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Electronic stopping power in warm dense matter can affect energy transport and heating in astrophysical
processes and internal confinement fusion. For cold condensed matter systems, stopping power can be modeled
from first-principles using real-time time-dependent density functional theory (DFT). However, high tempera-
tures (10’s to 100’s of eV) may be computationally prohibitive for traditional Mermin-Kohn-Sham DFT. New
experimental measurements in the warm dense regime motivates the development of first-principles approaches,
which can reach these temperatures. We have developed a time-dependent orbital-free density functional theory,
which includes a novel nonadiabatic and temperature-dependent kinetic energy density functional, for the
simulation of stopping power at any temperature. The approach is nonlinear with respect to the projectile
perturbation, includes all ions and electrons, and does not require a priori determination of screened interaction
potentials. Our results compare favorably with Kohn-Sham for temperatures in the WDM regime, especially
nearing 100 eV.
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I. INTRODUCTION

Stopping of high-energy ions by materials is relevant to
many applications, from biomedical imaging (proton com-
puted tomography) [1], ion therapies [2,3], radiation protec-
tion, and damage [4,5]. Fusion reactions create high-energy
projectiles (e.g., α particle, proton, deuterons) that deposit
energy into the dense plasma as they are stopped. Accurate
modeling of plasma stopping power is thus a key component
for hydrodynamic modeling of internal confinement fusion
(ICF) [6–11], astrophysical [12], and other fusion processes.
These processes often occur inside or traverse the warm dense
matter (WDM) range of densities and temperatures. In this
regime, also known as the degenerate plasma, quantum me-
chanical processes dominate the electronic properties, while
the nuclei can be treated as classical particles, and can make
calculation of electronic stopping power, and other electronic
response properties such as thermal and electrical conductiv-
ity a difficult task.

For slow projectile velocities (vp), much less than the
Fermi velocity, vp � vF , Born-Oppenheimer molecular dy-
namics, where the electrons are in their instantaneous ther-
mal equilibrium state, can be utilized to calculate the ionic
stopping [13]. For high-velocity projectiles, with keV to MeV
kinetic energy, nonadiabatic energy loss from the nuclei to the
electrons dominates stopping. Analytical approaches, based
on either homogeneous or local electron densities and linear
response to the projectile, are often used to estimate electronic
stopping power [6,14–17]. For warm dense systems these
methods can be inaccurate and often require ad hoc cutoffs,
interpolations, or additional approximate projectile-plasma
pseudointeraction potential [15,16].

Recently, an increased effort to directly simulate stopping
power from first principles using time-dependent density
functional theory (TD-DFT), both for low-temperature
materials and in warm dense matter [18–28] has arisen. In this
method the electrons are treated quantum mechanically, and
the ion is treated as a classical time-dependent potential. As
the projectile potential may be strongly perturbative, real-time
TD-DFT is typically applied, rather than linear-response
TD-DFT. A mean-field approximation, i.e., Ehrenfest, is
applied to calculate the force that the electrons exert on the
projectile ion.

These TD-DFT approaches employ the Kohn-Sham (KS)
formulation, where the exact noninteracting kinetic energy
can be determined exactly by introducing auxiliary orthogonal
bands or orbitals [29]. Unfortunately, for finite-temperature
KS-DFT, as determined by the Mermin extension [30], the in-
creased number of required orbitals causes the computational
cost to scale cubically with respect to temperature [31,32].
Additionally, direct simulation of stopping power requires
averaging over many ion configurations, and may necessitate
large simulation cells. This has prevented TD-KS-DFT from
being applied to higher, ICF and warm dense matter relevant,
temperatures in the mega-Kelvin region.

While more approximate, the orbital-free (OF)-DFT ap-
proach has been extremely successful for calculating equilib-
rium properties, e.g., equation of state and nuclear transport
coefficients, of warm dense matter and non-transition-metallic
materials [33–47]. This approach depends only on the electron
density, as opposed to auxiliary orbitals, thus avoiding the
increased computational cost for high temperatures.

There has been significant effort in the development
of approximate kinetic energy density functionals (KEDFs)
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for OF-DFT. Ab initio theory, semiempirical fitting, and
machine-learning routes have all been used to determine
new KEDFs [38,48–52]. Most often, these KEDFs are de-
rived from the static Lindhard response function (LRF) for
a noninteracting homogenous electron gas (NI-HEG) [53,54].
Less attention has been given to the development of dynamic
KEDF’s specifically targeting electronic-response properties
[55,56], such as stopping power.

In this paper, we develop a time-dependent orbital-free
DFT approach to directly simulate stopping power at ICF
relevant temperatures. We propose a new, simple, and easily
computable, dynamic KEDF derived from the dynamic LRF,
with an extension to finite temperatures. This dynamic KEDF
is nonadiabatic, depending on the local current density. How-
ever, it does not add significant computational cost compared
to the adiabatic TD-OF-DFT, and it allows significantly longer
propagation time steps. Like TD-KS-DFT, the TD-OF-DFT
goes beyond linear response, includes exchange correlation
effects, and uses a local or semilocal density approximation
as opposed to a homogenous density approximation. The TD-
OF-DFT is a first-principles, all-ion, all-electron approach.
We test this new approach on the simulation of stopping power
in WDM by direct comparison to TD-KS-DFT and other
analytical approaches.

