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High harmonic generation tomography of impurities in solids: Conceptual analysis
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A three-step model for high harmonic generation from impurities in solids is developed. The process is found
to be similar to high harmonic generation in atomic and molecular gases, with the main difference coming
from the nonparabolic nature of the bands. This opens a new avenue for strong-field atomic and molecular
physics in the condensed-matter phase. As a first application, our conceptual study demonstrates the feasibility
of tomographic measurement of impurity orbitals.
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I. INTRODUCTION

Strong-field and attosecond science in atomic and molec-
ular physics has made great strides over the past 20 years
[1,2]. Strong laser-atom interaction takes place in a three-step
process; first, the weakest bound electron is ionized, followed
by laser-driven evolution in the continuum, and finally, it
recollides/rescatters with its parent ion [1,3]. It has been found
that both tunneling and recollision processes contain a great
deal of information about the parent system’s structure and
dynamics.

Angular resolved tunnel ionization spectroscopy [4,5] re-
veals the orbital angular structure of the highest occupied
molecular orbital.

When the electron recollides with its parent ion, recombi-
nation and rescattering take place. Recombination results in
high harmonic generation (HHG), the emission of coherent
XUV radiation. HHG has been used to time resolve chemical
reactions and to tomographically measure the wave function
of simple molecules [6–11].

Rescattering [12] results in nonsequential double ioniza-
tion, above-threshold ionization, and laser-induced electron
diffraction [13–16]; these processes have structural informa-
tion encoded and are also promising candidates for time-
resolved imaging of molecular reactions.

Recent experiments with midinfrared [17–20] and terahertz
pump sources [21–23] have demonstrated HHG in solids.
Theory has identified two mechanisms [24,25]: (i) intraband
HHG due to the nonparabolic nature of bands [18] was found
to be dominant in dielectrics; (ii) interband HHG dominates
in semiconductors and is created in a three-step process
similar to atomic and molecular HHG [26]. This similarity
has established a connection between attosecond physics in
atoms/molecules and in the condensed-matter phase.

Our analysis further deepens the links between strong-
field physics in the gas and condensed-matter phases. Re-
cently, HHG involving solid-state systems with impurities was
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considered [27,28]. In Ref. [27], a semiconductor material
was doped by ion implantation to alter the band structure
of the material; this ultimately led to enhanced harmonic
emission under a mid-IR field. Here we will consider har-
monic emission directly from the impurity under a terahertz
driving field. We develop quantum equations of motion and a
three-step model for this process. First, a free electron/hole is
created in the conduction/valence band by tunnel ionization of
a donor/acceptor impurity. Second, the electron/hole is accel-
erated by the laser field. In the third step a harmonic photon
is emitted upon recollision and recombination with the parent
impurity. Figure 1 depicts a schematic representation for HHG
from shallow impurities in one dimension. In Fig. 1(a) we
have the periodic potential of the unperturbed solid (blue
line) plus a Coulomb potential from an impurity (red line).
The shaded curve represents the ground state of the shallow
impurity; this ground state extends over many lattice sites.
The three-step model described above is shown in the real and
reciprocal spaces in Figs. 1(b) and 1(c), respectively, for the
system interacting with a strong laser field.

Besides differences in the continuum evolution due to the
nonparabolic nature of bands, the process is found to be
identical to HHG in gases. As a consequence, many of the
above processes can be adapted from the gas to the condensed-
matter phase. This opens a new research direction for atomic
and molecular strong-field processes.

As a first application, we study the potential of apply-
ing molecular HHG tomography [9–11] to impurities. To-
mographic reconstruction of the impurity ground state is
demonstrated in a one-dimensional (1D) model system. The
impurity dipole moment is found to be the dominant factor
in determining the magnitude of the harmonic signal as a
function of harmonic order; ionization and propagation, which
have to be factored out in molecular tomography, play a lesser
role here. This indicates substantial facilitation due to the
potential for direct reconstruction of the impurity ground state
from the harmonic spectrum.

