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Resonant reflection of interacting electrons from an impurity in a quantum wire:
Interplay of Zeeman and spin-orbit effects
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A single-channel quantum wire with two well-separated Zeeman subbands and in the presence of weak spin-
orbit coupling is considered. An impurity level which is split off the upper subband is degenerate with the
continuum of the lower subband. We show that, when the Fermi level lies in the vicinity of the impurity level, the
transport is completely blocked. This is the manifestation of the effect of resonant reflection and can be viewed
as resonant tunneling between left-moving and right-moving electrons via the impurity level. We incorporate
electron-electron interactions and study their effect on the shape of the resonant-reflection profile. This profile
becomes a two-peak structure, where one peak is caused by resonant reflection itself, while the origin of the
other peak is reflection from the Friedel oscillations of the electron density surrounding the impurity.
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I. INTRODUCTION

Electron states in a ballistic wire in the presence of spin-
orbit coupling became the subject of intensive theoretical
(see, e.g., Refs. [1–7]) and experimental [8–11] studies almost
three decades ago. The initial motivation for these studies was
the proposal of a spin transistor by Das and Datta [12]. The
motivation for the later studies was the proposal [13,14] that,
in the proximity of a superconductor, the interplay of spin-
orbit coupling and Zeeman splitting can lead to the formation
of zero-energy bound states at the wire ends. Yet another
motivation for the research on the combined action of Zeeman
and spin-orbit fields comes from the recent experiments on
cold gases [15].

Nontriviality of the interplay of spin-orbit coupling and
Zeeman splitting manifests itself already in the ballistic
transport through the wire. It was predicted [1,2] and con-
firmed experimentally [8] that, as a result of this interplay,
the dependence of the conductance on the Fermi level can
become nonmonotonic. Such a “spin gap” develops when
the spin-orbit minimum in the energy spectrum of a free
electron is comparable to the Zeeman splitting. Another non-
trivial consequence of the interplay shows up when the spin-
orbit coupling is inhomogeneous [3–7]. Namely, a steplike
inhomogeneity can lead to a full reflection of the incident
electron.

The underlying physics of the full reflection is the same
as the physics of the resonant reflection in the two-subband
wire first studied in Refs. [16,17]. It does not require either
Zeeman field or spin-orbit coupling. An attractive impurity
in a two-subband wire splits off an energy level from the
bottom of both subbands. If the Fermi level, lying in the lower
subband, coincides with the level split from the upper subband
(see Fig. 1), the transport involves multiple virtual visits to
this level. As it was first shown in Ref. [16], the outcome of
these visits is a reflection rather than resonant transmission
as one would naively expect. In a single-channel wire the

role of the size-quantization subbands is played by the spin
subbands, while the visits to the split-off level are enabled by
the spin-orbit coupling.

The goal of the present paper is to study the effect of
electron-electron interactions on the resonant reflection. For
a single-channel interacting wire it is accepted that any weak
potential impurity blocks completely the zero-temperature
transport through the wire. The theories [18] which capture
this phenomenon are the Luttinger-liquid description and
backscattering by the Friedel oscillations in an electron gas
imposed by an impurity. In the latter case, the role of the in-
teractions is simply a conversion of the oscillations of electron
density into the oscillations of the potential. As first pointed
out in Refs. [19,20] (see also later papers [21,22]), the period
of the Friedel oscillations matches the Bragg condition for an
electron at the Fermi level. Thus, the electron is scattered by
a compound object consisting of the impurity itself and the
oscillating potential, which it creates.

The theory of Refs. [19,20] was later generalized to the
case of a pair of impurities [23,24]. The specific of the pair is
that an electron can bounce between the constituting impuri-
ties for a long time. As a result of this bouncing, a quasilocal
level degenerate with the continuum is formed. For an incident
electron with energy in resonance with this quasilocal level the
transmission coefficient is close to 1. Physically, the results of
Refs. [23,24] can be interpreted as follows. When the incident
electron is resonantly transmitted, the Friedel oscillations do
not form, so that the interactions suppress the transmission
only when the Fermi level is spaced away from the resonant
level.

Contrary to the resonant transmission, in the case of the
resonant reflection the Friedel oscillations are the strongest
when the Fermi level lies close to the impurity level. Thus,
the modification of the resonant reflection profile due to
interactions is also strong. This demands a more detailed
treatment of the partial reflection of an electron on the way to
the impurity than the renormalization-group scheme adopted
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FIG. 1. Schematic illustration of the resonant reflection. An
attractive impurity creates bound states under the bottoms of ↓ (red)
and ↑ (blue) subbands. The binding energy, measured in units of �,
is 1 − E0. Weak spin-orbit coupling mixes ↓ and ↑ wave functions.
As a result, an incident ↑ electron undergoes a resonant scattering,
illustrated by the green line. The result of the scattering is almost full
reflection rather than conventional resonant transmission.

in Refs. [19–24]. Our most spectacular finding is that, for
certain phases accumulated by the electron on the way to the
impurity, the resonant reflection from the bare impurity can
turn into the resonant transmission.

II. RESONANT REFLECTION

In the presence of the Zeeman field and spin-orbit
coupling, the Hamiltonian of a wire has the form

Ĥ =

⎛
⎜⎝

− h̄2k2
x

2m
− � iγ kx

−iγ kx − h̄2k2
x

2m
+ �

⎞
⎟⎠, (1)

where m is the electron mass, 2� is the Zeeman splitting, and
γ is the spin-orbit coupling strength (for concreteness we have
chosen the spin-orbit Hamiltonian to be of the Rashba type).