The paper is organized as follows: we review orbital-
free DFT theory for equilibrium/ground state with the static
Thomas-Fermi–von-Weizsäcker KEDF, which is derived from
the static LRF in Appendix A. Then the general extension
of OF-DFT to TD-OF-DFT is presented, and we derive our
nonadiabatic, current-dependent, KEDF from the dynamic
LRF at zero temperature. This KEDF is generalized to finite
temperatures by fitting to numerical calculations of the finite-
temperature dynamic LRF. Finally, we apply this formalism to
simulate stopping power in warm dense deuterium, which has
been previously calculated using TD-KS-DFT, and compare
adiabatic OF, nonadiabatic OF, and KS results to analytical
results including the Brown-Preston-Singleton (BPS) [14], Li-
Petrasso (LP) [6], and dielectric function (DF) [16] approach.
We utilize atomic units and notations in this paper, e = 1,
h̄ = 1,me = 1, and 4πε0 = 1.

II. METHODOLOGY

A. Thomas-Fermi–von-Weizsäcker kinetic energy functional

For time-independent DFT, one must minimize the total
electronic free-energy functional:

F [ρ] = K[ρ] +
∫

Vext (r)ρ(r)dr

+ 1

2

∫
VH [ρ, r]ρ(r)dr + EXC[ρ], (1)

under a constant particle number constraint. This leads to a
minimization of the constrained functional

�[ρ] = F [ρ] − μ

( ∫
ρ(r)dr − N

)
. (2)

Physically, μ is the electronic chemical potential, ρ(r) is
the total electron density, K[ρ, r] and EXC[ρ, r] are the ki-
netic and exchange correlation energy functionals. Vext (r) and

VH (ρ, r) are the external and mean-field Hartree potentials.
F [ρ] is the system free energy. We utilize the Perdew and
Zunger local exchange correlation functional, EXC [57].

In Kohn-Sham DFT the kinetic energy is given by
introducing auxiliary noninteracting orbitals, ρ(r) =∑

i fiφi (r)∗φi (r) and K = ∑
i fiφi (r)−∇2

2 φi (r). In the
Mermin formulation [30], f is a Fermi-Dirac distribution
function (at T = 0, fi = 2 if i < N

2 ). For large T or N this
approach can become computationally prohibitive.

In the Thomas-Fermi–von-Weizsäcker theory, the kinetic
energy density functional is given by

K[ρ] ≈ KT F [ρ] + 1

8CV W

|∇ρ(r)|2
ρ(r)

. (3)

CV W ranges from 1–9 depending whether the von Weizsäcker
term is derived as a high wave vector asymptotic limit or a
gradient correction to the Thomas-Fermi functional (low wave
vector), see Appendix A [52,58]. The relationship between
this orbital-free approach and the Kohn-Sham approach can be
more clearly seen by expressing the density as ρ(r) ≡ φ(r)2.
Then Eq. (4) can be equivalently expressed as

KT FW [φ] = KT F [φ] + 1

CV W

φ(r)
−∇2

2
φ(r). (4)

Thus the electrons are treated by a single, bosonlike, collective
orbital, φ, with KT F [φ] compensating for the free-energy
increase due to the fermionic nature of electrons.

Inserting φ into Eq. (2), we can write the minimization as
an eigenvalue problem, similar to the Kohn-Sham approach:

μφ(r) = δF [ρ]

δρ(r)
φ(r), (5)

where μ and φ are the lowest eigenvalue and corresponding
eigenvector. The functional derivative δF [ρ]

δρ(r) can be found
self-consistently, by conjugate gradient minimization [59], or
by using the imaginary time method for finding the lowest
eigenvalue,

−∂φ(r, τ )

∂τ
= δF [ρ(τ )]

δρ(r)
φ(r, τ ), τ → −i∞, φ(r)2 = N.

(6)

B. Time-dependent orbital-free:
Thomas-Fermi–von-Weizsäcker

The calculation of dynamic electron response properties
requires a time-dependent electronic structure approach. Ex-
tension of the OF method to time-dependent densities requires
calculation of the current density or electron velocity field.
This can be accomplished by introducing a complex collective
orbital, the Madelung wave function [60], which is defined
by the time-dependent density and longitudinal current, as
required by the Runge-Gross Theorem [61],

φ(r, t ) ≡ eiS(r,t )
√

ρ(r, t )

iφ̇(r, t ) = [−∇2/2 + V̂ (r, t )]φ(r, t ),
(7)

V̂ (r) = δKT F [ρ]

δρ(r, t )
+ VH (r, t ) + Vext (r, t ) + δEXC[ρ]

δρ(r, t )
,

J(r, t ) = ρ(r, t )∇S(r, t ).
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This time-dependent Schrödinger-like form is utilized for
computational convenience. Here, J(r, t ) is the electronic cur-
rent density and ∇S(r, t ) is the electronic velocity field. A hy-
drodynamic form with two real valued equations of motion for
ρ and J would be equivalent [60,62]. The Laplacian term in
Eq. (7) accounts for both the static von-Weizsäcker KED po-
tential and the high-frequency limit dynamic KED response,
shown below [63]. More specifically it leads to the quan-
tum Bohmian pressure, the continuity equation, and the bulk
hydrodynamic response to a potential or pressure, for the
electron liquid [63–69]. We refer to the solution of Eq. (7)
as the Thomas-Fermi–von-Weizsäcker (TFW), or adiabatic,
version of TD-OF-DFT.