Our results create a link between strong-field physics and
solotronics, solitary impurity electronics; for a review see
Ref. [29]. Solitary impurities are important building blocks
for quantum technology, as qubits for quantum computing
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FIG. 1. (a) Periodic potential of the unperturbed bulk solid (blue)
plus the impurity potential (red); the shallow impurity ground state
that extends over many lattice sites is represented by the shaded
curve. (b) Space representation of the three-step model for HHG
from an impurity. (c) Reciprocal space representation of the three-
step model for HHG from an impurity.

and as single-photon and nonclassical photon sources for
quantum sensing and communication. Further, with increas-
ing miniaturization, the device characteristics of metal-oxide-
semiconductor field-effect transistors is strongly influenced
by scattering off single impurities. All of the above appli-
cations require detailed knowledge about the wave function
of impurity and environment. Currently, the most powerful
method to image the wave function of single impurities
is scanning tunneling microscopy close to suitably cleaved
surfaces. Our results reveal that strong-field methods can
offer complementary capacities. Among other things they
provide an all-optical way to measure dipole moment and
wave functions of impurity ensembles independent of sur-
faces; single-impurity imaging will be challenging due to
the low quantum yield of HHG. Beyond that they open the
path to spatiotemporal imaging of wave function dynamics
in impurities, impurity molecules, and arrays [29] via optical
pump-probe experiments.

This paper is structured as follows. In Sec. II we introduce
the microscopic theory for an impurity-doped solid interacting
with a strong laser field. We first introduce our quantum-
mechanical model (Sec. II A) and then derive an approximate
expression for the impurity ground state (Sec. II B). The
equations of motion for the solution of the time-dependent
Schrödinger equation are derived in Sec. II C; there we
also produce an expression for the transition dipole between
the impurity ground state and conduction band. Section II
is ended with a derivation of the semiclassical equations
(Sec. II D). In Sec. III we present the result from our numerical
calculations. In Sec. III A we solve our equations of motion
for a one-dimensional model system of a solid doped with an
impurity and look at the harmonic spectrum and perform the
semiclassical analysis. In Sec. III B we demonstrate a method
for tomographic reconstruction of the impurity ground state.

Finally, in Sec. III C we discuss dimensionality considerations
for tomographic reconstruction.

II. THEORETICAL FRAMEWORK

A. Quantum-mechanical model

Our one-body analysis builds on, and extends, the theoret-
ical work by Adams [30] and by Luttinger and Kohn [31,32].
To achieve this we use the following model: an impurity with
potential U (x) is embedded in a solid and is coupled to a laser
field F(t ) via the dipole coupling term x · F(t ). The resulting
time-dependent Schrödinger equation is given by

i∂t�(x, t ) = [Hi − x · F(t )]�(x, t ), (1)

where Hi = H0 + U (x) and H0 = 1
2 p2 + v(x) refers to the

Hamiltonian of the solid without impurity, with v(x) be-
ing the periodic lattice potential. Atomic units, e = h̄ = me =
1, are used throughout unless otherwise indicated. The eigen-
value equation of the field-free Hamiltonian Hi is given by

Hiφ(x, t ) = εφ(x, t ). (2)

In the absence of the impurity the eigenfunctions �m,k
fulfill H0�m,k = Em(k)�m,k, with m being the band index
and Em(k) being the band eigenenergies. Further, the eigen-
functions are given by

�m,k(x) = 1√
V

um,k(x)eik·x, (3)

where um,k is the Bloch function that is periodic with the
lattice and V is the volume of the solid. The unit cell is defined
by basis vectors al (l = 1, 2, 3) and volume υ; Rn = ∑

l nlal

is a lattice vector that connects two identical sites in the lattice.
The crystal momentum k extends over the first Brillouin zone
(BZ) defined as the Wigner-Seitz cell of the reciprocal lattice
whose primitive vectors bl are determined through bl · aj =
2πδlj ; we denote the magnitude of the reciprocal lattice vector
bl as bl = |bl|. The vectors of the reciprocal lattice are given
by Kn = ∑

l nlbl . The eigenfunctions are orthonormalized
according to ∫

V

�∗
m′,k′�m,kdx = δmm′δ(k − k′). (4)

By defining V = Nυ, with N being the number of atomic
unit cells, we obtain from the orthonormality relation∫
v
|um,k|2dx = υ.
Shallow donor (acceptor) impurities split into an electron

(hole) and a positively (negatively) charged residual ion;
the electron (hole) moves in the lowest conduction (highest
valence) band and has bound states in the field of the residual
ion with energies closely below (above) the bottom (top) of
the conduction (valence) band. As a result, we drop the band
index m and confine our treatment to a single band with
eigenfunctions �k which fulfill H0�k = E(k)�k, with E(k)
being the band eigenenergies. Further, we consider a single
impurity level (the impurity ground state) with eigenenergy
ε0 and eigenfunction φ0; here Eq. (2) reads

Hiφ0(x) = ε0φ0(x). (5)

As this is a conceptual study we have limited ourselves to only
the most fundamental process and confined our system to only
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the ground state. Additional complexity can be added to the
model by including excited states of the impurity potential.