We assume that the impurity potential is short ranged,
V (x) = V0δ(x). The system of coupled equations for ↑ and
↓ components of the spinor reads

− h̄2

2m

∂2ψ1

∂x2
+ V0δ(x)ψ1 − (ε + �)ψ1 = γ

∂ψ2

∂x
,

− h̄2

2m

∂2ψ2

∂x2
+ V0δ(x)ψ2 − (ε − �)ψ2 = −γ

∂ψ1

∂x
. (2)

Since the energy of the incident ↑ electron in resonance
with the impurity level of the ↓ electron is close to �

(see Fig. 1), it is convenient to introduce the following

dimensionless variables:

z = x

x0
, E = ε

�
,

α =
(

2mx0

h̄2

)
γ, U0 =

(
2mx0

h̄2

)
V0, (3)

where the characteristic length,

x0 =
(

h̄2

2m�

)1/2

, (4)

is the de Broglie wavelength of the electron with energy
ε = �. In the dimensionless variables the system (2) takes the
form

−∂2ψ1

∂z2
+ U0δ(z)ψ1 − (E + 1)ψ1 = α

∂ψ2

∂z
,

−∂2ψ2

∂z2
+ U0δ(z)ψ2 − (E − 1)ψ2 = −α

∂ψ1

∂z
. (5)

Without impurity, the solutions of the system (5) in the
domain −1 < E < 1 correspond to propagation of the ↑
spin component and the decay of the ↓ spin component
(see Fig. 1). Due to spin-orbit coupling, both components of
the corresponding spinors are nonzero,⎛

⎝ψ1

ψ2

⎞
⎠ =

⎛
⎝ 1

iC

⎞
⎠eiqz,

⎛
⎝ψ1

ψ2

⎞
⎠ =

⎛
⎝D

1

⎞
⎠e−κz, (6)

where the wave vector q, the decay constant κ , and the
components C and D of the spinors are given by

q(E) = (1 + E)1/2, κ (E) = (1 − E)1/2,

C = 1

2
αq, D = 1

2
ακ. (7)

Coefficients C and D describe the admixture of the opposite
spin projection due to spin-orbit coupling.

In the presence of impurity, the general solution at z < 0
has the form⎛

⎝ψ1

ψ2

⎞
⎠ =

⎛
⎝ 1

iC

⎞
⎠eiqz + r1

⎛
⎝ 1

−iC

⎞
⎠e−iqz + r2

⎛
⎝D

1

⎞
⎠eκz, (8)

which is the combination of the solutions (6). The first two
terms describe the incident and reflected ↑ waves, while the
third term describes the solution corresponding to ↓, which
decays at z → −∞.

The corresponding solution for z > 0 reads⎛
⎝ψ1

ψ2

⎞
⎠ = t1

⎛
⎝ 1

iC

⎞
⎠eiqz + t2

⎛
⎝−D

1

⎞
⎠e−κz. (9)

The first term describes the transmitted ↑ wave, while the
second term describes the decay of the ↓ component.

Although the parameters C and D are proportional to α and
thus are small due to the weakness of the spin-orbit coupling,
it is these admixtures that are responsible for the resonant
reflection. To capture this effect, we follow the standard proce-
dure and calculate the reflection and transmission coefficients
from the system of boundary conditions at z = 0.
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Continuity of the wave function equations (8) and (9)
yields two conditions,

1 + r1 + r2D = t1 − t2D,

iC(1 − r1) + r2 = iCt1 + t2. (10)

The other two conditions come from the discontinuity of the
derivatives, ∂ψ1

∂z
and ∂ψ2

∂z
, at z = 0. Integrating the system (5)

near z = 0, we get

iqt1 + κt2D − [iq(1 − r1) + κr2D] = U0(t1 − t2D),

− qCt1 − κt2 − [−qC − qCr1 + κr2] = U0(iCt1 + t2).

(11)

Simplifying the above boundary conditions by introducing
R2 = Dr2, T2 = Dt2, and λ = CD, we get

R2 + T2 = t1 − r1 − 1,

R2 − T2 = iλ(t1 + r1 − 1), (12)

iq(t1 + r1) − U0t1 − iq = R2κ − (κ + U0)T2,

(κ + U0)T2 + κR2 = −λ[−it1(iq − U0) − q(1 + r1)].

(13)

Since we are interested in the reflection and transmission
coefficients, r1 and t1, it is convenient to express R2 and T2

from the system (12) and substitute them into the system (13),
which assumes the form

t1 + r1 =
[
q − λ

(
κ + U0

2

)] + i U0
2[

q − λ
(
κ + U0

2

)] − i U0
2

, (14)

t1 − r1 = κ + U0
2 + qλ − iλU0

2

κ + U0
2 + qλ + iλU0

2

. (15)

We see that the absolute values of t1 + r1 and t1 − r1 are equal
to 1. Then it is convenient to cast the solution of the system
(14) into the form

|r1|2 = sin2(�− − �+), |t1|2 = cos2(�− − �+), (16)

where

�+ = 1

2
tan−1

U0
2

q − λ(κ + U0
2 )

,

�− = 1

2
tan−1

λU0
2

κ + U0
2 + qλ

. (17)

Until now the calculation was exact. The weakness of the spin-
orbit coupling, quantified by the condition α � 1, was used
in the explicit expressions for q and κ . We will now use this
condition to simplify the phases �+ and �−. First, we note
that the dimensionless parameter

λ = CD = 1

4
α2(1 − E2)1/2 (18)

is quadratic in spin-orbit coupling strength. This allows us to
simplify �+ to tan−1 ( U0

2q
). Then �+ can be identified with

the scattering phase of the ↑ electron from the impurity in the
absence of spin-orbit coupling.