A split-operator Fourier transform approach is utilized to
propagate Eq. (7) for the periodic systems presented in this
paper. Classical equations of motion are used to propagate the
projectile ion, with a mean-field force (Ehrenfest dynamics)
based on the instantaneous average electron density, ρ(r, t ),
detailed in Sec. II E.

In Appendix A, we review how the TFW functionals
can be derived from the static LRF for the NI-HEG. In the
next section we derive an additional dynamic kinetic energy
density potential (KEDP) by following a similar procedure for
the dynamic LRF.

C. Dynamic kinetic energy functional from Lindhard response

For finding a dynamic KEDP, we follow the same strategy
as outlined in Appendix A. That is, we seek a functional
derivative, which would closely approximate the dynamic
LRF, χL, i.e.,

δEkin[ρ]

δρ(r, t )
= −

∫
dr′

∫
dt ′χ−1

L (r, r′, t, t ′)δρ(r′, t ′). (8)

However, implementing a nonlocal functional, in space and
time, would add considerable expense when compared to the
TFW formulation [55]. We seek a local current-density KEDF,
thus we further approximate that the electron density does not
change rapidly with time or space, so the χL is the response
of a NI locally HEG and

χL(r, r′, t, t ′) ≈ χL(r, |r − r′|, t, t − t ′)

≡ F−1[χ̃L(r, q, t, ω)], (9)

where the time and space dependence of the response function
comes from the Fermi wave vector/momentum (kF ) density
dependence:

kF → KF (r, t ) = [3π2ρ(r, t )]1/3, (10)

and F is the Fourier transform in space and time. The recip-
rocal space variables and functions are defined by: iωF̃ (ω) =
Fω,t [ d

dt
F (t )] and iqF̃ (q ) = Fq,r [ d

dr
F (r )], for any real space

and time dependent function, F , and reciprocal function, F̃ .
Since we are assuming a slowly varying density, we will

expand the density in time, t ′ around t , and only keep the first
order,

δρ(r′, t ′) ≈ δρ(r′, t ) + ∂ρ(r′, t )

∂t
(t − t ′)

(11)
∂ρ(r′, t )

∂t
= −∇ · J(r′, t ).

Then the right-hand side of Eq. (8) becomes

−
∫

dr′δρ(r′, t )
∫

d(t − t ′) χ−1
L (r, r − r′, t, t − t ′)

= −F−1
q,r [χ̃−1

L (r, t, q, ω = 0)δρ(q, t )]. (12)

This, fully local temporal, approximation to the density leads
to the static/adiabatic TFW functionals.

The second term in Eq. (11), which leads to our current-
dependent KEDF, can be represented in reciprocal space by

−
∫

dr′ ∂ρ(r′, t )

∂t

∫
d(t−t ′) (t−t ′)χ−1

L (r, r − r′, t, t − t ′)

= −
∫

dr′
[−i∂χ−1

L (r, r − r′, t, ω)

∂w

]
ω→0

∇ · J(r′, t ).

= −F−1
q,r

[−i∂χ̃−1
L (r, q, t, ω)

∂w

∣∣∣∣
ω→0

iq · J̃(q, t )
]
. (13)

We can take limits in ω and q of the Fourier transformed,
χ̃L(q, ω),

−i
∂χ̃−1

L (q,w)

∂w

∣∣∣∣
ω→0
q→0

≈ −π2

kF

[
π

2kF q
+ . . .

]

(14)

−i
∂χ̃−1

L (q,w)

∂w

∣∣∣∣
ω→0
q→∞

= 0.

Replacing kF , with KF (r, t ) and keeping only the lowest
order in q, leads to our local current-dependent (CD) ki-
netic energy density potential (KEDP, functional derivative of
KEDF),

VCD(r, t ) = π3

2K2
F (r, t )

F−1
q,r [iq · J̃(q, t )/|q|](r). (15)

In the high-frequency limit,

χ̃−1
L (q,w → ∞) = 3π2ω2

k3
F q2

= ω2

ρq2
, (16)

which is the result of the bulk hydrodynamic response of the
current to a potential or vector potential:

δJ̇(r, t ) = −ρ(r, t )∇δV (r, t ),
(17)

δJ(r, t ) = −ρ(r, t )δA(r, t ),

and is satisfied by the Laplacian operator in Eq. (7) [63]. We
refer to the solution to Eq. (7) with the addition of the CD
KEDP in Eq. (15) to V̂ (r, t ) as the current-dependent (CD),
or nonadiabatic, version of TD-OF-DFT.

