size. More-
over, we show that the resonance modes with uncharacteristic
field dependence near the critical field are a consequence of
the finite size of the specimens.

The FFM phase of all specimens exhibited three mag-
netostatic spin wave modes, and their frequency separation
increased with decreasing area of the ab plane, suggesting that
the overall resonance response depends on the nonuniform
demagnetization fields. A model considering the dispersion
relation of dipole dominated spin waves in micrometer-sized
elements reproduced the multiple resonance modes obtained.

The CSL phase of the sample with the largest magnetiza-
tion (ab) plane exhibited one resonance mode. A model for
the standing spin wave modes in the CSL with finite length
and pinned boundaries is consistent with the observation of a
single resonance mode. Interestingly, the samples with smaller
ab planes exhibited two resonance modes, whose frequency
separation increased with decreasing size of the specimen.
As a possible scenario, we consider this to be linked to the
changes in the spatial profile of the demagnetization fields.

II. EXPERIMENTAL RESULTS

Bulk-size CrNb3S6 crystals were produced using a chem-
ical vapor transport method [24,25]. Three micrometer-sized
samples were cut from the bulk crystal using a focused ion
beam technique and welded onto the signal line of coplanar
waveguides (CPWs) using tungsten. Figures 1(a)–1(c) shows
scanning electron microscopy (SEM) images of the specimens
labeled from S1 to S3. Broadband frequency, CPW-type,
resonance spectroscopy was employed to probe the collec-
tive resonance response of the micrometer-sized crystals. A
microwave current (iMW ), supplied and analyzed by a vector
network analyzer via the forward transmission parameter S21,
induces transverse in-plane (hIP ) and out-of-plane (hOP )
microwave field components which will drive the precession
in the specimen. The direction of the c axis, the excitation field
components, and H were maintained on all specimens. The
orientation of the crystal relative to the static field resembles
the configuration (I) examined in Ref. [16], where the reso-
nance signals attributed to the FFM phase and the CSL phase
were observed within a magnetic field magnitude of 0.2 T.
The quantity S21 was acquired as a function of frequency
(1 to 40 GHz) and magnetic field, from 0.2 to −0.2 T. A
reference spectra was used to subtract the background signal
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FIG. 1. SEM images of the specimens placed on top of the
signal line of a CPW, whose width, S = 10 μm, is the same on
all specimens. The arrows illustrate the direction of the c axis, H ,
and the excitation microwave current (iMW ). The length, width and
thickness (l, w, t) in μm are (49.6, 12.3, 2.4), (30.1, 12.1, 2.6), and
(14.7, 12.0, 2.3) for S1, S2, and S3, respectively.

in order to minimize the effect of nonmagnetic features unre-
lated to the resonance signal of the specimens. The corrected
transmission spectra are referred to as �S21. All measure-
ments were performed well bellow the Curie temperature of
CrNb3S6 (127 K), at 50 K.

Figures 2(a) 2(c) show the amplitude maps of �S21 plotted
as a function of the frequency of the excitation field, f ,
and the static magnetic field, H , for the samples S1, S2,
and S3, respectively. Following the mode description given
below, the data were fitted with the number of Lorentzian
line shapes deemed suitable for each specimen and mag-
netic phase. This allowed an accurate assessment of the peak
position, linewidth, and amplitude of each resonance mode
as a function of H . Examples of the fitted Lorentzian line
shapes are plotted as the continuous lines in Figs. 2(d) 2(i).
In some field regions the quality of the fitting decreased due
to either the low amplitude of the modes, the close proximity
between the resonance modes, or the background noise. Nev-
ertheless, the fitting errors remained lower than the bandwidth
of each mode, so the method employed was effective. On
all specimens, the field sweep from 0.2 −0.2 T showed the
transition from the FFM to the CSL phase at a field μ0HJ ∼
0.1 T and a transition from the CSL to the FFM phase at
μ0HC ∼ −0.145 T. The phase transitions observed here are
consistent with those observed using Lorentz transmission
electron microscopy and magnetoresistance measurements on
specimens with similar dimensions [14,21,26].

The FFM phase of all samples exhibited three resonance
modes whose field dependence is indicated by the field-
dependent dashed lines. These resonance lines are all parallel
to one another and follow a linear, Kittel-like decrease with
decreasing H . Examples of the absorption spectra at 0.16 and
−0.16 T can be found in Figs. 2(d), 2(f), and 2(h) for S1,
S2, and S3, respectively. Each resonance peak is indicated
by a colored arrow. The transition from FFM to the CSL is
characterized by a sudden increase in the resonance frequency
and a reduction in the number of modes, near HJ .