Turning to the phase �−, we note that the small parameter
α2 in the expression for λ allows us to neglect the term qλ

in the denominator. Then we see that, for attractive impurity,
U0 < 0, this denominator becomes zero at energy E = E0,
determined by the condition

κ (E0 ) = |U0|
2

. (19)

This condition expresses the fact that in the absence of spin-
orbit coupling, the energy position of the level of the ↓
electron in the potential U0δ(z) is E = E0 (see Fig. 1).

To establish the energy width � of the resonance, we recast
the expression for tan �− into the form

tan[�−(E)] = 1

8
α2(1 − E2)1/2|U0|

[
(1 − E2)1/2 + |U0|

2

1 − E − U 2
0

4

]
.

(20)
Near the resonance, E = E0 = 1 − U 2

0
4 , expression (20) as-

sumes the conventional Breit-Wigner form

tan[�−(E)] = �

E0 − E
, (21)

where � is given by

� = α2

16
|U0|3. (22)

With the binding energy of the ↓ electron being U 2
0

4 , we see
that the width � is much smaller than this binding energy,
which justifies the expansion near the resonance.

If the bound state in the potential U0δ(z) is shallow, i.e.,
U0 � 1, we can replace tan−1 in the expression for �+ by
the argument. After that, the final expression for the energy-
dependent reflection coefficient assumes the form

|r1(E)|2 = sin2

[
tan−1

(
�

E0 − E

)
− |U0|

2q

]

=
[
� − |U0|

2q
(E0 − E)

]2

(E0 − E)2 + �2
. (23)

It follows from Eq. (23) that |r1(E)|2 has a characteristic Fano
shape [25]. Near the resonance, E = E0, it is a Lorentzian
with the width �. As the energy is swept through E0, the re-
flection coefficient passes through zero (antiresonace) before
returning to its nonresonant value |r1|2 = |U0|2

4q2 .

III. INCORPORATING THE ELECTRON-ELECTRON
INTERACTIONS

As explained in the Introduction, the effect of interactions
is more pronounced in the case of resonant reflection than in
the case of resonant transmission [23,24]. The reason is that
the amplitude of the Friedel oscillations is proportional to the
reflection amplitude [19,20], which, for resonant reflection, is
close to 1. On the other hand, the Friedel oscillation of elec-
tron density creates perturbations which play the role of the
“Bragg mirrors” for incident and transmitted electron waves.
As a result of Friedel oscillations being strong, each Bragg
mirror is highly “reflective.” This suggests incorporating the

144202-3



RAJESH K. MALLA AND M. E. RAIKH PHYSICAL REVIEW B 98, 144202 (2018)

FIG. 2. Schematic illustration of the electron scattering from impurity “dressed” by Friedel oscillations, which play the role of the Bragg
mirrors. The incident electron i can be reflected by the left mirror, by the impurity, or by the right mirror.

effect of attenuation, caused by the mirrors, more accurately
than in Refs. [23,24].

The process of electron reflection from a compound object
consisting of three scatterers, two Bragg mirrors, and an
impurity between them is illustrated in Fig. 2. The rigorous
way to describe this reflection analytically is to employ the
scattering matrices of each scatterer relating the amplitudes of
the incoming and outgoing partial waves. These matrices are
defined as follows:⎛

⎝i1

o′

⎞
⎠ =

⎛
⎝ tL rL

−r∗
L t∗L

⎞
⎠

⎛
⎝ i

o′
1

⎞
⎠,

⎛
⎝ i2

o′
1

⎞
⎠

=
⎛
⎝ t1 r1

−r∗
1 t∗1

⎞
⎠

⎛
⎝ i1

o′
2

⎞
⎠,

⎛
⎝ o

o′
2

⎞
⎠

=
⎛
⎝ tR rR

−r∗
R t∗R

⎞
⎠

⎛
⎝i2

0

⎞
⎠. (24)

The amplitude r1 in Eq. (24) was found in the previous
section. The two remaining amplitudes, rL and rR , will
be calculated later. Excluding the intermediate amplitudes
i1, i2, o′

1, o′
2 from Eq. (24), we find the expression for the net

amplitude reflection coefficient of the compound scatterer

reff = −o′

i
= r∗

L + r∗
1 + r∗

R + r∗
Lr1r

∗
R

1 + r1r
∗
R + rLr∗

1 + rLr∗
R

. (25)

To analyze this expression, we express the reflection coeffi-
cient |reff |2 via the magnitudes of the reflection coefficients
r1, rL, and rR and obtain

|reff |2 = 1 − |teff |2 = 1 − (1 − |rBragg|2)2(1 − |r1|2)

(1 + |rBragg|2 + 2|rBragg||r1| cos β )2
.