We consider two approximate inverse response function for
the NI-HEG:

χ̃−1
T FW (q,w) = −π2

kF

[
1 + 3q2

4k2
F

− 3ω2

k2
F q2

]
(18)

χ̃−1
CD(q,w) = χ̃−1

T FW (q,w) + i
π3ω

2k2
F q

. (19)

Propagation of a linearly perturbed NI-HEG by Eq. (7) will
result in the response χ̃T FW (q,w). Addition of the dynamic
KEDP will result in the response χ̃CD(q,w). Comparison
of χ̃CD(q,w) and χ̃T FW (q,w) to the exact LRF, χ̃L(q,w)
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FIG. 1. Dynamic density-density response functions for homo-
geneous electron gas as a function of wave vector. The electron
density, ρ = 0.004 gives a Fermi-wave vector, kF = 0.491. The fre-
quency is ω = 0.125 + i × 0.0001 ∼ k2

F /2 + iδ, Lindhard response
function (black solid), Thomas-Fermi–von-Weizsäcker response
(blue dotted), the current-dependent response (green dash-dot).

at finite ω are shown in Fig. 1. Both response functions

have a resonance/singularity at ω

k2
F

= ± q

kF

√
1
3 + ( q

2kf
)2, but

the χ̃CD(q,w) resonance is broadened by the imaginary term
in Eq. (19). The real-time effect of the CD KEDP, VCD, is then
to dampen density oscillations, i.e., longitudinal J(r, t ). This
dampening is caused by the decay of the bulk hydrodynamic
motion into electron-hole excitations/individual electron mo-
tions. In the TD-KS-DFT approach, these single-particle
excitations/motions are resolved by the introduction of the
auxiliary orbitals. The role of the CD KEDP is to effect these
individual motions/excitations. Differences between χ̃CD and
χ̃L are due to the semilocal approximations in χ̃−1

CD.
In previous work [55], Neuhauser et al. determined a

KEDP with a comparable approximate response function,
i.e., Fig. 1 can be compared to Figs. 1 and 2 of Ref. [55].
In Ref. [55], 14–28 fits of the LRF are utilized, each with
eight parameters. For each fit a corresponding field requires
propagation in time, using Fourier transforms. This adds con-
siderable cost and complication compared to VCD, determined
only by the low and high limits of ω and q, which requires
one Fourier transform of the current, and one inverse Fourier
transform to generate the real-space potential. The simple
form of VCD also allows for a straightforward extension to
finite temperatures, critical to simulations in warm dense
matter.

=0.33 =0.016
=0.33 =0.088
=3.33 =2.8
=33.33 =2.810-1

1

10

102

[
-1
/

]

10-2 10-1 1 10 102

q/kF

1

10

c T

10 10 10

FIG. 2. �[
∂χ̃−1

L
(q,ω,T )
∂w

]
ω→0

as a function of the scaled wave vec-
tor q/kF . Four density-temperature examples are shown. Markers
are numerical calculations of Eq. (20) and its derivative, lines are
calculated by Eqs. (21) and (24). The inset shows the best fits of

the scaling factor cT to the �[
∂χ̃−1

L
(q,ω,T )
∂w

]
ω→0

v.s. q lines compared to
the asymptotic limit fits, Eqs. (22) and (23), as well as the final cT ,
Eq. (24).

Similar approaches have been followed looking to deter-
mine the nonadiabatic friction due to exchange and correla-
tion, which is neglected here. Nazarov et al. have demon-
strated the importance of nonadiabatic exchange correlation
on stopping of slow ions by electron liquids/gas [70,71].
Here, we focus only on the friction due to the noninteracting
electrons, which is described exactly by adiabatic Kohn-Sham
and approximately by our orbital-free approach.

D. Temperature-dependent dynamic kinetic energy functional

For either OF or KS-DFT simulations, the temperature
dependence of the KEDF must be accounted for when kBT is
on the electronic energy scales (typically eV or greater). For
KS-DFT, the Mermin approach is a straightforward, but often
computationally prohibitive, extension of the time-dependent
or independent case to any temperature. For time-independent
OF-DFT, Perrot determined analytic functional forms for the
temperature dependence of the free energy of the NI locally
HEG, as well as the corresponding gradient expansion [51].

For time-dependent OF-DFT, we must generalize the dy-
namic kinetic energy potential to finite temperatures. We
assume a parametric dependence on temperature, consis-
tent with an isothermal ensemble. Unfortunately the finite-
temperature Lindhard function is not generally analyti-
cally solvable. However, it can be calculated numerically
using [64]

χ̃L(q,w, T ) =
∫ ∞

0
dE

χ̃L(q,w, T = 0, kF = √
2E)

4kBT cosh2
(

E−μ(T )
2kBT

) ,

(20)

where μ(T ) is the NI-HEG chemical potential [51]. At high

temperatures, kBT  k2
F

2 , we find as q → 0,

−i
∂χ̃−1

L (q,w = 0, T )

∂w
≈ −π2

kF

[
π

2kF q

]
× cT , (21)
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where

cT = �1/2 × 1.69271

(
� = 2 kBT

k2
F

→ ∞
)

. (22)

For low temperatures

cT = 1 (� → 0). (23)

For arbitrary kBT we take

cT = ([�1/2 × 1.69271]3.6 + 1)
1

3.6 . (24)

The two numerical constants in cT are determined by fit-

ting calculations of �[ ∂χ̃−1
L (q,w,T )

∂w
]
ω→0

as a function of q for
441 temperature and electronic density points spanning the
warm dense matter regime, 0.27 meV < kBT < 86.2 keV
and 0.1 g/cc < ρ × mp

me
< 10000 g/cc. Four of these fits are

shown in Fig. 2. Best fits of cT for individual ρ - kBT points
are shown in the inset of Fig. 2, along with the limits [Eqs. (22)
and (23)] and the final form [Eq. (24)]. We then assume a local
density approximation for cT → CT (r, t ) as well by using the
local KF (r, t ) in place of the average kF . The temperature-
dependent CD potential is then given by