The resonance in the CSL phase depends weakly on the
magnitude of H , except in the field regions near HJ and HC ,
where the resonance frequency varies more pronouncedly,
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FIG. 2. (a)–(c) Amplitude maps of �S21 as a function of f and
H for S1, S2, and S3, respectively, measured at 50 K, while varying
μ0H from 0.2 T to −0.2 T. The tilted arrow in (b) highlights the
Kittel-like mode coexisting with the CSL phase. (d)–(i) �S21 plotted
as a function of f in the FFM and CSL phases of each specimen, at
the H values shown in (d) and (e). The continuous lines correspond
to the Lorentzian fit and the arrows indicate the frequency position of
each resonance mode. The three Lorentzian functions shown in (d)
illustrate the spectral weight of each mode individually. The vertical
dashed lines (arrows) in (a)–(c) indicate the field position of the
spectra shown in (d)–(i).

which is consistent with previous experiments [Ref. [16],
configuration (I)]. The present study revealed that the absolute
value of the resonance frequency and the number of modes
changes considerably with varying dimensions of the magne-
tization plane.

In S1, the CSL phase exhibited one dominant resonance
mode with a large absorption amplitude which followed a
domelike field dependence with regards to 0 T, with an
asymptotic decrease of the resonance frequency near HC . The
CSL phase of S2 exhibited two dominant resonances, which
appear separated in frequency by 0.5 GHz. Both modes follow
a field dependence similar to that of the mode observed in
S1. However, in S2 an additional mode with low amplitude,
indicated by the red horizontal arrow in Fig. 2(b), appears to
extend from the dominant resonance modes near −0.12 T. The
resonance frequency of this extended mode follows a linear
field dependence until HC , at which point it vanishes abruptly.

The CSL phase of S3 also exhibited two dominant res-
onance modes, which have the same field dependence ob-
served in S1 and S2, except that here the frequency splitting
between the modes has increased to 0.9 GHz. Interestingly,
with increasing the strength of μ0H from −0.07 T to HC ,
two additional modes appear at higher frequencies [two red
arrows in Fig. 2(c)]. In contrast with the asymptotic decrease
in frequency of the dominant modes, the frequency of these
two additional modes increases linearly as H approaches HC .

Figures 3(a)–3(c) show examples of the resonance fre-
quency in the FFM (±0.16 T) and helimagnetic (0 T) states,
plotted as a function of the ab-plane area of the three speci-
mens. The main feature observed across all experimental data,
in both the FFM and CSL phases, is the increase in the abso-
lute value of the resonance frequency and the mode splitting
δf (the frequency separation between modes) as a result of
decreasing the size of the specimen along the direction of
the applied field. From S1 to S2, the high frequency mode
remains unchanged, while the lower frequency mode shifts
downwards in frequency by 0.5 GHz. From S2 to S3, there
is an overall increase in the resonance frequency of the FFM
phase by approximately 1.5 GHz while the frequency splitting
increases by 0.15 GHz. In the CSL phase of S1 only one
resonance mode is resolved, while in S2 we observed two
resonance modes separated in frequency by 0.5 GHz. From
S2 to S3, the resonance frequency of the two modes increased
by an average of 1.4 GHz while the resonance bandwidth, or
mode splitting, increased by 0.3 GHz.

Figure 3(d) shows the cumulative sum of the amplitude
of all resonance modes plotted as a function of H for each
specimen. Clearly, the decrease in the absorption amplitude
of each specimen is consistent with a decrease in the area
of the ab plane. This trend is observed in both the FFM and
CSL phases. The differences in the absorption amplitudes of
the FFM and CSL phases reflect how the microwave field
couples differentially to the helical spin configuration. Note
that the amplitude of the resonance signal varies significantly
near HJ and HC . In the FFM phase, before HJ , there are
small oscillations in the amplitude of the resonance modes
followed by an abrupt decrease in the amplitude, at HJ , as
the CSL phase is reached. In contrast, the transition from
the CSL to the FFM phase, which is characterized by an
asymptotic decrease in the resonance frequency, exhibits a
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FIG. 3. (a)–(c) Plots of the resonance frequency (markers) and
linewidths (vertical bars) at the indicated values of H , as a function
of the area of the ab plane of S1, S2, and S3. (d) Cumulative sum
of the absorption amplitude of all modes as a function of H of all
specimens. Vertical bars correspond to the sum of the fitting error
of each contributing resonance mode. The upward pointing line and
thick arrows indicate the field position of HJ and HC , respectively.

gradual reduction in the amplitude of the dominant modes as
HC is approached. Immediately above HC the amplitude of
the resonance modes increases steadily, resembling the recov-
ering of the ferromagnetic alignment from a magnetic state
with zero net magnetic moment (softening). At fields well
above HC , the amplitude of the absorption in the fully formed
FFM phase appears to be vary slightly around a constant
value. The origin of the difference between the absorption
amplitude of the FFM phase at positive (FFM1) and negative
(FFM2) fields [also observed in Figs. 2(d), 2(f), and 2(h)] is
still unclear, but it could mean that the FFM state before and
after the helical phase is not exactly the same due to interface
pinning or the strong demagnetization fields near the edges
of the specimen. Alternatively, this effect could be related to
amplitude nonreciprocity of the spin wave modes (nonzero
wave number), whose excitation efficiency may differ when
the polarity of H is changed. The nonreciprocity aspect of
this magnetic system will be discussed elsewhere.