(26)
In Eq. (26) we took into account that, unlike in Refs. [23,24],
there is symmetry between the left and right mirrors, so that
the magnitudes |rL| and |rR| are equal to each other and are
denoted by |rBragg|. The phase β is the combination of the phase
�−, defined by Eq. (16), and the phase �Bragg, accumulated in
the course of the reflection from the mirror. We will see that
this phase is big and depends strongly on the energy. Thus, we
average Eq. (26) over β using the identity〈

1

(a + cos β )2

〉
β

= a

(a2 − 1)3/2
. (27)

The result of this averaging reads

〈|reff |2〉 = 1 − (1 − |rBragg|2)2(1 + |rBragg|2)(1 − |r1|2)

[(1 − |rBragg|2)2 + 4|rBragg|2(1 − |r1|2)]3/2
.

(28)

It is also instructive to express the effective transmission
coefficient via the partial transmission coefficients |t1|2 and
|tBragg|2. One obtains

〈|teff |2〉 = |tBragg|4(2 − |tBragg|2)|t1|2
[|tBragg|4 + 4(1 − |tBragg|2)|t1|2]3/2

. (29)

Since the transmission |tBragg|2 is strongly dependent on the
position of the Fermi level EF with respect to the resonant
energy level E0, the magnitude of |tBragg|2 falls off with in-
creasing (EF − E0 ). Then one would expect |teff |2 to grow
monotonically with increasing |tBragg|2 and to approach |t1|2.
The reasoning behind this expectation is that the scattering
by the Bragg mirrors becomes inefficient for large (EF − E0 ).
Remarkably, the dependence of |teff |2, described by Eq. (29), is
nonmonotonic. As illustrated in Fig. 3, this dependence has a
maximum. For small transmission of the impurity, |t1|2 � 1,
the position of the maximum is easy to calculate analytically.
It is |tBragg|4 = 8t2

1 . Note that the value |tBragg|4 has a meaning
of the net transmission of two mirrors. Thus, the maximum
occurs when the transmissions of the impurity and of the
two mirrors are equal within a numerical factor. Substituting
|tBragg|4 = 8t2

1 into Eq. (29), we find the maximal value of the
effective transmission

(|teff |2)max = 2

33/2
|t1|. (30)

We see that this value is much bigger than |t1|2.
The origin of the maximum is that the dominant con-

tribution to the phase-averaged transmission 〈|teff |2〉 comes
from the phases β in Eq. (26) for which the denominator is
close to zero. In other words, while the impurity alone acts

FIG. 3. Effective transmission coefficient of the impurity dressed
by the Friedel oscillations is plotted from Eq. (29) versus the trans-
mission of the Bragg mirrors for |t1|2 = 0.01 (blue) and |t1|2 = 0.04
(red).
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as a reflector, adding the two Bragg mirrors can lead to the
resonant transmission.

Naturally, the values of |t1|2 and |tBragg|2 are not indepen-
dent. It is the reflection from the impurity that controls the
magnitude of the Friedel oscillations. To analyze the behavior
of the effective transmission with energy E of the incident
electron and with EF , we need to specify the analytical form
of |tBragg|2. This is done in the next section.

IV. TRANSMISSION OF THE BRAGG MIRROR

In the presence of electron-electron interactions, propaga-
tion of an electron through the mirror is described by the
Schrödinger equation

−∂2ψ1

∂z2
+ VH (z)ψ1 + V̂ex{ψ1} = (E + 1)ψ1, (31)

where VH (z) and V̂ex are the Hartree and exchange terms,
respectively. When the interaction is short ranged, one can
consider only the Hartree term since the exchange term causes
only a modification of the interaction constant [19]. The other
consequence of the interaction being short ranged is that the
Hartree potential is proportional to the modulation of the
electron density created by the Friedel oscillations [19]; that
is, it has the from

VH (z) = μ(EF )

qF |z| cos(2qF |z|), (32)

where qF is the Fermi momentum. The magnitude of the
electron-electron interactions and the energy dependence of
|r1|, which is responsible for the Friedel oscillations, are
encoded into the constant μ, which we will specify later. The
main difference between our approach and the approach of
Ref. [19] is that we find an asymptotically exact solution of
Eq. (31), while in Ref. [19] it was solved perturbatively. The
reason the asymptotically exact solution can be found is that
the amplitude of VH (z) falls off slowly with z, so that the
relevant values of qFz are big. This, in turn, suggests searching
for ψ1(z) in the form

ψ1(z) = A+(z)eiqF z + A−(z)e−iqF z, (33)

where the functions A+ and A− change slowly with z, so that
their second derivatives can be neglected. Upon substituting
Eq. (33) into Eq. (31) and neglecting nonresonant terms
exp(±3iqF z), we arrive at a coupled system of the first-order
equations

−2iqF

∂A+(z)

∂z
+ μ

2z
A−(z) = (

E + 1 − q2
F

)
A+(z),

2iqF

∂A−(z)

∂z
+ μ

2z
A+(z) = (

E + 1 − q2
F

)
A−(z). (34)

It appears that this system can be solved exactly for arbitrary
interaction strength μ. To see this, we first perform a rescaling,

y = z

(
E + 1 − q2

F

2qF

)
, (35)

and then introduce the auxiliary functions

a(y) = A+(y) + iA−(y), b(y) = A+(y) − iA−(y). (36)

Then the system (34) reduces to

∂a

∂y
+ μ

4qFy
a(y) = ib(y),

∂b

∂y
− μ

4qFy
b(y) = ia(y). (37)

In the rescaled form, the system contains a single dimension-
less parameter, μ

4qF
. As a next step, we substitute b(y) from

the first equation into the second equation and arrive at the
following second-order differential equation:

∂2a

∂y2
+

[
1 +

1 − 4( μ

4qF
+ 1

2 )2

4y2

]
a(y) = 0. (38)

