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Possible origin of β-relaxation in amorphous metal alloys from atomic-mass
differences of the constituents
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We employ an atomic-scale theory within the framework of nonaffine lattice dynamics to uncover the origin of
the Johari-Goldstein (JG) β-relaxation in metallic glasses (MGs). Combining simulation and experimental data
with our theoretical approach, we reveal that the large mass asymmetry between the elements in a La60Ni15Al25

MG leads to a clear separation in the respective relaxation timescales, giving strong evidence that JG relaxation
is controlled by the lightest atomic species present. Moreover, we show that only qualitative features of the
vibrational density of states determine the overall observed mechanical response of the glass, paving the way for
a possible unified theory of secondary relaxations in glasses.
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I. INTRODUCTION

The diversity of atomic motion in metallic glasses (MGs)
is central to their unique physical and mechanical properties.
The primary or α-relaxation underlies the drastic slowing
down of the collective atomic dynamics during the transition
from a viscous supercooled liquid to a glassy solid upon
cooling, and its origin is still an outstanding problem in
condensed-matter physics. Indeed, like many other disor-
dered solids, such as polymers and molecular glasses, MGs
exhibit an entire class of secondary relaxations that persist
even well below the glass transition temperature Tg [1–3].
These phenomena are broadly referred to as β-relaxations
and occur on timescales much shorter than that of the α-
relaxation. The Johari-Goldstein (JG) β-relaxation is the most
well known among these due to its ubiquity in all types of
glasses [4,5]. Although the exact atomic-scale mechanism
underlying the JG β-relaxation in MGs is still not clear, there
appears to be a correlation to the α-relaxation, deformation,
and mechanical properties (see [1] and references therein).
In this regard, unraveling the atomic-scale dynamical fea-
tures of the JG β-relaxation would represent considerable
progress in our current understanding of its microscopic origin
and its impact on the physical and materials properties of
glasses [6].

A key open question is about the role of different
atomic/molecular constituents in the various relaxation pro-
cesses, and in particular whether a relaxation process is con-
trolled by the dynamics of a particular type of constituent(s).
In the case of organic molecular glasses it has been recently
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argued that all molecules seem to participate in the JG relax-
ation, although not all at once [7]. This problem has not been
investigated in metallic glasses, although the relative contri-
butions of different atomic species to the peak temperature of
the JG relaxation has been addressed in [8].

While many studies have examined both the structural and
relaxational features of the JG β-relaxation in MGs [9–12] the
connection to the atomic-scale vibrational properties remains,
to date, greatly unexplored. The JG β-relaxation in MGs
generally occurs on microsecond timescales, some several
orders of magnitude smaller than the α-relaxation of the
glass [10,13]. However, accessing the atomic-scale dynamics
of MGs in this temporal regime is both experimentally and
computationally challenging. Novel coherent x-ray scatter-
ing techniques probe collective atomic motion on timescales
larger than about 1 s [11,14], while molecular dynamics (MD)
simulations of the MG glassy-state dynamics have been only
recently successfully tested up to 10 ms [10].

Here, we combine experimental and simulation investiga-
tions with a microscopic theoretical framework of viscoelastic
response and relaxation of MGs. With this approach, we
are able to unveil the atomic-scale dynamics in MGs on
timescales over some 12 orders of magnitude, thus providing
necessary, complementary information for advanced simula-
tion and experimental studies.

Considering the success of our recent theoretical work in
linking the low-energy boson peak (BP) with α-relaxation
and dynamical heterogeneity in glasses [15,16], the results
presented in this paper give insight into the atomic-scale
dynamical facets of the JG β-relaxation in MGs. In partic-
ular, we are able to show strong evidence that the JG β-
relaxation is controlled by the smallest (lightest) atomic-scale
species present in the MG and that the existence of two
relaxation modes (α and JG β) can be traced down to the large
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differences in atomic mass of the metallic elements that
comprise the MG.