III. DISCUSSION: FFM

The FFM phase of the specimens investigated here may
be described as in-plane magnetized rectangular elements of
a ferromagnetic material with finite dimensions and saturated
along its length by an external magnetic field. The exact solu-
tion for the magnetization dynamics in systems under spatial
confinement along all directions cannot be easily obtained,
as highlighted in Ref. [27]. This is particularly so for the
present case, where an accurate solution would require the full
account of the spin canting near the edges of the specimen,
pinning conditions, inhomogeneous demagnetization fields,
antisymmetric exchange interaction, and the exact nature of
the symmetric exchange interaction, which is known to have

FIG. 4. (a)-(b) Plot of Nzz as a function of the normalized dis-
tance between the center and the edge of the rectangular element,
along the directions x and z, respectively, calculated using Eq. (16) of
Ref. [40]. The calculated Nzz(0, y, 0) (not shown) was constant along
the thickness. (c) Plot of the effective demagnetization factor Nmn

zz

(calculated from Eq. (9) in Ref. [27]), for the values of n indicated
by the dashed lines, as a function of the area of the ab plane.

different values along l (parallel to the ab plane) and w

(perpendicular to the ab plane) due to the planar symmetry
of the spin system [22,28]. In the case of nanometer-sized
elements of soft ferromagnetic materials such as Ni80Fe20,
one may resort to numerical simulations in order to accu-
rately determine the precession modes. However, in the case
of micrometer-sized elements presented here, such task is
considered cumbersome due to both the nature of the mag-
netic system and limited computational resources. As such, a
number of approximations must be taken into account in order
to provide the simplest and yet sufficiently accurate analytical
model capable of producing a good quantitative agreement
with the experimental data.

With the above in mind, a parallel is drawn to a magnetic
system consisting of rectangular elements of a soft ferro-
magnetic material with the same dimensions of S1, S2, and
S3. This problem was previously discussed in the context
of the dispersion relation of spin waves excited parallel or
perpendicular to the in-plane magnetization [5,27,29–33],
developed from a more general model for the description of
the dipole-exchange spin wave spectrum with mixed boundary
conditions [34–37]. The necessary approximations are now
briefly outlined.

The resonance modes of an in-plane magnetized rectan-
gular element are characterized by quantization conditions
due to spatial confinement and nonuniform demagnetization
fields, resulting in a set of allowed wave numbers kx , ky , and
kz. In order to obtain an approximate solution for the two in-
plane dynamic magnetization components, it was considered
that these could be treated independently [27,38,39]. Thus,
the quantization of mx is treated as a transversely magnetized
stripe while the quantization of mz is treated similarly to the
case of a longitudinally magnetized stripe. The quantization
condition of mx is kmx = (m + 1)π/weff , with weff being an
effective width of a given precessional mode [27,32] and m

an integer number. This leads to solutions proportional to
cos(kmxx) and sin(kmxx) for the symmetric and antisymmetric
spatial distribution of the dynamic component mx , respec-
tively. Similarly, the quantization condition for mz is knz =
(n + 1)π/leff [27], with n = 0, 1, 2, . . ..

Figure 4 shows the variation of the demagnetization factor
Nzz [40] along the in-plane directions perpendicular (a) and
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FIG. 5. (a)–(c) Resonance frequency (markers) and linewidths (vertical bars) of each mode plotted as a function of H for the specimens
S1 to S3, respectively. The continuous lines correspond to a fit to Eq. (1). The colored rectangles (i) and (ii) indicate the field regions in the
vicinity of HJ and HC , respectively. The tilted arrow in (b) highlights the Kittel-like mode extending to the CSL phase.

parallel (b) to the direction of H , for all specimens. The
smaller value of l, or, equivalently, the less rectangular shape
of S3, resulted in larger and more nonuniform Nzz. Impor-
tantly, note that Nzz is only pronouncedly nonuniform along
the direction of H (and l). This dependence will reflect on
the resonance modes which are expected to be nonuniform
along the length of the specimen. As a consequence of the
varying demagnetization fields, the spatial distribution of the
precession amplitude will not necessarily correspond to the
physical dimensions w and l of the specimen. This justifies
the use of effective geometrical parameters weff and leff within
which the net internal field produces a valid solution for a
given resonance mode.