B. Derivation of the ground state for a shallow impurity

Equation (5) is solved by expanding the eigenstate φ0 in
terms of Bloch states,

φ0(x) =
∫

BZ
b0(k)�k(x)dk. (6)

Inserting Eq. (6) into Eq. (5), multiplying the result by �∗
k′ (x),

and integrating over the spatial coordinate yield

[E(k) − ε0]b0(k) +
∫

BZ

Ũ (k, k′)b0(k′)dk′ = 0, (7)

with

Ũ (k, k′) =
∫

V

u∗
k(x)uk′ (x)U (x)ei(k′−k)·xdx, (8)

where integration is performed over the crystal volume V .
By noting that uk is periodic with the unit cell, the Bloch
functions in Eq. (8) can be expanded in a Fourier series,

u∗
k(x)uk′ (x) = 1√

υ

∑
n

M
(n)
k,k′e

−iKn·x, (9)

with

M
(n)
k,k′ = 1√

υ

∫
υ

u∗
k(x)uk′ (x)eiKn·xdx. (10)

As a result, we obtain for the Coulomb matrix element

Ũ (k, k′) =
∑

n

M
(n)
k,k′

∫
υ

U (x)ei(k′−k−Kn )·xdx. (11)

By inserting the series expansion (9) into the orthonormality
relation for the Bloch eigenfunction (4) we obtain the relation

1√
υ

∫
υ

M
(0)
k,k′e

i(k−k′ )·xdx = δ(k − k′). (12)

Note that expansion terms with n �= 0 result in δ(k − k′ −
Kn) = 0 as k, k′ are from the first BZ. Equation (12) yields

M
(0)
k,k′ =

√
υ

(2π )3
. (13)

For a soft potential whose main components correspond to
wavelengths that are much smaller than the lattice spacing,
|k − k′| � bl , the lowest-order Fourier term dominates, and
we obtain [30,31]

Ũ (k − k′) ≈
√

υ

(2π )3

∫
υ

U (x)ei(k′−k)·xdx, (14)

where we have written Ũ (k, k′) as Ũ (k − k′) to indicate
that the argument in Ũ of our approximate expression above
depends only on the difference k − k′. Note that close to the
Coulomb singularity this assumption is violated, and higher-
order Fourier terms need to be included. Inserting Eq. (14) in
Eq. (7) yields

[E(k) − ε0]b0(k) +
∫

BZ

Ũ (k − k′)b0(k′)dk′ = 0. (15)

For the sake of simplicity we focus here on direct band
gap materials; however, the theory can be easily general-
ized to indirect semiconductors following the treatment in
Refs. [31,32]. By invoking again the assumption that the
potential is soft and couples only components |k − k′| � bl ,
we can further simplify Eq. (15). The bound states extend over
many unit cells corresponding to a narrow band of crystal
momenta b(k) centered about the � point (k = 0). In real
space this corresponds to a slowly varying modulation that
is superimposed onto the Bloch eigenfunction,

B0(x) =
∫

BZ

b0(k) exp(ik · x)dk. (16)

As a result of the narrow width of b(k) the conduction band
can be Taylor expanded, which yields

E(k) ≈ Eg +
∑
i,j

1

2
βij kikj , (17)

where i, j = x, y, z and βij = ∂ki
∂kj

E is the inverse mass
tensor that arises from the quadratic expansion of the band
energy E(k) about the � point (k = 0), where the band energy
E(k = 0) = Eg is minimum. For the sake of simplicity we
confine our analysis to direct band gap materials; a generaliza-
tion to indirect bands can be done by following the treatment
in Ref. [32].

Using Eqs. (16) and (17), in Eq. (15) we obtain an atomi-
clike Schrödinger equation for the impurity eigenstates⎡

⎣1

2

∑
i,j

βij∇i∇j − U (x) + (ε0 − Eg )

⎤
⎦B0(x) = 0. (18)

Diagonalization of Eq. (18) yields ground-state wave func-
tions B0(x) and b0(k) in k space. Its eigenenergy ε0 de-
termines the ionization potential as ε0 − Eg . The complete
impurity ground state is determined by inserting b0(k) into
Eq. (6), which results in

φ0(x) =
∫

BZ
b0(k)�k(x)dk ≈ �k=0(x)B0(x). (19)

In the last step we have used �k(x) ≈ uk=0(x) exp(ik · x), a
result from the k · p perturbation theory.