The general solution of this equation can be presented as a
linear combination,

a(y) = y1/2
[
c1J μ

4qF
+ 1

2
(y) + c2J− μ

4qF
− 1

2
(y)

]
, (39)

where J μ
4qF

+ 1
2

and J− μ
4qF

− 1
2

are the Bessel functions. At large y

both Bessel functions oscillate, so that the value of the trans-
mission coefficient is governed by the ratio c1/c2. This ratio
is determined by the condition that at small y = yc, where
the Friedel oscillations are terminated (see Appendix A), the
amplitude of the reflected wave vanishes. The final expression
for the transmission coefficient reads

tBragg =
(2πyc )1/2J μ

4qF
− 1

2
(yc )J− μ

4qF
− 1

2
(yc )

J μ
4qF

− 1
2
(yc )ei

πμ

8qF + J− μ
4qF

− 1
2
(yc )e−i

πμ

8qF

. (40)

The details of the derivation are presented in Appendix B.
The result (40) can be simplified when yc is small. Then

we can use the small-argument asymptotes of the Bessel
functions and obtain

tBragg = 1

cosh
(

μ

4qF
ln yc

) . (41)

In deriving this expression we took into account that the
interactions are weak in the usual sense, namely, that the
typical interaction energy is much smaller than the Fermi
energy. This condition ensures that μ

qF
is small.

Concerning the value of yc, in Appendix A it is demon-
strated that the Friedel oscillations are terminated at z = zc ∼
q0

�
. Using the relation (35), we find that, within a numerical

factor, yc is given by

yc = E − EF

�
. (42)

We see that in the interesting limit when the Fermi level is
close to the resonance, yc is indeed small.

Equations (41) and (42) describe how the transmission of
the Bragg mirror evolves with energy. Indeed, the argument
of the hyperbolic cosine is the product of a small factor μ

4qF

and a big factor ln yc. If this product is small, e.g., when
the interactions are weak, then the transmission coefficient is
close to 1. On the contrary, if the product is big, we have

tBragg =
(

2|E − EF |
�

) |μ|
4qF � 1; (43)
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that is, the mirror is highly reflective.
To conclude this section, we present the microscopic ex-

pression for the parameter μ in terms of the Fourier com-
ponents of the interaction potential. This expression follows
from the expression for the amplitude of the oscillations of
the electron density, calculated in Appendix A, and has the
form

μ = νqF

2
|r1(EF )|2, (44)

where ν is given by

ν = V (0) − V (2qF )

2πh̄vF

. (45)

The term V (0) comes from the exchange potential, while
V (2qF ) comes from the Hartree potential; vF stands for the
Fermi velocity.

Note that the transmission tBragg is full not only in the ab-
sence of electron-electron interactions. If the interactions are
present but there is no reflection from the impurity, r1(EF ) =
0, then transmission is also full. This is natural since, in the
absence of reflection, the Friedel oscillations do not form.

V. ENERGY DEPENDENCE OF THE
EFFECTIVE REFLECTION

In Eq. (29) both t1 and tBragg are functions of energy. While
t1 is a growing function of energy, tBragg grows with increasing
|E − EF |. In addition, the power μ

4qF
in Eq. (43) depends on

the difference |E0 − EF | (see Appendix A).
Concerning the overall dependence |reff (E)|2, the situa-

tion is most transparent when the Fermi level lies away
from the resonance. Then the presence of the Bragg mir-
rors manifests itself only near E = EF. Bragg mirrors
cause a spike in the reflection. When the spacing be-
tween EF and E0 is much smaller than the width of
the resonance, there are two features in the |reff (E)|2 de-
pendence that are present for any interaction strength.
First, the reflection is full for any position of the Fermi
level when the energy of the incident electron is E = E0.
This is because the electron is fully reflected even in the
absence of the Friedel oscillations. Second, |reff (E)|2 = 1 at
E = EF due to full reflection from the mirror. Thus, in the
domain −EF < E < 0, the reflection coefficient should pass
through a minimum. Indeed, this minimum is present in the
curves |reff (E)|2 plotted from Eqs. (28) and (41) in Fig. 4.

VI. DISCUSSION

(i) To establish the relation between our results and those
obtained within the renormalization-group approach [19–24]
we assume that the reflection of the Bragg mirrors is weak and
expand Eq. (26) with respect to |rBragg|2. This yields

|reff |2 − |r1|2 = 4(1 − |r1|2)[|rBragg|2 + |r1||rBragg| cos β]. (46)

The second term in the brackets contains the first power
of |rBragg|, unlike the first term, which contains |rBragg|2. This
second term comes from the interference of incident and
reflected waves passing through the Bragg mirror. If we
average Eq. (46) over β, the second term will disappear. Then
it is the first term, 1 − t2

Bragg, that will describe the reduction

(a)

(b)

FIG. 4. (a) In the absence of interactions, the effective reflection

coefficient is a Lorentzian, |reff |2 = [1 + (E−E0 )2

�2 ]
−1

(black dashed
line). With interactions, full reflection takes place at two energies,
at E = E0 as a result of scattering from the impurity and at E = EF

as a result of scattering from the Bragg mirror. This is illustrated by
red and blue curves plotted from Eqs. (28) and (41) for (E0 − EF ) =
0.8� and (E0 − EF ) = 0.6�, respectively. The interaction strength in
both curves is chosen to be μ

4qF
= 0.4. (b) Scattering by two Bragg

mirrors can, for certain energies, transform the resonant reflection
into the resonant transmission. While (a) shows the average over the
phase, β, (b) shows the reflection profile for the same parameters
prior to averaging.

of the transmission of the impurity due to electron-electron
interactions. As follows from Eq. (41), |rBragg|2 is proportional
to |r1|2 and contains μ ln yc. Then Eq. (46) reproduces the
main result of Ref. [19]. In Ref. [19] this result is subse-
quently converted to the renormalization-group equation. We
studied the limit in which both |r1| and |rBragg| are close to
1. Then the denominator in Eq. (26) is close to zero when
cos β = −1. Definitely, the expansion with respect to |rBragg|
and the subsequent summation of the leading terms, which
is the essence of the renormalization-group approach, do not
capture this resonant transmission.