Taking all the above into consideration, the approximate
expression for the dipole-exchange spin waves modes in
nonellipsoidal elements may be written in the form of the
Herring-Kittel formula [27,34,36]

ωmn = [
ωmn

H + ωM

(
αck

2
mx + αabk

2
nz

)][
ωmn

H

+ωM

(
αck

2
mx + αabk

2
nz

) + ωMFmn(kmnt )
]
, (1)

where ωM = γMs , with γ being the gyromagnetic ratio
(29.6 GHz/T) and Ms = 0.22 T the saturation magnetiza-
tion [24]. The term ωmn

H = ωH − ωMNmn
zz corresponds to the

net internal field acting on a given resonance mode (m, n).
The effective demagnetization factor Nmn

zz is calculated fol-
lowing an integration of the dynamic magnetization and de-
magnetization field over the volume of the specimen, for each
resonance mode (m, n) (Eq. (9) in Ref. [27]). The exchange
constants αc and αab are 4.2 × 10−12 and 3.36 × 10−11 Jm−1,
respectively [28]. The wave number sum is defined as k2

mn =
k2
mx + k2

nz. Experimentally, the largest excitation wave number
kmax = 2π/S is limited by the width, S, of the signal line.
In the present paper, the dimensions of the specimens are
comparable to the width (S) of the signal line and are there-
fore comparable to the wavelength of the excitation field. In
this limit, the terms associated with the exchange interaction
may be maintained, despite their small contribution to the

resonance frequency [41]. The term Fmn(kmnt ) (shown in
Appendix A) accounts for the dipole-dipole interaction term.

Figure 5 shows the resonance data overlaid with a fitting to
Eq. (1) in the FFM phase (|μ0H | � 0.15 T) of each resonance
mode. It was assumed that the modes at higher, intermediate,
and lower frequencies corresponded to having n as 0 and the
even numbers 2 and 4, respectively, while keeping m = 0. The
modes corresponding to n = 2 and 4 appeared to be more
sensitive to the nonuniform demagnetization field along the
direction parallel to H , which supports the choice of n (mz)
and not m (mx). The fact that the demagnetization factor Nmn

zz ,
shown in Fig. 4(c), increases with increasing n appears to be
supportive of the choice of n = 2 and 4.

The free parameters of the fit to Eq. (1), weff and leff ,
varied within the ranges [0.02–1] × w and [0.1–10] × l. The
fact that weff and leff have the same order of magnitude of
w and l suggests that the choice of n = 2 and n = 4 was
reasonable. It should be stressed that the free parameters
depended strongly on the assumed values of αc, αab and the
excitation wave number. Note that the fitting does not account
for the existence of pinning at the interfaces, which would
easily affect the absolute values of the free parameters weff

and leff . In order to deepen the understanding about the spatial
distribution of the modes, micromagnetic simulations and
time and space-resolved magnetization dynamics experiments
would be necessary.

Importantly, both the absolute value and the separation
between N00

zz , N02
zz , and N04

zz decrease with increasing area of
the ab plane, which shows a qualitatively similar behavior to
that of the frequency separation between the resonance modes
of each specimen, as shown in Figs. 3(a)–3(c).

IV. DISCUSSION: CSL

Next, we discuss the resonance response of the CSL.
In the limit of bulk-size specimens, the density of the

CSL (number of MKs) varies smoothly near 0 T and de-
creases asymptotically as the external field approaches HC ,
resulting in a smoothly varying and almost symmetric field
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dependence with regards to 0 T [13,15,21,22,42]. In sample
S1, we observe only a single resonance mode across the
entire CSL phase and, with the exception of the frequency
jump at HC , which is indicative of hysteresis, the resonance
frequency varies rather smoothly near 0 T and decreases
asymptotically near HC . Provided this sample is the largest in
our comparative study, it can said that S1 is the best available
approximation to the response of a bulk-size specimen. If
we neglect the hysteresis, the domelike field dependence
observed in S1 is qualitatively consistent with the theoretical
models discussed in Refs. [19,22,23,42]. However, because
these models assume a one-dimensional spin structure with
infinite length, there is a need to develop a more adequate
scenario to quantitatively describe the spin dynamics in the
helimagnetic phase. A theoretical description of the dynamics
of the helimagnetic phase or the CSL phase in finite systems
is a very nontrivial problem due to the interplay between
the boundary spins and the demagnetization effects. Recent
experimental studies on other compounds acknowledge that
the helimagnetic phase is an open and difficult problem to
tackle from the theoretical standpoint [2,8].