C. Solution of the time-dependent Schrödinger equation

The solution of the time-dependent Schrödinger equa-
tion (1) in the presence of a strong laser field is developed
along the lines of strong-field atomic physics [3,33]. The wave
function is split into a bound-state part and a band contribution
by using the ansatz

�(x, t ) = φ0(x) +
∫

BZ
a(k, t )�k(x)dk, (20)

where the integral runs over the first BZ. We assume, in the
spirit of the strong-field approximation [3], that field-induced
ionization is weak enough that the ground-state population
remains unaffected. This amounts to neglecting the dynamic
Stark shift of the impurity ground state.
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Inserting Eq. (20) into Eq. (1) and multiplying the resulting
equation by the functional 〈�k′ (x)|, we obtain

i
d

dt
a(k, t ) = [E(k) − ε0 + iF(t ) · ∇k]a(k, t )

+
∫

BZ

U (k − k′)a(k′, t )dk′ + id0(k) · F(t ),

(21)

where the transition dipole moment between the impurity
ground state and conduction band is

d0(k) =
∫

V

�∗
k′ (x)xφ0(x)dx. (22)

Equation (21) is similar to the equation of atomic strong-field
physics [3]. Around the � point, where the effective-mass
approximation is valid, Eq. (21) becomes identical to the
equation for atomic gases. We note, however, that in Eq. (21)
the full band is used and not the effective-mass approximated
band in Eq. (17).

Here we have again employed the assumptions used for
the derivation of the impurity potential matrix element (14)
where a soft impurity potential is assumed for which large
momentum scattering |k| > |bl| is negligible. In terms of
dynamical processes, these assumptions amount to neglecting
large-angle scattering events of the order of or larger than
the inverse lattice vectors, which occur when a slow electron
comes close to the Coulomb singularity and undergoes scat-
tering. Further, the resulting intraband dipole matrix element
is well defined only when written as [25]∫

V

�∗
k′ (x)x�k(x)dx = −i∇k + dc(k), (23)

where

dc = −i

∫
V

�k′ (x)∇k�k(x)dx. (24)

We assume here inversion-symmetric materials for which
dc = 0. As long as the impurity ground state and conduction
band wave function vary slowly compared to the Bloch func-
tions, the dipole moment between the impurity ground state
and conduction band is given by

d0(k) ≈ 1

(2π )3

∫
V

xB0(x)e−ik·xdx. (25)

Here we have again applied Eq. (13) to approximately elim-
inate the product of Bloch functions. We find that the dipole
moment is proportional to the Fourier transform of the atom-
like part of the impurity ground state, just as in the atomic
strong-field model. Finally, agreement with atomic strong-
field physics becomes complete when the quadratic mass
approximation is applied to Eq. (21) [3,33].

In the strong-field limit, the Coulomb potential in Eq. (21)
is neglected. For impurities additional justification comes
from the fact that photoionization cross sections are well
described by replacing the Coulomb with δ-function poten-
tials [34,35]. Integration of the resulting equation (21) and
inserting the result into the second term of Eq. (6) yields the
time-dependent evolution of the electron wave function in the
conduction band as

a(k, t ) =
∫ t

−∞
dt ′d0(κ t ′ )·F(t ′)e

∫ t ′
−∞i[ε0−E(κ t ′′ )+ i

T2
]dt ′′

, (26)

where κ t ′ = k − A(t ) + A(t ′), with vector potential deter-
mined by F = −dA/dt ; further, a phenomenological dephas-
ing time T2 has been added.

Finally, high harmonic generation is determined by the
current

j(t ) = d

dt

∫
V

x|�(x, t )|2dx

= d

dt

∫
BZ

a(k, t )d∗
0(k)dk +

∫
BZ

[
a∗(k′, t )a(k, t )

× 1

i

∫
V

�∗
k′ (x)∇�k(x)dx

]
dk′dk + c.c. (27)

The second term in Eq. (27), corresponding to the intraband
current, comes as a result of changing the Schrödinger picture
to the Heisenberg picture, using dx/dt = p and then convert-
ing back to the Schrödinger picture. Further simplification can
be made using the relation

1

i

∫
V

�∗
k′ (x)∇�k(x)dx = ∇kE(k)δ(k − k′), (28)

with v(k) = ∇kE(k) being the band velocity [36]. We then
obtain

j(t ) = ji (t ) + jra (t ), (29)

where

ji (t ) = d

dt

∫
BZ

a(k, t )d∗
0(k)dk + c.c. (30)

is the current due to the polarization buildup between the band
electron and impurity and

jra (t ) =
∫

BZ
|a(k, t )|2v(k)dk + c.c. (31)

is the intraband current arising from the laser-driven motion
of the electron in the band; this contribution comes from the
nonparabolicity of the band and is not present in HHG from
atomic gases.