(ii) Adopting the renormalization-group approach in
Refs. [19–24] relies on the assumption that the coefficients
of the expansion of |teff |2 in powers of ln(|E − EF |) fall off as
1
n! . Our calculation is equivalent to the summation of all the
orders of the expansion and confirms this assumption.
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(iii) The form (23) of the resonant reflection is the same
as for the resonant tunneling between the two electrodes via a
localized state located between the electrons. This suggests
the interpretation of the resonant transmission as resonant
tunneling between left-moving and right-moving electrons. If
this interpretation is correct, the width � calculated from the
golden rule should coincide with Eq. (22) and, in particular,
should be proportional to U 3

0 . Taking into account that the
normalized wave function of the localized state has the form
ψ2(z) = κ1/2 exp(−κ|z|), the matrix element of α ∂

∂z
between

ψ2(z) and the right-moving plane wave, exp(iqz), is given by

iακ1/2q

∫ ∞

−∞
dz exp[iqz − κ|z|] = 2i

qκ3/2

q2 + κ2
. (47)

One can neglect κ2 in the denominator. Then the square of the
matrix element is proportional to κ3 and thus to U 3

0 since, at
resonance, κ = U0

2 .
(iv) There is a question whether the attenuation of elec-

tron wave functions upon passage of the Bragg mirrors dis-
turbs the shape of the Friedel oscillations. It is important
that this disturbance is negligible. Qualitatively, this follows
from the fact that many states with E < EF are responsi-
ble for the formation of the Bragg mirrors, while only the
states with |E − EF | � ν� are strongly affected by the Bragg
mirrors.

(v) Another question is why we did not take into ac-
count the Friedel oscillations originating from the electron
reflection within the same subband. Indeed, while the Friedel
oscillations caused by the resonant reflection develop at large
distances zc ∼ q0

�
, “nonresonant” Friedel oscillations start at

much smaller z ∼ 1. To answer this question one should esti-
mate the contribution to the reflection coefficient within the
domain 1 < z < zc, where nonresonant Friedel oscillations
dominate. The amplitude of these oscillations is ∼ U0

qF
, and

they fall off as 1/z. This leads to the estimate U0
qF

ln(zc ) as

in Ref. [19]. Since U0
qF

� 1, the weakness of nonresonant
reflection cannot be compensated by the logarithmically big
factor ln ( q0

�
); it is for this reason that we have neglected the

Friedel oscillations originating from the reflection within the
same subband.

On physical grounds, the electron incident from z →
−∞ encounters the “resonant” Friedel oscillation first, and
then, as |z| becomes smaller than zc, it passes through the
“nonresonant” Friedel oscillation and experiences the addi-
tional reflection. Then the criterion U0

2qF
ln(zc ) � 1 ensures

that the resonant reflection with amplitude close to 1 is much
stronger than nonresonant reflection.

Formally, both processes, the reflections from resonant and
from nonresonant Friedel oscillations, are described by the
system (34). For resonant reflection, the value of μ is given
by Eq. (44) with |r1| close to 1. The system should be solved
in the domain |z| > zc. For nonresonant reflection, the value
of |r1| in the expression for μ should be set to U0

2qF
, and the sys-

tem should be solved within the domain 1 < z < zc. Strictly
speaking, one should multiply the transmission coefficients in
both domains. Then the criterion U0

2qF
ln(zc ) � 1 ensures that

the nonresonant transmission coefficient is close to 1. Thus,

the effective transmission coefficient comes exclusively from
large distances.

(vi) Our main finding is that, for weak transmission
through a single Bragg mirror, the net transmission from
two Bragg mirrors and the impurity can be close to 1. This
enhancement of the net transmission takes place when the
“Fabry-Pérot” condition cos β ≈ −1 is met. Then the denom-
inator in Eq. (26) becomes small. This happens near certain
distinct energies of the incident electron. Averaging over the
phase β, employed above, requires that there are many such
energies within the interval |E0 − EF |. To verify that this
is the case, consider the contribution to β coming from the
factor exp(iqFz) in Eq. (33). As an estimate for z in this
factor, one should take the effective length of the Bragg mirror
where the reflection is formed. From Eq. (38) we see that this
length is determined by the condition y 
 1. At these values
of y the product y1/2J μ

4qF
+ 1

2
(y) saturates, meaning that the

formation of the Bragg reflection is complete. The condition
y 
 1 transforms into the condition z � qF