II. EXPERIMENTAL METHODS

A. Dynamical mechanical analysis

The dynamical mechanical analysis experiments were car-
ried out according to the procedure outlined in Ref. [8] using
a TAQ800 dynamical mechanical analyzer. Fully amorphous
cylindrical samples of La60Ni15Al25 with a diameter of 2 mm
were tested using the single-cantilever bending method in an
isothermal mode with a strain amplitude of 5 μm, temperature
step of 3 K, and discrete testing frequencies of 1, 2, 4, 8, and
16 Hz. The complex viscoelastic shear modulus is obtained
as G(ω, T ) = G′(ω, T ) + iG′′(ω, T ) as a function of test
frequency ω and temperature T , with mechanical relaxations
appearing as peaks in the loss modulus G′′(ω, T ).

B. Inelastic neutron scattering

Glassy ribbons of La60Ni15Al25 were produced by melt
spinning at the Institute for Physics, Chinese Academy of
Sciences, in Beijing. About 12 m of ribbons with a cross
section of 2.5 × 0.06 mm2 were placed in a thin-walled
aluminum hollow cylinder (height 51 mm, diameter 20 mm,
thickness 0.55 mm) for the inelastic neutron scattering (INS)
experiments at the time-of-flight spectrometer TOFTOF in
Garching. An incident wavelength of λi = 2.8 Å resulted in

an accessible momentum transfer range of 0.8 � q � 4.2 Å
−1

at zero-energy transfer. The raw data were normalized to a
vanadium standard, corrected for empty container scattering
and sample shelf absorption, and interpolated to constant q in
order to obtain the dynamic structure factor. The background
was corrected by separate measurements of the cryostat with
an empty sample holder. As the scattering probability of the
ribbons was calculated to be around 8%, multiple-scattering
effects were neglected.

In order to access the largest energy transfer range avail-
able, only the data located on the neutron energy gain side
of the spectrometer were analyzed. In a multicomponent
system with predominantly coherent scatterers, a generalized,
neutron-weighted vibrational density of states (VDOS) D(ωp )
can be obtained under the incoherent one-phonon approxima-
tion, where the measured dynamic structure factor, integrated
over the accessible q range, is proportional to D(ωp )/ω2

p [17].
The neutron-weighted VDOS was obtained in an iterative
procedure using the FRIDA-1 software [18,19].

III. MOLECULAR DYNAMICS SIMULATIONS

Classical MD simulations were performed for the
La60Ni15Al25 metallic alloy system using the LAMMPS pack-
age [20]. The interatomic interactions were described by the
embedded-atom method potential in Ref. [21]. Details can
be found in the Appendix. To obtain the VDOS D(ωp ) of
the system at various temperatures, the direct diagonalization
method was adopted, in which the steepest-descent method is
carried out for the final configuration.

The structure model contains 10 000 atoms in a cu-
bic box with periodic boundary conditions applied in three

dimensions. It was first fully equilibrated at T = 2000 K for
1 ns in the NPT (isobaric and isothermal) ensemble, then
cooled down to 300 K with a cooling rate of 1012 K/s. In
the cooling process, the box size was adjusted to give zero
pressure. At 300 K, the structure was then relaxed for 2 ns in
the NPT ensemble. To obtain the atomic structures at 330,
360, 390, and 410 K, the structure at 300 K was then heated
with a heating rate of 1010 K/s and then relaxed for 2 ns in the
NPT ensemble at each temperature of interest. The MD step
was set to be 2 fs.

The dynamical matrix corresponding to the potential-
energy minimum reached by LAMMPS line search algorithm
minimization is given by

Hij = 1√
mimj

∂2U

∂xi∂xj

, (1)

where U is the total internal energy of the system (which is a
function of all atoms’ coordinates), mi is the mass of atom i,
and xi is the coordinate vector of atom i. The VDOS can be
calculated by directly diagonalizing the dynamical matrix as

D(ωp ) = 1

3N − 3

∑
λ

δ(ωp − ωλ), (2)

where ωλ is the eigenfrequency.