VCD(r, t, T ) = CT (r, t ) × VCD(r, t, T = 0) . (25)

E. Simulation of electronic stopping power

We perform direct simulation of the electronic stopping
power following Ref. [21]. First, a time-independent OF
molecular dynamics simulation is run to determine snapshots
of the ionic configurations, and the corresponding equilibrium
electronic density. To initialize the stopping power simulation
we insert an extra ion (the projectile) on one side of the
periodic box with a constant velocity, vp. All other ions
(the bulk) have a fixed position. Fixing the positions of the
bulk nuclei and the velocity of the projectile separates the
electronic contribution to the stopping power from the nuclear
contribution [21]. Then the electronic density and current are
propagated according to Eq. (7) with (CD) or without (TFW)
VCD(r, t ) added to V̂ (r, t ). The projectile is propagated by
Newton’s equations using a mean-field force of the electrons.

For simulations with a local electron-ion potential or pseu-
dopotential, in either the KS or OF approach, the total mean-
field force on the projectile is simple to calculate, due to the
Hellmann-Feynman theorem,

Fp[ρ, R] = ∂Vii (R)

∂Rp

+
∫

drρ(r)
∂Vie(R)

∂Rp

. (26)

R are the nuclear coordinates, and p indexes the projectile
nuclei. For periodic simulations with fixed bulk nuclei and a
fixed projectile velocity, the contribution from ∂Vii (R)

∂Rp
to the

time average of Fp will net to zero. Thus we simulate only
electronic stopping power. Note that ionic stopping power
can be simulated from Born-Oppenheimer dynamics, while
full ionic-electronic stopping power can be simulated by
allowing the bulk nuclei to move. However, at these pro-
jectile velocities, electronic stopping power is the dominant
contribution and our targeted quantity. The recent review by
Correa contains a detailed description of ionic and electronic
contributions to stopping power [72]. The work, Wp, done on

the projectile, and the electronic stopping power (ESP) can be
calculated as:

Wp = −
∫

dt Fp[ρ, R, t] · vp (27)

= −
∫

Fp[ρ, R, t] · dRp, and (28)

ESP =
〈
dWp

dRp

〉
= −〈Fp[ρ, R, t]〉. (29)

An example of the work calculated for during a trajectory is
shown and discussed in Appendix B.

III. APPLICATION TO DEUTERIUM:
LOW TEMPERATURES

We compare the real time OF and KS stopping power simu-
lations for a deuteron stopped by bulk deuterium. This system
has been previously investigated using real-time TD-KS-DFT
by Magyar et al. [21] Following Ref. [21] we utilize a cubic
simulation cell with 128 bulk ions. Unlike Ref. [21] we do
not eliminate trajectories that have close passes between the
projectile and bulk ions. We have recalculated the Kohn-Sham
results so that we can compare to the orbital-free simulations
without any additional sensitivities to the pseudopotential and
real-time propagation method, for example. Initial equilib-
rium Mermin-Kohn-Sham calculations are performed using
the AB-INIT software package [73]. Real-time propagation of
the resulting orbitals is performed separately.

For each ESP calculation, three OFMD snapshots are
taken. For each snapshot, multiple initial positions of the pro-
jectile are sampled, ten for current-dependent orbital-free, five
for TFW, and four for Kohn-Sham. Each of these trajectories
is composed of at least three passes through the unit cell with
the first pass discarded from the average in Eq. (29) [21]. Note
that these simulations, while resolved with respect to sam-
pling of initial conditions, are not necessarily resolved with
respect to simulation box size for high velocities (vp  vF =
[3πρ̄]1/3). This is discussed in detail in Appendix C. While
TD-OF-DFT can be used with simulation box sizes required
to converge the high-velocity stopping power, as has been
shown in our previous work [74], it is not currently feasible for
TD-KS-DFT. This is due to scaling of the computational cost
with respect to the required number of orbitals. The TD-OF
scales with the volume/grid, but the TD-KS scales with the
volume/grid and the number of orbitals.

Stopping power at temperatures of 10 and 100 kK and a
density of 0.7 g/cc deuterium are shown in Fig. 3. Compared
to KS, the OF approaches overestimates the stopping power at
the Bragg peak. However, they quickly converge to agreement
at higher velocities. The CD potential significantly improves
the low-velocity stopping power, compared to TFW, which
shows a sharp drop in stopping power at low velocities.
Since dissipation of the net electronic current due to electron-
hole excitations (imaginary part of the LRF) is effected by
the CD potential, we conclude that electron-hole excitations
are the dominant mechanism for electronic stopping in low-
velocity projectiles. The 10 and 100 kK simulations are
low-temperature simulations compared to typically accepted
limits for accurate ground-state orbital-free DFT with TFW
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FIG. 3. 0.7 g/cc deuterium stopping power (ESP) for deuteron.
Top: 104 Kelvin; bottom: 105 Kelvin. Time-dependent (TD) Kohn-
Sham (black solid); current-dependent TD orbital-free (CD) (red
fashed); TFW TD orbital-free (blue dotted).

functionals. Thus the qualitative agreement at low projec-
tile velocities, and quantitative at high velocities, is highly
encouraging.