E−EF
. Thus, the

contribution to β from the accumulation of the phase �Bragg

in the course of traveling through the mirror is of the order of
(E − EF )−1. In the relevant domain |E0 − EF | � � this phase
goes through (2n + 1)π many times. Under the experimental
conditions, the averaging takes place since the energy of an
incident electron is not fixed but rather distributed within
a certain interval. This width of the interval can be set by
finite temperature when the Friedel oscillations fall off ex-
ponentially beyond some length defined by temperature. This
interval can also be set by a finite bias. Finally, if both the bias
and the temperature are very low, the width of the interval can
be set by finite level spacing in the wire since its length is
finite.
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APPENDIX A: MAGNITUDE OF THE
FRIEDEL OSCILLATIONS

The scattering of electrons from the impurity modifies the
electron densities around the impurity. In the presence of
electron-electron interaction this modulation of density leads
to an additional scattering, which we call the “Bragg mirror”
in the main text. This scattering barrier is also called the
Hartree potential,

VH (z) =
∫ ∞

−∞
V (z − y)δn(y)dy, (A1)

where V (z − y) is the interaction potential and δn(y) is the
fluctuation of the density. Assuming the interaction is short
ranged, V (z − y) = ν δ(z − y), we see that the Hartree po-
tential takes the form VH (z) = ν δn(z). Now, the modulation
of the electron density δn(z), which depends on the reflection
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coefficient r1, reads

δn(z) =
∫ qF

0

dq

π
2Re[r1(q ) e2iqz]

=
∫ qF

0

dq

π

�[
�2 + (

q2
0 − q2

)2
]1/2

× cos

(
2q|z| + tan−1 �

q2
0 − q2

)
, (A2)

where q0 = (1 + E0 )1/2 [see Eq. (7)]. Upon measuring q from
qF and introducing new variables,

u = 2q0

qF − q

�
, u0 = 2q0

q0 − qF

�
, (A3)

Eq. (A2) assumes the form

δn(z) = �

2πq0

∫ 2q0qF
�

0
du

1[
1 + (u + u0 )2

]1/2

× cos

[
2|z|

(
qF − �

2q0

u + tan−1 1

u + u0

)]
. (A4)

It is convenient to separate the contributions proportional to
sin(2q|z|) and to cos(2q|z|). This yields

δn(z) = �

2πq0

∫ 2q0qF
�

0
du

1

1 + (u + u0)2

×
{

(u + u0) cos

[
2|z|

(
qF − �

2q0
u

)]

− sin

[
2|z|

(
qF − �

2q0
u

)]}
. (A5)

The shift �
2q0

u of the arguments of both cosine and sine leads

to the factors sin ( �|z|
q0

u) and cos ( �|z|
q0

u) in the numerator.

For �|z|
q0


 1, both terms rapidly oscillate with u. Without u

dependence of the prefactor, the contribution from the cosine
term will vanish. With the prefactor the contribution of this
term remains much smaller than the contribution of the sine
term. Retaining only the sine term, we get

δn(z) = cos (2qF |z|) �

2πq0

∫ 2q0qF
�

0
du

sin
(

�|z|
q0

u
)

1 + (u + u0)2 . (A6)

For �|z|
q0


 1 we can replace the upper limit of the integral by
infinity and neglect the u dependence of the denominator. This
leads to the final answer

δn(z) = |r1(EF )|2
2π |z| cos (2qF |z|), (A7)

where we have used the fact that |r1(EF )|2 is (1 + u2
0 )−1.

Note that, unlike the conventional Friedel oscillations [19],
Eq. (A7) contains the second power of |r1(EF )|. The extra
power originates from the phase of the cosine in Eq. (A4),
which is strongly energy dependent.

The most important outcome of the above analysis is that
the Friedel oscillations are terminated at rather large distances

z = zc ∼ q0

�
. We have used this value as a cutoff of log

divergence in the main text.

APPENDIX B: CALCULATION OF THE TRANSMISSION
COEFFICIENT FROM A MORE RIGOROUS APPROACH

Substituting the general form (39) of a(y) in the system
(37), we find the following general form of b(y):

b(y) = −iy1/2
[
c1J μ

4qF
− 1

2
(y) − c2J− μ

4qF
+ 1

2
(y)

]
. (B1)

Once a(y) and b(y) are known, the incident ampli-
tude A+(y) = 1

2 [a(y) + b(y)] and the reflected amplitude
A−(y) = 1

2i
[a(y) − b(y)] can be expressed as a combination

of the Bessel functions:

A+ = y1/2

2

{
c1

[
J μ

4qF
+ 1

2
(y) − iJ μ

4qF
− 1

2
(y)

]

+c2

[
J− μ

4qF
− 1

2
(y) + iJ− μ

4qF
+ 1

2
(y)

]}
, (B2)

A− = y1/2

2i

{
c1

[
J μ

4qF
+ 1

2
(y) + iJ μ

4qF
− 1

2
(y)

]

+c2

[
J− μ

4qF
− 1

2
(y) − iJ− μ

4qF
+ 1

2
(y)

]}
. (B3)

In the limit y → ∞, the behavior of A+ and A− is as follows:

A+ = 1

(2π )1/2

[
c2e

i
πμ

8qF − ic1e
−i

πμ

8qF

]
eiy,

A− = −i

(2π )1/2

[
c2e

−i
πμ

8qF + ic1e
i

πμ

8qF

]
e−iy . (B4)

For small y, we have J± μ
4qF

+ 1
2
(y) � J± μ

4qF
− 1

2
(y), so the asymp-

totic expressions for A+ and A− can be written as

A− = y1/2

2i

[
ic1J μ

4qF
− 1

2
(y) + c2J− μ

4qF
− 1

2
(y)

]
,

A+ = y1/2

2

[
− ic1J μ

4qF
− 1

2
(y) + c2J− μ

4qF
− 1

2
(y)

]
. (B5)

To find the transmission of the Bragg mirror we need to know
the ratio c1/c2. This ratio is determined by the condition that
the Bragg mirror exists only for y > yc. Correspondingly, the
amplitude A− at y = yc is zero. This yields

c1

c2

= i
J− μ

4qF
− 1

2
(yc )

J μ
4qF

− 1
2
(yc )

. (B6)

By definition, the amplitude transmission coefficient of the
mirror tBragg is the ratio of the values of A+ at y = yc and at
large y. Using the ratio (B6) and Eqs. (B4) and (B5), we arrive
at Eq. (40) of the main text.