IV. NONAFFINE LATTICE DYNAMICS

A. From the generalized Langevin equation to the dynamic
viscoelastic moduli

The dynamics of atoms in disordered solids is typically
nonaffine, which means that the atoms in the deformed con-
figuration do not sit in the positions prescribed by the strain
tensor; that is, they do not get displaced according to an affine
transformation. The latter would give the new position of
the atom from the left multiplication of the strain tensor and
position vector of the atom at rest. Instead, in disordered sys-
tems, the atom in the affine position receives forces from the
nearest neighbors which do not balance (they would balance
and cancel to zero in a centrosymmetric crystal, owing to local
inversion symmetry of the lattice). Hence, the lattice dynamics
for amorphous materials has to be rewritten to take these
facts into account [22], which eventually leads to softening of
the elastic constants [23] and new physics which is currently
being explored.

Upon applying a deformation described by the strain tensor
η, the dynamics of a tagged particle i interacting with other

atoms in the reference frame satisfies the following equa-
tion for the (mass-scaled) displacement {xi (t ) = q̊

i
(t ) − q̊

i
}

around a known rest frame q̊
i

(see Ref. [15] for derivation):

d2xi

dt2
+

∫ t

−∞
νi (t − t ′)

dxi

dt ′
dt ′ +

∑
j

H
ij
xj =�i,xyηxy.

(3)
Note that the summation convention over repeated indices is
not used. This equation can be solved by performing Fourier
transformation followed by normal-mode decomposition that
decomposes the 3N -vector x̃ (which contains positions of
all atoms) into normal modes x̃ = ˆ̃xp(ω)φ

p
(p is the index
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labeling the normal modes). Note that we focus on time-
dependent shear strain ηxy (t ). For this case, the vector �i,xy

represents the force per unit strain acting on atom i due to
the motion of its nearest neighbors (see, e.g., [22] for a more
detailed discussion).

As shown in the Appendix, Eq. (3) can be manipulated into
the following form:

−ω2(�T · x̃ ) + iω�T ν̃(ω)��T · x̃ + D (�T · x̃)

= �T · �xy η̃xy, (4)

where the matrix � consists of the 3N eigenvectors φ
p

of the Hessian. Here, we have (�T ν̃�)mn = ∑
i �im�inν̃i

and (�T �)mn = ∑
i �im�in = δmn, where ν̃ is the diagonal

matrix made by ν̃i (ω) along the diagonal. For different tagged
particles i and in general, one cannot find a solution without
simplifying the term �T ν�, which establishes coupling be-
tween different eigenmode contributions to the friction.

The friction term coupled to the pth normal mode is thus
iω

∑
im �im�ipν̃i . At this point of the analysis, we need to

work with the assumption that �T ν� is a diagonal matrix. In
physical terms, this means that the damping is not correlated
across different eigenmodes. This is an approximation used
within this framework to make the model solvable [15].
Thus, the friction that the pth mode feels is dominated by
iω

∑
i (�ip )2ν̃i . This result is used in the section below to jus-

tify the form of the memory kernel for the friction coefficient
based on differences in atomic mass of the constituents.

As derived in our previous work [15], we use the gener-
alized Langevin equation (3) under normal-mode decomposi-
tion while accounting for nonaffine displacements to derive a
microscopic expression for the complex viscoelastic modulus

G∗(ω) = GA − 3ρ

∫ ωD

0

D(ωp )�(ωp )

ω2
p − ω2 + iν̃(ω)ω

dωp, (5)

where we have dropped the Cartesian indices for convenience
and ρ = N/V denotes the atomic density of the solid. �(ωp )
is a function which describes the correlation of nonaffine
forces in the frequency shell [22–24].

B. Qualitative arguments for the form of the friction kernel in
La60Ni15Al25

As has been shown above in the context of Eq. (4), the
friction that the pth mode feels is given by

∑
i (�ip )2νi . We

expand this term explicitly in terms of the different atomic
species which form the alloy:

∑
i

(�ip )2νi ∼
25∑
Al

(
�2

ip

)∑
α

mα

mAl

c2
α,Al

ω2
α

cos (ωαt )

+
60∑
La

(
�2

ip

)∑
α

mα

mLa

c2
α,La

ω2
α

cos (ωαt )

+
15∑
Ni

(
�2

ip

)∑
α

mα

mNi

c2
α,Ni

ω2
α

cos (ωαt )

=
∑

α

25∑
Al

(�ip )2 mα

mAl

c2
α,Al

ω2
α

cos (ωαt )