In the present paper, we present a model which is
a step towards a more suitable approach compared to
Refs. [19,22,23,42]. One in which the finite dimensions of
the system, imposed via a pinning field at the boundaries
of the spin system, contribute to the spin dynamics of the
CSL. The outcome of the analysis of the model (see details
in Appendix B) is that the collective resonance in the CSL
results from standing waves. The spatial period of these waves
is derived from the condition of matching the frequencies of
the internal and edge spins oscillations. The dynamics of the
latter is controlled by an additional field Hedge and the absence
of one of the nearest neighbors. As a result, the resonance
frequency on the CSL is given by

ω2
res = β2

x

κ4
κ

′ 2
sn2(α0, κ

′
)

[
κ

′ 2
sn2(α0, κ

′
)

−4

(
1 − D

J

κ√
βx

)]
, (2)

where sn(· · · ) is a Jacobi elliptic function, and κ and κ
′

are the elliptic modulus and complementary elliptic modulus,
respectively; βx = Hx/JS is the external magnetic field. The
real parameter α0 is determined by the relation (B22) shown in
Appendix B. The terms D and J account for the antisymmet-
ric and symmetric exchange interaction terms, respectively.
As illustrated in the Fig. 6, the resonance curve obtained with
the help of Eq. (2) reproduces the domelike field dependence
observed in the experimental data. Thus, a driving ac field
applied parallel to the helical axis excites standing waves of
even parity, whose period is incommensurate to the length of
the sample due to the moving edge spins (see the animation
in the Supplemental Material [43]). Naturally, these standing
wave modes are expected to have higher order modes, whose
field dependence has not yet been clearly identified in the
numerical results.

The model mentioned above provides a satisfactory de-
scription of the resonance mode observed in S1, as well as it
supporting the existence of multiple resonance modes which,
experimentally, may correspond to the two modes observed

FIG. 6. Analytical and numerical evaluation (from Landau-
Lifshitz equations) of the resonance of even parity of the CSL, based
on Eq. (2), as a function of the external field. The parameters used
in the calculations were D/J = 0.16, J = 10 K, and Hedge = 0.1 T,
and the length of the spin chain was set to L = 411 (10 MKs).

in S2 and S3. However, this model does explain the reason
why the mode splitting is so sensitive to the specimen size,
especially considering that from S1 to S3 we only increase
the area of the magnetization plane. This may be due to the
fact that the spatial profile of the demagnetization fields is not
taken in consideration.

The present experimental results, summarized in Fig. 3(a)–
3(c), and the calculated mode splitting in the FFM phase,
shown in Fig. 4(c) for n (0,2,4), suggest that changes in the
spatial distribution of the demagnetization fields affected the
frequency splitting between the modes, in both the CSL and
the FFM phases. In Fig. 5 the vertical bars correspond to the
half-width at half-maximum obtained from the Lorentzian fit
to the experimental data. These help for visualizing changes
in the frequency splitting with varying area of the ab plane.
The emergence of two resonance modes and the increase in
the frequency splitting between the resonance modes with
decreasing length of the specimens can in part be attributed
to changes in the demagnetization fields. On the other hand,
because the frequency splitting of the resonance modes is
maintained across the entire field range of the CSL, where the
net moment is close to zero, the effect of the demagnetization
fields is not straightforward and requires further evaluation.

There are two additional experimental features of relevance
but for which there is no clear micromagnetic picture: the hys-
teresis effect observed in the decreasing field branch (near HJ )
and the uncharacteristic resonance behavior near both HJ and
HC .

The hysteresis region—that is, the field region on the
descending field branch where |HC | > H > HJ —is almost
the same on all specimens, and therefore is independent
of the area of the ab plane. Recently, the hysteresis has
been discussed in terms of a surface barrier energy, which
provides an understanding of how MKs enter the finite-size
specimen when sweeping the magnetic field from the FFM
to the CSL phase [18,44]. In particular, Ref. [44] shows a
good agreement between the calculated surface energy bar-
rier and the magnetoresistance measurements where the ratio
HJ /HC = 0.4 is observed on all specimens. However, in the
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present experiments we obtain a ratio HJ /HC of ∼ 0.7. Thus,
the implications of the surface barrier on the magnetization
dynamics experiments have yet to be clarified.