D. Semiclassical model for impurity high harmonic generation

The high harmonic electric fields are determined by the
polarization buildup between the band and impurity ground
state, resulting in a current

j̃i (ω) = iω

∫
BZ

dk d∗
0(k)

∫ ∞

−∞
dte−iωt

∫ t

−∞
dt ′d0(κ t ′ )·F(t ′)

× e
[iS(k,t ′,t )− 1

T2
(t−t ′ )]dt ′′ + c.c., (32)

where S(k, t ′, t ) = ∫ t

t ′[ε0 − E(κ t ′′ )]dt ′′.
The three integrals in Eq. (32) can be solved analytically

by the saddle point method [3]. The saddle point equations
are determined by

∇kS =
∫ t

t ′
v(κ t ′′ )dt ′′ = x(t ) − x(t ′) = 0, (33a)

dS

dt ′
= E[k − A(t ) + A(t ′)] − ε0 = 0, (33b)

dS

dt
= E(k) − ε0 = ω. (33c)
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In Eq. (33a), the band velocity is given by v(k) = ∇kE.
This equation states that HHG can take place only when the
electron, born at time t ′ in the band, returns to the parent
impurity at t . Equation (33b) states that electrons are born
with zero momentum at time t ′, k = A(t = t ′) − A(t ′) = 0.
At the time of recombination t the electron crystal momentum
is given by k(t ′, t ) = A(t ) − A(t ′). The finite impurity gap
energy results in a complex birth time, which is responsible
for tunnel ionization. Finally, Eq. (33c) represents conserva-
tion of energy: the electron recombines to the ground state and
emits a photon ω with energy equal E(k(t′, t)) − ε0. Again,
at moderate laser intensities, for which the effective-mass
approximation applies, the saddle point equations for the atom
and impurity become identical.

After saddle point integration we obtain for the harmonic
intensity

|j̃i (ω)|2 =
∣∣∣∣∣
∑

t ′

√
w(t ′)d∗

0(k)α(t ′, t )e
∫ t

t ′ (iS− 1
T2

)dt ′′
∣∣∣∣∣
2

, (34)

where S = ε0 + ω − E(k(t ′′, t )), w(t ′) is the ionization rate,
and t ′(t (ω)) and t (ω) are birth and recombination times
resulting in the generation of a harmonic with frequency ω.
For an isotropic lattice the ionization rate is determined by
the Ammosov-Delone-Krainov (ADK) tunnel ionization rate
of atoms [4] with the electron mass replaced by the effective
mass. Further, the dipole moment represents the recombina-
tion amplitude; the remaining term α in the preexponential
is the propagation amplitude accounting for quantum dif-
fusion and dephasing; this depends on the band specifics.
For isotropic materials in the effective-mass m approxima-
tion α ∝ m exp[−(t − t ′)/T2](t − t ′)−3/2. The main differ-
ence between HHG from impurities and atoms arises from the
finite, nonparabolic, anisotropic nature of the bands.

III. RESULTS AND DISCUSSION

In the remaining part we use the above formalism to
investigate HHG and the tomographic reconstruction of the
impurity ground-state wave function from harmonic spectra.

A. Numerical details

For the analysis of HHG tomography of impurities we
use a 1D model system for a direct band gap semiconductor.
The periodic lattice potential is composed of lattice cells with
width a = 9.45 a.u. = 5 Å and well depth v0 = 0.55 a.u. =
15 eV. The lattice cells are separated by a mollifier function
[37]; the lattice cell centered at x = 0 is given by

v(x) =

⎧⎪⎪⎨
⎪⎪⎩

v0e
− (x+a/2)2

σ2−(x+a/2)2 − v0 for − a
2 � x < − a

2 + σ,

v0e
− (x−a/2)2

σ2−(x−a/2)2 − v0 for a
2 − σ < x � a

2 ,

−v0 otherwise,

(35)

where σ represents the extension of the mollifier. Each cell is
represented on a space grid of 40 points, giving a grid spacing
of �x = 0.236. We use 400 cells to the left and right of the
central cell for a total of 801 cells. The Coulomb potential is
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FIG. 2. (a) Structure of the conduction band obtained from diag-
onalization of the Hamiltonian. (b) Dipole moment calculated using
Eq. (22).

centered over the central cell and is given by

U (x) = −1

ε
√

x2 + s2
, (36)

where s is the softening parameter and ε is the dielectric
constant. For our model we use s = 25 a.u. and ε = 5 a.u.