+
∑

α

60∑
La

(�ip )2 mα

mLa

c2
α,La

ω2
α

cos (ωαt )

+
∑

α

15∑
Ni

(�ip )2 mα

mNi

c2
α,Ni

ω2
α

cos (ωαt ). (6)

The role of �ip here is to give a weight to each νi

contribution in the sum. All these sums could also be written
as integrals upon replacing the discrete variable ωα with the
continuous eigenfrequency ωp and introducing the VDOS as a
factor in the integral over ωp. Here, one can find that each term
is inversely proportional to the mass of the atomic species in
question. We note that the atomic mass of La (138.9 u) is more
than two times as large as the mass of Ni (58.7 u) and five
times larger than the mass of Al (26.98 u), which gives a much
larger weight in the sum of the Al and Ni terms. Hence, taking
also stoichiometry into account, the two terms relative to Ni
and Al considered together are about three times larger than
the contribution of the La term.

In order to strengthen this claim, we also consider the role
of the unknown dynamical coupling coefficients cα which
appear in Eq. (6). While the values of these coefficients
cannot be determined from first principles, we can still obtain
valuable indications about the probable magnitude by consid-
ering quantities like the partial g(r ) functions in the system.
Since these coefficients are associated with medium-range
(or, generically, beyond-short-range) dynamics, features in
g(r ) may give an indication of the relative magnitude of the
dynamical coupling between different species in the alloy.

Also, while g(r ) is a static structural quantity, it is also
true that it is directly related to dynamics via the Boltzmann
inversion relation, which yields the potential of mean force
as Vmfp/kBT = − ln g(r ). In turn, the potential of the mean
force represents the interaction energy between two atoms
mediated by the presence of all other atoms in the system;
hence, it also contains many-body effects. Therefore, g(r ) is
directly related to the potential of the mean force, which in
turn influences the correlated motions (hence the dynamics)
of the atoms and establishes (e.g., through long-range attrac-
tions) the dynamic coupling.

Consideration of the pair correlation function obtained
from simulations and shown in Fig. 1 indicates that there is a
clear broad peak for Al-Al in the regime of the medium-range
order. This supports our claim that the JG β-relaxation is due
to medium-range correlations and coupling between Al atoms.
This broad peak of Al-Al with respect to the short-range order
peak stands out in comparison with the other contributions in
the medium-range regime.

Finally, not only will the prefactor of the memory function
of La be smaller than the other two atomic species for the
reason above, but also the characteristic timescale of the mem-
ory decay associated with La will be comparatively larger,
as the relaxation time is typically inversely proportional to
the mass (or at least inversely proportional to the square root
of the mass). Hence, the contribution of La to memory and
hence to the intermediate-scattering function (ISF) would be
at a somewhat longer timescale compared to Ni. Additionally,
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FIG. 1. Partial contributions to the radial distribution function
g(r ) as calculated from MD simulations for La60Ni15Al25 at T =
300 K. The large maximum of the Ni-Al partial in (b) occurs at
g(rmax) = 12, which falls out of the range of the vertical axis of the
plot.

this contribution would probably be hybridized or obscured
by Ni, which has a larger prefactor and would explain why we
result in only two decays in our model for the ISF and memory
function.

These arguments, which indicate that the La term in the
form of the memory function given by Eq. (6) may be
negligible, can be summarized as follows: (i) the mass fac-
tor in the denominator makes the contribution of La about
three times smaller than the two contributions of Ni and
Al taken together. (ii) The main medium-range contributions
to the features of g(r ) emanate from Al, which corroborates
the hypothesis that the cα coefficients are larger for Al and
justify the dominance of Al dynamics in the JG β-relaxation.
(iii) If modeled as a third stretched-exponential function, the
contribution of La would have a larger characteristic timescale
of decay and would show up at longer times, probably masked
or hybridized with the Ni contribution. Based on this approx-
imation, the form of the memory function for the interatomic
friction in Eq. (6) reduces to

ν(t ) =
∑

α

15∑
Ni

(�ip )2 mα

mNi

c2
α,Ni

ω2
α

cos (ωαt )

+
∑

α

25∑
Al

(�ip )2 mα

mAl

c2
α,Al

ω2
α

cos (ωαt ) = ν1(t )+ν2(t ),

(7)

where ν1(t ) and ν2(t ) are two generic functions of time that
will be specified in the next section.