IV. APPLICATION TO DEUTERIUM: HIGH
TEMPERATURES

To determine the effect of increasing temperature on DFT
stopping power, we perform a series of simulations rang-
ing from 10–100 kilo-Kelvin (8.6–86 eV). Due to the high
cost of Mermin-Kohn-Sham equilibrium and real-time time-
dependent DFT calculations at high temperatures, we must
reduce the size of our simulations to a rectangular cell of
32 atoms, with twice the box length parallel to the projec-
tile velocity compared to perpendicular directions. A single
trajectory through the middle of this box is used to calculate
the stopping power. While these simulations are not expected
to be converged in size, or sampling of ion configurations,
we again expect that the direct comparison of the KS and
OF methods on the exact same trajectory to be informative.
Note that some oscillations appear in the Kohn-Sham result
due to the small box size. Low velocities, near or lower
than the Bragg peak, are converged but high velocities are
suppressed compared to converged results. In Appendix C
we show dependence, up to convergence, of the TD-OF-DFT
stopping power, which is currently prohibitive for the TD-KS-
DFT approach at high temperatures.

A. LP, BPS, and DF methods

In addition to the density functional theory methods we
compare to three analytical models. The Li-Petrasso (LP)
model is based on the Fokker-Planck equation and includes
plasma-ion stopping, collective plasma oscillation, and quan-
tum corrections. The Brown-Preston-Singleton (BPS) method
assumes a weak plasma coupling, but accounts for quan-
tum effects and Fermi-Dirac statistics. The dielectric func-
tion (DF) approach is based on the RPA density linear re-
sponse/energy loss function, but is second order in the cou-
pling between projectile ion and the electron gas. All three
assume stopping by a uniform electron density. In the LP
and BPS models the projectile is assumed to be a bare ion,
with no screening from bound electrons. We have performed
two instances of the DF method, following Ref. [16] one
with the bare ion, and another with screening from bound
electrons, ρ̃p(q ). ρ̃p(q ) is calculated from an average-atom
Thomas-Fermi-Dirac model [75]. The BPS and LP methods
are most appropriate for nearly ideal plasmas, low density
and/or high temperature, while the DF is most appropriate for
high but nearly uniform electron densities.

The relationship between the DFT methods and the DF
approach warrants further discussion. The real-time TD-KS-
DFT method takes into account the electron response to the
projectile at the RPA plus approximate exchange correlation
level. The DF approach is based on the RPA description of
the electronic response. The TD-OF-DFT approximates the
noninteracting KEDF, neglecting the fully nonlocal terms,
but includes the approximate exchange correlation. However,
both the TD-OF and TD-KS DFTs go beyond linear response
and make approximations based on the local density, whereas
the DF method assumes linear response of a homogeneous
electron density. Finally, the TD-OF and TD-KS DFTs do
not discriminate between the projectile and the bulk ions,
in terms of the location or type of the electrons. Thus they
do not require a further approximation to the bound vs free
electrons of the projectile or bulk. As we see from the bare
and screened DF results, projectile screening has a large effect
on stopping. However, it is not easy to know the appropriate
amount of screening for such a nonequilibrium process. Note,
the KS simulations can, and often do, utilize pseudopotentials
to account for some bound electrons, with strong implications
for stopping power [23,76,77], but all KS simulations in this
paper are all-electron.

B. Simulation and model results

In Figs. 4 and 5 we compare the simulated deuterium
stopping power from TD-KS and CD TD-OF to the commonly
used, analytical, LP, BPS, and DF models, for 0.7 g/cc and
3.5 g/cc deuterium, respectively. We also calculate the CD
stopping power with the temperature- and density-dependent
coefficient CT [Eq. (24)] set to one, and the DF stopping
power with no screening from bound electrons [ρp(q ) = 0].
The high-temperature Kohn-Sham calculations become more
computationally affordable for higher densities. Thus we
reach 1 mega-Kelvin temperatures for the 3.5 g/cc simulation,
but only 600 kilo-Kelvin for the 0.7 g/cc. The temperature-
dependent CD stopping power shows improved agreement
with the Kohn-Sham compared to the CD without the tem-
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FIG. 4. 0.7 g/cc deuterium stopping power (ESP) for deuteron. Top, left: Current-dependent TD orbital-free; top, middle, left: TD Kohn-
Sham; top, middle, right: dielectric function (DF) method with projectile screening; top, right: DF method with bare projectile, ρ̃p (q ) = 0.
Bottom, left: Current-dependent TD orbital-free, with CT = 1; bottom, middle, left: Li Petrasso model; bottom, middle, right: Brown-Preston-
Singleton model; bottom, right: comparison of all methods at 600000 Kelvin.

perature dependence, especially at higher temperatures, and
for both densities. This provides confidence in the simple
temperature dependence of the CD potential, Eq. (25). The
CD result agrees with KS at high and low velocities, but
overestimates at the Bragg peak. However, the agreement
improves with increased temperature.

LP predicts a larger peak than the Kohn-Sham result and a
discontinuous change at low velocity. The BPS peak agrees
well with the KS result for near-peak velocities, but the
stopping power drops significantly at low velocities, similar
to what is seen in the TFW TD-OF-DFT (Fig. 3). These
disagreements are not surprising given the high coupling in
this system. The DF approach agrees very well with the Kohn-
Sham, but only when the bound projectile electrons are not
included in the calculation. The sensitivity to the DF model
to the ad hoc treatment of the projectile electrons provides
further motivation for development of the all-electron, all-ion
approach of the TD-DFT methods.