The Hamiltonian is diagonalized using periodic boundary
conditions in both the presence and absence of the Coulomb
potential. In the absence of the Coulomb potential we ob-
tain the Bloch functions �k (x); the energy gap between the
highest valence band and lowest conduction band at the �

point is approximately 4 eV. When the Coulomb potential is
present, we obtain the impurity ground state; for this system
the impurity ground state lies at an energy of 106.4 meV
below the � point of the conduction band. Figure 2(a) shows
the calculated conduction band versus the crystal momentum
k. In Fig. 2(b) the dipole moment calculated from Eq. (25) is
shown.

The system is irradiated by a laser field with vector poten-
tial A(t ) = −(F0/ω0)f (t ) sin(ω0t ) with peak field strength
F0 and center frequency ω0. The peak field strength is F0 =
1 × 10−4 a.u., which corresponds to a peak intensity of I0 =
3.5 × 108 W/cm2 in the material. For the center frequency we
use ω0 = 9.1 × 10−4 a.u.; this corresponds to a wavelength
of λ0 = 50 μm. The pulse has a Gaussian envelope f (t )
with a FWHM of 12T0; here T0 = 2π/ω0 = 166 fs. The time
dynamics of the system are determined from Eq. (26) with
T2 = 50 fs. The dephasing time T2 is chosen such that it is
similar to dephasing times in semiconductors [38–40].

The parameters of our laser pulse and model system result
in a minimum n = 5 photon transition from the impurity
ground state to the conduction band using a pulse with an
intensity of the order of 108 W/cm2. For comparison ZnO
has a �-point energy of 3.3 eV between the highest valence
and lowest conduction bands; doping with impurities such as
H, Ga, Al, and In leads to impurity donor states in the range
46–73 meV [41]. For a similar n = 5 photon transition, such a
system would require a laser pulse with a central wavelength
of ∼100 μm with an intensity of ∼100 MW/cm2, which is
achievable [42]. By contrast ZnSe has a band gap of 2.8 eV
with a donor level 1.2 eV below the bottom of the conduction
band when doped with V [43]. Thus, the parameters chosen
here give a reasonable approximation to a semiconductor with
shallow donor impurity levels.
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FIG. 3. (a) Birth time t ′ (red) and return times t (blue) from
the semiclassical trajectories versus harmonic order. (b) Ionization
rate w ∝ exp{− 2

3

√
m[2(Eg − ε0 )]3/2/F (t ′)} versus harmonic order.

(c) Propagation effects α2 ∝ exp[−2(t − t ′)/T2]/(t − t ′) versus har-
monic order. (d) Magnitude squared of the dipole moment as a
function of harmonic order (blue); the product of the three preex-
ponential terms in Eq. (34) represented by blue lines in (b)–(d) is
plotted for the short- (red dots) and long- (green squares) trajectory
branches; the magnitude is adapted to match the dipole moment.
In (a)–(c) the shaded regions indicate the contributions from long
trajectories.

B. Tomographic reconstruction of the impurity ground state

Figure 3(a) shows the generated harmonics versus birth
(red line) and recombination (blue line) times from the
semiclassical trajectories obtained from numerical solution
of Eq. (33). There are two sets of solutions per optical
cycle, a short trajectory and a long trajectory. The long-
trajectory contributions are indicated by the shaded regions
in Fig. 3. Figures 3(b)–3(d) examine the behavior of each of
the preexponential terms in Eq. (34). Figures 3(b) and 3(c)
present the ionization rate and propagation term, respectively.
For ionization we have used the dominant atomic tunneling
exponent [3,33]. Figure 3(d) shows |d0(ω)|2 obtained from
the diagonalization of the Hamiltonian (blue line), where k

has been replaced with ω by virtue of relation (33c). We
find that |d0(ω)|2 decreases by about six orders of magnitude
with increasing harmonic order. The rapid drop comes from
the fact that the ground state extends over many unit cells
and therewith populates only a small fraction of the BZ. In
Fig. 3(d) we also plot the product of all three terms, where
long and short trajectories are indicated by red dots and green
squares, respectively. The short trajectories are dominant, and
a comparison with |d0(ω)|2 shows that the dipole moment
determines the form of the harmonic spectrum over most of
its range; this is confirmed in Fig. 4.