V. RELATION BETWEEN FRICTION MEMORY KERNEL
AND INTERMEDIATE-SCATTERING FUNCTION

For a supercooled liquid, a relationship between the time-
dependent friction, which is dominated by slow collective
dynamics, and the intermediate-scattering function was fa-
mously derived within kinetic theory by Sjoegren and Sjoe-
lander [25] (see also Ref. [26]):

ν(t ) = ρkBT

6π2m

∫ ∞

0
dqq4Fs (q, t )c(q )2F (q, t ), (8)

where m is a characteristic mass, c(q ) is the direct
correlation function of liquid-state theory, F (q, t ) is the
intermediate-scattering function, and Fs (q, t ) is the self-
part of F (q, t ) [25]. All of these quantities are functions
of the wave vector q, and the integral over q leaves
a time dependence of ν(t ), which is exclusively given
by the product Fs (q, t )F (q, t ). Upon further approximat-
ing Fs (q, t )F (q, t ) ∼ F (q, t )2, we obtain an intermediate-
scattering function via

F (q, t ) ∼
√

ν(t ). (9)

That the VDOS is related to ν(t ) becomes evident
upon considering the following relation, which holds for
the particle-bath Hamiltonian from which Eq. (3) is de-
rived [15,16,27],

ν(t ) =
∫ ∞

0
dωpD(ωp )

γ (ωp )2

ω2
p

cos ωpt,

which couples the dynamics of the tagged atom to that of all
the oscillators forming the bath, which represent all the other
atomic degrees of freedom in the material.

VI. RESULTS AND DISCUSSION

A. Radial distribution function and partials thereof

From the MD simulations we obtain the partial pair cor-
relation functions g(r ) for all atomic pairs and show them
in Fig. 1. The partial functions shown in Fig. 1(b) clearly
indicate that, in the regime of the medium-range order (be-
tween r = 4 Å and r = 7 Å), there are broad peaks for Ni-Ni
and Al-Al which are either much larger or comparable in
magnitude to the primary peak associated with the short-range
order (up to r ∼ 3 Å). In contrast to the La pairs, in which
the short-range-order peak appears to be the most dominant
[Fig. 1(a)], the more active Ni-Ni and Al-Al pair interac-
tions at the length scale of the medium-range order would
also indicate a stronger dynamical coupling in this spatial
regime.

B. Vibrational density of states

The solid gray circles in Fig. 2 represent the total D(ωp )
as obtained from MD simulations. A more detailed look at the
VDOS can be seen through the respective contributions of the
La, Ni, and Al atoms. It is clear that the initial maximum of
the total D(ωp ) at around 8 meV is attributed to low-energy
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FIG. 2. Vibrational density of states (VDOS) of La60Ni15Al25 at
T = 300 K as determined in INS experiments (solid line) and MD
simulations (symbols).

vibrations involving the heavy La atoms, while vibrations of
the Ni atoms occur around 15 meV and are responsible for
an apparent shoulder on the high-energy side of the main
vibrational band. The vibrational dynamics of the light Al
atoms are, in contrast, well separated from that of the other
elements and exhibit a double-band structure at around 25
and 35 meV. D(ωp ) as obtained in INS experiments is shown
alongside the simulation data. It is important to note here
that the experimental D(ωp ) is additionally weighted by the
isotope-specific neutron scattering cross sections of the con-
stituent elements, of which Ni-Ni and Ni-La atomic pairs will
dominate. Hence, the experimental D(ωp ) should be taken to
represent only a generalized, neutron-weighted VDOS. In any
case, it is apparent that the predominant contribution to the
high-frequency side of both VDOSs of this MG stems from
the vibrations of the Al atoms.