The TD-DFT approaches also predict significantly lower
stopping at the high-velocity tails. However, this is partially
due to the small simulation box sizes, required to push the
KS simulations up to such high temperatures and repeated
for the OF. For high velocities, the projectile may begin to
interact with its own wake in a periodic system, which results
in a suppression of the stopping power. In our recent work,
we found that very large boxes are required to achieve con-
vergence for projectiles with velocities much larger than the
Bragg peak [74]. However, converged results still showed ∼
10–20 % differences compared to the LP, BPS, DF methods,
even in the 10’s of MeV projectile energy regime. While the

TD-KS approach cannot simultaneously reach these box sizes
and temperatures, it is based on an exact treatment of the
noninteracting KEDF. Thus agreement between the TD-OF
and TD-KS at these high velocities, though unconverged, still
supports the verification of our previous used, and converged,
TD-OF calculations [74]. We demonstrate convergence with
box size for the TD-OF-DFT in Appendix C.

In Fig. 5, we show stopping power for 3.5 g/cc deuterium
at 10 kK. Agreement between KS and CD is similar to the
lower density case for low and high velocities, but signifi-
cantly improved near the Bragg peak. This could be due to an
improved orbital-free representation of the equilibrium den-
sity, due to increased ionization at higher pressure. Agreement
with and between LP, BPS, and DF results is not significantly
changed.

V. CONCLUSION

We have presented a real-time time-dependent orbital-
free density functional approach for calculation of electronic
stopping power at high temperature. To improve numerical
propagation stability as well as low projectile velocity results
and temperature dependence, a dynamic, current-dependent,
KEDP is required. The dynamic KEDP derived here provides
the correct density-density response for a NI-HEG in the low-
frequency, low wave vector limit. When this CD potential,
along with the local Thomas-Fermi–von-Weizsäcker KEDP,
is added to a time-dependent Schrödinger-like equation for
the Madelung wave function, all high- and low-frequency
and wave vector limits of the noninteracting gas response are
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FIG. 5. 3.5 g/cc deuterium stopping power (ESP) for deuteron. Top, left: Current-dependent TD orbital-free; top, middle, left: TD Kohn-
Sham; top, middle, right: dielectric function (DF) method with projectile screening; Top, right: DF method with bare projectile, ρ̃p (q ) = 0;
bottom, left: current-dependent TD orbital-free, with CT = 1; bottom, middle, left: Li Petrasso (LP) model; bottom, middle, right: Brown-
Preston-Singleton (BPS) model; bottom, right: comparison of all methods at 1 mega-Kelvin.

reproduced. The CD orbital-free dynamics compares favor-
ably with the real-time time-dependent Mermin-Kohn-Sham
simulation of deuterium stopping power. However, it has no
practical limitation on the computationally accessible tem-
perature, and significantly reduced computational cost even
for T = 0. While the TD-OF KEDF is approximate, the TD-
OF-DFT approach still goes beyond linear response, accounts
for the local electron density, and is an all-electron all-ion
simulation. Improvement of the CD TD-OF-DFT approach
may be achieved by including, already developed, nonlocal
static KEDFs [54], or through future developments of dy-
namic KEDFs. Agreement between the bare ion DF model
and the Kohn-Sham supports this claim. Future work will also
include development and application of this time-dependent
OF methodology to additional electronic response, e.g., con-
ductivity, opacity, nonlinear absorption.
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APPENDIX A: STATIC KINETIC ENERGY FUNCTIONAL
FROM LINDHARD RESPONSE

Within the linear-response limit, the electronic energy
functional can be derived from the density response function:

∂ρ(r, t ) =
∫

dr′
∫

dt ′χ (r, r′, t, t ′)∂V (r′, t ), (A1)

δE[ρ]

δρ(r, t )δρ(r′, t ′)
= −χ−1(r, r′, t, t ′). (A2)

The KEDF, Eq. (4), can be derived from the LRF, χL, of a
isotropic NI-HEG. The real and imaginary parts of the Fourier
transform of the Lindhard function, χ̃L, are given, at zero
temperature, by

�[χ̃L](q, ω) = − kF

π2

{
1

2
− 1 − v2

−
4q̄

ln

∣∣∣∣v− + 1

v− − 1

∣∣∣∣
+ 1 − v2

+
4q̄

ln

∣∣∣∣v+ + 1

v+ − 1

∣∣∣∣
}

and (A3)

�[χ̃L](q, ω) = − kF

π2

π

4q̄
{(1 − v2

−)�[1 − v2
−]

− (1 − v2
+)�[1 − v2

+]}, (A4)

where

v± = ω

qvf

± q

2kF

, q̄ = q

kF

and vf = kF

me

. (A5)
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FIG. 6. Static density-density response functions for homoge-
neous electron gas as a function of normalized wave vector. Lindhard
function (black solid), Thomas-Fermi–von-Weizsäcker (TFW) (blue
dotted), random phase approximation (RPA) (red dashed), and the
approximate RPA with TFW for the noninteracting response.