In Fig. 4 the harmonic intensity |j̃ |2 (blue line) is plot-
ted, including both the impurity and intraband contribu-
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FIG. 4. Scaling comparison of the harmonic spectrum (blue solid
line) to the dipole (red dashed line); the dipole has been shifted
down in order to compare it with the spectrum. The harmonics in
the shaded region are the ones whose energy is below Eg − ε0.

tions. We note that the harmonics above the impurity ion-
ization potential are dominated by the impurity term (see the
Appendix). The strength of the above impurity gap harmonics
drops rapidly until around the cutoff near the 71st harmonic.
This behavior is consistent with the decrease of |d0(ω)|2 (red
dashed line), indicating that, of the three preexponential terms
in Eq. (34), the dipole has the strongest influence on the
shape of the harmonic spectrum. Consequently, using relation
(33c) to connect harmonic order and k, we can reconstruct
d0(k) from the magnitude of the harmonic spectrum. This
is feasible, as the atomlike dipole moment is purely real or
imaginary. For a complex dipole moment the phase of the
harmonics must be considered, as in Ref. [44].

To reconstruct the impurity ground state we take the in-
verse Fourier transform of d0(k) and divide it by x to obtain
B0(x). In a three-dimensional experiment one would rotate
the crystal and reconstruct the total wave function from 1D
snapshots. Figure 5 shows the results of the tomographic
reconstruction. The reconstructed wave function (red line)
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|B
0(x
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1

FIG. 5. Comparison between the impurity ground state (blue
shaded area) and the reconstructed ground state (red line). The region
between the vertical dashed lines represents 11 unit cells.
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FIG. 6. Magnitude squared of the dipole moment as a function
of harmonic order (blue line); the product of the three preexponential
terms in Eq. (10) is plotted for the short- (red dots) and long- (green
squares) trajectory branches for (a) the one-dimensional system and
(b) a three-dimensional system. The magnitude of the semiclassical
curves is adapted to match the dipole moment.

matches the impurity ground state well throughout the central
region but deviates from the true wave function at the tails.
This agrees with the fact that the difference between harmonic
intensity and dipole scaling in Fig. 4 is biggest for small crys-
tal momenta corresponding to slow wave function variations
in real space. Further, the small oscillations in the harmonic
spectrum in Fig. 4 do not appear to cause a substantial error
in the reconstruction; they result from interference between
harmonics generated in positive and negative half cycles as a
consequence of the phase term in Eq. (34).

C. Dimensionality considerations for tomographic
reconstruction

In our semiclassical model the ionization rate w(t ′) and
the propagation term that accounts for quantum spreading and
dephasing α(t ′, t ) are given by

w(t ′) ∝ e− 2
3

√
m(2E0 )3/2/F (t ′ ), (37a)

α(t ′, t )2 ∝ e−2(t−t ′ )/T2

(t − t ′)D
, (37b)

where E0 = Eg − ε0 is the impurity ionization potential, D ∈
{1, 2, 3} is the dimension, and t ′ and t are the birth and
recombination times, respectively. The effective mass along
the direction longitudinal to the laser polarization is given by
m. In Eq. (37b) the term (t − t ′)−D accounts for the quantum
spreading, and the term e−2(t−t ′ )/T2 accounts for the effect
of dephasing. Both terms have the strongest effect on the
long trajectories as (t − t ′) will be greatest for this trajectory
branch.

The exponential scaling of the ionization rate depends
on only the longitudinal components of the system along
the direction of laser polarization; the transverse components
appear only in the preexponential factor. As such, the dimen-
sionality of the system is not expected to have a significant
effect on the form of the ionization rate. Contrastingly, the
quantum diffusion contribution (t − t ′)−D to the propagation
term in Eq. (37b) will exhibit greater spreading for a three-
dimensional system as opposed to a one-dimensional system.

Figure 6 shows the effect the dimension will have on the
product w(t ′)|d0(k(t ′, t ))|2α(t ′, t )2 in Eq. (34). Figure 6(a)
shows this product for the one-dimensional system; this is

a reproduction of Fig. 3(d). Figure 6(b) shows the product
with D = 3. The three-dimensional plot displays two main
differences from the one-dimensional case. First, the sep-
aration between the long- and short-trajectory branches is
greater in three dimensions than in one dimension. This occurs
because spreading can occur in all three directions in the
three-dimensional case. Second, because the spreading term is
more pronounced in three dimensions, the semiclassical curve
deviates more from the behavior of the dipole. This suggests
that, for three-dimensional systems, it may be necessary to
account for quantum diffusion before reconstructing the wave
function. Accounting for quantum diffusion should be achiev-
able in a straightforward manner using Eq. (34). For each birth
and recombination time pair, α(t ′, t ) can be calculated. This
(t ′, t ) pair corresponds to a particular harmonic, and thus, we
have the mapping α(t ′, t ) → α(ω). The α(ω) term can then
be factored out of the harmonic spectrum, removing the effect
of quantum diffusion for harmonic with frequency ω.