C. Dynamic mechanical analysis and comparison with theory

In Fig. 3 we show a master curve of the experimentally
measured G′′(ω) obtained from Ref. [8] for La60Ni15Al25 at
a reference temperature of 453 K, together with a theoretical
fitting provided by Eq. (5). The α-relaxation appears as the

FIG. 3. Master curve of the imaginary part of the complex vis-
coelastic modulus G′′(ω) at a reference temperature T = 453 K.
The red and blue curves are fit results to our theoretical model using
the experimental and simulated VDOSs, respectively, as input.

main loss peak situated around 1 Hz. A distinct feature of this
system is the prominent and well-separated loss peak on the
high-frequency side around 106 Hz and is attributed to the JG
β-relaxation.

The nonaffine lattice dynamic theory of viscoelasticity
of glasses outlined above allows us to quantitatively link
the macroscopic features of the JG β-relaxation with the
atomic-scale vibrational properties of this MG. Within this
framework, it is possible to rationalize the average friction in
the atomic motion of a tagged atom in the glass in terms of the
respective contributions of the atomic components, for which
the friction coefficient of the ith atom νi is proportional to
the reciprocal of the atomic mass of atom i [15,27]. Thus, as
was shown in Sec. IV B, when summing over all tagged atoms
in iω

∑
i (�ip )2ν̃i , the contributions to the friction coefficient

coming from the heaviest atoms, i.e., La, turn out to be smaller
by at least a factor of 1/3 in comparison with the contributions
of Al and Ni (taken together). For the case of La60Ni15Al25 we
thus find that the contribution of La can be neglected, given the
comparatively very large mass of La, which leaves the average
friction as the sum of two contributions, those of Ni and Al,
which carry widely different relaxation timescales by virtue
of the different atomic masses.

As derived in Sec. IV B, in the sum over i only terms
corresponding to Ni and Al atoms survive, which are well
separated in magnitude given the difference in mass between
Ni and Al. We then divide the sum into two groups for Ni and
Al and then average each group separately. The final result
is that the average friction memory function consists of two
distinct contributions, according to Eq. (7), both of which
will decay in time but with two different and well-separated
relaxation times, τ1 and τ2. The shorter relaxation time τ2

(associated with the JG β-relaxation) is related to the atomic
dynamics of the lighter element, Al, whereas the other term
has a longer relaxation time τ1, dominated by the atomic
dynamics of the heavier element, Ni, which contributes to the
α-relaxation time.

With an appropriate ansatz for ν(t ) we obtain the
intermediate-scattering function F (q, t ) via ν(t ) ∼
F (q, t )2 [25,26]. From experiments and simulations, we
know that in supercooled liquids F (q, t ) ∼ exp[(−t/τ )b]
for the α-relaxation, where τ is the characteristic structural
relaxation time and b is the stretching exponent with values
normally between b = 0.5 and 0.7 [28]. When both α- and
β-relaxations are present, F (q, t ) has a two-step decay, with
the first decay at shorter times due to the β-relaxation and the
second decay at much longer times due to the α-relaxation.
On the basis of this evidence, we take the time dependence of
each of the two terms in the memory function to be stretched
exponential with different values of τ and b,

ν(t ) ∼ exp[−(t/τ1)b1 ] + c exp[−(t/τ2)b2 ], (10)

where c is a constant.
The curves in Fig. 3 are our fits to experimental data using

the VDOS obtained in both INS experiments (red) and MD
simulations (blue). It is apparent that our theoretical model
excellently captures both peaks in the loss spectrum over
a frequency range of some ten orders of magnitude with
the resulting parameters: τ1 = 0.67 s, b1 = 0.45, τ2 = 4.04 ×
10−7 s, b2 = 0.47, and c = 0.07. We note here that the two-
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FIG. 4. Time decay of the square root of the total memory
function for the friction ν(t ), exhibiting two decays correspond-
ing to α and β decay in the intermediate-scattering function
F (q, t ), according to the relation F (q, t ) ∼ √

ν(t ) that follows from
Eq. (8).

component ansatz is the simplest model with the minimum
number of free parameters that completely describes the ex-
perimental G′′ data, which is congruent with our theoretical
result derived in the last section, where ν(t ) reduces to a sum
of two terms. Surprisingly, we obtain the same fitting param-
eters for both the experimental and the simulation VDOSs,
although the two data sets exhibit noticeably different fea-
tures. In a way, this result reassures us that the differences
in the two VDOSs did not simply “disappear” into the fitting
parameters and genuinely implies that these differences do not
play a substantial role in the mechanical response. Moreover,
it suggests that the qualitative shape of the VDOS, i.e., the
location of the peaks, especially on the low-frequency side, is
of primary importance. In a broader perspective, this result
implies that the origin of the JG β-relaxation in various
types of glasses can be traced back to the generic shape
of the VDOS and encourages the development of a univer-
sal theory based on the microscopic framework employed
here.