The uncharacteristic resonance behavior observed in the
vicinity of both the HJ and HC [regions (i) and (ii) in
Fig. 5(a)] appears to be particularly sensitive to changes in the
length of the ab plane. Take the following instances: In the
field-decreasing branch of S2 we observe a Kittel-like mode
coexisting with the CSL resonance, when H is just below
HJ . This mode is indicated by the tilted arrow in Fig. 5(b).
In the field-increasing branch of S2 there are hints of a third
resonance mode in the vicinity of HC , as illustrated by the red
horizontal arrow in Fig. 2 (b). Interestingly, the increasing-
field branch of S3 exhibits two additional resonance modes
with a Kittel-like, linear slope, as indicated by the red arrows
in Fig. 2(c). The coexistence of resonance modes with CSL
and Kittel-like field dependence near HJ and HC could be
explained by the overlap of the CSL phase with the FFM
phase. In a recent report on the skyrmion phase of a different
compound [8], the coexistence of two magnetic phases was
broadly attributed to softening of the magnetization. In the
present paper we argue that the mixed phase or softening of
the magnetic phases could be enabled by the inhomogeneous
distribution of demagnetization fields near the edge of the
specimens. Importantly, the CSL density varies rapidly near
HJ , so we argue that the sudden vanishing of these Kittel-like
modes is linked to a sharp decrease in the number of solitons.
This highlights the importance of considering the competition
between the nonuniform demagnetization fields and the field
which drives the discrete changes in the number of MKs in the
CSL phase, as such aneffect contributes to deviations from the
asymptotic behavior of a single mode. Further investigations,
in terms of both the static and the dynamic response, are
necessary to clarify the mechanisms governing the phase
transitions.

V. CONCLUSIONS

In this paper, we showed that altering dimensions of the
specimen causes interesting modifications to the standing spin
wave modes of the chiral spin soliton lattice. Thus, finite size
effects, either via demagnetization field or boundary effects,
play an important role in defining the frequency range and
bandwidth of the magnetic resonance response. The resonance
frequency and bandwidth were modified by several gigahertz,
up to the point when mode splitting occurred on the CSL
response of the smallest specimens. The results and the mod-
els presented here suggest that the inhomogeneity of the
demagnetization fields contributes to the frequency splitting
between the resonance modes. However, the nature of this
effect is still under consideration, as the existing theoretical
models cannot quantitatively reproduce the finite size of the
CSL.

Importantly, it is observed that (at low fields) the resonance
of the CSL maintains its overall field dependence, which
indicates that the coupling between the microwave field com-
ponents and the CSL texture is not prone to changes in the area
of the magnetization plane. However, this may not hold valid
if we consider the emergence of the field-dependent modes
near HC . Thereby, the shape appears to contribute indirectly

to the polarization-dependent resonant absorption of the CSL.
The focus should now be on changing the orientation of the
crystal with regards to the microwave excitation field com-
ponents. Further experimental work will open new avenues
for exploring the microwave response in the phase transition
for example via quantized microwave response or microwave
switching of magnetoresistance states.
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APPENDIX A: MAGNETOSTATIC MODES IN
THICK RECTANGULAR ELEMENTS

The term Fmn(kmnt ), used in Eq. (1), accounts for the
dipole-dipole interaction and corresponds to [27,34,36]

Fmn(kmnt ) = 1 + P (kmnt )[1 − P (kmnt )]

×
(

ωM

ωmn
H + ωM (αck2

mx + αabk2
nz)

)
k2
mx

k2
mn

−P (kmnt )
k2
nz

k2
mn

, (A1)

where P (kmnL) corresponds to

P (kmnt ) = 1 − 1 − exp(−kmnt )

kmnt
, (A2)

APPENDIX B: RESONANT STANDING WAVES
IN SOLITON LATTICE

The appearance of the domelike field dependence of the
resonance profile for the soliton lattice may be explained
in the model of resonance standing waves. To support this
claim, the one-dimensional classical sine-Gordon model may
be examined,

H = JS2

2
(∂zθ )2 + JS2

2
sin2 θ (∂zϕ)2 + DS2 sin2 θ∂zϕ

− SHx sin θ cos ϕ, (B1)

which describes classical spins S = S(sin θ cos ϕ, sin
θ sin ϕ, cos θ ) located inside the chain of the length
[−L/2, L/2].
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The dynamical equations derived from the Hamiltonian
describe evolution of the spin degrees of freedom,

∂τ θ = − sin θ∂2
z ϕ − 2 cos θ∂zθ∂zϕ

− 2
D

J
cos θ∂zθ + βx sin ϕ, (B2)

− sin θ∂τϕ = sin θ cos θ (∂zϕ)2 − ∂2
z θ + 2

D

J
sin θ cos θ∂zϕ

−βx cos θ cos ϕ, (B3)

where the dimensionless time τ = t JS
h̄

(for J ∼ 100 K this
corresponds to 10−13 s) and the magnetic field βx = Hx/JS,
where βx ∼ 10−3 equivalent to 103 Oe, are introduced.