A more sophisticated reconstruction scheme could also
remove the effects stemming from ionization. As a result
of the complexity in calculating ionization rates in solids
[45–49], the ionization rate could be measured by transient
absorption spectroscopy [50] and then factored out of the
harmonic spectrum in a manner similar to that described for
removing the effects of quantum diffusion. Furthermore, the
dipole moment extracted from Eq. (34) or from numerical
analysis can be improved by using optimization techniques
similar to the one used recently for all-optical band gap mea-
surements [51]. Finally, for noncentrosymmetric materials the
phase of the dipole is also important [52], facilitating the need
for the phase of the harmonics to be measured for proper
reconstruction.

IV. CONCLUSION

Here we have presented the microscopic theoretical under-
pinning for exploring strong-field physics in impurities. Our
work makes a first step toward adapting technology developed
for atomic and molecular gases to solid-state impurities. In
contrast to gases, absorption will limit the material depth from
which photons and electrons can be detected; as a result, prop-
agation effects are expected to be less significant. Whether
experimental tomographic reconstruction is as straightforward
as found here remains to be seen. How dominant the dipole
moment is in determining harmonic spectra will depend on
various factors, such as dephasing time, material dimension,
and parameters. Further, it has been demonstrated that for
HHG to be viable, coherent buildup due to phase matching
and field propagation effects should be considered [53]. To
study these effects it would be necessary to couple the present
theory to Maxwell’s equations. That is beyond the scope
of the current work and will be considered in a follow-up
work.

Finally, it needs to be mentioned that our theoretical
approach has been developed for shallow impurities. Deep
impurities are more complex, as their wave function changes
substantially over a unit cell. This results in a strong mixing
between impurity and surrounding lattice wave function com-
ponents. The resulting many-body effects, such as coupling to
quasiparticles, need to be addressed with more sophisticated
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theoretical approaches [29]. They will dominantly enter in
the dipole moment and therewith in recombination; ionization
will be influenced to a lesser extent, as the dipole moment
enters in the preexponent. Propagation will be altered only
close to the impurity, where the impurity potential yields
higher-order corrections to the strong-field approximation. As
a result, our simple approach will present a reasonable starting
point to develop strong-field impurity physics in this more
complex limit.
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APPENDIX: IMPURITY VERSUS INTRABAND
HARMONICS

The HHG spectrum in Fig. 4 of the main text contains
contributions from both the intraband and impurity terms.
Figure 7 compares the individual contributions of each of
these terms. The individual harmonic spectra are calculated by
taking the absolute value squared of the Fourier transform of
Eqs. (30) and (31). The harmonics generated by the impurity
term are represented by the blue line, and those generated by
the intraband current are represented by the green line. In the
above-band-gap range, harmonics with n � 5, the spectrum is
dominated by the impurity term by approximately three to six
orders of magnitude, depending on the harmonic. The only
exception is harmonic 5, where the impurity and intraband
terms are comparable. In the below-band-gap regions, the
intraband harmonics are the dominant signal. The red dashed
line in Fig. 7 represents the dipole moment, which scales
similarly to the impurity harmonic signal.

We note here that the density of impurities will have
an effect on the intensities of the impurity and intraband
harmonics. In our one-dimensional calculations we have an
impurity density of approximately 10−3 impurities per lattice
site. In three dimensions this density would be approximately
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FIG. 7. The impurity (blue solid line) and intraband (green solid
line) harmonic spectra. The red dashed line represents the dipole
moment. The shaded area indicates the below-impurity ionization
potential region. The dipole has been shifted on the y axis to compare
with the shape of the harmonic spectra.

10−9 and will likely result in a decrease of impurity harmonics
relative to the intraband spectrum. In our one-dimensional
calculations the impurity harmonics range from three to six
orders of magnitude above the intraband harmonics. As a re-
sult, a relative impurity density of around 10−6 corresponding
to an impurity density of approximately 1016 cm−3 should be
sufficient to still observe stronger impurity harmonics.

Further, there is another parameter that determines the
strength of impurity versus intraband HHG, which is the laser
intensity. For the intraband harmonics to develop, the electron
must explore a significant portion of the nonlinear part of the
band. Due to the low field intensities used here, the electron
explores only about a third of the Brillouin zone and does not
experience the full nonlinear portion of the conduction band,
resulting in a reduction of the intensity of intraband harmon-
ics. When the electron explores only a limited region of the
Brillouin zone near the � point, the intensity of the intraband
harmonics decreases with harmonic order at a rate much larger
than the impurity harmonics. The above discussion highlights
the need for careful consideration when determining doping
rates and laser parameters.
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