APPENDIX C: ALTERNATIVE DERIVATION OF
THE RESONANT REFLECTION

It is instructive to trace how the resonant reflection of
↑ electrons emerges from the closed equation for the spin
component ψ1(z). To derive this equation, we introduce the
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Fourier transform,

ϕ2(p) = 1

2π

∫ ∞

−∞
dz ψ2(z) exp(−ipz), (C1)

and we rewrite the second equation of the system (5) in the
form

(p2 + κ2)ϕ2(p) + U0

2π
ψ2(0)

= − α

2π

∫ ∞

−∞
dz

∂ψ1

∂dz
exp(−ipz). (C2)

Expressing ϕ2(p) and substituting it into the self-consistency
condition

ψ2(0) =
∫ ∞

−∞
dp ϕ2(p), (C3)

we find

ψ2(0) = − α

U0 + 2κ

∫ ∞

−∞
dz

∂ψ1

∂z
e−κ|z|. (C4)

Substituting Eq. (C4) into Eq. (C2), we express ϕ2(p) in terms
of ψ1(z),

ϕ2(p) = − α

2π (p2 + κ2)

[∫ ∞

−∞
dz

∂ψ1

∂z

(
e−ipz − U0

U0 + 2κ
e−κ|z|

)]
. (C5)

Multiplying Eq. (C5) by exp(ipz) and integrating over p, we get the following expression for ψ2(z):

ψ2(z) = α

2κ

[
−

∫ ∞

−∞
dz1

∂ψ1

∂z1
e−κ|z−z1| + U0e

−κ|z|

U0 + 2κ

∫ ∞

−∞
dz1

∂ψ1

∂z1
e−κ|z1|

]
, (C6)

−∂2ψ1

∂z2
+ U0δ(z)ψ1 − (E + 1)ψ1 = α2

2κ

∂

∂z

[∫ ∞

−∞
dz1

∂ψ1

∂z1
e−κ|z−z1| − U0e

−κ|z|

U0 + 2κ

(∫ ∞

−∞
dz1

∂ψ1

∂z1
e−κ|z1|

)]
. (C7)

The term responsible for the resonant reflection is the second term on the right-hand side. Near the resonance, it is much bigger
than the first term. The term U0δ(z) on the left-hand side describes a nonresonant scattering from the impurity. Neglecting these
terms, we get

−∂2ψ1

∂z2
− (E + 1)ψ1 = α2

2

U0

U0 + 2κ

(∫ ∞

−∞
dz1

∂ψ1

∂z1
e−κ|z1|

)
e−κ|z|sgn(z). (C8)

We see that the right-hand side is a discontinuous function of
z. This fact constitutes the origin of the resonant reflection.
For example, if we integrate Eq. (C8) near z = 0, we will
see that, unlike conventional scattering, the derivative ∂ψ1

∂z
is

continuous at the position of the impurity. This translates into
the relation t1 = 1 − r1, which is nothing but Eq. (14). To
derive the second equation, Eq. (15), one should notice that
ψ1(z) is present on the right-hand side only under the integral,
so that the explicit solution of Eq. (C8) can be readily found.
This solution also contains t1 and r1. Then Eq. (15) emerges
as a self-consistency condition.

APPENDIX D: SMALLNESS OF THE TRANSMISSION
THROUGH THE BRAGG MIRROR

The fact that the transmission coefficient tBragg is small
suggests using the semiclassical approach to calculate tBragg.
The semiclassical approach is equivalent to the assumption
that A+ and A−, which are the solutions of the system (34), are
proportional to exp [±S(z)], where S(z) is the action. From
the system (34) we find

dS

dz
= 1

2qF

[
μ2

4z2
− (

E + 1 − q2
F

)2
]1/2

. (D1)

It is seen from Eq. (D1) that the functions A± oscillate at z >

zt , where the turning point zt is given by

zt = |μ|
2|E + 1 − q2

F
| . (D2)

For smaller z, A±(z) are the combinations of growing and
decaying exponents. This behavior is sustained in the interval
zc < z < zt , where zc ∼ 1/� is the point where the Friedel
oscillations are terminated (see Appendix A). For the applica-
bility of the semiclassics, the action

S(zt ) − S(zc ) = 1

2qF

∫ zt

zc

dz

[
μ2

4z2
− |E + 1 − q2

F
|2

]1/2

(D3)
accumulated between points zc and zt should be much big-
ger than 1. However, the evaluation of the integral sug-
gests that this condition reduces to |μ|/4qF ln(zt/zc ) 
 1,
which is not the case for weak electron-electron interactions.
This is why we derived tBragg from the exact solution of
the system (34). Failure of the semiclassics can be traced
back to neglecting the z dependence of the prefactors A+
and A−.
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