D. Qualitative behavior of the intermediate-scattering function
from theoretical fitting

The square root of ν(t ) is shown in Fig. 4 following the
relation F (q, t ) ∼ √

ν(t ) from Eq. (9). We see the character-
istic two-step decay of F (q, t ) present in systems with well-
separated α- and β-relaxations, with the first decay occurring
on the typical timescale of the β-relaxation, τβ ∼ 10−7 s,
followed by a much slower decay given by the timescale set
by τ1. While the timescale τβ closely matches the timescale
τ2 set by atomic dynamics dominated by Al, the typical α-
relaxation time of glasses, τα ∼ 102 s, is significantly different
from the timescale τ1 associated with Ni, as the α process
is more complex, and the square-root mixing of the different
timescales of the above relaxation reflects this fact. Moreover,
the α peak in G′′ and the corresponding decay in F (q, t )
cannot be reduced to just τ1, as the timescale range of the
α-relaxation contains a strong contribution from soft modes
(the boson peak [29]) in the VDOS. This is clear from Eq. (5),
where the term ω2

p in the denominator gives a large weight

to the low-ωp part of the VDOS, which contains the BP
proliferation of soft modes, as was shown in previous work for
the case of CuZr alloys which present only α-relaxation [15]
and also for dielectric relaxation of glycerol [16].

VII. CONCLUSION

We have presented a combined experimental, simula-
tion, and theoretical analysis of the viscoelastic response
of a metallic glass exhibiting a strong Johari-Goldstein β-
relaxation. The appearance of the JG β-relaxation in this
metallic glass is attributed to (i) the wide mass disparity
between the light Al atoms and the other atomic species and
(ii) a strong dynamical coupling involving the Ni and Al atoms
at the medium-range order length scale. The results of our the-
ory shed light on the microscopic glassy-state dynamics over
a temporal range of 12 orders of magnitude and reproduce
the distinctive two-step decay of the intermediate-scattering
function that is a characteristic feature of systems exhibiting
both β- and α-relaxations. A crucial input to our theory is the
vibrational density of states. Surprisingly, only the qualitative
features (i.e., peak positions) of the VDOS appear to play the
main role in determining the viscoelastic response of the glass,
implying a common behavior linking the JG β-relaxation to
vibrational dynamics in glassy systems. These results should
be useful for developing a universal theory of secondary
relaxations in glasses.
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APPENDIX: DERIVATION OF EQUATION (4)

After taking the Fourier transformation of Eq. (3) in the
main text, it becomes

−ω2x̃i + iν̃i (ω)ωx̃i + H
ij
x̃j = �i,xy η̃xy . (A1)

Next, we take normal-mode decomposition. This is equiv-
alent to diagonalizing the Hessian matrix H . From now
on all matrices and vectors are meant to be 3N × 3N and
3N -dimensional, respectively. The 3N × 3N matrix H can

be decomposed as H = � D �−1 = � D �T , where D is
a diagonal matrix filled with the eigenvalues of H , that
is, in components, Dpp = ω2

p. Further, the matrix � con-
sists of the 3N eigenvectors φ

p
of the Hessian, i.e., � =

(φ
1
, . . . , φ

p
, . . . , φ

3N
), and is an orthogonal matrix.

Then, we left multiply both sides with the matrix �−1 =
�T , which leads to Eq. (4) in the main text:

−ω2(�T · x̃ ) + iω�T ν̃(ω)��T · x̃ + D (�T · x̃)

= �T · �xy η̃xy,

where we used the fact that D is diagonal and we have
dropped all indices i and j and ν̃ is the diagonal matrix
diag{ν̃i}, i = 1, 2, . . . .
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