To parametrize a ground state of the system in the
form of the simple spiral, the solution ϕ0(z) = qz with the
unknown constant q is used. At nonzero external magnetic
field, when the soliton lattice of finite length occurs, either
the function ϕ0(z) = π − 2am[

√
βx

κ
(z − z0) + K] or ϕ0(z) =

−2am[
√

βx

κ
(z − z0)] are taken, depending on the number of

kinks confined in the soliton lattice, even or odd, respectively.
Here, am(· · · ) is the Jacobi amplitude with the modulus κ; K

is the elliptic integral of the first kind; z0 is a center position.
The fluctuations above these nonuniform magnetic back-

grounds can be formulated as

ϕ(z, τ ) = ϕ0(z) + χ (z)Z(τ ), (B4)

θ (z, τ ) = π

2
+ u0(z)ξ (τ ), (B5)

where separation of variables is realized through the time-
dependent collective coordinates Z(τ ) and ξ (τ ) with the
space-dependent amplitudes χ (z) and u0(z), respectively.

The solution of Eqs. (B2) and (B3) provides

Z(τ ) = A cos (�τ + α), (B6)

ξ (τ ) = −A
C2

� sin (�τ + α), (B7)

with the unknown amplitude A and the phase α. The fre-
quency is expressed via some constants C1,2 that arise after
separation of variables and appear in the equations for the
spatial parts of the fluctuations:

−∂2
z χ (z) + βx cos ϕ0 χ (z) = C1u0(z), (B8)

∂2
z u0 + (∂zϕ0)2u0(z) + 2(D/J )u0(z)∂zϕ0

−βxu0(z) cos ϕ0 = C2χ (z). (B9)

A treatment of dynamics of the boundary spins requires a
separate analysis based on the Hamiltonian

HR = −JSL/2−1 · SL/2 + D[SL/2−1 × SL/2]z

− (Hx + Hedge)Sx
L/2 (B10)

for the right edge spin and a similar counterpart for the left one
with z = −L/2. In the model we assume that the additional
pinning field Hedge affects significantly the boundary spins.

Minimization of the energy originated from the Hamilto-
nian (B10) for the simple spiral results in the condition for the

parameter q

0 = sin q + (D/J ) cos q ∓ (βx + βedge) sin ϕ∓L/2, (B11)

where βedge = Hedge/JS, that predicts the arrangement at the
boundaries sin ϕ−L/2 = − sin ϕL/2.

Formulation of fluctuations in terms of the collective coor-
dinates ensures

u0(L/2)
dξ (τ )

dτ
= Z(τ )

{[
dχ

dz
− 1

2

d2χ

dz2

]
z=L/2

− D

J

(
dϕ0

dz

)(
dχ

dz

)
z=L/2

+ (βx + βedge)

× cos ϕ0(N )χ (L/2)}, (B12)

χ (L/2)
dZ(τ )

dτ
= ξ (τ )

{
−du0

dz

∣∣∣∣
z=L/2

+ 1

2

d2u0

dz2

∣∣∣∣
z=L/2

+ 1

2
u0(L/2)

(
dϕ0

dz

)2
∣∣∣∣∣
z=L/2

+ D

J
u0(L/2)

[
dϕ0

dz
− 1

2

d2ϕ0

dz2

]
z=L/2

− (βx + βedge)u0(L/2) cos ϕ0(L/2)

}
,

(B13)

and similar equations for the left edge of the chain may be
obtained. Since the solutions can be categorized by parity
Eqs. (B12) and (B13) are sufficient only.

The dispersion law for standing waves for the simple spiral
(βx = 0) may be derived from Eqs. (B8) and (B9) in the form
k = k(�):

k2 = 1
2 {q2 + 2q(D/J )} + 1

2 [{q2 + 2q(D/J )}2 + 4�2]1/2.

(B14)

The standing waves of even parity are parametrized as

χ (g)(z) = Cg cos (kz), u
(g)
0 (z) = Cg

C1
k2 cos (kz), (B15)

where Cg is an arbitrary constant and k, � are the wave vector
and the eigenfrequency of the standing wave, respectively.

Using the functions (B15) one may find frequency of even-
parity oscillations of the boundary spins from Eqs. (B12)
and (B13):

�2
g = {k tan(kL/2)(1 − (D/J )q ) − k2/2

−βedge cos ϕ0(L/2)}
×{k tan(kL/2) − k2/2 + q2/2 + (D/J )q

−βedge cos ϕ0(L/2)}. (B16)

A requirement of consistency of dynamics of the boundary
and inner spins means that this relationship should be resolved
together with Eqs. (B11) and (B14).
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A similar consideration of the odd modes gives the result

�2
u = {k cot(kL/2)(1 − (D/J )q ) + k2/2

+βedge cos ϕ0(L/2)}
×{k cot(kL/2) + k2/2 − q2/2 + (D/J )q

+βedge cos ϕ0(L/2)}. (B17)

To illustrate, the data ϕL/2 = −63.053842 and q =
−0.154326 for the chain of the length L = 411 with D/J =
0.16 yield two lowest resonance frequencies for the even
modes, �(1)

g = 0.00098 and �(2)
g = 0.001067, and for the odd

modes, �(1)
u = 0.00200 and �(2)

u = 0.002154. Note that in the
dimensionless units � = 10−4 corresponds to 1 GHz.