In the static limit, ω = 0, relevant to the time-independent
energy,

�[χ̃L](q, 0) = − kF

π2

{
1

2
+ q̄2 − 4

8q̄
ln

∣∣∣∣ q̄ − 2

q̄ + 2

∣∣∣∣
}

and

�[χ̃L](q, 0) = 0. (A6)

For nearly uniform perturbation, q → 0, up to second order,

−χ̃−1
L (q, 0) = π2

kF

{
1 + q2

12

}
. (A7)

The first term gives the Thomas-Fermi response, the second
term the von-Weizsäcker response with CV W = 9. In the limit
of rapid oscillations in the perturbation, 1

q
→ 0,

−χ̃−1
L (q, 0) = π2

kF

{
3

5
+ 3q2

4

}
. (A8)

The first term is 3/5ths of the Thomas-Fermi response, the
second is the full von Weizsäcker response, CV W = 1. The
response function, which leads to our TFW functional,

−χ̃−1
T F,vW (q, 0) = π2

kF

{
1 + 3q2

4

}
, (A9)

which best reproduces both asymptotic limits of full static
Lindhard function, without requiring more computationally
expensive nonlocal functionals, see Fig. 6.

APPENDIX B: STABILITY OF TFW COMPARED TO
CURRENT-DEPENDENT

Figure 7 shows a comparison of the work done on the
projectile as a function of distance calculated using TD-
KS and CD TD-OF. Small peaks appear due to the ion-ion
contribution to the force. However, with fixed bulk ions and
a constant projectile velocity, these peaks and valleys do not
affect the average stopping power.
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FIG. 7. Work on the deuteron projectile as a function of distance
traveled. vp = 2.5 a.u. and δt = 0.29 as. Linear fit to this line leads
gives the electronic stopping power (ESP). time-dependent (TD)
Kohn-Sham (black solid), Current-dependent TD orbital-free (CD)
(blue dotted). Inset: Long trajectory shows instability (a deviation
of linearity) for the TFW TD orbital-free (red dashed). For TFW
δt = 0.096 as.

The inset of Fig. 7 also shows the TFW TD-OF-DFT.
Numerical instability leading to a nonlinear work for the
TFW. For high projectile velocities, vp  vF = (3π2ρ)

1
3 the

stopping power can be fit before dynamics become unstable.
In this regime the required time step is determined by the
projectile velocity, not the electron dynamics. This is the
case for the trajectory shown in Fig. 7. For low velocities,
vp � vF , the electron dynamics determines the required time
step. In this regime, the TFW method requires very small
time steps, ∼10 times lower (max δt = 0.096 as) than KS
or CD (max δt = 0.96 as), in order to maintain linearity
and extract a reasonable fit for the stopping power. By com-
parison the current-dependent orbital-free shows no signs of
instability.
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FIG. 8. 3.5 g/cc, 100 kK deuterium stopping power for deuteron.
Convergence of TD-OF-DFT result with respect to the dimensions
of the periodic simulation cell. BPS result also shown for reference.
Length shown in Bohr. See text for description.
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APPENDIX C: CONVERGENCE OF TD-OF-DFT WITH
RESPECT TO SIMULATION CELL SIZE

As we have mentioned in the main text, large simulation
box sizes are required to converge high-velocity stopping
power. This can be prohibitive for TD-KS-DFT simulations,
especially at high temperatures. However, for the increased
efficiency for TD-OF-DFT does allow one to reach the re-
quired large box sizes. In Fig. 8 we show the stopping power
for various box sizes and shapes. All simulations are for a
deuteron projectile stopped by 3.5 g/cc bulk deuterium at 10
kilo-Kelvin. This is similar to the simulations shown in Fig. 5.
To separate convergence with box size, vs. convergence with
respect to ion configurations, we use periodic replicas of a
base cell, i.e., increased cell size only changes the electron
response not the initial electron density. Note that in Fig. 3
we use a cubic cell of 128 atoms. This is well converged
with respect to the directions perpendicular to the projectile
velocity, but not with the parallel direction.

Results from the smallest box, the base cell, are shown
as a black line. The base cell only includes 32 atoms in a
2 × 1 × 1 xyz aspect ratio; the projectile velocity is parallel
to the x direction. The base cell is replicated in the x direction,

leading to a 4 × 1 × 1 aspect ratio, leads to the green squares.
The large overestimation of stopping power near vp ∼ 4.0
may be a resonance between the x length, the y/z lengths
and vp resulting in strong interaction of the projectile with
its own wake. Replicating the base cell once in all directions
leads to the purple triangles (4 × 2 × 2). Replicating the base
cell four times in each direction (8 × 4 × 4) leads to the red
circles, which no longer show oscillations. Finally, replicating
the base cell eight times in the x direction and twice in the y/z

directions (16 × 2 × 2) gives the converged blue dashed line.
This shows that y/z convergence is achieved with relatively
short lengths, but the box requires long lengths parallel to
the projectile velocity. The analytical BPS result, based on
homogeneous electron density (orange dash-dot line) is also
shown for reference.

Considering the excellent agreement between the OF and
KS TD-DFT results at high velocity, shown throughout this
paper, we expect that a similar convergence analysis would
apply to the TD-KS-DFT results. This could have implications
on multiple studies of TD-KS-DFT stopping power for low-
temperature condensed phase systems, where a suppressed
high-velocity tail has been observed, but additional factors
should be considered [23,47].
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