For the soliton lattice the system (B8)-(B9) for the inner
spins is substituted for

L̂ϕχ (z̄) = −κ2

βx

C1u0(z̄), L̂θu0(z̄) = κ2

βx

C2χ (z̄) (B18)

with the differential operators of the Lamé equation [19]

L̂ϕ = d2

dz̄2
− 2κ2sn2(z̄) + κ2,

L̂θ = d2

dz̄2
− 2κ2sn2(z̄) +

(
4 + κ2 − 4

D

J

κ√
βx

)
,

(B19)

with the eigenfunctions νq (z̄) depending on the dimensionless
coordinate z̄ = √

βx (z − z0)/κ .
Making expansions of the fluctuations over the eigenfunc-

tions one find the dispersion law in the parametric form

κ
′ 2

sn2(α, κ
′
)

[
κ

′ 2
sn2(α, κ

′
) − 4

(
1 − D

J

κ√
βx

)]
= κ4

β2
x

�2,

(B20)

qc =
√

βx

κ

[
Z(α, κ

′
) + πα

2KK
′

]
, (B21)

which relates the momentum qc with the frequency � via the
real parameter −K ′ < α < K ′. Here, Z(α, κ

′
) is the Jacobi

zeta function, and K
′

denotes the complete elliptic integral
of the first kind with complementary elliptic modulus κ

′ =√
1 − κ2. This relationship is a counterpart of Eq. (B14) for

the soliton lattice.
To achieve an agreement with dynamics of the boundary

spins, the frequency should coincide with the similar expres-
sion derived from equations of motion for the boundary spins,
as has been done for the simple spiral, Eq. (B16):

�2
SL = 1

ν2
qc

(z̄L/2)

[√
βx

κ
ν

′
qc

(z̄L/2) − 1

2

βx

κ2
ν

′′
qc

(z̄L/2)

+ 2
D

J

βx

κ2
dn(z̄L/2)ν

′
qc

(z̄L/2)

+(βx + βedge) cos ϕ0(L/2)νqc
(z̄L/2)

]

×
[√

βx

κ
ν

′
qc

(z̄L/2) − 1

2

βx

κ2
ν

′′
qc

(z̄L/2)

− 2
βx

κ2
dn2

(
z̄L/2

)
νqc

(z̄L/2)

FIG. 7. Resonance frequencies for the lowest modes of even
parity as a function of the external magnetic field β. The circles
and triangles are results of analytical treatment, the crosses are found
from numerical calculations of beatings. In dimensionless units � =
10−4 equals to 1 GHz and the field can be converter to units of μ0H

(T) by multiplying βx by a factor of 5.

+D

J

{
2

√
βx

κ
dn

(
z̄L/2

) + 1

2
βx sin ϕ0(L/2)

}
νqc

(z̄L/2)

+ (βx + βedge) cos ϕ0(L/2)νqc
(z̄L/2)

]
. (B22)

The terms ν
′
qc

and ν
′′
qc

correspond to
dνqc

dz̄
and

d2νqc

dz̄2
. The

result is valid for the even-parity standing waves with the
eigenfunctions of the Lamé operators [19]

νqc
(z̄) = 1

θ4
(

πz̄
2K

)[
θ4

( π

2K
[z̄ − iα − K]

)
e−iq̄c z̄

+ θ4

( π

2K
[z̄ + iα − K]

)
eiq̄c z̄

]
, (B23)

where θn=4(z, q ) is the Jacobi theta function with nome q =
exp

−πK ′

K
. An analogous outcome may be obtained for odd

modes in a straightforward manner.
Numerical assessment for the soliton lattice of L = 411

sites with D/J = 0.16, βedge = 0.02, and βx = 0.004, which
corresponds to κ = 0.685 283, gives for the trial wave func-
tion ϕ0(z) = π − 2am[

√
βx

κ
(z − z0)], with the center position

z0 = L

2
− κ√

βx

K = 185.181

and the dimensionless coordinate of the right boundary site

z̄L/2 =
√

βx

κ

(
L

2
+ κ√

βx

K

)
= 20.7488.

The corresponding angle value equals to ϕ0(z̄L/2) =
−32.3582. Making use of Eqs. (B20), (B21), and (B22)
we find eventually for the lowest even-parity modes �(1)

g =
0.0009399 and �(2)

g = 0.0009706.
As can be seen from Fig. 7, an appearance of the domelike

field profile follows from the above analysis and numerical
simulations of resonance via beating, as has been described in
Ref. [23].
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